EP0634058B1 - Richtantenne, insbesondere dipolantenne - Google Patents

Richtantenne, insbesondere dipolantenne Download PDF

Info

Publication number
EP0634058B1
EP0634058B1 EP94906193A EP94906193A EP0634058B1 EP 0634058 B1 EP0634058 B1 EP 0634058B1 EP 94906193 A EP94906193 A EP 94906193A EP 94906193 A EP94906193 A EP 94906193A EP 0634058 B1 EP0634058 B1 EP 0634058B1
Authority
EP
European Patent Office
Prior art keywords
reflector
dipole
directional antenna
antenna according
dipoles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94906193A
Other languages
English (en)
French (fr)
Other versions
EP0634058A1 (de
Inventor
Georg Klinger
Max GÖTTL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP0634058A1 publication Critical patent/EP0634058A1/de
Application granted granted Critical
Publication of EP0634058B1 publication Critical patent/EP0634058B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials

Definitions

  • the invention relates to a directional antenna, in particular a dipole antenna according to the preamble of claim 1.
  • Dipole antennas are often used as symmetrically fed directional antennas. In principle, it is a horizontal or vertical, symmetrical linear antenna fed in the middle, depending on the polarization of the electromagnetic waves. If the dipoles are offset by 90 ° to one another, a circularly polarized electromagnetic wave can ultimately also be generated.
  • the directional antenna consisting of one or more dipoles usually includes one or more radiators, which essentially consist of the two dipole halves and the so-called symmetry loop, via which the dipole, which usually consists of the two rod halves, is offset with an offset to the reflector wall carrying it is oriented essentially parallel, but also in an angular form.
  • the directional antenna shown in Figures 10a to 10c comprises a dipole field 1 with z. B. two dipoles 3, which are arranged in front of a conductive, flat or shaped reflector 5 at a distance from it.
  • the arrangement thus comprises two radiators 2, which are arranged at a distance a in parallel alignment with one another and with an offset b in front of the reflector wall.
  • the two dipoles 3 shown in FIGS. 10a to 10c are held and fastened to the reflector 5 by means of a so-called symmetry 7, which usually consist of two holding rods 7 'running vertically to the reflector wall 5 and carrying the dipoles 3.
  • a radome 9 that is to say a protective housing.
  • the radiation diagram in the E and H planes of a dipole field is essentially determined by the shape and the mechanical dimensions of the reflector and the number and arrangement of the dipoles.
  • both the reflector width c i.e. the width of the reflector wall 5, as well as the distances a for the lateral offset transversely to the parallel dipoles 3 and the distance b from the dipoles to the reflector 5 can be varied.
  • Directional antennas are used for the current mobile radio networks used with vertical polarization, which have a horizontal directional characteristic of approx. 60 ° to 120 ° at the 3 dB point. These values can be achieved with one or two radiators in the arrangement shown. However, the arrangement of the dipoles 3, the symmetry loop 7 and including the connection point 11 of the symmetry loop 7 on the reflector 5, the so-called base point 11, and the offset must be optimized for any desired half-value width.
  • the dipole antennas described in accordance with the prior art each comprise a plurality of individual parts which then have to be mechanically connected to one another. This is done through the common connection methods, such as. B. screws, welding, soldering.
  • the individual components for the dipole rods, the balancing loop and the connection points 11 for attachment to the reflector can be tubular, flat or else shaped depending on requirements.
  • the individual parts are manufactured with the usual manufacturing tolerances. This also applies to the assembly in the assembled state.
  • connection points can also have retrospective effects on the antenna function. If several RF carrier frequencies are present at the individual connection points of the individual parts at the same time, they can mix with non-linearities and generate intermodulation products which have a disruptive effect on the operation of a mobile radio network. This effect can be exacerbated by contact corrosion if the materials are paired poorly and used for a long time.
  • a generic dipole arrangement in which a dipole emitter formed as a sheet metal part is screwed to the reflector, has become known from DE 91 04 722 U1.
  • the dipole halves and the support struts carrying the dipole halves i.e. the so-called symmetry, as a uniform stamped and bent part made of sheet metal , preferably made of aluminum sheet.
  • the dipole halves are U-shaped and open to the reflector. Adequate stiffening of the support struts is to be achieved by suitable sheet metal deformations such as embossing, beads, folding etc.
  • the support struts are provided with corresponding holes so that the dipole thus produced can be screwed onto the reflector.
  • the dipole is attached to the reflector using screws.
  • holes are drilled at the foot of the support struts, so that the screws mentioned for the fixed attachment of the dipole on the reflector can be passed through and tightened on the reflector.
  • this mechanical connection has the disadvantages mentioned above.
  • the present invention achieves significant improvements over the prior art with surprisingly simple means.
  • the invention provides that the dipoles of the dipole antenna, including the so-called symmetry loop, i.e. that is, the holding struts for the dipoles are cut out of the material of the reflector wall, for example punched out, and only with an electrically conductive connection point being left to the remaining material of the reflector wall.
  • the dipole antenna is then simply folded out, i.e. Bend out or edge the radiator including the dipole to form the so-called base at the junction from the radiator to the reflector wall.
  • contour cuts can be exactly reproduced with high-precision tools, for example in the form of a computer-controlled laser or using a coordinate punching tool with tight tolerances.
  • the spotlight and reflector are made of the same material. Thereby above all, possible contact corrosion can be avoided.
  • the alignment of the radiator with respect to the plane of the reflector can be carried out at different angles. This allows a problem-free adaptation to a desired dipole field on the one hand and on the other hand enables a particularly flat design.
  • Directional diagrams with half-widths of approx. 60 to 120 ° can be realized simply by using different bending angles.
  • a very flat design of such a dipole antenna can be realized. Due to a V-shaped course of the symmetry, an electrical length of approximately ⁇ / 4 is achieved, although the dipole is, for example, a distance of approximately ⁇ / 8 from the reflector.
  • a feed can take place, for example, with a coaxial cable or else with a strip line, with one half of the balancing loop and the reflector being able to be used as an outer conductor.
  • the essentially L-shaped form of a dipole 3 with the symmetry 7 assigned to the respective two parts of the dipole is punched out of the material of the reflector 5, for example by means of a computer-controlled laser or a coordinate punching tool the connection point 11 to the reflector wall, that is to say at the base, by bending or edging according to the desired bending angle ⁇ .
  • the angle ⁇ is approximately 30 to 60 °.
  • an opening 13 is left in the reflector field 5 in the area of the punched out, which but generally does not necessarily have to be disadvantageous for the transmitting and receiving function of the directional antenna in general, it may even have advantages.
  • the forward / backward ratio of the dipole field can be influenced by targeted dimensioning of the punched-out shape in the form of the opening 13.
  • the opening 13 could also be closed with electrically conductive material, for example by gluing on a metal foil, it being possible for the metal foil to be provided with a metal layer formed on the rear side without making a galvanic contact with the reflector plate.
  • a specific horizontal radiation diagram can be set. In other words, an adjustment of the radiation diagram can be made possible only by changing the bending angle ⁇ .
  • the production of a directional antenna with different geometrical dimensions that is to say a different size for the distance a between the dipoles and a different length of the dipoles, can be made possible only by changing the desired data in the computer-controlled laser or by changing the punching tool.
  • the symmetry loop 7, i.e. specifically the two parallel band-shaped or strip-shaped halves of the symmetry loop 7 can be designed with a lower wall section 7a connecting these two halves.
  • the two halves of the symmetry loop 7 can be punched out individually and each bent out and set up over a separate bending line 11 at the base point relative to the plane of the reflector 5 (in FIG dotted).
  • the bending line 11 is then aligned with the transverse cutting or punching line lying between the two halves of the symmetry loop 7, which lies in the plane of the reflector, if this is introduced and provided at all.
  • FIG. 3 shows that the dipole antenna according to the invention is in principle also arranged in a closed radome 15 as a protective housing.
  • FIGS. 4a and 4b and according to FIG. 5 essentially corresponds to the exemplary embodiment according to FIGS. 1a to 1d or FIG. 2.
  • FIG. 4a, 4b and FIG. 5 a possible feeding of the dipole using a strip line 17 is shown in principle.
  • One half 7a of the symmetry loop 7 and the reflector 5 are used as outer conductors.
  • the connecting conductor 17 ' is laid in the middle at a short distance above the reflector plate 5 which represents the outer conductor.
  • the strip line 17 'then branches at a branching point 23 between the two halves 7a of the respective symmetry 7 facing each other.
  • the line runs at a small uniform distance d above the associated half 7a of the symmetry 7, that is to say preferably at the same angle ⁇ with respect to the plane of the reflector.
  • an angled line piece 17 "then connects, which at the adjacent transition from the other half of the balancing 7 to the associated part of the dipole into an angled line to be run on this connection point Line section 17 "passes over. This defines the actual feed point 23.
  • the branching point 23 lies approximately at the level of the opposite dipoles 3 of the two radiators 2. From the connecting side 17 ′ which is laid at a small distance in parallel above the reflector 5, there is a vertical intermediate line 18 in a parallel alignment between the two halves of the symmetry 7 to the high branch point 23.
  • the angular laying of the strip conductors 17 ′′ and 17 ′′ ′′ also takes place in the exemplary embodiment according to FIG. 5 in a manner similar to that explained with reference to FIGS. 4a and 4b.
  • the dipoles 3 are also fed using stripline technology, using a carrier substrate 25.
  • the carrier substrate 25 is anchored in a mechanically overlying manner, in particular at a bending angle ⁇ of less than 90 ° between the two opposite symmetries 7 of the two dipoles 3 shown in the figures (for example via an insulating fixing 27 made of plastic).
  • the strip line 17 is formed with the connecting conductor 17 ', from the branching point 23 of which the connecting lines 17' then lead to the respective feed point of the two dipoles 3.
  • the carrier substrate 25 can also be attached at a greater distance from the reflector wall 5, for example at least approximately at the height of the dipoles 3 or slightly below, by means of the fixation 27.
  • the line course corresponds essentially to the exemplary embodiment formed in stripline technology according to FIGS. 4a, 4b and 5, the outer conductors 17a of the two coaxial connecting conductors 17 'ending approximately at the level of the dipoles and the outer conductors 17a here separately on the respective half 7a of the balancing 7 are connected in a conductive manner, while the inner conductor 17b leads via the subsequent conductor pieces 17 ′′ and 17 ′′ ′′ to the respective feed point 23 at the transition of the other half of the symmetry 7 to the associated part of the dipole 3 originating therefrom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

Um eine gegenüber dem Stand der Technik verbesserte Richtantenne, insbesondere Dipolantenne zu schaffen, die vergleichsweise einfach herstellbar und aufgebaut und dabei zudem noch verbesserte elektrische Eigenschaften aufweist, ist vorgesehen, daß der Dipol einschließlich dessen Symmetrierung (7) aus dem Material des Reflektors (5) hergestellt ist, indem der Dipol und die Symmetrierung (7) aus der Reflektorwand (5) durch entsprechende Einschnitte und/oder Ausstanzungen bis auf einen Verbindungsabschnitt (11) zum verbleibenden Material der Reflektorwand (5) herausgetrennt und vorzugsweise im Bereich der unmittelbaren Verbindungsstelle (11) zum verbleibenden Material der Reflektorwand (5) gegenüber der Ebene der Reflektorwand herausgebogen sind.

Description

  • Die Erfindung betrifft eine Richtantenne, insbesondere Dipolantenne nach dem Oberbegriff des Anspruches 1.
  • Dipolantennen werden häufig als symmetrisch angespeiste Richtantennen verwandt. Es handelt sich vom Prinzip her um eine je nach Polarisation der elektromagnetischen Wellen horizontale oder vertikale, symmetrische, in der Mitte gespeiste Linearantenne. Bei um 90° versetzt zueinander angeordneten Dipolen kann letztlich auch eine zirkular polarisierte elektromagnetische Welle erzeugt werden.
  • Die aus einem oder mehreren Dipolen bestehende Richtantenne umfaßt dabei üblicherweise einen oder mehrere Strahler, die im wesentlichen aus den beiden Dipolhälften und der sog. Symmetrierschleife bestehen, worüber der in der Regel aus den beiden Stabhälften bestehende Dipol mit Vorversatz zur der ihn tragenden Reflektorwand versetzt aber im wesentlichen parallel, aber auch in winkeliger Form dazu ausgerichtet ist.
  • Eine aus einer Dipolantenne, kurz Dipolfeld genannt, gebildete Richtantenne nach dem Stand der Technik wird unter Bezugnahme auf die Figuren 10a bis 10c erläutert.
  • Die in den Figuren 10a bis 10c gezeigte Richtantenne umfaßt ein Dipolfeld 1 mit z. B. zwei Dipolen 3, die vor einem leitenden, ebenen oder geformten Reflektor 5 im Abstand dazu angeordnet sind. Im gezeigten Beispiel umfaßt die Anordnung also zwei Strahler 2, die im Abstand a in paralleler Ausrichtung zueinander und mit einem Vorversatz b vor der Reflektorwand angeordnet sind.
  • Die beiden in Figur 10a bis 10c gezeigten Dipole 3 werden mittels einer sog. Symmetrierung 7 an dem Reflektor 5 gehalten und befestigt, die üblicherweise aus zwei vertikal zur Reflektorwand 5 verlaufenden und die Dipole 3 tragenden Haltestäben 7' bestehen.
  • Die gesamte Anordnung ist üblicherweise in einem sog. Radom 9, also einem sog. Schutzgehäuse, geschützt untergebracht.
  • Das Strahlungsdiagramm in der E- und H-Ebene eines Dipolfeldes ist im wesentlichen bestimmt durch die Formgebung und die mechanischen Abmessungen des Reflektors sowie der Anzahl und Anordnung der Dipole.
  • Um beispielsweise bei der gemäß Figur 10a bis 10c vorbekannten Dipolantenne verschiedene Richtcharakteristiken zu erreichen, kann sowohl die Reflektorbreite c, d.h. die Breite der Reflektorwand 5, als auch die Abstände a für den Seitenversatz quer zu den parallel ausgerichteten Dipolen 3 als auch der Abstand b von den Dipolen gegenüber dem Reflektor 5 variiert werden.
  • Für die derzeitigen Mobilfunknetze werden Richtantennen mit vertikaler Polarisation verwendet, die eine horizontale Richtcharakteristik von ca. 60° bis 120° am 3 dB Punkt haben. Diese Werte können mit einem oder zwei Strahlern in der gezeigten Anordnung verwirklicht werden. Allerdings muß die Anordnung der aus den Dipolen 3, der Symmetrierschleife 7 und einschließlich der Verbindungsstelle 11 der Symmetrierschleife 7 an dem Reflektor 5, dem sog. Fußpunkt 11 sowie der Vorversatz für jede gewünschte Halbwertsbreite optimiert werden.
  • Dies heißt, daß bei der Realisierung einer Antennenfamilie nach gewünschter Halbwertsbreite unterschiedliche Strahler sowie verschiedene Positionierungen auf dem Reflektor benötigt werden.
  • Die nach dem Stand der Technik bekannten beschriebenen Dipolantennen umfassen dabei jeweils mehrere Einzelteile, die dann mechanisch miteinander verbunden werden müssen. Dies geschieht durch die gängigen Verbindungsverfahren, wie z. B. Schrauben, Schweißen, Löten. Die Einzelkomponenten für die Dipolstäbe, die Symmetrierschleife wie die Verbindungsstellen 11 zur Befestigung am Reflektor können rohrförmig, flächig oder auch ansonsten je nach Anfordernissen geformt sein. Die Einzelteile sind mit den üblichen Fertigungstoleranzen hergestellt. Dies gilt gleichermaßen für die Baugruppe im zusammengefügten Zustand.
  • Dabei muß bedacht werden, daß die fertigungstechnisch bedingten Toleranzen sich auch auf die elektrischen Eigenschaften (z. B. VSWR) des Einzelstrahlers und bei einer Anordnung von mehreren Strahlern auf die Impedanz der gesamten Antenne auswirken.
  • Dies erfordert insbesondere für die Serienfertigung die Einhaltung enger Toleranzen, sowohl bei den Einzelteilen als auch bei den Baugruppen.
  • Beim Zusammenbau der Einzelteile muß dabei ferner auch beachtet werden, daß mechanische Verbindungsstellen auch die Antennenfunktion nachträglich beeinflussende Wirkungen aufweisen können. Liegen nämlich an den einzelnen Verbindungsstellen der Einzelteile mehrere HF-Trägerfrequenzen gleichzeitig an, so können sie sich an Nicht-Linearitäten mischen und Intermodulationsprodukte erzeugen, die sich störend auf den Betrieb eines Mobilfunknetzes auswirken. Dieser Effekt kann bei ungünstiger Materialpaarung und langer Einsatzdauer noch durch Kontaktkorrosion verschärft werden.
  • Eine gattungsbildende Dipolanordnung, bei der ein als Blechteil ausgebildeter Dipolstrahler an den Reflektor angeschraubt ist, ist aus der DE 91 04 722 U1 bekannt geworden. Um eine Vereinfachung bezüglich des konstruktiven Aufbaus eines Dipoles zu schaffen und um dabei den Fertigungs- und den Materialaufwand zu senken, wird vorgeschlagen, daß die Dipolhälften und die die Dipolhälften tragenden Tragstreben, also die sogenannte Symmetrierung, als ein einheitliches Stanz- und Biegeteil aus Blech, vorzugsweise aus Aluminiumblech hergestellt wird. Dazu sind die Dipolhälten U-förmig gestaltet und zum Reflektor offen ausgebildet. Durch geeignete Blechverformungen, wie Prägen, Sicken, Abkanten etc. soll eine ausreichende Versteifung der Tragstreben erzielt werden.
  • An der Basis sind die Tragstreben mit entsprechenden Bohrungen versehen, um den so hergestellten Dipol am Reflektor anschrauben zu können.
  • Der Anbau des Dipols am Reflektor erfolgt mittels Schrauben. Dazu sind am Fuß der Tragstreben Bohrungen eingebracht, wodurch die erwähnten Schrauben zur festen Anbringung des Dipols am Reflektor hindurchgeführt und am Reflektor festgedreht werden können. Diese mechanische Verbindung weist aber die o.g. Nachteile auf.
  • Aufgabe der vorliegenden Erfindung ist es von daher, die Nachteile nach dem Stand der Technik zu überwinden und eine Richtantenne, insbesondere Dipolantenne zu schaffen, die gegenüber dem Stand der Technik vergleichsweise einfach herstellbar ist und zudem verbesserte elektrische Eigenschaften aufweist.
  • Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Durch die vorliegende Erfindung werden mit überraschend einfachen Mitteln deutliche Verbesserungen gegenüber dem Stand der Technik erzielt.
  • Zum einen ist erfindungsgemäß vorgesehen, daß die Dipole der Dipolantenne einschließlich der sog. Symmetrierschleife, d.h. also den Haltestreben für die Dipole aus dem Material der Reflektorwand ausgeschnitten, beispielsweise ausgestanzt werden, und zwar lediglich unter Zurücklassung einer eine elektrisch leitende Verbindungsstelle zum verbleibenden Material der Reflektorwand. Die Dipolantenne wird dann allein durch Herausklappen, d.h. Herausbiegen oder Kanten, des Strahlers einschließlich des Dipols unter Ausbildung des sog. Fußpunktes an der Verbindungsstelle vom Strahler zur Reflektorwand hergestellt. Ein umständliches, zeitaufwendiges und Probleme bei den einzuhaltenden Toleranzen ergebenes Zusammenbauen diverser Einzelteile ist nicht mehr erforderlich.
  • Dabei lassen sich die Konturschnitte mit hochpräzisen Werkzeugen beispielsweise in Form eines rechnergesteuerten Lasers oder unter Einsatz eines Koordinatenstanzwerkzeuges mit engen Toleranzen exakt reproduzieren. Strahler und Reflektor bestehen dabei aus identischem Werkstoff. Dadurch lassen sich vor allem auch schon mögliche Kontaktkorrosionen vermeiden.
  • Besonders vorteilhaft ist aber vor allem, daß keine mechanische Verbindungsstellen vorhanden sind, an denen die beim Stand der Technik beschriebenen Nachteile auftreten können.
  • Dabei kann die Ausrichtung des Strahlers gegenüber der Ebene des Reflektors in unterschiedlichen Winkeln vorgenommen werden. Dies erlaubt eine problemlose Anpassung an ein gewünschtes Dipolfeld zum einen und ermöglicht zum anderen eine besonders flache Bauweise. Allein durch verschiedene Biegewinkel lassen sich Richtdiagramme mit Halbwertsbreiten von ca. 60 bis 120° realisieren.
  • In einer bevorzugten Ausführungsform der Erfindung kann dabei eine sehr flache Bauweise einer derartigen Dipolantenne realisiert werden. Aufgrund eines V-förmigen Verlaufs der Symmetrierung wird eine elektrische Länge von ca. λ/4 erreicht, obwohl der Dipol vom Reflektor beispielsweise einen Abstand von ca. λ/8 hat.
  • Da der Fußpunkt des Strahlers kontinuierlich leitend zum Reflektor übergeht, eignet sich dieses Bauprinzip insbesondere für die Einspeisung mittels Streifenleitung
  • Weitere Vorteile der Erfindung liegen in den vielfältigen Möglichkeiten der Einspeisung.
  • Eine Einspeisung kann beispielsweise mit Koaxialkabel oder aber auch mit einer Streifenleitung erfolgen, wobei die eine Hälfte der Symmetrierschleife und des Reflektors als Außenleiter verwendet werden können.
  • Weitere Vorteile, Einzelheiten und Merkmale der Erfindung ergeben sich nachfolgend aus den anhand von Zeichnungen dargestellten Ausführungsbeispielen. Dabei zeigen im einzelnen:
  • Figur 1a bis 1c:
    eine schematische Draufsicht und Längsseiten- und Quersseitenan-sicht eines ersten Ausführungsbeispieles der Erfindung;
    Figur 1 d:
    eine ausschnittsweise vereinfachte perspektivische Darstellung eines aus dem Reflektor herausgeklappten Strahlers;
    Figur 2 :
    eine Quer- oder Stirnseitenansicht eines in anderem Winkel gegenüber der Reflektorwand ausgerichtet verlaufenden Strahlers;
    Figur 3 :
    eine weitere Querseiten- oder Stirnseitenansicht bei in einem geschlossenen Radom untergebrachten Dipolantenne;
    Figur 4a und 4b :
    eine schematische Draufsicht und Querseitenansicht auf eine Dipolantenne einschließlich einer Anspeisung der Dipole in Streifenleitertechnik;
    Figur 5 :
    eine Quer- oder Stirnseitenansicht auf ein zu Figur 4b abgewandeltes Ausführungsbeispiel einer Dipolantenne;
    Figur 6a und 6b :
    eine Draufsicht und eine Queroder Stirnseitenansicht auf eine Dipolantenne mit einer Anspeisung der Dipole in Streifenleitertechnik mit Trägersubstrat;
    Figur 7 :
    eine Quer- oder Stirnseitenansicht einer gegenüber Figur 6b abgewandelten Dipolantenne;
    Figur 8a und 8b :
    eine Draufsicht und eine Quer-oder Stirnseitenansicht auf eine Dipolantenne mit einer Einspeisung der Dipole in Koaxialtechnik;
    Figur 9 :
    eine Quer- oder Stirnseitenansicht auf einen zu Figur 8b abgewandelten Dipol;
    Figur 10a bis 10c :
    eine Draufsicht, Längsseiten-und Querseitenansicht auf eine Dipolantenne nach dem Stand der Technik.
  • In Figur 1a bis 1d wird ein erstes erfindungsgemäßes Ausführungsbeispiel für eine Richtantenne, d.h. eine Dipolantenne, mit zwei Dipolen gezeigt.
  • Wie aus der schematischen perspektivischen Darstellung gemäß Figur 1d hervorgeht, ist aus dem Material des Reflektors 5 beispielsweise mittels eines rechnergesteuerten Lasers oder eines Koordinatenstanzwerkzeuges die im wesentlichen L-förmige Form eines Dipols 3 mit der den jeweiligen beiden Teilen des Dipols zugeordneten Symmetrierung 7 ausgestanzt und an der Verbindungsstelle 11 zur Reflektorwand, also am Fußpunkt, durch Biegung oder Kantung entsprechend dem gewünschten Biegewinkel α aufgestellt. Der Winkel α beträgt beispielsweise in dem Ausführungsbeispiel gemäß Figur 1a bis 1d etwa 30 bis 60°.
  • Gemäß Figur 1d wird dadurch im Bereich der Ausstanzung eine Öffnung 13 im Reflektorfeld 5 zurückgelassen, was aber grundsätzlich für die Sende- und Empfangsfunktion der Richtantenne im allgemeinen nicht unbedingt nachteilig sein muß, ja sogar Vorteile aufweisen kann. Durch gezielte Dimensionierung der Ausstanzung in Form der Öffnung 13 kann das Vor-/Rückverhältnis des Dipolfeldes beeinflußt werden.
  • Bei Bedarf allerdings könnte die Öffnung 13 problemlos auch mit elektrisch leitendem Material geschlossen werden, beispielsweise durch Aufkleben einer Metallfolie, wobei die Metallfolie mit einer auf der rückwärtigen Seite gebildeten Metallschicht versehen sein kann, ohne darüber einen galvanischen Kontakt zum Reflektorblech herzustellen.
  • Durch Veränderung des Abstandes zwischen den beiden Dipolen sowie durch Veränderung des Biegewinkels und damit Veränderung des Abstandes der Dipole 3 zur Ebene des Reflektors 5 kann ein bestimmtes horizontales Strahlungsdiagramm eingestellt werden. Mit anderen Worten kann eine Anpassung des Strahlendiagramms allein durch Änderung des Aufbiegewinkels α ermöglicht werden.
  • Darüber hinaus kann bei Bedarf die Herstellung einer Richtantenne mit anderen geometrischen Maßen, also anderer Größe für den Abstand a zwischen den Dipolen und anderer Länge der Dipole allein nur durch Änderung der gewünschten Daten in den rechnergesteuerten Laser oder durch Auswechslung des Stanzwerkzeuges ermöglicht werden.
  • Der Einfachheit halber ist bei der Draufsicht gemäß Figur la die im Reflektor 5 an sich durch die Ausschneidung oder Ausstanzung entstehende Öffnung 13 nicht gezeigt worden. Hierbei wird auf die ausschnittsweise Darstellung gemäß Figur 1d verwiesen.
  • Wie aus der Figur ld ersichtlich ist, kann die Symmetrierschleife 7, d.h. im konkreten die beiden parallel verlaufenden band- oder streifenförmigen Hälften der Symmetrierschleife 7, mit einem diese beiden Hälften verbindenden unteren Wandabschnitt 7a ausgestaltet sein. Dies eröffnet die Möglichkeit, nach entsprechender Ausstanzung bzw. dem Ausschneiden der Dipole 3 mit der Symmetrierschleife 7 diese um die gemeinsame Biegelinie 11 gegenüber der Ebene des Reflektors 5 herauszubiegen. Abweichend davon können - wie in den anderen nur schematisch wiedergegebenen Figuren gezeigt ist - die beiden Hälften der Symmetrierschleife 7 einzeln ausgestanzt und jeweils über eine separate am Fußpunkt liegende Biegelinie 11 gegenüber der Ebene des Reflektors 5 herausgebogen und aufgestellt sein (in Figur 1 z. B. punktiert eingezeichnet). Die Biegelinie 11 fluchtet dann mit der zwischen den beiden Hälften der Symmetrierschleife 7 liegenden quer verlaufenden Schneid- oder Stanzlinie, die in der Ebene des Reflektors liegt, sofern diese überhaupt eingebracht und vorgesehen ist.
  • In Figur 2 ist in Abweichung zu Figur 1c bei Quer- oder Stirnseitenansicht der Dipolantenne die Ausrichtung der Symmetrierschleife bei einem Biegewinkel α von 90°, also senkrecht zur Ebene der Reflektorwand, gezeigt.
  • In Figur 3 ist gezeigt, daß grundsätzlich auch die erfindungsgemäße Dipolantenne in einem geschlossenen Radom 15 als Schutzgehäuse angeordnet ist.
  • Das Ausführungsbeispiel gemäß den Figuren 4a und 4b sowie gemäß Figur 5 entspricht im wesentlichen dem Ausführungsbeispiel nach den Figuren 1a bis 1d bzw. Figur 2. In Figur 4a, 4b und Figur 5 ist eine mögliche Anspeisung des Dipols unter Verwendung einer Streifenleitung 17 prinzipiell dargestellt. Dabei wird eine Hälfte 7a der Symmetrierschleife 7 und der Reflektor 5 als Außenleiter verwendet.
  • Beispielsweise in Parallelrichtung zu den Dipolen 3 ist in der Mitte dazu im geringen Abstand über dem den Außenleiter darstellenden Reflektorblech 5 der Anschlußleiter 17' verlegt. Zwischen den beiden zugewandt liegenden Hälften 7a der jeweiligen Symmetrierung 7 verzweigt sich dann an einem Verzweigungspunkt 23 die Streifenleitung 17'. Die Leitung verläuft dabei in einem geringen gleichförmigen Abstand d oberhalb der zugehörigen Hälfte 7a der Symmetrierung 7, also bevorzugt mit gleichem Winkel α gegenüber der Ebene des Reflektors. Am Übergang der einen Hälfte 7a der Symmetrierung 7 zum jeweils zugehörigen Teil des Dipols 3 schließt sich dann ein abgewinkeltes Leitungsstück 17" an, welches am benachbarten Übergang von der anderen Hälfte der Symmetrierung 7 zum zugehörigen Teil des Dipols in ein auf diese Anschlußstelle zu verlaufendes abgewinkeltes Leitungsstück 17''' übergeht. Hierdurch ist der eigentliche Anspeisepunkt 23 festgelegt.
  • Im Falle des Ausführungsbeispieles nach Figur 5 bei einem Biegewinkel α = 90° liegt der Verzweigungspunkt 23 etwa in Höhe der gegenüberliegenden Dipole 3 der beiden Strahler 2. Von dem in geringem Abstand in Parallellage über dem Reflektor 5 verlegten Anschlußseite 17' geht hier eine vertikale Zwischenleitung 18 in Parallelausrichtung zwischen den beiden Hälften der Symmetrierung 7 zu dem hochliegenden Verzweigungspunkt 23.
  • Die winkelförmige Verlegung der Streifenleiter 17" und 17''' erfolgt auch beim Ausführungsbeispiel nach Figur 5 im Prinzip ähnlich wie anhand der Figuren 4a und 4b erläutert.
  • Bei dem nachfolgend anhand der Figuren 6a und 6b und 7 gezeigten Ausführungsbeispiel erfolgt eine Anspeisung der Dipole 3 ebenfalls in Streifenleitungstechnik, und zwar unter Verwendung eines Trägersubstrates 25.
  • Das Trägersubstrat 25 ist insbesondere bei einem Biegewinkel α kleiner als 90° zwischen den beiden gegenüberliegenden Symmetrierungen 7 der in den Figuren gezeigten beiden Dipolen 3 mechanisch aufliegend verankert (beispielsweise über eine isolierende, aus Kunststoff bestehende Fixierung 27). Auf diesem Trägersubstrat 25 ist die Streifenleitung 17 mit dem Anschlußleiter 17' ausgebildet, von dessen Verzweigungspunkt 23 aus dann die Anschlußleitungen 17' zum jeweiligen Anspeisepunkt der beiden Dipole 3 führen.
  • Bei einem Biegewinkel α von 90° (Figur 7) oder weniger kann das Trägersubstrat 25 auch in größerem Abstand zur Reflektorwand 5, beispielsweise zumindest in etwa in Höhe der Dipole 3 oder geringfügig darunter, mittels der Fixierung 27 verlaufend angebracht werden.
  • Anhand der Ausführungsbeispiele gemäß Figuren 8a, 8b und 9 ist jener Fall gezeigt, bei welchem die Dipole 3 mit Koaxialkabel angespeist werden. Der Leitungsverlauf entspricht insoweit im wesentlichen in Streifenleitertechnik ausgebildeten Ausführungsbeispiel gemäß den Figuren 4a, 4b und 5, wobei hier die Außenleiter 17a der beiden koaxialen Anschlußleiter 17' in etwa in Höhe der Dipole enden und die Außenleiter 17a hier separat an der jeweiligen Hälfte 7a der Symmetrierung 7 leitend angeschlossen sind, während der Innenleiter 17b über die nachfolgenden Leiterstücke 17" und 17''' zum jeweiligen Anspeispunkt 23 am Übergang der anderen Hälfte der Symmetrierung 7 zum zugehörigen Teil des davon ausgehenden Dipoles 3 führt.

Claims (16)

  1. Richtantenne, insbesondere Dipolantenne, mit zumindest einem Strahler (2) in Form eines Dipols (3) einschließlich einer zugehörigen, den Dipol (3) tragenden Symmetrierung (7), worüber der zumindest eine Dipol (3) an einem Reflektor (5) gehalten ist, wobei die jweilige Dipolhälfte (3) mit dem zugehörigen Teil der Symmetrierung (7) einteilig ausgeführt ist, dadurch gekennzeichnet, daß der Dipol (3) einschließlich dessen Symmetrierung (7) aus dem Material des als Leitende Wand ausgebildeten Reflektors (5) hergestellt ist, indem der Dipol (3) und die Symmetrierung (7) aus der Reflektorwand (5) durch entsprechende Einschnitte und/oder Ausstanzungen bis auf einen Verbindungsabschnitt (11) zum verbleibenden Material der Reflektorwand (5) herausgetrennt sind, und daß die Symmetrierung (7) gegenüber der Reflektorwand (5) winkelig herausgebogen ist.
  2. Richtantenne nach Anspruch 1, dadurch gekennzeichnet, daß die Symmetrierung (7) im Bereich des Verbindungsabschnittes (11) gegenüber der Ebene des verbleibenden Materials der Reflektorwand (5) herausgebogen ist.
  3. Richtantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Biegewinkel α 90° beträgt.
  4. Richtantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Biegewinkel α 65° und weniger beträgt.
  5. Richtantenne nach Anspruch 4, dadurch gekennzeichnet, daß der Biegewinkel α kleiner als 45° ist.
  6. Richtantenne nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die im Bereich des herausgetrennten Strahlers (2) entstehende Öffnung (13) im Material des Reflektors (5) mittels einer elektrisch leitenden Schicht verschlossen ist.
  7. Richtantenne nach Anspruch 6, dadurch gekennzeichnet, daß die elektrisch leitende Schicht aus einer Metallfolie besteht.
  8. Richtantenne nach Anspruch 7, dadurch gekennzeichnet, daß die Metallfolie auf ihrer zum Material des Reflektors abgewandt liegenden Oberfläche mit der elektrisch leitenden Metallschicht versehen ist.
  9. Richtantenne nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Richtcharakteristik der Dipolantenne durch Änderung des Biegewinkels (α) veränderbar ist.
  10. Richtantenne nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß diese aus mehreren Dipolen (3) besteht und insgesamt einstückig gebildet ist.
  11. Richtantenne nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Dipole (3) mittels Streifenleitung (17) angespeist sind, wobei die eine Hälfte (7a) der Symmetrierschleife (7) eines Dipols (3) sowie die Reflektorwand (5) als Außenleiter verwendet werden.
  12. Richtantenne nach Anspruch 11, dadurch gekennzeichnet, daß die Streifenleitung (17; 17', 17", 17''') in geringem Abstand (d) über den Reflektor (5) und der jeweils einen Hälfte (7a) der Symmetrierschleife (7) verläuft.
  13. Richtantenne nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Dipole (3) mittels einer auf einem Trägersubstrat (25) verlaufenden Streifenleitung angespeist sind.
  14. Richtantenne nach Anspruch 13, dadurdch gekennzeichnet, daß das Trägersubstrat (25) für die Streifenleitung (17) mittels einer isolierenden Fixierung (27) an den Dipolen (3) im Seitenversatz quer zur Ebene des Reflektors (5) angeordnet ist.
  15. Richtantenne nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Dipole mit Koaxial-Kabel (24) angespeist sind.
  16. Richtantenne nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Abstand zwischen den Dipolen (3) und der Reflektorwand (5) zumindest 10 %, vorzugsweise weniger als 30 %, 40 % oder in etwa 50 % der elektrischen Wellenlänge beträgt.
EP94906193A 1993-02-02 1994-02-01 Richtantenne, insbesondere dipolantenne Expired - Lifetime EP0634058B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4302905 1993-02-02
DE4302905A DE4302905C1 (de) 1993-02-02 1993-02-02 Richtantenne, insbesondere Dipolantenne
PCT/EP1994/000285 WO1994018719A1 (de) 1993-02-02 1994-02-01 Richtantenne, insbesondere dipolantenne

Publications (2)

Publication Number Publication Date
EP0634058A1 EP0634058A1 (de) 1995-01-18
EP0634058B1 true EP0634058B1 (de) 1997-08-06

Family

ID=6479453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94906193A Expired - Lifetime EP0634058B1 (de) 1993-02-02 1994-02-01 Richtantenne, insbesondere dipolantenne

Country Status (8)

Country Link
US (1) US5532707A (de)
EP (1) EP0634058B1 (de)
CA (1) CA2131720C (de)
DE (2) DE4302905C1 (de)
DK (1) DK0634058T3 (de)
ES (1) ES2107811T3 (de)
FI (1) FI112726B (de)
WO (1) WO1994018719A1 (de)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438809B4 (de) * 1994-10-31 2004-11-04 Rohde & Schwarz Gmbh & Co. Kg Dipolspeiseanordnung
DE19510236A1 (de) * 1995-03-21 1996-09-26 Lindenmeier Heinz Flächige Antenne mit niedriger Bauhöhe
US6005522A (en) * 1995-05-16 1999-12-21 Allgon Ab Antenna device with two radiating elements having an adjustable phase difference between the radiating elements
US5724051A (en) * 1995-12-19 1998-03-03 Allen Telecom Inc. Antenna assembly
US5734350A (en) * 1996-04-08 1998-03-31 Xertex Technologies, Inc. Microstrip wide band antenna
DE19627015C2 (de) * 1996-07-04 2000-07-13 Kathrein Werke Kg Antennenfeld
US6466131B1 (en) * 1996-07-30 2002-10-15 Micron Technology, Inc. Radio frequency data communications device with adjustable receiver sensitivity and method
US6069591A (en) * 1997-12-19 2000-05-30 Nortel Networks Corporation Diversity antenna system
DE19823749C2 (de) * 1998-05-27 2002-07-11 Kathrein Werke Kg Dualpolarisierte Mehrbereichsantenne
US6049314A (en) * 1998-11-17 2000-04-11 Xertex Technologies, Inc. Wide band antenna having unitary radiator/ground plane
US6157344A (en) * 1999-02-05 2000-12-05 Xertex Technologies, Inc. Flat panel antenna
DE19922699C2 (de) 1999-05-18 2001-05-17 Hirschmann Electronics Gmbh Antenne mit wenigstens einem Vertikalstrahler
DE10012809A1 (de) * 2000-03-16 2001-09-27 Kathrein Werke Kg Dualpolarisierte Dipolantenne
US6806812B1 (en) * 2000-04-26 2004-10-19 Micron Technology, Inc. Automated antenna trim for transmitting and receiving semiconductor devices
US6229496B1 (en) 2000-05-05 2001-05-08 Radiovector U.S.A., Llc Multiple element antenna from a single piece
US6476773B2 (en) * 2000-08-18 2002-11-05 Tantivy Communications, Inc. Printed or etched, folding, directional antenna
US6597324B2 (en) 2001-05-03 2003-07-22 Radiovector U.S.A. Llc Single piece element for a dual polarized antenna
US6608600B2 (en) 2001-05-03 2003-08-19 Radiovector U.S.A., Llc Single piece element for a dual polarized antenna
US6774852B2 (en) * 2001-05-10 2004-08-10 Ipr Licensing, Inc. Folding directional antenna
DE10133517A1 (de) * 2001-07-10 2002-11-07 Siemens Ag Antenne
DE10150150B4 (de) 2001-10-11 2006-10-05 Kathrein-Werke Kg Dualpolarisiertes Antennenarray
US6606065B1 (en) 2002-01-22 2003-08-12 Itron, Inc. RF antenna with unitary ground plane and surface mounting structure
US6885350B2 (en) * 2002-03-29 2005-04-26 Arc Wireless Solutions, Inc. Microstrip fed log periodic antenna
US6650301B1 (en) * 2002-06-19 2003-11-18 Andrew Corp. Single piece twin folded dipole antenna
JP2004328703A (ja) * 2002-11-27 2004-11-18 Taiyo Yuden Co Ltd アンテナ
JP4170828B2 (ja) 2002-11-27 2008-10-22 太陽誘電株式会社 アンテナ及びアンテナ用誘電体基板
JP2004328693A (ja) * 2002-11-27 2004-11-18 Taiyo Yuden Co Ltd アンテナ及びアンテナ用誘電体基板
JP2004328694A (ja) * 2002-11-27 2004-11-18 Taiyo Yuden Co Ltd アンテナ及び無線通信カード
JP3975219B2 (ja) * 2002-11-27 2007-09-12 太陽誘電株式会社 アンテナ、アンテナ用誘電体基板及び無線通信カード
US6822618B2 (en) * 2003-03-17 2004-11-23 Andrew Corporation Folded dipole antenna, coaxial to microstrip transition, and retaining element
US7095383B2 (en) * 2003-05-01 2006-08-22 Intermec Ip Corp. Field configurable radiation antenna device
US7006053B2 (en) * 2003-05-01 2006-02-28 Intermec Ip Corp. Adjustable reflector system for fixed dipole antenna
US7180448B2 (en) * 2003-09-22 2007-02-20 Centurion Wireless Technologies, Inc. Planar inverted F antenna and method of making the same
SE527757C2 (sv) * 2004-07-28 2006-05-30 Powerwave Technologies Sweden En reflektor, en antenn som använder en reflektor och en tillverkningsmetod för en reflektor
US20060202900A1 (en) * 2005-03-08 2006-09-14 Ems Technologies, Inc. Capacitively coupled log periodic dipole antenna
US7639198B2 (en) * 2005-06-02 2009-12-29 Andrew Llc Dipole antenna array having dipole arms tilted at an acute angle
US7358900B2 (en) * 2005-09-14 2008-04-15 Smartant Telecom.Co., Ltd. Symmetric-slot monopole antenna
GB2430307A (en) * 2005-09-19 2007-03-21 Antenova Ltd Compact balanced antenna arrangement
CN101154769B (zh) * 2006-09-29 2011-07-06 东莞骅国电子有限公司 双极化天线组
US7649504B2 (en) * 2007-07-27 2010-01-19 The Boeing Company Backfire antenna with upwardly oriented dipole assembly
US8068066B2 (en) * 2008-08-25 2011-11-29 Bae Systems Information And Electronic Systems Integration Inc. X-band turnstile antenna
DE102009041166B4 (de) * 2009-09-11 2020-03-05 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugantenne zum Empfang und/oder zum Senden von Funksignalen
CN102315517B (zh) * 2010-06-29 2014-04-16 华为技术有限公司 一种定向天线设备、多输入多输出传输定向天线设备
CN102683823B (zh) * 2012-05-15 2015-07-29 华为技术有限公司 辐射单元、天线阵列、天线装置和基站系统
CN203445230U (zh) * 2013-09-13 2014-02-19 中怡(苏州)科技有限公司 天线结构及应用其的电子装置
CN203503773U (zh) * 2013-09-13 2014-03-26 中怡(苏州)科技有限公司 天线结构及应用该天线结构的电子装置
CN110447145B (zh) 2017-03-31 2021-01-29 华为技术有限公司 用于天线的反射器
CN110994179B (zh) * 2019-09-30 2021-08-20 京信通信技术(广州)有限公司 馈电组件及辐射单元
CN114639950A (zh) * 2021-12-06 2022-06-17 广州司南技术有限公司 双极化天线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2430353A (en) * 1945-02-21 1947-11-04 Rca Corp Antenna
DE2325704A1 (de) * 1973-05-21 1974-12-19 Siemens Ag Richtantenne
JPS5425654A (en) * 1977-07-29 1979-02-26 Hitachi Denshi Ltd Antenna mocrowave band
US4513292A (en) * 1982-09-30 1985-04-23 Rca Corporation Dipole radiating element
FI81927C (fi) * 1988-10-26 1990-12-10 Nokia Mobira Oy Antenn foer radiotelefon.
US5166697A (en) * 1991-01-28 1992-11-24 Lockheed Corporation Complementary bowtie dipole-slot antenna
DE9104722U1 (de) * 1991-04-18 1991-08-01 Hans Kolbe & Co, 3202 Bad Salzdetfurth Dipolanordnung
US5229782A (en) * 1991-07-19 1993-07-20 Conifer Corporation Stacked dual dipole MMDS feed
US5355142A (en) * 1991-10-15 1994-10-11 Ball Corporation Microstrip antenna structure suitable for use in mobile radio communications and method for making same
DK168780B1 (da) * 1992-04-15 1994-06-06 Celwave R F A S Antennesystem samt fremgangsmåde til fremstilling heraf

Also Published As

Publication number Publication date
ES2107811T3 (es) 1997-12-01
FI944542A0 (fi) 1994-09-30
FI112726B (fi) 2003-12-31
EP0634058A1 (de) 1995-01-18
FI944542A (fi) 1994-09-30
DK0634058T3 (da) 1998-02-23
DE4302905C1 (de) 1994-03-17
US5532707A (en) 1996-07-02
CA2131720C (en) 1999-11-16
WO1994018719A1 (de) 1994-08-18
CA2131720A1 (en) 1994-08-18
DE59403614D1 (de) 1997-09-11

Similar Documents

Publication Publication Date Title
EP0634058B1 (de) Richtantenne, insbesondere dipolantenne
EP2050164B1 (de) Antennenanordnung, insbesondere für eine mobilfunk-basisstation
DE19829714B4 (de) Antenne mit dualer Polarisation
EP3635814B1 (de) Dual-polarisierter kreuzdipol und antennenanordnung mit zwei solchen dual-polarisierten kreuzdipolen
EP2050165B1 (de) Antennenanordnung, insbesondere für eine mobilfunk-basisstation
EP0916169B1 (de) Antennenanordnung
EP1470615B1 (de) Dualpolarisierte strahleranordnung
EP1344277B1 (de) Antenne, insbesondere mobilfunkantenne
DE60017674T2 (de) Faltdipolantenne
DE10012809A1 (de) Dualpolarisierte Dipolantenne
WO2000039894A1 (de) Dualpolarisierter dipolstrahler
WO2015110136A1 (de) Antenne, insbesondere mobilfunkantenne
WO1999062138A1 (de) Antennenarray mit mehreren vertikal übereinander angeordneten primärstrahler-modulen
DE102014011514A1 (de) Kapazitiv geschmiertes Gehäuse, insbesondere kapazitiv geschmiertes Komponenten-Gehäuse für eine Antenneneinrichtung
DE69828848T2 (de) Richtantennensystem mit gekreuzter Polarisation
DE3787681T2 (de) Antennenelement mit einem Streifen, der zwischen zwei selbsttragenden und mit untereinanderliegenden strahlenden Schlitzen vorgesehenen Grundplatten hängt und Verfahren zur Herstellung desselben.
DE102006003402A1 (de) Kompakte Antennenvorrichtung mit zirkularpolarisierter Wellenabstrahlung
DE102015007503A1 (de) Dipolförmige Strahleranordnung
EP1561257B1 (de) Verbindungseinrichtung zum anschluss zumindest zweier versetzt zueinander angeordneter strahlereinrichtungen einer antennenanordnung
DE60019412T2 (de) Antenne mit vertikaler polarisation
DE2802585A1 (de) Antenne
DE202004008770U1 (de) Dualpolarisierte Antenne
DE19603803C2 (de) Quad-Antenne, auf einem isolierenden Material und Verfahren zu deren Fertigung
EP2093838A1 (de) Yagiantenne
DE3031608A1 (de) Zick-zack-antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IT SE

17P Request for examination filed

Effective date: 19941124

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961118

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT SE

REF Corresponds to:

Ref document number: 59403614

Country of ref document: DE

Date of ref document: 19970911

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970826

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2107811

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20020212

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020221

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090225

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090223

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090223

Year of fee payment: 16

Ref country code: DE

Payment date: 20090428

Year of fee payment: 16

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202