EP0622494B1 - Fahrbahnübergang - Google Patents

Fahrbahnübergang Download PDF

Info

Publication number
EP0622494B1
EP0622494B1 EP94106402A EP94106402A EP0622494B1 EP 0622494 B1 EP0622494 B1 EP 0622494B1 EP 94106402 A EP94106402 A EP 94106402A EP 94106402 A EP94106402 A EP 94106402A EP 0622494 B1 EP0622494 B1 EP 0622494B1
Authority
EP
European Patent Office
Prior art keywords
joint
accordance
fact
edge
spring elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94106402A
Other languages
English (en)
French (fr)
Other versions
EP0622494A2 (de
EP0622494A3 (de
Inventor
Hermann Wegener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mageba GmbH
Original Assignee
Glacier GmbH Sollinger Huette GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glacier GmbH Sollinger Huette GmbH filed Critical Glacier GmbH Sollinger Huette GmbH
Publication of EP0622494A2 publication Critical patent/EP0622494A2/de
Publication of EP0622494A3 publication Critical patent/EP0622494A3/de
Application granted granted Critical
Publication of EP0622494B1 publication Critical patent/EP0622494B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/06Arrangement, construction or bridging of expansion joints
    • E01D19/062Joints having intermediate beams

Definitions

  • the invention relates to a roadway transition for expansion joints with at least one lamella running parallel to the joint edges, in which each lamella at its bearing points, each with an exclusively associated support beam, which extends over the entire joint width and is displaceably mounted on the joint edges in an edge construction is firmly connected and in which the spacing of the lamellae to one another and to the joint edges is controlled via a spring chain, the support beams of the edge lamella immediately adjacent to a joint edge in the edge construction of this joint edge being supported on all sides in a force-transmitting manner and controlled in each case by at least one spring element which at the same time introduces the vertically upward and the horizontal bearing forces into the edge construction by, on the one hand, with the associated support beam in its longitudinal direction and, on the other hand, with the edge construction in transverse and joint joints is connected immovably in the longitudinal direction.
  • the support beams of the slats are pressed against an elastomer bearing which is rigid in comparison with the elastomer bearing by a prestressed elastomer bearing which is arranged between the top of the support beam and the upper end wall of the edge construction , on which the support beams each rest with their underside and which is connected to the lower end wall of the edge construction in a shear-resistant manner.
  • the elastomer bearing is connected to the support beam in a shear-resistant manner at its end that is supported in a force-absorbing manner on all sides.
  • the side of the elastomeric bearing facing away from the support beam is immovably connected to the upper end wall of the edge construction.
  • Edge construction initiated and vertically upward forces, which would cause the support beam to lift off the plain bearing, overpressed by the compressive preload of the elastomer bearing.
  • Horizontal forces are transferred to the edge structure via the shear stiffness of the elastomer bearing.
  • these elastomer bearings form the end links of the controlling spring chain by introducing their spring force generated by shear deformation into the respective edge construction when the joint is opened or closed.
  • a disadvantage of these roadway transitions is that the slide bearings for absorbing the relatively large, downward-directed vertical forces must be made of a material, usually a plastic, of high strength, and are therefore almost rigid and have low damping. Due to their relatively high rigidity, these plain bearings can only follow the deformations and movements of the support bracket to a very limited extent, which can result in considerable edge pressures and signs of wear on the plain bearings. In addition, due to the necessary prestressing of the elastomer bearings, a great deal of effort is required in the assembly and disassembly of the individual bearing parts of the support beams, since the use of presses for applying the prestressing in the edge construction can generally not be avoided given the tight spatial conditions in the expansion joints is.
  • the object of the invention is therefore to develop a roadway transition of the type mentioned in such a way that the all-round force-dissipating mounting of the support beams has greater damping, enables better absorption of deformation and is easier to assemble and disassemble.
  • this object is achieved in that, in the case of a generic roadway transition, the support beams which are firmly connected to an edge lamella in the edge structure, in which they are supported on all sides in a force-dissipating manner, are mounted exclusively by means of the spring element (s), and that all spring elements of such
  • the spring bearing point on the one hand is permanently attached to a common coupling piece, which is detachably attached to the support beam, and on the other hand, is firmly connected to the edge construction on all sides, but is detachable.
  • the roadway transition according to the invention is provided with effective damping elements in all directions of movement where both vertical and horizontal bearing forces are derived, i.e. at the points of the highest static and, above all, shock-like loads Shock and noise damping is significantly increased. Since the spring elements are attached to a common coupling piece and are also firmly attached to the edge structure, all occurring loads are taken up by all spring elements, the individual spring elements being pressed, pulled or thrust-distorted depending on their spatial arrangement and the direction of the load. The maximum load sizes per spring element can be kept lower than in the generic construction and thus allow a smaller dimension compared to this.
  • the spring elements Due to their elasticity, the spring elements can follow the movements and deformations of the support beam in all directions, so that one-sided loads in contact surfaces and the resulting excessive wear and tear are avoided.
  • all spring elements of a spring bearing point are used to control the support beam or the slat that is firmly connected to it.
  • the spring elements are releasably attached to the support bracket via the common coupling piece, it is possible to mount all the spring elements in the correct position on the support bracket with a single fastening operation, so that the previously required individual positioning and fastening of the bearing elements, namely the slide bearing underneath and the Elastomer bearing on the support beam, on which the support beam, which in turn has not yet been fixed, is no longer required, as a result of which the assembly and disassembly effort is considerably reduced.
  • the spring elements of a spring bearing point are also permanently attached on all sides to a common connecting element that surrounds them and is releasably attached to the edge construction.
  • the spring elements of a spring bearing point can also be attached to the edge structure in a single fastening process.
  • attaching the Spring elements via the coupling piece on the support bracket thus avoid individual positioning and fastening of the spring elements on the side of the edge construction. This means an additional considerable simplification and time saving in the assembly and disassembly of the bearing of the support beam.
  • the spring elements are preferably designed as elastomer bearings and vulcanized onto the coupling piece. Coupling pieces are particularly preferred. Vulcanized elastomer bearing and connecting element as a one-piece component.
  • the vulcanization offers a particularly simple form of connection between the elastomer bearing and the coupling piece and, if appropriate, also a connecting element, it being possible for a one-piece design to be produced in one operation, including the connecting element.
  • the connecting element is advantageously designed in the form of a frame which is arranged transversely to the longitudinal axis of the support beam and is preferably only attached to a wall of the edge construction.
  • the frame expediently has a head plate and a foot plate, which are connected to one another by two spaced-apart lateral connecting webs which form a space between them, the coupling piece and the spring elements being arranged in this space.
  • the footplate projects laterally over the connecting webs and is attached to the bottom end wall with screws arranged in the overhang Screwed edge construction. In this embodiment, no other components need to be attached to the frame to enable it to be attached to the edge structure.
  • the frame is screwed to support blocks, which in turn are fastened to the edge structure, by means of tabs projecting laterally from the connecting webs.
  • the screw axes can run horizontally or vertically.
  • the shear surface of the screws lies at the height of the longitudinal axis of the support beam, the screws are only subjected to a shear force and not by a combination of shear and tensile forces, as occurs when screwing directly onto the lower end wall of the edge construction.
  • the base plate of the frame is preferably attached at a distance from the lower end wall of the edge construction, which creates a free space. As a result, the corresponding surfaces of the frame and the edge construction are no longer necessary, which reduces the time and costs of production.
  • the head plate of the frame is also expediently also mounted at a distance from an upper end wall of the edge construction, with the formation of a free space, as a result of which the corresponding opposite surfaces of the frame and edge construction no longer need to be machined on this side either.
  • a further preferred development of the invention is that the spring elements are de-energized in the (unloaded) installation state.
  • a pressure preload is not necessary because the spring elements are firmly attached on all sides to the coupling piece as well as to the edge construction - either directly or indirectly via a connecting element, so that they can be loaded not only under pressure and thrust, but also under tension. Since it is no longer necessary to apply a compressive pretension to the spring elements, no more presses are required during assembly, which considerably simplifies and shortens the assembly and disassembly work.
  • the spring elements are fastened to the head or foot plate of the frame and are attached laterally at a distance from the connecting webs.
  • the coupling piece is preferably plugged and fastened onto a bolt attached to the end of the support beam in the longitudinal direction thereof, preferably a screw bolt. This makes it possible to attach all spring elements to the support bracket with a single screw connection or to detach them therefrom.
  • each support beam of the edge slats is divided at least once across its longitudinal direction.
  • the coupling piece is formed by a support beam end part which is not directly connected to the edge lamella and which is screwed to a subsequent central part of the support beam.
  • the roadway transitions 1, 2 and 3 shown in the figures each extend between the two joint edges 4 of an expansion joint 5 between two Building parts 6, 7, z. B. in a bridge construction, the top of the superstructure is provided on both sides of the expansion joint 5 with a suitable seal 8, above which a road surface 9, for example concrete, is provided, which forms a surface 10.
  • the structure of the carriageway transitions 1, 2 and 3 each comprises a lamella 11 running within the expansion joint 5 in the longitudinal direction of the joint and parallel to the joint edges 4, which with steel profiles 12 attached to the joint edges 4 via suitable elastic sealing bodies 13, which between the lamella 11 and bridge the gap 4 present gap watertight, is positively connected.
  • the only lamella 11 simultaneously represents the edge lamella, which in this case is immediately adjacent to the two joint edges 4.
  • the lamella 11 is supported over its entire length at several bearing points of the respective carriageway crossing 1, 2, 3, which is not shown in the figures.
  • the lamella 11 is firmly (in this case: rigidly) connected to a support beam 16 at the bearing point, which extends over the entire joint width and in turn each at bearing points at the joint edges 4 is mounted in an edge construction 15.
  • the edge construction 15 has the shape of a rectangular box, which is open on its side facing the joint.
  • spring elements 17 are used, which are firmly connected on all sides to the support beam 16 and to the edge construction 15, that is to say they are pressure-resistant, tensile and shear-proof, but releasably.
  • connections are made indirectly via a coupling piece 18 between the spring elements 17 of a bearing point and the support beam 16 and can be made via a connecting element 19 between these spring elements 17 and the edge structure 15.
  • the spring elements 17 are de-energized in the installed state.
  • the spring elements 17 are not only stressed by pressure and thrust, but also by train, so that with any kind of load - even with the Control of the lamella 11 when the joint width changes - all the spring elements 17 are involved in the load transfer.
  • Elastomer bearings 17 are used as spring elements, two of which are arranged opposite each other at each bearing point of the support beam 16, namely one below the support beam 16 and one above it.
  • the elastomer bearings 17 are aligned so that their axes coincide in the vertical direction and cross the longitudinal axis 20 of the support beam 16 at right angles.
  • a parallelepiped-shaped coupling piece 18 made of steel is arranged between the opposing elastomer bearings 17, to which the elastomer bearings 17 are fastened by vulcanization.
  • the elastomer bearing 17 and the coupling piece 18 are surrounded by a common connecting element in the form of a rectangular frame 19 made of steel, which extends perpendicular to the longitudinal axis 20 of the support beam 16.
  • the frame 19 consists of a head plate 21, a foot plate 22 and two lateral connecting webs 23 which connect these to one another and which extend vertically on both sides of the elastomer bearings 17 and the coupling piece 18 and thus the support beam 16 (see FIGS. 3 and 6).
  • the top plate 21 is connected to the top of the upper elastomer bearing 17 and the foot plate 22 to the bottom of the lower elastomer bearing 17 also by vulcanization, so that the coupling piece 18, elastomer bearing 17 and frame 19 form a one-piece bearing element. Enough lateral space 24 is left between the elastomer bearings 17 and the connecting webs 23, so that the elastomer bearing 17 can move freely on all sides.
  • the coupling piece 18 according to FIGS. 3 and 6 has a central through bore 25 which runs parallel to the elastomer bearings 17. With this through-hole 25, the coupling piece 18 and thus the entire bearing element consisting of coupling piece 18, elastomer bearings 17 and frame 19 is plugged onto a screw bolt 26 (FIGS. 1, 2, 4, 5), which is each rigidly attached to the head end of the support beam 16 and runs in the longitudinal direction.
  • the free end of the bolt 26 protrudes from the through hole 25 of the coupling piece 18 and is provided with a screw thread onto which a screw nut 27 is screwed, through which the coupling piece 18 and the support bracket 16 can be firmly connected to one another.
  • FIGS. 3 and 6 For the connection of the frame 19 to the edge construction 15, two exemplary embodiments are shown in FIGS. 3 and 6. Both embodiments have in common that the frame 19 is only attached to one wall of the edge structure 15.
  • the base plate 22 is flat on a lower end wall 28 of the edge structure 15 and is perpendicular to the course of the through hole 25 in the coupling piece 18 laterally, i.e. in the longitudinal direction of the joint, via the connecting webs 23.
  • two screw holes one behind the other in the transverse direction of the joint are provided, through which screws 29 are inserted, with which the frame 19 is screwed to the lower end wall 28 of the edge construction 15 (FIG. 2).
  • a free space is formed between the top of the head plate 21 and the inside of the upper end wall 14 of the edge structure 15, so that the corresponding surfaces of the opposing components do not have to be machined as contact surfaces during assembly.
  • a horizontally projecting tab 30 is attached to each connecting web 23, approximately in the middle of its vertical length, at the level of the longitudinal axis 20 of the support beam 16.
  • Each tab 30 is provided with a vertically extending screw hole and lies on a support bracket 31 which projects upwards from the lower end wall 28 of the edge structure 15 and to which it is screwed by means of screws 29.
  • the vertical dimensions of the support blocks 31 and the frame 19 are chosen so that there is a gap both between the underside of the base plate 22a and the top of the lower end wall 28, and between the top of the head plate 21 and the inside of the upper end wall 14 . This again eliminates the need for mechanical processing on the surfaces mentioned.
  • a gap to the edge construction 15 is also present under the foot plate 22a, the damping properties of the spring bearing are also increased still further.
  • the support beam 16 consists of a central part 32 and two end parts 33 serving as coupling pieces, which are not connected to the support beam 16 via a plug connection, but by means of a head plate connection 34 to the latter the slat 11 attached middle part 32 are screwed.
  • the connection of the coupling piece 18 and support beam 16 the accessibility of the connection point is made very easy, since the screw connection is shifted from the side of the coupling piece 18 facing away from the joint to its side facing the joint and is thus directly accessible.
  • the arrangement of the elastomer bearing 17 and the attachment of the frame 19 to the edge structure 15 can be selected in accordance with the representations according to FIGS. 1 to 6.
  • FIG. 9 shows the deformation behavior of the elastomer bearing 17 when the joint is widened.
  • the four elastomer bearings 17 have the same characteristic values so that their shear stiffness and thus the corresponding spring stiffness is the same.
  • the head or foot plates 21, 22 of the frame 19 with the edge structures 15 are moved away from the center of the joint on both joint edges 4, the elastomer bearings 17 introducing a tensile force into the support beam 16 via the coupling pieces 18 due to their elasticity (shear rigidity) to take it with you.
  • more than two spring elements 17 can also be used per bearing point of the support beam 16, which can be arranged, for example, in the circumferential direction around the coupling piece 18.
  • the spring elements 17 can be fastened individually to the edge structure 15 using their own fastening elements, for example vulcanized steel plates.
  • a common connecting element 19 is used, its formation and its attachment to the edge structure 15 any suitable shape can be used.
  • the only decisive factor is that all spring elements 17 are involved in the load transfer via a direct or indirect push / pull / push fastening of the spring elements 17 to the edge construction 15 with every type of load and movement of the support beam 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Road Paving Structures (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)
  • Seal Device For Vehicle (AREA)
  • Vibration Prevention Devices (AREA)

Description

  • Die Erfindung bezieht sich auf einen Fahrbahnübergang für Dehnfugen mit mindestens einer parallel zu den Fugenrändern verlaufenden Lamelle, bei dem jede Lamelle an ihren Lagerstellen mit jeweils einem ausschließlich ihr zugeordneten Stützträger, der sich über die gesamte Fugenbreite erstreckt und an den Fugenrändern in einer Randkonstruktion verschieblich gelagert ist, fest verbunden ist und bei dem der Abstand der Lamellen untereinander und zu den Fugenrändern über eine Federkette gesteuert ist, wobei die Stützträger der einem Fugenrand unmittelbar benachbarten Randlamelle in der Randkonstruktion dieses Fugenrandes allseitig kraftableitend gelagert und jeweils über mindestens ein Federelement gesteuert sind, das gleichzeitig die vertikal nach oben gerichteten sowie die horizontalen Lagerkräfte in die Randkonstruktion einleitet, indem es einerseits mit dem zugeordneten Stützträger in dessen Längsrichtung und andererseits mit der Randkonstruktion in Fugenquer- und Fugenlängsrichtung unverschieblich verbunden ist.
  • Bei einem bekannten Fahrbahnübergang dieser Art (DE-GM 66 02 110) werden die Stützträger der Lamellen von einem unter Druckvorspannung stehenden Elastomerlager, das zwischen der Oberseite des Stützträgers und der oberen Abschlußwand der Randkonstruktion angeordnet ist, auf ein im Vergleich zum Elastomerlager starres Gleitlager gedrückt, auf dem die Stützträger jeweils mit ihrer Unterseite aufliegen und das mit der unteren Abschlußwand der Randkonstruktion schubfest verbunden ist. Bei den Stützträgern der Randlamellen ist jeweils an deren allseitig kraftableitend gelagertem Ende das Elastomerlager mit dem Stützträger schubfest verbunden. Die dem Stützträger abgewandte Seite des Elastomerlagers ist mit der oberen Abschlußwand der Randkonstruktion unverschieblich verbunden. Durch diese Lagerungsart werden vertikal nach unten gerichtete Kräfte durch Druck auf die Gleitlager in die Randkonstruktion eingeleitet und vertikal nach oben gerichtete Kräfte, die ein Abheben des Stützträgers vom Gleitlager bewirken würden, durch die Druckvorspannung des Elastomerlagers überdrückt. Horizontale Kräfte werden über die Schubsteifigkeit des Elastomerlagers an die Randkonstruktion weitergegeben. Diese Elastomerlager bilden gleichzeitig die Endglieder der steuernden Federkette, indem sie beim Öffnen oder Schließen der Fuge jeweils ihre über Schubverformung erzeugte Federkraft in die jeweilige Randkonstruktion einleiten. Nachteilig ist bei diesen Fahrbahnübergängen, daß die Gleitlager zur Aufnahme der relativ großen, nach unten gerichteten Vertikalkräfte aus einem Werkstoff, meist einem Kunststoff, hoher Festigkeit hergestellt sein müssen, daher nahezu starr sind und eine geringe Dämpfung aufweisen. Aufgrund ihrer relativ hohen Steifigkeit können diese Gleitlager den Verformungen und Bewegungen des Stützträgers nur sehr begrenzt folgen, wodurch es zu erheblichen Kantenpressungen und Verschleißerscheinungen bei den Gleitlagern kommen kann. Darüber hinaus wird durch die notwendige Druckvorspannung der Elastomerlager ein großer Aufwand bei der Montage wie auch Demontage der Lagerungseinzelteile der Stützträger erforderlich, da in der Regel der Einsatz von Pressen zum Aufbringen der Druckvorspannung in der Randkonstruktion bei ohnehin engen räumlichen Verhältnissen in den Dehnfugen nicht zu umgehen ist.
  • Aufgabe der Erfindung ist es daher, einen Fahrbahnübergang der eingangs genannten Art so weiterzuentwickeln, daß die allseitig kraftableitende Lagerung der Stützträger eine größere Dämpfung aufweist, eine bessere Verformungsaufnahme ermöglicht und leichter montier- sowie demontierbar ist.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß bei einem gattungsgemäßen Fahrbahnübergang die mit einer Randlamelle fest verbundenen Stützträger in der Randkonstruktion, in der sie allseitig kraftableitend gelagert sind, ausschließlich mittels des bzw. der Federelemente(s) gelagert sind, und daß alle Federelemente einer solchen Feder-Lagerungsstelle einerseits allseitig fest an einem gemeinsamen Kopplungsstück, das lösbar am Stützträger befestigt ist, angebracht und andererseits mit der Randkonstruktion allseitig fest, jedoch lösbar, verbunden sind.
  • Mit der allseitig kraftableitenden Lagerung der Stützträger einer Randlamelle ausschließlich über Federelemente ist der erfindungsgemäße Fahrbahnübergang dort, wo sowohl vertikale als auch horizontale Auflagekräfte abgeleitet werden, also an den Stellen höchster statischer und vor allem stoßartiger Belastung, in allen Bewegungsrichtungen mit wirksamen Dämpfungselementen versehen, wodurch die Stoß- und die Geräuschdämpfung wesentlich erhöht wird. Da die Federelemente an einem gemeinsamen Kopplungsstück befestigt und auch fest an der Randkonstruktion angebracht sind, werden sämtliche auftretenden Belastungen von allen Federelementen gemeinsam aufgenommen, wobei die einzelnen Federelemente je nach ihrer räumlichen Anordnung und der Richtung der Belastung gedrückt, gezogen oder schubverzerrt werden. Die maximalen Belastungsgrößen pro Federelement können dabei geringer als bei der gattungsgemäßen Konstruktion gehalten werden und ermöglichen dieser gegenüber damit eine geringere Dimensionierung. Aufgrund ihrer Elastizität können die Federelemente den Bewegungen und Verformungen des Stützträgers in allen Richtungen zwanglos folgen, so daß einseitige Belastungen in Kontaktflächen und daraus resultierende übermäßige Verschleißerscheinungen vermieden werden. Im Rahmen einer Steuer-Federkette, welche die Lamellen untereinander und mit den Randkonstruktionen verbindet und zur Steuerung der Fugenabstände dient, werden alle Federelemente einer Feder-Lagerungsstelle zur Steuerung des Stützträgers bzw. der mit diesem fest verbundenen Lamelle herangezogen. Dadurch, daß die Federelemente über das gemeinsame Kopplungsstück lösbar am Stützträger befestigt sind, ist es möglich, alle Federelemente mit einem einzigen Befestigungsvorgang in richtiger Lage am Stützträger anzubringen, so daß die bisher notwendige Einzelpositionierung und -befestigung der Lagerungselemente, nämlich des Gleitlagers unter und des Elastomerlagers auf dem Stützträger, auf dem seinerseits noch nicht fixierten Stützträger nicht mehr erforderlich ist, wodurch der Montage- und auch Demontageaufwand erheblich reduziert wird.
  • In einer bevorzugten Weiterbildung der Erfindung sind auch die Federelemente einer Feder-Lagerungsstelle allseitig fest an einem sie umfassenden, gemeinsamen Verbindungselement angebracht, das lösbar an der Randkonstruktion befestigt ist. Mit dieser Maßnahme können die Federelemente einer Feder-Lagerungsstelle auch an der Randkonstruktion in einem einzigen Befestigungsvorgang angebracht werden. In ähnlicher Weise wie bei der Befestigung der Federelemente über das Kopplungsstück am Stützträger wird damit auch auf Seite der Randkonstruktion eine einzelne Positionierung und Befestigung der Federelemente vermieden. Dieses bedeutet eine zusätzliche erhebliche Vereinfachung und Zeitersparnis bei der Montage und Demontage der Lagerung des Stützträgers. Ein weiterer Vorteil dieser mittelbaren Befestigung gegenüber einer unmittelbaren Befestigung der Federelemente an der Randkonstruktion liegt darin, daß Kopplungsstück, Federelemente und Verbindungselement gemeinsam ein eigenständiges Lagerungselement bilden, das als Ganzes separat vorgefertigt und bei Montage oder im Reparaturfall als Ganzes eingebaut bzw. ausgetauscht werden kann. Auch die Lagerhaltung wird erleichtert, da ein einstückiges Lagerungselement anstelle einer Mehrzahl von Lagerungseinzelteilen vorliegt.
  • Bevorzugt sind die Federelemente als Elastomerlager ausgebildet und an das Kopplungsstück anvulkanisiert. Besonders bevorzugt sind Kopplungsstück. Elastomerlager und Verbindungselement als einstückiges Bauteil vulkanisiert. Die Vulkanisation bietet eine besonders einfache Form der Verbindung zwischen Elastomerlager und Kopplungsstück und gegebenenfalls auch Verbindungselement, wobei eine einstückige Ausbildung unter Einbeziehung des Verbindungselements in einem Arbeitsgang hergestellt werden kann.
  • Vorteilhafterweise ist das Verbindungselement in Form eines Rahmens ausgebildet, der quer zur Längsachse des Stützträgers angeordnet und bevorzugt lediglich an einer Wand der Randkonstruktion befestigt ist. Hierdurch kann für die Befestigung des Rahmens eine leicht zugängliche Stelle ausgewählt werden, so daß von der Fugenmitte aus Werkzeuge ohne größere Schwierigkeiten angesetzt werden können.
  • Der Rahmen weist zweckmäßigerweise eine Kopf- und eine Fußplatte auf, die durch zwei im Abstand voneinander angeordnete, zwischen sich einen Zwischenraum ausbildende, seitliche Verbindungsstege miteinander verbunden sind, wobei das Kopplungsstück und die Federelemente in diesem Zwischenraum angeordnet sind. In einer ersten bevorzugten Ausführungsform zur Befestigung des Rahmens steht, in einer Ebene quer zur Stützträger-Längsrichtung gesehen, die Fußplatte seitlich über die Verbindungsstege über und ist mit im Überstand angeordneten Schrauben an einer unteren Abschlußwand der Randkonstruktion verschraubt. Bei dieser Ausführungsform müssen keine weiteren Bauteile am Rahmen angebracht werden, um dessen Befestigung an der Randkonstruktion zu ermöglichen.
  • In einer anderen, ebenfalls sehr vorteilhaften Ausführungsform der Erfindung ist der Rahmen über seitlich von den Verbindungsstegen vorstehende Laschen mit Auflagerböcken verschraubt, die ihrerseits an der Randkonstruktion befestigt sind. Dabei können die Schraubenachsen horizontal oder vertikal verlaufen. Liegt bei vertikalen Schraubenachsen die Scherfläche der Schrauben in der Höhe der Längsachse des Stützträgers, werden die Schrauben nur durch eine Scherkraft beansprucht und nicht durch eine Kombination von Schub- und Zugkräften, wie sie bei einer Verschraubung direkt mit der unteren Abschlußwand der Randkonstruktion auftritt. Bevorzugt wird die Fußplatte des Rahmens in einem Abstand von der unteren Abschlußwand der Randkonstruktion angebracht, wodurch ein Freiraum entsteht. Dadurch ist eine Bearbeitung der entsprechenden Flächen des Rahmens und der Randkonstruktion nicht mehr notwendig, wodurch Zeit und Kosten der Fertigung verringert werden.
  • Bei beiden vorstehend beschriebenen Ausführungsformen des Rahmens ist zweckmäßigerweise ferner die Kopfplatte des Rahmens ebenfalls in einem Abstand von einer oberen Abschlußwand der Randkonstruktion unter Ausbildung eines Freiraumes angebracht, wodurch auch auf dieser Seite die entsprechenden einander gegenüberliegenden Flächen von Rahmen und Randkonstruktion nicht mehr bearbeitet werden müssen.
  • Eine weiter bevorzugte Fortbildung der Erfindung besteht darin, daß die Federelemente im (unbelasteten) Einbauzustand spannungslos sind. Eine Druckvorspannung ist nicht notwendig, da die Federelemente sowohl am Kopplungsstück als auch an der Randkonstruktion - entweder unmittelbar oder mittelbar über ein Verbindungselement - allseitig fest angebracht sind, so daß sie nicht nur auf Druck und Schub, sondern auch auf Zug belastet werden können. Da das Aufbringen einer Druckvorspannung auf die Federelemente nicht mehr erforderlich ist, werden bei der Montage keine Pressen mehr benötigt, was den Montage- und Demontageaufwand erheblich vereinfacht und verkürzt.
  • Von besonderem Vorteil ist es, wenn pro Feder-Lagerungsstelle zwei Federelemente vorgesehen und senkrecht übereinander angeordnet sind. Dadurch wird bei vertikalen Kräften ein Federelement auf Zug und das andere auf Druck beansprucht, wodurch die bevorzugten Beanspruchungsrichtungen der beiden Federelemente mit den Hauptbelastungsrichtungen übereinstimmen, während horizontale Kräfte ausschließlich durch Schubverformung der Federelemente weitergeleitet werden. Dieses ermöglicht eine günstige und doch relativ einfache Auslegung der Federelemente.
  • In einer weiter bevorzugten Ausführungsform der Erfindung, bei der als gemeinsames Verbindungselement für die Federelemente ein Rahmen eingesetzt wird, sind die Federelemente an der Kopf- bzw. an der Fußplatte des Rahmens befestigt und seitlich in einem Abstand von den Verbindungsstegen angebracht. Diese Ausgestaltung gewährleistet auf einfache Weise eine ungehinderte, allseitige Bewegungsmöglichkeit der Federelemente und damit des Stützträgers und somit eine freischwimmende Lagerung.
  • Bevorzugt ist ferner das Kopplungsstück auf einen am Ende des Stützträgers in dessen Längsrichtung angebrachten Bolzen bevorzugt einen Schraubbolzen, aufgesteckt und befestigt. Hierdurch ist es möglich, sämtliche Federelemente mit einer einzigen Schraubverbindung am Stützträger zu befestigen bzw. sie von diesem zu lösen.
  • In einer besonders bevorzugten Ausgestaltung der Erfindung ist jeder Stützträger der Randlamellen quer zu seiner Längsrichtung zumindest einmal geteilt. Dabei wird das Kopplungsstück von einem Stützträger-Endteil gebildet, das mit der Randlamelle nicht unmittelbar verbunden und das an einem anschließenden Mittelteil des Stützträgers verschraubt ist. Mit dieser Ausbildung wird die Ausbildung eines eigenen Befestigungsabschnitts, wie z.B. eines Schraubbolzens, am Stützträger zur Befestigung des Kopplungsstücks vermieden, was bei den ohnehin engen räumlichen Verhältnissen in der Randkonstruktion Platz einspart. Darüber hinaus liegt die Verbindung des als Kopplungsstück ausgebildeten Stützträger-Endteils mit dem Stützträger-Mittelteil näher zur Fugenmitte hin und ist daher leichter erreichbar.
  • Die Erfindung wird nachfolgend anhand der Zeichnung beispielshalber im Prinzip noch näher erläutert. Es zeigen:
    • Fig. 1 einen Querschnitt durch einen erfindungsgemäßen einlamelligen Fahrbahnübergang entsprechend I-I in Fig. 2, wobei eine Lagerstelle der Lamelle mit Stützträger und dessen Lagerung in Nullstellung, d.h. in nicht schubverformtem Zustand, dargestellt ist;
    • Fig. 2 eine Schnittansicht durch eine Anordnung nach Fig. 1 längs II-II in Fig. 1;
    • Fig. 3 eine Ansicht der Lagerung des Stützträgers aus den Fig. 1 und 2 längs III-III in Fig. 2;
    • Fig. 4 einen Querschnitt ähnlich Fig. 1 durch eine zweite Ausführungsform eines erfindungsgemäßen Fahrbahnübergangs entsprechend IV-IV in Fig. 5;
    • Fig. 5 eine Draufsicht auf den Stützträger und dessen Lagerung aus Fig. 4 längs V-V in Fig. 4;
    • Fig. 6 eine Ansicht der Lagerung des Stützträgers aus Fig. 4 und 5 längs VI-VI in Fig. 5;
    • Fig. 7 einen Querschnitt ähnlich Fig. 1 oder 4 durch eine dritte Ausführungsform eines erfindungsgemäßen Fahrbahnübergangs, bei dem die Stützträger geteilt sind, längs VII-VII in Fig. 8;
    • Fig. 8 eine Draufsicht ähnlich Fig. 2 oder 5 auf den Stützträger und dessen Lagerung aus Fig. 7 längs VIII-VIII in Fig. 7, sowie
    • Fig. 9 einen Querschnitt ähnlich Fig. 4 durch den erfindungsgemäßen Fahrbahnübergang aus Fig. 4, jedoch mit infolge einer Fugenverbreiterung schubverformten Federelementen.
  • Die in den Figuren dargestellten Fahrbahnobergänge 1, 2 und 3 erstrecken sich jeweils zwischen den beiden Fugenrändern 4 einer Dehnfuge 5 zwischen zwei Bauwerksteilen 6, 7, z. B. bei einer Brückenkonstruktion, wobei die Oberseite des Überbaus beidseits der Dehnfuge 5 mit einer geeigneten Abdichtung 8 versehen ist, oberhalb derer ein Fahrbahnbelag 9, z.B. Beton, vorgesehen ist, der eine Oberfläche 10 ausbildet.
  • Der Aufbau der Fahrbahnübergänge 1, 2 und 3 umfaßt jeweils eine innerhalb der Dehnfuge 5 in Fugenlängsrichtung und parallel zu den Fugenrändern 4 verlaufende Lamelle 11, die mit an den Fugenrändern 4 angebrachten Stahlprofilen 12 über geeignete elastische Dichtungskörper 13, die den zwischen der Lamelle 11 und den Fugenrändern 4 vorliegenden Spalt wasserdicht überbrücken, formschlüssig verbunden ist. Bei einlamelligen Fahrbahnübergängen stellt selbstverständlich die einzige Lamelle 11 gleichzeitig die Randlamelle dar, die in diesem Fall beiden Fugenrändern 4 unmittelbar benachbart ist.
  • Die Lamelle 11 ist über ihre gesamte Länge hinweg an mehreren Lagerstellen des jeweiligen Fahrbahnübergangs 1, 2, 3 abgestützt, was in den Figuren jedoch nicht gezeigt ist.
  • Wie in den Fig. 1, 4, 7 und 9 dargestellt, ist die Lamelle 11 an der Lagerstelle jeweils mit einem Stützträger 16 fest (hier: starr) verbunden, der sich über die gesamte Fugenbreite erstreckt und seinerseits jeweils an Lagerungsstellen an den Fugenrändern 4 in einer Randkonstruktion 15 gelagert ist. Die Randkonstruktion 15 hat die Form eines rechteckigen Kastens, der an seiner der Fuge zugewandten Seite offen ist. Zur Lagerung des Stützträgers 16 werden Federelemente 17 eingesetzt, die sowohl mit dem Stützträger 16 als auch mit der Randkonstruktion 15 allseitig fest, d.h. druck-, zug- und schubfest, aber lösbar verbunden sind. Diese Verbindungen erfolgen mittelbar über ein Kopplungsstück 18 zwischen den Federelementen 17 einer Lagerungsstelle und dem Stützträger 16 und können über ein Verbindungselement 19 zwischen diesen Federelementen 17 und der Randkonstruktion 15 erfolgen. Die Federelemente 17 sind im Einbauzustand spannungslos. Infolge ihrer allseitig festen Verbindung mit dem Kopplungsstück 18 wie auch - mittelbar oder unmittelbar - mit der Randkonstruktion 15 werden die Federelemente 17 nicht nur durch Druck und Schub, sondern auch durch Zug beansprucht, so daß bei jeder Art von Belastung - auch bei der Steuerung der Lamelle 11 bei einer Änderung der Fugenbreite - sämtliche Federelemente 17 an der Lastabtragung beteiligt sind.
  • Als Federelemente werden Elastomerlager 17 eingesetzt, von denen an jeder Lagerungsstelle des Stützträgers 16 zwei einander gegenüberliegend, nämlich eines unterhalb des Stützträgers 16 und eines über diesem, angeordnet sind. Die Elastomerlager 17 sind so ausgerichtet, daß sich ihre Achsen in vertikaler Richtung decken und die Längsachse 20 des Stützträgers 16 rechtwinklig kreuzen. Zwischen den einander gegenüberliegenden Elastomerlagern 17 ist ein quaderförmiges Kopplungsstück 18 aus Stahl angeordnet, an dem die Elastomerlager 17 durch Vulkanisation befestigt sind.
  • Die Elastomerlager 17 und das Kopplungsstück 18 werden von einem gemeinsamen Verbindungselement in Form eines rechteckigen Rahmens 19 aus Stahl umfaßt, der senkrecht zur Längsachse 20 des Stützträgers 16 verläuft. Der Rahmen 19 besteht aus einer Kopfplatte 21, einer Fußplatte 22 sowie zwei diese miteinander verbindenden seitlichen Verbindungsstegen 23, die sich vertikal beidseits der Elastomerlager 17 und des Kopplungsstücks 18 und damit des Stützträgers 16 erstrecken (vgl. Fig. 3 und 6). Die Kopfplatte 21 ist mit der Oberseite des oberen Elastomerlagers 17 und die Fußplatte 22 mit der Unterseite des unteren Elastomerlagers 17 ebenfalls durch Vulkanisation verbunden, so daß Kopplungsstück 18, Elastomerlager 17 und Rahmen 19 ein einteiliges Lagerungselement ausbilden. Zwischen den Elastomerlagern 17 und den Verbindungsstegen 23 ist genügend seitlicher Freiraum 24 belassen, so daß eine allseitige Bewegungsfreiheit der Elastomerlager 17 gewährleistet ist.
  • Das Kopplungsstück 18 gemäß Fig. 3 und 6 weist eine zentrische Durchgangsbohrung 25 auf, die parallel zu den Elastomerlagern 17 verläuft. Mit dieser Durchgangsbohrung 25 ist das Kopplungsstück 18 und damit das gesamte aus Kopplungsstück 18, Elastomerlagern 17 und Rahmen 19 bestehende Lagerungselement auf einen Schraubbolzen 26 aufgesteckt (Fig. 1, 2, 4, 5), der jeweils am Kopfende des Stützträgers 16 biegesteif befestigt ist und in dessen Längsrichtung verläuft. Das freie Ende des Schraubbolzens 26 ragt aus der Durchgangsbohrung 25 des Kopplungsstücks 18 heraus und ist mit einem Schraubgewinde versehen, auf das eine Schraubmutter 27 aufgeschraubt ist, durch die das Kopplungsstück 18 und der Stützträger 16 miteinander fest verbindbar sind.
  • Für die Verbindung des Rahmens 19 mit der Randkonstruktion 15 sind in den Fig. 3 und 6 zwei Ausführungsbeispiele dargestellt. Beiden Ausführungsformen ist gemeinsam, daß der Rahmen 19 jeweils nur an einer Wand der Randkonstruktion 15 befestigt ist.
  • Bei dem Beispiel aus Fig. 3 steht die Fußplatte 22 flächig auf einer unteren Abschlußwand 28 der Randkonstruktion 15 auf und steht rechtwinklig zum Verlauf der Durchgangsbohrung 25 im Kopplungsstück 18 seitlich, d.h. in Fugenlängsrichtung, über die Verbindungsstege 23 über. In diesen Überständen sind jeweils zwei in Fugenquerrichtung hintereinander liegende Schraublöcher vorgesehen, durch die Schrauben 29 hindurchgesteckt werden, mit denen der Rahmen 19 an der unteren Abschlußwand 28 der Randkonstruktion 15 festgeschraubt ist (Fig. 2). Zwischen der Oberseite der Kopfplatte 21 und der Innenseite der oberen Abschlußwand 14 der Randkonstruktion 15 wird ein Freiraum ausgebildet, so daß hier die entsprechenden Flächen der einander gegenüberliegenden Bauteile bei der Montage nicht mechanisch als Anlageflächen bearbeitet sein müssen.
  • Bei der Ausführungsform nach Fig. 6 ist an jedem Verbindungssteg 23, etwa in der Mitte seiner vertikalen Länge, in der Höhe der Längsachse 20 des Stützträgers 16 eine horizontal auskragende Lasche 30 angebracht. Jede Lasche 30 ist mit einem vertikal verlaufenden Schraubloch versehen und liegt auf einem von der unteren Abschlußwand 28 der Randkonstruktion 15 nach oben ragenden Auflagerbock 31 auf, mit dem sie über Schrauben 29 verschraubt ist. Die vertikalen Abmessungen der Auflagerböcke 31 und des Rahmens 19 sind dabei so gewählt, daß sowohl zwischen der Unterseite der Fußplatte 22a und der Oberseite der unteren Abschlußwand 28, als auch zwischen der Oberseite der Kopfplatte 21 und der Innenseite der oberen Abschlußwand 14 ein Spalt vorhanden ist. Damit entfällt auch hier wieder die Notwendigkeit einer mechanischen Bearbeitung bei den angesprochenen Flachen. Dadurch, daß gemäß dieser Ausbildung, im Gegensatz zur Ausbildung nach Fig. 3, auch unter der Fußplatte 22a ein Spalt zur Randkonstruktion 15 hin vorhanden ist, werden auch die Dämpfungseigenschaften der Federlagerung noch weiter erhöht.
  • Bei der in den Fig. 7 und 8 dargestellten Ausführungsform eines erfindungsgemäßen Fahrbahnübergangs 3 besteht der Stützträger 16 aus einem Mittelteil 32 und zwei als Kopplungsstücke dienenden Endteilen 33, die nicht über eine Steckverbindung mit dem Stützträger 16 verbunden, sondern mittels einer Kopfplattenverbindung 34 mit dessen an der Lamelle 11 befestigtem Mittelteil 32 verschraubt sind. Mit dieser Ausgestaltung der Verbindung von Kopplungsstück 18 und Stützträger 16 wird die Zugänglichkeit der Verbindungsstelle sehr erleichtert, da die Schraubverbindung von der der Fuge abgewandten Seite des Kopplungsstücks 18 auf dessen der Fuge zugewandte Seite verlagert und damit unmittelbar zugänglich ist. Die Anordnung der Elastomerlager 17 und die Befestigung des Rahmens 19 an der Randkonstruktion 15 kann entsprechend den Darstellungen gemäß den Fig. 1 bis 6 gewählt werden.
  • In Fig. 9 ist das Verformungsverhalten der Elastomerlager 17 bei einer Fugenverbreiterung dargestellt. Die vier Elastomerlager 17 weisen gleiche Kennwerte auf, so daß ihre Schubsteifigkeit und damit die entsprechende Federsteifigkeit gleich ist. Bei einer Fugenverbreiterung werden an beiden Fugenrändern 4 die Kopf- bzw- Fußplatten 21, 22 der Rahmen 19 mit den Randkonstruktionen 15 von der Fugenmitte wegbewegt, wobei die Elastomerlager 17 infolge ihrer Elastizität (Schubsteifigkeit) über die Kopplungsstücke 18 eine Zugkraft in den Stützträger 16 einleiten, um diesen mitzunehmen. Da an beiden Enden des Stützträgers 16 diesselbe Zugkraft eingeleitet wird, jedoch jeweils in entgegengesetzte Richtungen, heben sich diese Zugkräfte auf und der Stützträger 16 und damit die Lamelle 11 verbleiben in ihrer ursprünglichen Lage. Auf diese Weise entfernen sich die Fugenränder 4 von der Lamelle 11 jeweils um das gleiche Maß, so daß die Lamelle 11 immer in Fugenmitte liegt und damit die Fugenabstände zu den Fugenrändern 4 untereinander gleich bleiben.
  • Anstelle der in den Figuren gezeigten Ausführungen können aber auch mehr als zwei Federelemente 17 pro Lagerungsstelle des Stützträgers 16 eingesetzt werden, die z.B. in Umfangsrichtung um das Kopplungsstück 18 herum angeordnet sein können. Die Federelemente 17 können einzeln über jeweils eigene Befestigungselemente, z.B. anvulkanisierte Stahlplatten, an der Randkonstruktion 15 befestigt werden. Wird jedoch ein gemeinsames Verbindungselement 19 verwendet, ist für dessen Ausbildung und seine Befestigung an der Randkonstruktion 15 jede geeignete Formgebung einsetzbar. Maßgebend ist dabei nur, daß über eine unmittelbare oder mittelbare Schub-/Zug-/Druckbefestigung der Federelemente 17 an der Randkonstruktion 15 bei jeder Belastungsart und Bewegung des Stützträgers 16 alle Federelemente 17 an der Lastabtragung beteiligt werden.

Claims (16)

  1. Fahrbahnübergang (1,2,3) für Dehnfugen (5) mit mindestens einer parallel zu den Fugenrändern verlaufenden Lamelle (11), bei dem jede Lamelle an ihren Lagerstellen mit jeweils einem ausschließlich ihr zugeordneten Stützträger (16), der sich über die gesamte Fugenbreite erstreckt und an den Fugenrändern (4), in einer Randkonstruktion (15) verschieblich gelagert ist, fest verbunden ist und bei dem der Abstand der Lamellen untereinander und zu den Fugenrändern über eine Federkette gesteuert ist, wobei die Stützträger der einem Fugenrand unmittelbar benachbarten Randlamelle in der Randkonstruktion dieses Fugenrandes allseitig kraftableitend gelagert und jeweils über mindestens ein Federelement (17) gesteuert sind, das gleichzeitig die vertikal nach oben gerichteten sowie die horizontalen Lagerkräfte in die Randkonstruktion einleitet, indem es einerseits mit dem zugeordneten Stützträger in dessen Längsrichtung und andererseits mit der Randkonstruktion in Fugenquer- und Fugenlängsrichtung unverschieblich verbunden ist, dadurch gekennzeichnet, daß die mit einer Randlamelle (11) fest verbundenen Stützträger (16) in der Randkonstruktion (15) ausschließlich über das bzw. die Federelement(e) (17) gelagert sind, und daß alle Federelemente (17) einer solchen Lagerungsstelle allseitig fest an einem gemeinsamen Kopplungsstück (18), das lösbar am Stützträger (16) befestigt ist, angebracht und ferner mit der Randkonstruktion (15) fest, jedoch lösbar, verbunden sind.
  2. Fahrbahnübergang nach Anspruch 1, dadurch gekennzeichnet, daß die Federelemente (17) einer Lagerungsstelle fest an einem sie umfassenden, gemeinsamen Verbindungselement (19) angebracht sind, das lösbar an der Randkonstruktion (15) befestigt ist.
  3. Fahrbahnübergang nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Federelemente als Elastomerlager (17) ausgebildet und an das Kopplungsstück (18) anvulkanisiert sind.
  4. Fahrbahnübergang nach Anspruch 2 und 3, dadurch gekennzeichnet, daß Kopplungsstück (18), Elastomerlager (17) und Verbindungselement (19) einstückig vulkanisiert sind.
  5. Fahrbahnübergang nach Anspruch 2 oder 4, dadurch gekennzeichnet, daß das Verbindungselement als Rahmen (19) ausgebildet ist, der quer zur Längsachse (20) des Stützträgers (16) angeordnet ist.
  6. Fahrbahnübergang nach Anspruch 5, dadurch gekennzeichnet, daß der Rahmen (19) nur an einer Wand der Randkonstruktion (15) befestigt ist.
  7. Fahrbahnübergang nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der Rahmen (19) eine Kopf- und eine Fußplatte (21, 22) aufweist, die durch zwei unter Ausbildung eines Zwischenraumes im Abstand zueinander angeordnete seitliche Verbindungsstege (23) miteinander verbunden sind, wobei das Kopplungsstück (18) und die Federelemente (17) im Zwischenraum angeordnet sind.
  8. Fahrbahnübergang nach Anspruch 7, dadurch gekennzeichnet, daß die Fußplatte (22), in einer Ebene quer zur Stützträger-Längsrichtung gesehen, über die Verbindungsstege (23) seitlich übersteht und mit im Überstand angeordneten Schrauben (29) an einer unteren Abschlußwand (28) der Randkonstruktion (15) verschraubt ist.
  9. Fahrbahnübergang nach Anspruch 7, dadurch gekennzeichnet, daß der Rahmen (19) über seitlich von den Verbindungsstegen (23) vorstehende Laschen (30) an Auflagerböcken (31) an der Randkonstruktion (15) befestigt ist.
  10. Fahrbahnübergang nach Anspruch 9, dadurch gekennzeichnet, daß die Fußplatte (22) des Rahmens (19) mit Abstand von einer unteren Abschlußwand (28) der Randkonstruktion (15) angeordnet ist.
  11. Fahrbahnübergang nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die Kopfplatte (21) des Rahmens (19) mit Abstand von einer oberen Abschlußwand (14) der Randkonstruktion (15) angebracht ist.
  12. Fahrbahnübergang nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Federelemente (17) im Einbauzustand spannungslos sind.
  13. Fahrbahnübergang nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß pro Lagerungsstelle zwei Federelemente (17) senkrecht übereinander vorgesehen sind.
  14. Fahrbahnübergang nach Anspruch 5 und Anspruch 13 sowie einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die Federelemente (17) an der Kopf- bzw. an der Fußplatte (21, 22) des Rahmens (19) befestigt sind, und daß Verbindungsstege (23) im Abstand seitlich von den Federelementen (17) verlaufen.
  15. Fahrbahnübergang nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Kopplungsstück (18) auf einem am Ende des Stützträgers (16) in dessen Längsrichtung angebrachten Bolzen (26) sitzt.
  16. Fahrbahnübergang nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß jeder Stützträger (16) der Randlamellen (11) quer zu seiner Längsrichtung zumindest einmal geteilt ist und das Kopplungsstück von einem Endteil (33) gebildet wird, das mit der Randlamelle (11) nicht unmittelbar verbunden und mit einem Mittelteil (32) des Stützträgers (16) verschraubt ist.
EP94106402A 1993-04-29 1994-04-25 Fahrbahnübergang Expired - Lifetime EP0622494B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4314186A DE4314186C1 (de) 1993-04-29 1993-04-29 Fahrbahnübergang
DE4314186 1993-04-29

Publications (3)

Publication Number Publication Date
EP0622494A2 EP0622494A2 (de) 1994-11-02
EP0622494A3 EP0622494A3 (de) 1995-04-19
EP0622494B1 true EP0622494B1 (de) 1996-09-18

Family

ID=6486766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94106402A Expired - Lifetime EP0622494B1 (de) 1993-04-29 1994-04-25 Fahrbahnübergang

Country Status (4)

Country Link
EP (1) EP0622494B1 (de)
AT (1) ATE143079T1 (de)
DE (2) DE4314186C1 (de)
PL (1) PL174379B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19607593A1 (de) * 1996-02-29 1997-09-04 Hermann Wegener Fahrbahnübergang
AT412291B (de) * 1997-02-27 2004-12-27 Reisner & Wolff Eng Vorrichtung zum überbrücken einer dehnungsfuge einer brücke
DE102007025159B4 (de) 2007-05-29 2023-10-26 Maurer Söhne Gmbh & Co. Kg Verfahren zum Auswechseln von Fahrbahnübergängen, Traversenkastendeckel und Verwendung eines Traversenkastendeckels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6602110U (de) * 1967-04-29 1969-04-30 Maurer Friedrich Soehne Ueberbrueckung von dehnungsfugen in fahrbahnen von bruecken oder dgl.
US3907443A (en) * 1973-12-19 1975-09-23 Acme Highway Prod Composite expansion joint assembly

Also Published As

Publication number Publication date
ATE143079T1 (de) 1996-10-15
PL174379B1 (pl) 1998-07-31
EP0622494A2 (de) 1994-11-02
DE4314186C1 (de) 1994-04-28
EP0622494A3 (de) 1995-04-19
DE59400662D1 (de) 1996-10-24

Similar Documents

Publication Publication Date Title
EP1763613B1 (de) Überbrückungsvorrichtung
EP0363725B1 (de) Siebboden
DE102012215151A1 (de) Trägeranordnung sowie damit errichtete Konstruktion
EP0433224A1 (de) Zusammengesetztes Tragelement
DE2123225A1 (de) Zusammengesetzte Ausdehnungsverbindung
EP0918036B1 (de) Vorrichtung zum Aufhängen einer Schiene, insbesondere einer nach unten offenen hohlprofilförmigen Schiene eines Hängekrans
EP0622494B1 (de) Fahrbahnübergang
DE69929707T2 (de) Ein mit befestigungsvorrichtung(en) zusammengesetzter aufzug
EP1340853A1 (de) Dichtungsvorrichtung für eine Bewegungsfuge
DE3512987A1 (de) Elastisches schienenlager
DE2706277C3 (de) Siebboden
DE102004062581B3 (de) Fahrbahnlagerung am Übergang zweier Brückenabschnitte einer transportablen Brücke
DE102012223844A1 (de) Temporäre hilfsbrücken-abstützeinrichtung für gleisabschnitte
EP0343145B1 (de) Vorrichtung zum Befestigen von Schienen
EP0338124A2 (de) Fahrbahnübergang
EP0853706A1 (de) Schienengleicher bahnübergang
EP0703318B1 (de) Dämpfungselement für eine Schiene
EP0827896B1 (de) Hilfsrahmen für ein Nutzfahrzeug
EP4010542A1 (de) Stahleinbauteil für bauwerke zum ersatz eines vorbestimmten bereichs eines zur lastaufnahme vorgesehenen stahlbetonbauteils
DE202005006228U1 (de) Dachkonstruktion für Gebäude, insbesondere für Industriegebäude mit großen Spannweiten
DE3333880A1 (de) Vorrichtung zur steuerung der lamellenabstaende an einer ueberbrueckungsvorrichtung fuer dehnungsfugen in bruecken od. dgl.
DE3602845C2 (de)
EP4065773B1 (de) Dehnfugen-überbrückungsvorrichtung
DE3017048A1 (de) Fugenueberbrueckungsvorrichtung fuer dehnfugen in bruecken o.dgl.
DE19530572A1 (de) Gebäude-Tragkonstruktion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE GB LI

17P Request for examination filed

Effective date: 19950504

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960123

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE GB LI

REF Corresponds to:

Ref document number: 143079

Country of ref document: AT

Date of ref document: 19961015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960920

REF Corresponds to:

Ref document number: 59400662

Country of ref document: DE

Date of ref document: 19961024

RIN2 Information on inventor provided after grant (corrected)

Free format text: WEGENER, HERMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980206

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980327

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980429

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980501

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990425

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201