EP0618020A1 - Verfahren und Vorrichtung zum Walzen eines Walzbandes - Google Patents

Verfahren und Vorrichtung zum Walzen eines Walzbandes Download PDF

Info

Publication number
EP0618020A1
EP0618020A1 EP94104542A EP94104542A EP0618020A1 EP 0618020 A1 EP0618020 A1 EP 0618020A1 EP 94104542 A EP94104542 A EP 94104542A EP 94104542 A EP94104542 A EP 94104542A EP 0618020 A1 EP0618020 A1 EP 0618020A1
Authority
EP
European Patent Office
Prior art keywords
strip
work rolls
rolling
profile
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94104542A
Other languages
English (en)
French (fr)
Other versions
EP0618020B1 (de
Inventor
Jürgen Seidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Schloemann Siemag AG
Schloemann Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6484013&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0618020(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SMS Schloemann Siemag AG, Schloemann Siemag AG filed Critical SMS Schloemann Siemag AG
Publication of EP0618020A1 publication Critical patent/EP0618020A1/de
Application granted granted Critical
Publication of EP0618020B1 publication Critical patent/EP0618020B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/30Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/14Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories having counter-pressure devices acting on rolls to inhibit deflection of same under load; Back-up rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • B21B13/023Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally the axis of the rolls being other than perpendicular to the direction of movement of the product, e.g. cross-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/06Width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/02Profile, e.g. of plate, hot strip, sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2269/00Roll bending or shifting
    • B21B2269/12Axial shifting the rolls
    • B21B2269/14Work rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B28/00Maintaining rolls or rolling equipment in effective condition
    • B21B28/02Maintaining rolls in effective condition, e.g. reconditioning
    • B21B28/04Maintaining rolls in effective condition, e.g. reconditioning while in use, e.g. polishing or grinding while the rolls are in their stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/30Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
    • B21B37/32Control of flatness or profile during rolling of strip, sheets or plates using roll camber control by cooling, heating or lubricating the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates

Definitions

  • the invention relates to a method and a device for rolling a rolled strip in at least two roll stands, each with horizontally adjustable upper and lower work rolls, each of which is supported directly or via an intermediate roll on a backup roll, hot strip mill, or a reversing stand, on the at least two passes are rolled, in which the rolling strip is subjected to a state control, for which purpose actuators which provide profile and flatness act on the rolling strip.
  • the thermal crowning and wear of the work rolls as well as the elastic deformations are subject to relatively large changes within a rolling program. Without the correction by actuators, the crown of the work rolls increases continuously with increasing throughput of the rolling material, and due to the changing thermal crowning, the roll contour deviates increasingly from the target contour, e.g. a parabola.
  • CVC Continuous Variable Crown
  • suitable actuators such as sliding and / or bending members, e.g. "CVC” (Continuously Variable Crown) shift (see. DE 30 38 865 C1) or a suitable cooling, in order to compensate for the adjustment of the actual contour.
  • CVC Continuous Variable Crown
  • the invention has for its object to provide a method and an apparatus with which the requirements for profile accuracy and flatness of the rolled strip can be met despite flexible rolling programs.
  • the invention is based on the knowledge found and exploited by extensive investigations that cross-material flow also takes place in the middle rolled strip area in the case of thick strip, whereas cross-material flow is only possible in the edge region in the case of thin strip. So if the strip profile shape is to be changed in the middle rolled strip area, this can only be achieved with thick strip. On the other hand, a change in the shape of the strip can also be achieved in the case of thinner strip, without impermissibly high unevenness, but this can only be carried out in the closer strip edge area. With decreasing strip thickness, the relevant strip profile influenceability gradually moves outwards, ie towards the strip edge.
  • the actuators can be used in such a way that, taking into account the technological limits (e.g. rolling force, temperature, etc.), the flatness limits (these result from the respective material cross flow of the strip and thus represent physical limits), If necessary, also higher order, actuator limits and, in particular, taking into account the material cross-flow behavior, an optimal belt shape is created that comes as close as possible to the specified target contour.
  • technological limits e.g. rolling force, temperature, etc.
  • the flatness limits (these result from the respective material cross flow of the strip and thus represent physical limits)
  • actuator limits and, in particular, taking into account the material cross-flow behavior an optimal belt shape is created that comes as close as possible to the specified target contour.
  • Y the strip thickness coordinate
  • X the Represents bandwidth coordinate.
  • the mechanical actuators are used in such a way that there is a minimal deviation between the calculated strip shape and the target strip shape or target contour. If the strip profile shape cannot be produced in the stand i, the mechanical actuators must be adjusted in order to minimize the deviation. Deviations of the calculated strip shape from the target strip shape can be weighted differently over the bandwidth.
  • An embodiment of the invention provides that the mechanical actuators are supported by non-mechanical actuators, for which purpose - depending on the contour of the belt, in particular in the edge area - advantageously used work rolls as mechanical actuators can be locally heated or cooled.
  • work rolls used as mechanical actuators can be ground during the rolling operation. This can be achieved, for example, with oscillating grinding plates and allows the rolls to be smoothed or polished or their contours changed for the purpose of specifically influencing the strip contours.
  • Such an "on-line” grinding is recommended, in particular when changing the program to wider rolled strips, because grinding the work roll ends while the narrow roll strips are still rolling has no influence on the quality of these narrow strips, since the preparatively ground work roll ends are outside the roll width lie.
  • the mechanical actuators be used as early as possible. Under Taking into account the limits to be complied with, for example the flatness and the setting range, the aim is to achieve the target contour of the profile of the rolled strip as early as possible. If this is not yet possible in the first scaffolding, the task is automatically passed on to the subsequent scaffolding. Should the strip shape change from roll stand to roll stand or from constant to constant from stitch to stitch, a deviation can be tolerated in accordance with the law of material cross-flow with thicker strip in the edge area, ie the achievement of the strip shape or target contour in the middle rolled strip area has priority. If it is possible to create the strip profile shape on a roll stand, eg stand k, the ultimate goal is to keep this strip shape constant in the subsequent stands.
  • the actuators comprise axially displaceable work rolls and / or work roll bending devices.
  • CVC, work roll bending, roll interlocking, etc. can preferably be carried out or used. If, for example, wide strips are rolled, the non-parabolic effect of the work roll bending, i.e. the larger effect in the band edge area (200mm) has to be taken into account and a combination of e.g. To implement CVC and work roll bending that comes closest to the target or target belt contour.
  • the mechanical actuators can be supported by other actuators. It is therefore proposed that the work rolls be provided with zone cooling and / or a thermal cover in order to support the mechanical actuators in this way.
  • work roll cover shells for example, can be positioned at a suitable point on the ends of the work rolls.
  • a supporting influence on the rolled strip shape can also be achieved by changing the strip edge temperature within the technological limits.
  • induction heating can be used to change the edge heating in front of and / or behind the first scaffolding of the finishing train, or by e.g. Spray nozzles in the side guides cool the strip edges, which can be an advantage for austenitic stainless steels to be rolled.
  • the belt contour can be influenced by lubricating the work rolls in the area of the strip edges.
  • the work rolls can be provided with a special grinding. This can be provided, for example, in the form of a parabolic contour change or by a local conical course in order to bring about corresponding contour changes in the band edge area.
  • the rollable shape can be influenced by a change in the rolling force in the rear roll stands in the edge area, and a rolling force redistribution may be carried out within the permissible limits.
  • the accompanying changes in the body crowns on the corresponding and others Roll stands can be compensated for by actuators that do not act on the edge - eg with CVC - in order not to disturb the mass flow there and thus to avoid undulations of the rolled strip.
  • the algorithm is used in online operation. However, it can also be used in combination with an optimization algorithm for the optimal compilation of rolling programs and optimal use of actuators in advance. Not only one strip, but the entire rolling program is considered and optimized with regard to the strip contour.
  • target contours 1 and 2 of the profile of a rolled strip 3 and 4, not shown, are given in accordance with the intended use in FIGS. 1 and 2.
  • a target contour 1 according to FIG. 1 for example, and a target contour 2 according to FIG. 2, for example, are desired for a rolling strip 3 to be processed directly.
  • FIG. 1 is an almost parabolic target contour
  • target contour 2 according to FIG. 2 has a flat body crown and a somewhat greater drop on the band edges.
  • the C40 point entered for both target contours 1, 2 results from the difference between the thickness of the rolled strip 3 or 4 in the middle H M and the mean value of the thicknesses measured at a distance of 40 mm from the strip edge 5 on each side or strip edge 5 of the rolled strip 3 or 4.
  • the creation of the target contours 1 and 2 presupposes the knowledge resulting from FIGS. 3 to 5, namely that a strip contour influence can only be achieved where a material cross flow is possible.
  • a material cross-flow also takes place in the middle, ie the area adjacent to the middle of the strip (see FIG. 5), whereas in the case of rolled strips with a smaller thickness below H crit , a material cross flow only takes place in the strip edge area.
  • the limit value of the thickness, ie, the critical thickness H crit can be for any hot strip tandem mill as a function of roll material, experimentally determined temperature, roll diameter as well as decrease or stitch distribution, it is generally known that an effect on the profile of the rolled strip, with simultaneous avoidance of planar defects achieved only can be as long as the Flow resistance of the material transverse to the rolling direction is still so low that in addition to the strip elongation there is a minimum amount of strip spreading in the roll gap.
  • a material cross flow below the critical thickness (for example 10 or 12 mm) over the bandwidth is only possible to a very small extent. This relationship is also clear from FIG. 5, in which, in addition to the coordinates for the material cross flow and the bandwidth, the material thickness is also entered.
  • FIGS. 6 and 7 show the strip profiles to be achieved using the known rolling processes (see FIG. 6) and the profile and flatness control according to the invention (see FIG. 7) within a rolling program comprising fifty strips or coils; the numbers circled at the bottom left indicate the number of coils. While in both cases the shape of the profile is still almost unchanged for the first strip or coil to be rolled, the effect of the thermal crown on the work rolls with the disadvantageous anomalies for the profile increases with the number of strips in the known rolling methods. flat strip profiles and edge beads are produced (see FIG. 6 the strip profiles after the rolling of 10, 20 or 50 strips). In contrast, according to FIG. 7, the band profile can be kept largely constant, and edge beads are avoided. The target tape contour is also almost reached.
  • FIG. 8 A hot strip tandem mill 6 that enables the desired strip profiles (see FIG. 7) to be reached is shown in FIG. 8, in part very schematically and with only symbolic identifications for the mechanical actuators including the elements supporting them, and in the form of black boxes for computers and measuring devices .
  • It consists of several roll stands, of which the first and last roll stands 7 and 8 are shown. However, it can also be a rolling mill with a reversing stand on which several passes are rolled.
  • Each of the roll stands 7, 8 has horizontally adjustable upper and lower work rolls 10, 11 supported by support rolls 9.
  • the latter can be moved axially, preferably with a CVC shift 12, as well as with work roll bending devices 13; the work rolls to be axially displaced (provided with a ground, thermal and wear contour) or the CVC shift 12 and the work roll bend 13 are used as mechanical actuators which act either in the strip center region or in the strip edge region.
  • a strip edge heater 14 is arranged in front of and behind the first stands of the finishing train to change the edge heating of the rolled strip 3 or 4.
  • the hot strip tandem mill 6 has a work roll zone cooling 15 in the area of the front or rear roll stands, e.g. in the form of spray nozzles directed in the corresponding zones onto the work rolls 10, 11, as indicated behind the first roll stand 7.
  • a band edge cooling 16 with e.g. spray nozzles and work roll cover shells 18 arranged in the side guides, as shown for the last roll stand 8.
  • the lubrication of the work rolls 17 in the strip edge area influences the load distribution in the roll gap and thus the strip contour. Thickness, flatness and temperature measuring devices 19, 20, 21 are also arranged behind the last rolling stand 8.
  • the measuring devices 19 to 21 as well as the mechanical actuators 12, 13 and the thermal and other influencing elements 14 to 18 are connected to a strip contour and flatness computer 22.
  • the measured data determined, in particular for the profile and the flatness of the finished rolled strip 3, 4, can therefore be used directly to correct the upstream control systems or actuators, with the aim of achieving the predetermined target contour of the profile of the rolled strip for all strips.
  • a pass schedule calculator 23 supplies the strip contour and flatness calculator 22 with input data.
  • a data feedback 24 is intended for the purpose of redistributing the rolling force.
  • the procedure described for achieving a predetermined target contour of the profile of the rolled strip is used in online operation. Nevertheless, when creating the rolling program (planning the rolling programs), the processes can be simulated offline in advance and the strip shape in particular can be determined in this way. If it turns out that the optimization process carried out beforehand with regard to a strip shape for certain strips is not successful, the rolling programs can be changed over or the strips can be used in another rolling program. Also included can be a cyclical displacement of the rear work rolls or roll stands adapted to the rolling program and / or an optimized positioning, for example, of the cover shells 18 for the thermal crown influencing of the work rolls 10, 11. After the strip has been selected or the rolling program changed, the target contour begins optimizing process from scratch until offline, ie can achieve an acceptable band shape in advance.

Abstract

Ein Verfahren zum Walzen des Walzbandes (3;4) in einer zumindest zwei Walzgerüste (6, 7) mit horizontal einstellbaren oberen und unteren Arbeitswalzen (10, 11) von denen sich jede unmittelbar oder über eine Zwischenwalze an einer Stützwalze (9) abstützt, aufweisenden Warmbandstraße (6), oder in einem Reversiergerüst, an dem mindestens zwei Stiche gewalzt werden,in der bzw. dem das Walzband einer Zustandsregelung unterworfen wird, wozu profil- und planheitsgebende Stellglieder auf das Walzband einwirken, erlaubt es trotz flexibler Walzprogramme den Anforderungen an die Profilgenauigkeit und die Planheit des Walzbandes zu entsprechen, wenn eine Zielkontur des Profils des Walzbandes (3;4) vorgegeben wird, zu deren Erreichen sukkzesive zwei Gruppen von Stellgliedern auf das Walzband einwirken, von denen die Stellglieder (12, 13) der ersten Gruppe bei oberhalb der kritischen Dicke liegenden Walzbanddicken zum Einsatz gebracht werden und vornehmlich die Kontur des Walzbandes in dessen bezogen auf die Bandmitte mittleren Bereich beeinflussen, während die Stellglieder (12, 13) der zweiten Gruppe bei unterhalb der kritischen Dicke liegenden Walzbanddicken im Bandkantenbereich zum Einsatz gebracht werden. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Walzen eines Walzbandes in einer zumindest zwei Walzgerüste mit jeweils horizontal einstellbaren oberen und unteren Arbeitswalzen, von denen sich jede unmittelbar oder über eine Zwischenwalze an einer Stützwalze abstützt, aufweisenden Warmbandstraße, oder einem Reversiergerüst, an dem mindestens zwei Stiche gewalzt werden, in der bzw. dem das Walzband einer Zustandsregelung unterworfen wird, wozu profil-und planheitsgebende Stellglieder auf das Walzband einwirken.
  • Beim Warmwalzen von Bandmaterialien unterliegen innerhalb eines Walzprogrammes die thermische Bombierung und der Verschleiß der Arbeitswalzen sowie die elastischen Verformungen relativ großen Veränderungen. Ohne die Korrektur durch Stellglieder nimmt die Balligkeit der Arbeitswalzen mit zunehmendem Walzmaterial-Durchsatz ständig zu, und durch die sich so ändernde thermische Bombierung weicht die Walzenkontur zunehmend von der Sollkontur,z.B. einer Parabel, ab.
  • Beim Walzen in einer Breite werden innerhalb eines Walzprogramms viele Bänder hintereinander mit gleicher Breite oder annähernd gleicher Breite gewalzt. Das Walzen in einer Breite beeinflußt neben dem für einen ganz bestimmten Punkt ( z.B. C₄₀ oder C₂₅) vorgegebenen Wert des Bandprofils gleichzeitig die Bandprofilform insgesamt. Hierbei wird unter der Beschreibung des Bandprofils für einen ganz bestimmten Punkt die Differenz zwischen der Dicke des Bandes in dessen Mitte und dem Mittelwert der im Abstand - beim Punkt C₄₀ entspricht dieser 40mm - von der Bandkante gemessenen Dicken jeder Seite. Der zunehmende Abfall der thermischen Bombierung der Walzen führt im randnahen Bereich zu erheblichen Profilanomalien am Band. Hierunter sind alle Abweichungen des Bandes von dem idealen (z.B. parabolischen) Verlauf des Bandprofils zu verstehen. In der Walzpraxis sind vor allem folgende Typen von Profilanomalien zu vermeiden:
    • Verdickungen im Kantenbereich (Wülste, edge built-up)
    • Abfallen der Dicke im Kantenbereich.
    Solche Profilanomalien schränken die walzbare Länge in einer Breite stark ein. Als Walzlänge in einer Breite wird die Summe aller Bandlängen definiert, die in einer Breite oder annähernd gleicher Breite gewalzt werden.
  • Es ist bekannt, die Änderung des thermischen Crowns und des Arbeitswalzenverschleißes durch geeignete Stellglieder wie Verschiebe- und/oder Biegeglieder, z.B. "CVC" (Continuously Variable Crown) Verschiebung (vgl. DE 30 38 865 C1) oder eine geeignete Kühlung, im Sinne einer Angleichung der Istkontur zu kompensieren.
  • Durch die EP 0 276 743 B1 ist es bekanntgeworden, zum Steuern der Balligkeit und/oder des Kantenabfalls des Bandes die horizontale Verschiebung der Arbeitswalzen und die auf diese Arbeitswalzen wirkenden Biegekräfte einer an der Aufstromseite befindlichen Gruppe der Walzgerüste eines Tandemwalzwerkes nach Maßgabe der Walzbedingungen einschließlich der Breite der Bänder einzustellen. Zum Steuern des Verschleißes und der thermischen Bombierung der Arbeitswalzen, mit dem Ziel, unerwünschte Profilformen beim Walzen in einer Breite zu vermeiden, werden in einer an der Abstromseite befindlichen Gruppe der Walzgerüste die Arbeitswalzen in vorbestimmten Intervallen, ungeachtet der Breite des Bandes, hin-und herverschoben. Hierbei werden die hinteren Gerüste nach jedem Band gegensinnig um einen bestimmten Betrag verschoben; hat der Verschiebebetrag einen maximalen Wert erreicht, wird die Verschieberichtung umgekehrt. Durch dieses zyklische Verschieben wird der Verschleiß der Arbeitswalzen auf einen größeren Bereich vergleichmäßigt.
  • Schließlich ist es aus der EP 0 219 844 B1 bekannt, das Profil jeder Arbeitswalze in axialer Richtung zu bestimmen, das sich während des Zeitintervalls zwischen einem Wechseln der Arbeitswalzen ändert. Sodann wird auf der Basis des bestimmten Walzenprofils die Konfiguration des Spalts zwischen der oberen und unteren Arbeitswalze in Axialrichtung als eine Funktion der Größe einer relativen Verstellung der Walzenlagen festgelegt, um diejenige Größe der Verstellung der Walzenlagen zu bestimmen, die eine möglichst glatte Konfiguration in axialer Richtung für den Spalt innerhalb des Kontaktbereichs zwischen dem Walzband und den Arbeitswalzen hervorruft. Es geht dort somit um das Glätten des Walzspaltes.
  • Die bekannten Maßnahmen reichen jedoch nicht aus, um die erhöhten Anforderungen hinsichtlich der Profilgenauigkeit und Planheit auch unter extremen Randbedingungen erfüllen zu können. Diese bestehen bei der Erzeugung von Warmband heutzutage darin, die Walzprogramme flexibel zusammenstellen zu können. Es werden neben größeren Dicken und Materialumstellungen vor allem Breitensprünge in Richtung schmal und breit gewünscht (mixed rolling). Zudem soll die Anzahl der Bänder gleicher Breite innerhalb eines Walzprogrammes erhöht werden.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zu schaffen, mit denen sich trotz flexibler Walzprogramme die Anforderungen an die Profilgenauigkeit und die Planheit des Walzbandes erfüllen lassen.
  • Diese Aufgabe wird nach der Erfindung verfahrensmäßig durch die Merkmale des Anspruchs 1 gelöst. Somit wird nicht mehr von einem Sollprofil für einen ganz bestimmten Punkt, sondern vielmehr von einer ganz bestimmten, dem Verwendungszweck des Walzbandes angepaßten, vorgegebenen Bandprofilform ausgegangen. Für ein direkt weiterzuverarbeitendes Warmband wird z.B. eine eher parabolische Zielkontur des Walzbandprofils und für das Eingangsprofil einer Kaltstraße ein an die dortigen Verhältnisse (Durchmesser, Walzkraft, etc.) entsprechend angepaßtes Profil mit flachem Body crown und etwas stärkerem Abfall an den Bandkanten angestrebt. Der Erfindung liegt dabei die durch umfangreiche Untersuchungen gefundene und ausgenutzte Erkenntnis zugrunde, daß bei dickem Band ein Materialquerfluß auch im mittleren Walzbandbereich stattfindet, wohingegen bei dünnem Band nur im Kantenbereich ein Materialquerfließen möglich ist. Soll also die Bandprofilform im mittleren Walzbandbereich verändert werden, so kann dies nur bei dickem Band erreicht werden. Hingegen ist bei dünnerem Band zwar ebenfalls eine Bandformänderung zu erreichen, ohne daß unzulässig hohe Unplanheiten entstehen, jedoch läßt sich das nur im näheren Bandkantenbereich durchführen. Mit abnehmender Banddicke wandert sukzessive die relevante Bandprofilbeeinflußbarkeit nach außen, d.h. zur Bandkante hin.
  • Diese Erkenntnis hat nun erfindungsgemäß unmittelbaren Einfluß auf den zweckmäßigen Einsatz der Stellglieder genommen, demnach nämlich die erste Gruppe der Stellglieder vornehmlich die mittlere Bandkontur beeinflußt, während die Stellglieder der zweiten Gruppe im Bandkantenbereich wirkt. Mit Hilfe eines Rechenmodells (Rechenmethode) lassen sich die Stellglieder so einsetzen, daß unter Beachtung der technologischen Limits (z.B. Walzkraft, Temperatur, etc.),der Planheitslimits (diese ergeben sich durch den jeweiligen Materialquerfluß des Bandes und stellen somit physikalische Grenzen dar), ggf. auch höherer Ordnung, Stellgliederlimits und insbesondere unter Beachtung des Materialquerfließverhaltens eine optimale Bandform entsteht, die der vorgegebenen Zielkontur möglichst nahe kommt.
  • Besonders vorteilhaft ist es, wenn die vorgegebene Zielkontur des Bandprofils für eine bestimmte Materialgüte anhand eines Rechenmodells abhängig von der Bandbreitenkoordinate und der Banddicke durch eine Polynomfunktion

    Y=A₂X² + A₄X⁴ + A₆X⁶ + A n X n
    Figure imgb0001


    beschrieben wird, wobei Y die Banddickenkoordinate und X die Bandbreitenkoordinate darstellt. Durch das Weglassen der ungeraden Glieder wird Symmetrie erzeugt. Da A₀ = 0 ist, geht die Funktion durch X=0, Y=0 (entspricht der Bandmitte). Das Verwenden von Gliedern höherer Ordnung ermöglicht es, einen steileren Übergang an der Bandkante zu beschreiben.
  • Es empfiehlt sich, daß bei einer von der Zielkontur abweichenden Bandprofilform die mechanischen Stellglieder so zum Einsatz gebracht werden, daß sich eine minimale Abweichung zwischen der errechneten Bandform und der Sollbandform bzw. Zielkontur ergibt. Läßt sich die Bandprofilform in dem Gerüst i nicht herstellen, so sind die mechanischen Stellglieder im Sinne einer Minimierung der Abweichung zu verstellen. Abweichungen der errechneten Bandform von der Soll-Bandform lassen sich hierbei über die Bandbreite unterschiedlich wichten.
  • Eine Ausgestaltung der Erfindung sieht vor, daß die mechanischen Stellglieder durch nicht mechanische Stellglieder unterstützt werden, wozu - abhängig jeweils von der Kontur des Bandes, insbesondere im Kantenbereich - als mechanische Stellglieder vorteilhaft eingesetzte Arbeitswalzen gezielt örtlich erwärmt oder gekühlt werden können.
  • Nach einem Vorschlag der Erfindung können als mechanische Stellglieder eingesetzte Arbeitswalzen während des Walzbetriebes geschliffen werden.Das läßt sich beispielsweise mit oszillierenden Schleiftellern erreichen und erlaubt es, die Walzen zu glätten bzw. zu polieren oder ihre Kontur zum Zwecke einer gezielten Bandkonturenbeeinflussung zu verändern. Ein solches "on-line"-Schleifen empfiehlt sich, insbesondere bei einem Programmwechsel zu breiteren Walzbändern, denn das Schleifen der Arbeitswalzenenden noch während des Walzens der schmaleren Walzbänder hat keinen Einfluß auf die Qualität dieser schmaleren Bänder, da die vorbereitend geschliffenen Arbeitswalzenenden außerhalb der Walzbreite liegen.
  • Es wird vorgeschlagen, daß die mechanischen Stellglieder frühestmöglich zum Einsatz gebracht werden. Unter Berücksichtigung der einzuhaltenden Limits, bspw. der Planheit und des Stellbereichs, wird somit angestrebt, die Zielkontur des Profils des Walzbandes so frühzeitig wie möglich zu erzielen. Ist das in dem ersten Gerüst noch nicht möglich, so wird automatisch die Aufgabenstellung an die Folgegerüste weitergegeben. Sollte sich die Bandform von Walzgerüst zu Walzgerüstbzw. von Stich zu Stich nicht konstant halten lassen, so kann entsprechend der Gesetzmäßigkeit des Materialquerflusses bei dickerem Band im Kantenbereich eine Abweichung toleriert werden, d.h. die Erzielung der Bandform bzw. Zielkontur im mittleren Walzbandbereich hat den Vorrang. Gelingt es, die Bandprofilform an einem Walzgerüst, z.B. Gerüst k, zu erzeugen, so ist es nun das oberste Ziel, diese Bandform in den Folgegerüsten konstant zu halten.
  • Zum Durchführen des Verfahrens wird vorgeschlagen, daß die Stellglieder axial verschiebbare Arbeitswalzen und/oder Arbeitswalzenbiegeeinrichtungen umfassen. Um die gewünschte vorgegebene Bandform im mittleren Walzbandbereich mit den mechanischen Stellgliedern zu erzeugen, läßt sich vorzugsweise CVC, Arbeitswalzenbiegung, Walzenverschränken, etc. durchführen bzw. einsetzen. Werden bspw. breite Bänder gewalzt, ist die nichtparabolische Wirkung der Arbeitswalzenbiegung, d.h. der größere Effekt im Bandkantenbereich (200mm) zu beachten und vorteilhaft eine Kombination von z.B. CVC und Arbeitwalzenbiegung zu verwirklichen, die der Soll- bzw. Zielbandkontur am nächsten kommt. Zur Erzeugung bzw. Konstanthaltung der Bandform im Bandkantenbereich ist hinsichtlich des Einsatzes der mechanischen Stellglieder zu beachten, daß die durch unterschiedliche Bandbreiten und Schiebepositionen erzeugte Arbeitswalzenverschleißkontur so zu positionieren ist, daß der Soll- Bandkontur möglichst nahe gekommen wird. Gleiches gilt beim Einsatz von bekannten Spezial-CVC Walzen, mit denen sich ein Tapered Effekt erreichen läßt.
  • Schließlich empfiehlt es sich, die Arbeitswalzen, vorzugsweise in den hinteren Gerüsten der Warmbandstraße, zyklisch zu verschieben, wodurch sich eine möglichst kontinuierliche Arbeitswalzenverschleißkontur - ohne Sprünge erzeugen läßt.
  • Die mechanischen Stellglieder lassen sich durch andere Stellglieder unterstützen. Es wird daher vorgeschlagen, daß die Arbeitswalzen mit einer Zonenkühlung und/oder einer thermischen Abdeckung versehen sind, um auf diese Weise die mechanischen Stellglieder zu unterstützen. Um die Form des thermischen crowns der Arbeitswalzen und damit die Walzbandform vornehmlich im Bandkantenbereich zu beeinflußen, lassen sich bspw. Arbeitswalzen-Abdeckschalen an geeigneter Stelle an den Enden der Arbeitswalzen positionieren. Eine unterstützende Beeinflussung der Walzbandform läßt sich weiterhin durch im Rahmen der technologischen Limits vorzunehmende Bandkantentemperaturänderungen erreichen. Zu diesem Zweck lassen sich mit einer Induktionsheizung vor und/oder hinter den ersten Gerüsten der Fertigstraße Veränderungen der Kantenerwärmung, oder durch z.B. in den Seitenführungen angebrachte Spritzdüsen eine Kühlung der Bandkanten erreichen, was bei zu walzenden austenitischen Edelstählen von Vorteil sein kann.
  • Des weiteren kann durch Schmierung der Arbeitswalzen im Bandkantenbereich die Bandkontur dort beeinflußt werden.Um vormehmlich das Bandprofil an der Bandkante zu beeinflußen, können die Arbeitswalzen mit einem Spezialschliff versehen werden. Dieser kann beispielsweise in Form einer parabolischen Konturänderung oder durch einen örtlichen konischen Verlauf vorgesehen werden, um im Bandkantenbereich entsprechende Konturänderungen hervorzurufen. Beim Verändern der Bandprofilform sind in allen Fällen die Planheitslimits - auch höherer Ordnung - sowie die technologischen Limits zu beachten.
  • Weiterhin kann es sich empfehlen, zumindest in den letzten bzw. hinteren Walzgerüsten eine geänderte Walzkraft einzustellen. Dies vor allem dann, wenn trotz des gezielten Einsatzes der mechanischen Stellglieder und der diese unterstützenden Maßnahmen Abweichungen zur Band-Sollkontur vorhanden sein sollten. In diesen Fällen läßt sich durch eine Walzkraftänderung in den hinteren Walzgerüsten im Kantenbereich die walzbare Form beeinflussen, ggf. eine Walzkraftumverteilung innerhalb der zulässigen Limits durchführen. Die damit einhergegenden Veränderungen der body crowns an den entsprechenden und anderen Walzgerüsten lassen sich durch nicht an der Kante wirkende Stellglieder - z.b. mit CVC - kompensieren, um dort den Massenfluß nicht zu stören und damit Welligkeiten des Walzbandes zu vermeiden. Der Algorithmus findet im on line Betrieb Anwendung. Er kann aber auch in Kombination mit einem Optimierungsalgorithmus zur optimalen Zusammenstellung von Walzprogrammen und optimalen Einsatz von Stellgliedern im Vorfeld herangezogen werden. Es wird nicht nur ein Band, sondern das gesamte Walzprogramm betrachtet und hinsichtlich Bandkontur optimiert.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der nachfolgenden Beschreibung, in der einige Ausführungsbeispiele des Gegenstandes der Erfindung näher erläutert sind. Es zeigen:
  • Figur 1
    eine erste vorgegebene Zielkontur des Profils eines Walzbandes;
    Figur 2
    eine zweite vorgegebene Zielkontur des Profils eines Walzbandes;
    Figur 3
    ein den Materialquerfluß in Abhängigkeit von der Dicke des Walzbandes darstellendes Diagramm;
    Figur 4
    ein den Materialquerfluß über die Bandbreite darstellendes Diagramm;
    Figur 5
    ein den Materialquerfluß in Abhängigkeit der Bandbreitenkoordinate und der Materialdicke für eine Materialqualität Q darstellendes Diagramm;
    Figur 6
    ein die Wirkung des thermischen crowns mit zunehmender Anzahl von Walzbändern bei bekannten Walzverfahren darstellendes Schaubild;
    Figur 7
    ein bei gleicher Anzahl von Bändern wie in Figur 6 mit den erfindungsgemäßen Maßnahmen zu erreichendes Bandprofil;
    Figur 8
    in schematischer Darstellung den erfindungsgemäßen Aufbau einer Kontur-und Planheitsregelung für Warmbandwalzwerke.
  • Als Voraussetzung zur Erzielung gewünscht planer und profilgenauer Walzbänder werden entsprechend dem Einsatzzweck in den Figuren 1 und 2 gezeigte Zielkonturen 1 bzw. 2 des Profils eines weiter nicht dargestellten Walzbandes 3 bzw. 4 vorgegeben. Entsprechend den Anforderungen wird für ein direkt weiterzuverarbeitendes Walzband 3 z.B. die Zielkontur 1 entsprechend Figur 1 und für das Eingangsprofil einer Kaltstraße z.B. Zielkontur 2 entsprechend Figur 2 gewünscht. Bei Figur 1 handelt es sich um eine nahezu parabolische Zielkontur, während die Zielkontur 2 nach Figur 2 einen flachen body crown und etwas stärkeren Abfall an den Bandkanten aufweist. Der in diesem Fall für beide Zielkonturen 1, 2 eingetragene C₄₀-Punkt ergibt sich aus der Differenz zwischen der Dicke des Walzbandes 3 bzw. 4 in dessen Mitte HM und dem Mittelwert der im Abstand von 40mm von der Bandkante 5 gemessenen Dicken an jeder Seite bzw. Bandkante 5 des Walzbandes 3 bzw. 4.
  • Das Erzeugen der Zielkonturen 1 bzw. 2 setzt die sich aus den Figuren 3 bis 5 ergebende Erkenntnis voraus, daß nämlich eine Bandkonturbeeinflussung nur dort ereicht werden kann, wo ein Materialquerfluß möglich ist. Wie durch intensive Untersuchungen herausgefunden worden ist, findet bei Walzbändern mit einer oberhalb der kritischen Dicke Hkrit (vgl. Figur 3) liegenden Banddicken ein Materialquerfluß auch im mittleren, d.h. dem an die Bandmitte angrenzenden Bereich (vgl. Figur 5) statt, während hingegen bei Walzbändern mit einer geringeren, unterhalb Hkrit liegenden Dicke ein Materialquerfluß nur im Bandkantenbereich stattfindet. Der Grenzwert der Dicke, d.h. die kritische Dicke Hkrit läßt sich für jede Warmbandtandemstraße in Abhängigkeit von Walzmaterial, Temperatur, Walzendurchmesser sowie Abnahme bzw. Stichverteilung experimentell ermitteln, wobei es allgemein bekannt ist, daß eine Profilbeeinflussung des Walzbandes unter gleichzeitiger Vermeidung von Planheitsfehlern nur erreicht werden kann, solange der Fließwiderstand des Materials quer zur Walzrichtung noch so gering ist, daß sich im Walzspalt neben der Bandlängung noch ein Mindestmaß an Bandbreitung einstellt. Wie sich aus Figur 4 ergibt, ist ein Materialquerfluß unterhalb der kritischen Dicke (z.B. 10 oder 12 mm) über die Bandbreite nur in sehr geringem Umfang möglich. Dieser Zusammenhang wird auch aus Figur 5 deutlich, in der neben den Koordinaten für den Materialquerfluß und die Bandbreite außerdem die Materialdicke eingetragen ist.
  • In den Figuren 6 und 7 sind die mit den bekannten Walzverfahren (vgl. Figur 6) und die unter Einsatz der erfindungsgemäßen Kontur-und Planheitsregelung (vgl. Figur 7) zu erzielenden Bandprofile innerhalb eines fünfzig Bänder bzw. Coils umfassenden Walzprogramms gezeigt; die jeweils links unten eingekreisten Ziffern geben die Anzahl der Coils an. Während in beiden Fällen für das erste zu walzende Band bzw. Coil die Form des Profils noch nahezu unverändert ist, nimmt bei den bekannten Walzverfahren mit zunehmender Anzahl von Bändern die Wirkung des thermischen crowns auf die Arbeitswalzen mit den nachteiligen Anomalien für das Profil zu, d.h. es entstehen flache Bandprofile und Kantenwulste (vgl. in Figur 6 die Bandprofile nach dem Walzen von 10, 20 bzw. 50 Bändern). Hingegen läßt sich gemäß Figur 7 das Bandprofil weitestgehend konstant halten, und Kantenwulste werden vermieden. Ebenfalls wird die Zielbandkontur nahezu erreicht.
  • Eine das Erreichen der gewünschten Bandprofile (vgl. Figur 7) ermöglichende Warmbandtandemstraße 6 ist - teils sehr schematisch und mit lediglich symbolhaften Kennzeichnungen für die mechanischen Stellglieder einschließlich der diese unterstützenden Elemente sowie in Form von black-boxes für Rechner und Meßgeräte - in Figur 8 dargestellt. Sie besteht aus mehreren Walzgerüsten, von denen das erste und das letzte Walzgerüst 7 bzw. 8 gezeigt sind. Es kann sich jedoch auch um eine Walzstraße mit einem Reversiergerüst handeln, an dem mehrere Stiche gewalzt werden. Jedes der Walzgerüste 7 ,8 weist horizontal einstellbare, von Stützwalzen 9 abgestütze obere und untere Arbeitswalzen 10, 11 auf. Die letzteren lassen sich axial verschiebbar, vorzugsweise mit einer CVC-Verschiebung 12, sowie mit Arbeitswalzenbiegeeinrichtungen 13 ausrüsten; die axial zu verschiebenden Arbeitswalzen (versehen mit geschliffenen-, thermischen- und Verschleißkontur) bzw. die CVC-Verschiebung 12 und die Arbeitswalzenbiegung 13 werden als mechanische, gezielt entweder im Bandmittenbereich oder im Bandkantenbereich einwirkende Stellglieder eingesetzt.
  • Zur Unterstützung dieser mechanischen Stellglieder 12,13 ist vor und hinter den ersten Gerüsten der Fertigstraße zur Veränderung der Kantenerwärmung des Walzbandes 3 bzw. 4 eine Bandkantenheizung 14 angeordnet. Zur thermischen Beeinflussung der Bandform, nämlich über die davon bewirkten Veränderungen des thermischen crowns der Arbeitswalzen 10, 11, besitzt die Warmbandtandemstraße 6 im Bereich der vorderen bzw. hinteren Walzgerüste eine Arbeitswalzenzonenkühlung 15, z.B. in Form von in den entsprechenden Zonen auf die Arbeitswalzen 10, 11 gerichteten Spritzdüsen, wie hinter dem ersten Walzgerüst 7 angegeben. Zur thermischen Beeinflussung tragen weiterhin eine Bandkantenkühlung 16 mit z.B. in den Seitenführungen angeordneten Spritzdüsen und Arbeitswalzen-Abdeckschalen 18 bei, wie für das letzte Walzgerüst 8 gezeigt. Die Schmierung der Arbeitswalzen 17 im Bandkantenbereich beeinflußt die Lastverteilung im Walzspalt und damit die Bandkontur. Hinter dem letzten Walzgerüst 8 sind zudem Dicken-,Planheits- und Temperaturmeßgeräte 19,20,21 angeordnet.
  • Sowohl die Meßgeräte 19 bis 21 als auch die mechanischen Stellglieder 12,13 und die thermischen und anderen Beeinflussungselemente 14 bis 18 sind an einen Bandkontur- und Planheitsrechner 22 angeschlossen. Die ermittelten Meßdaten, insbesondere für das Profil und die Planheit des auslaufenden fertiggewalzten Bandes 3, 4,können daher unmittelbar zur Korrektur der vorgeschalteten Regelsysteme bzw. Stellglieder herangezogen werden, mit dem Ziel, die vorgegebene Zielkontur des Profils des Walzbandes für alle Bänder zu erreichen. Ein Stichplanrechner 23 versorgt den Bandkontur- und Planheitsrechner 22 mit Eingangsdaten. Eine Datenrückführung 24 ist zum Zwecke der Walzkraftumverteilung gedacht.
  • Die beschriebene Verfahrensweise zum Erreichen einer vorgegebenen Zielkontur des Profils des Walzbandes wird im Online-Betrieb angewendet. Gleichwohl lassen sich bei der Walzproprammerstellung (Planung der Walzprogramme) vorab Offline die Vorgänge simulieren und insbesondere die Bandform auf diese Weise bestimmen. Stellt sich heraus, daß der somit im Vorfeld bezüglich einer Bandform für bestimmte Bänder durchgeführte Optimierungsprozeß nicht erfolgreich ist, so können die Walzprogramme umgestellt oder die Bänder in einem anderen Walzprogramm eingesetzt werden. Ebenfalls einbeziehen läßt sich eine an das Walzprogramm angepaßte zyklische Verschiebung der hinteren Arbeitswalzen bzw. Walzgerüste und/oder eine optimierte Positionierung bspw. der Abdeckschalen 18 zur thermischen crown Beeinflussung der Arbeitswalzen 10, 11. Nach erfolgter Band- Auslese bzw. Walzprogrammumstellung beginnt der die Zielkontur optimierende Prozeß von Neuem, bis sich auch Offline, d.h. schon im Vorfeld eine akzeptable Bandform erzielen läßt.

Claims (16)

  1. Verfahren zum Walzen eines Walzbandes in einer zumindest zwei Walzgerüste mit horizontal einstellbaren oberen und unteren Arbeitswalzen, von denen sich jede mittelbar oder über eine Zwischenwalze an einer Stützwalze abstützt, aufweisenden Warmbandstraße, oder in einem Reversiergerüst,an dem mindestens zwei Stiche gewalzt werden in der bzw. dem das Walzband einer Zustandsregelung unterworfen wird,
    dadurch gekennzeichnet,
    daß eine Zielkontur des Profils des Walzbandes vorgegeben wird, zu deren Erreichen sukzessive zwei Gruppen von Stellgliedern auf das Walzband einwirken, von denen die Stellglieder der ersten Gruppe bei oberhalb der kritischen Dicke liegenden Walzbanddicken zum Einsatz gebracht werden und vornehmlich die Kontur des Walzbandes in dessen bezogen auf die Bandmitte mittleren Bereich beeinflussen, während die Stellglieder der zweiten Gruppe bei unterhalb der kritischen Dicke liegenden Walzbanddicken im Bandkantenbereich zum Einsatz gebracht werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die vorgegebene Zielkontur des Bandprofils durch eine Polynomfunktion

    Y= A₂X² + A₄X⁴ + A₆X⁶ + A n X n
    Figure imgb0002


    beschrieben wird, wobei Y die Banddickenkoordinate und X die Bandbreitenkoordinate darstellt.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß bei einer von der Zielkontur abweichenden Bandprofilform die mechanischen Stellglieder so zum Einsatz gebracht werden, daß sich eine minimale Abweichung zwischen der errechneten Bandform und der Soll-Bandform bzw. Zielkontur ergibt.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß die mechanischen Stellglieder frühestmöglich zum Einsatz gebracht werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß die mechanischen Stellglieder durch nicht mechanische Stellglieder unterstützt werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    daß als mechanische Stellglieder eingesetzte Arbeitswalzen gezielt örtlich erwärmt werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    daß als mechanische Stellglieder eingesetzte Arbeitswalzen während des Walzbetriebes geschliffen werden.
  8. Vorrichtung zum Durchführen des Verfahrens nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Stellglieder axial verschiebbare Arbeitswalzen (10, 11) und/oder Arbeitswalzenbiegeeinrichtungen (13) umfassen.
  9. Vorrichtung nach Anspruch 8,
    dadurch gekennzeichnet,
    daß die Arbeitswalzen (10, 11) verschränkbar ausgebildet sind.
  10. Vorrichtung nach Anspruch 8 oder 9,
    dadurch gekennzeichnet,
    daß die Arbeitswalzen (10, 11) mit einer Zonenkühlung (15) versehen sind.
  11. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 10,
    dadurch gekennzeichnet,
    daß Längenbereiche der Arbeitswalzen (10, 11) mit einer thermischen Abdeckung (18) versehen sind.
  12. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 11,
    gekennzeichnet durch
    zyklisch zu verschiebende Arbeitswalzen (10, 11).
  13. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 12,
    dadurch gekennzeichnet,
    daß vor und/oder innerhalb der Fertigstraße eine Bandkantenheizung (14) angeordnet ist.
  14. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 13,
    dadurch gekennzeichnet,
    daß eine Bandkantenkühleinrichtung (16) vorgesehen ist.
  15. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 14,
    dadurch gekennzeichnet,
    daß eine Bandkantenschmiereinrichtung (17) vorgesehen ist.
  16. Vorrichtung nach einem oder mehreren der Ansprüche 8 bis 15,
    gekennzeichnet durch
    eine zumindest in dem letzten Walzgerüst (8) geänderte Walzkraft.
EP94104542A 1993-03-29 1994-03-23 Verfahren zum Walzen eines Walzbandes Expired - Lifetime EP0618020B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4309986A DE4309986A1 (de) 1993-03-29 1993-03-29 Verfahren und Vorrichtung zum Walzen eines Walzbandes
DE4309986 1993-03-29

Publications (2)

Publication Number Publication Date
EP0618020A1 true EP0618020A1 (de) 1994-10-05
EP0618020B1 EP0618020B1 (de) 1997-06-11

Family

ID=6484013

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94104542A Expired - Lifetime EP0618020B1 (de) 1993-03-29 1994-03-23 Verfahren zum Walzen eines Walzbandes

Country Status (11)

Country Link
US (1) US5651281A (de)
EP (1) EP0618020B1 (de)
JP (1) JP3397877B2 (de)
KR (1) KR100313172B1 (de)
CN (1) CN1058914C (de)
AT (1) ATE154262T1 (de)
CA (1) CA2120063C (de)
DE (2) DE4309986A1 (de)
FI (1) FI108923B (de)
RU (1) RU2125495C1 (de)
TW (1) TW268906B (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034388A1 (en) * 1994-06-13 1995-12-21 Davy Mckee (Poole) Limited Strip profile control
EP0850704A1 (de) * 1996-12-23 1998-07-01 Sms Schloemann-Siemag Aktiengesellschaft Verfahren und Vorrichtung zum Walzen eines Walzbandes
EP0953384A2 (de) 1998-04-29 1999-11-03 Voest-Alpine Industrieanlagenbau Gmbh Verfahren zur Verbesserung der Kontur gewalzten Materials und zur Erhöhung der gewalzten Materiallänge
EP1010479A2 (de) * 1998-12-17 2000-06-21 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Ansteuerung von Schiebewalzen
CN103357669A (zh) * 2012-03-27 2013-10-23 上海梅山钢铁股份有限公司 一种板形模型预测控制方法
CN104174655A (zh) * 2014-07-15 2014-12-03 首钢总公司 一种热连轧板形二级工艺模拟方法
US9547290B2 (en) 2011-05-24 2017-01-17 Primetals Technologies Germany Gmbh Control method for a rolling train
EP3251763B1 (de) 2016-06-02 2019-04-24 Primetals Technologies Japan, Ltd. Bandprofilregelungsverfahren für ein warmfertigbearbeitungstandemwalzwerk und warmfertigbearbeitungstandemwalzwerk
RU2690580C2 (ru) * 2015-03-16 2019-06-04 Смс Груп Гмбх Способ изготовления металлических полос
US11938528B2 (en) 2018-07-19 2024-03-26 Sms Group Gmbh Method for ascertaining control variables for active profile and flatness control elements for a rolling stand and profile and average flatness values for hot-rolled metal strip

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69637428T2 (de) * 1995-12-26 2009-02-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Verfahren zum Messen von Bandprofil und Verfahren zum Steuern von kontinuierlichen Walzen
DE19618995C2 (de) * 1996-05-10 2002-01-10 Siemens Ag Verfahren und Einrichtung zur Beeinflussung relevanter Güteparameter, insbesondere des Profils oder der Planheit eines Walzbandes
DE19625442B4 (de) * 1996-06-26 2005-02-03 Siemens Ag Verfahren und Einrichtung zur Verringerung der Kantenanschärfung eines Walzbandes
US5927117A (en) * 1996-10-11 1999-07-27 Central Iron & Steel Research Institute Ministry Metallurgical Industry Methods to measure and control strip shape in rolling
EP1080800B1 (de) 1999-08-06 2005-01-12 Muhr und Bender KG Verfahren zum flexiblen Walzen eines Metallbandes
US6615633B1 (en) * 1999-11-18 2003-09-09 Nippon Steel Corporation Metal plateness controlling method and device
US6314776B1 (en) * 2000-10-03 2001-11-13 Alcoa Inc. Sixth order actuator and mill set-up system for rolling mill profile and flatness control
DE10116273A1 (de) * 2001-03-31 2002-10-10 Sms Demag Ag Verfahren zum Betreiben einer Walzstraße sowie eine entsprechend ausgebildete Walzstraße
JP3649208B2 (ja) * 2002-05-22 2005-05-18 株式会社日立製作所 タンデム圧延設備の制御方法及びタンデム圧延設備
RU2207204C1 (ru) 2002-06-06 2003-06-27 ООО "Сорби стил" Способ оптимизации технологии производства проката
US20040003835A1 (en) * 2002-07-03 2004-01-08 Higgins Kevin C. Higgins paint tool washer
DE102004020132A1 (de) * 2003-12-23 2005-07-28 Sms Demag Ag Verfahren und Walzgerüst zur mehrfachen Profilbeeinflussung
EP1991375A1 (de) * 2006-02-17 2008-11-19 Alcoa Inc. Verwendung von induktionsheizung zur steuerung der blattflachheit bei kaltwalzwerken
US7849722B2 (en) * 2006-03-08 2010-12-14 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
US8205474B2 (en) * 2006-03-08 2012-06-26 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
DE102006047718A1 (de) * 2006-10-09 2008-04-17 Siemens Ag Verfahren zur Nachverfolgung des physikalischen Zustands eines Warmblechs oder Warmbands im Rahmen der Steuerung einer Grobblechwalzstraße zur Bearbeitung eines Warmblechs oder Warmbands
EP2135690A1 (de) * 2008-06-19 2009-12-23 Siemens Aktiengesellschaft Konti-Walzstrasse mit Ein- und/oder Ausgliedern von Walzgerüsten im laufenden Betrieb
US8607847B2 (en) * 2008-08-05 2013-12-17 Nucor Corporation Method for casting metal strip with dynamic crown control
US8607848B2 (en) * 2008-08-05 2013-12-17 Nucor Corporation Method for casting metal strip with dynamic crown control
DE102010014867A1 (de) * 2009-04-17 2010-11-18 Sms Siemag Ag Verfahren zum Bereitstellen mindestens einer Arbeitswalze zum Walzen eines Walzguts
CN101690948B (zh) * 2009-10-10 2011-01-19 北京理工大学 一种双机架中厚板生产线压下负荷分配方法
CN101905248B (zh) * 2010-07-27 2015-03-18 上海梅山钢铁股份有限公司 一种带钢断面形状检测识别方法
US8505611B2 (en) 2011-06-10 2013-08-13 Castrip, Llc Twin roll continuous caster
DE102010063279A1 (de) * 2010-12-16 2012-06-21 Sms Siemag Ag Walzstraße zur Röhrenstahl- und Dünnbanderzeugung
EP2527054A1 (de) 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Steuerverfahren für eine Walzstraße
CN105268747B (zh) * 2014-06-29 2017-05-17 上海梅山钢铁股份有限公司 一种热轧板带凸度在线闭环控制方法
CN104174660B (zh) * 2014-07-18 2016-02-03 武汉钢铁(集团)公司 柔性化的低温轧制方法
EP3479916A1 (de) * 2017-11-06 2019-05-08 Primetals Technologies Germany GmbH Gezielte einstellung der kontur durch entsprechende vorgaben
EP3888810B1 (de) * 2020-04-03 2023-08-02 ABB Schweiz AG Verfahren zur steuerung der planheit eines bandes aus walzgut, steuerungssystem und produktionslinie
CN113102507A (zh) * 2021-04-01 2021-07-13 北京首钢股份有限公司 一种硅钢轧制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0067040A2 (de) * 1981-06-03 1982-12-15 Hitachi, Ltd. Walzwerk
DE3038865C1 (de) * 1980-10-15 1982-12-23 SMS Schloemann-Siemag AG, 4000 Düsseldorf Walzgeruest mit axial verschiebbaren Walzen
DE2366413C2 (de) * 1972-07-07 1984-04-19 Hitachi, Ltd., Tokio/Tokyo Vorrichtung zur Steuerung der Ebenheit und Parallelität von Walzgutoberflächen
EP0153849A2 (de) * 1984-02-29 1985-09-04 Kawasaki Steel Corporation Warmwalzverfahren
DE4008510A1 (de) * 1989-03-17 1990-09-20 Hitachi Ltd Regeleinheit mit optimal-entscheidungsmitteln
EP0219844B1 (de) * 1985-10-21 1991-01-23 Nippon Steel Corporation Verfahren zur Regelung der Walzgutoberfläche während des Walzvorgangs
EP0276743B1 (de) * 1987-01-24 1992-07-29 Hitachi, Ltd. Metallwalzverfahren mit in Axialrichtung verschiebbaren Arbeitswalzen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225824B2 (de) * 1972-10-16 1977-07-09
JPS54119363A (en) * 1978-03-08 1979-09-17 Kobe Steel Ltd Rolled steel sheet of unequal thickness
IT1135049B (it) * 1980-01-25 1986-08-20 Escher Wyss Sa Cilindro con una superficie cilindrica da riscaldare o raffreddare
CA1174084A (en) * 1980-08-08 1984-09-11 Takeshi Masui Tandem mill
DE3476742D1 (en) * 1983-03-14 1989-03-23 Schloemann Siemag Ag Method of making hot rolled strip with a high quality section and flatness
JPS59189011A (ja) * 1983-04-12 1984-10-26 Ishikawajima Harima Heavy Ind Co Ltd 圧延材の蛇行及び横曲り制御方法及びその装置
US4510784A (en) * 1983-10-11 1985-04-16 Kaiser Aluminum & Chemical Corporation Rolling mill spray bar
SE444775B (sv) * 1984-11-30 1986-05-12 Asea Ab Induktiv kantvermare
US4782683A (en) * 1986-03-03 1988-11-08 Tippins Incorporated Hot strip mill shape processor and method
US4730475A (en) * 1986-05-06 1988-03-15 International Rolling Mills Consultants, Inc. Rolling mill method
US4860564A (en) * 1987-09-21 1989-08-29 United Engineering, Inc. Method and apparatus for taper rolling control for a rolling mill
DE3821990A1 (de) * 1988-06-30 1990-01-11 Schloemann Siemag Ag Regelung fuer profilstrassen
US4887329A (en) * 1988-07-22 1989-12-19 Perneczky George C Low profile roll cleaning apparatus and self aligning bearing used therein
DD294883A5 (de) * 1990-06-05 1991-10-17 Freiberg Bergakademie Verfahren zur erzeugung von eigenspannungsarmen band beim walzen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2366413C2 (de) * 1972-07-07 1984-04-19 Hitachi, Ltd., Tokio/Tokyo Vorrichtung zur Steuerung der Ebenheit und Parallelität von Walzgutoberflächen
DE3038865C1 (de) * 1980-10-15 1982-12-23 SMS Schloemann-Siemag AG, 4000 Düsseldorf Walzgeruest mit axial verschiebbaren Walzen
EP0067040A2 (de) * 1981-06-03 1982-12-15 Hitachi, Ltd. Walzwerk
EP0153849A2 (de) * 1984-02-29 1985-09-04 Kawasaki Steel Corporation Warmwalzverfahren
EP0219844B1 (de) * 1985-10-21 1991-01-23 Nippon Steel Corporation Verfahren zur Regelung der Walzgutoberfläche während des Walzvorgangs
EP0276743B1 (de) * 1987-01-24 1992-07-29 Hitachi, Ltd. Metallwalzverfahren mit in Axialrichtung verschiebbaren Arbeitswalzen
DE4008510A1 (de) * 1989-03-17 1990-09-20 Hitachi Ltd Regeleinheit mit optimal-entscheidungsmitteln

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034388A1 (en) * 1994-06-13 1995-12-21 Davy Mckee (Poole) Limited Strip profile control
EP0850704A1 (de) * 1996-12-23 1998-07-01 Sms Schloemann-Siemag Aktiengesellschaft Verfahren und Vorrichtung zum Walzen eines Walzbandes
US5970765A (en) * 1996-12-23 1999-10-26 Sms Schloemann-Siemag Aktiengesellschaft Method and apparatus for rolling strip
EP0953384A2 (de) 1998-04-29 1999-11-03 Voest-Alpine Industrieanlagenbau Gmbh Verfahren zur Verbesserung der Kontur gewalzten Materials und zur Erhöhung der gewalzten Materiallänge
US6164103A (en) * 1998-04-29 2000-12-26 Voest-Alpine Industrieanlagenbau Gmbh Method for improving the contour of rolled material
AT409229B (de) * 1998-04-29 2002-06-25 Voest Alpine Ind Anlagen Verfahren zur verbesserung der kontur gewalzten materials und zur erhöhung der gewalzten materiallänge
EP1010479A2 (de) * 1998-12-17 2000-06-21 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Ansteuerung von Schiebewalzen
EP1010479A3 (de) * 1998-12-17 2003-10-29 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Ansteuerung von Schiebewalzen
US9547290B2 (en) 2011-05-24 2017-01-17 Primetals Technologies Germany Gmbh Control method for a rolling train
CN103357669A (zh) * 2012-03-27 2013-10-23 上海梅山钢铁股份有限公司 一种板形模型预测控制方法
CN103357669B (zh) * 2012-03-27 2015-04-22 上海梅山钢铁股份有限公司 一种板形模型预测控制方法
CN104174655A (zh) * 2014-07-15 2014-12-03 首钢总公司 一种热连轧板形二级工艺模拟方法
RU2690580C2 (ru) * 2015-03-16 2019-06-04 Смс Груп Гмбх Способ изготовления металлических полос
EP3251763B1 (de) 2016-06-02 2019-04-24 Primetals Technologies Japan, Ltd. Bandprofilregelungsverfahren für ein warmfertigbearbeitungstandemwalzwerk und warmfertigbearbeitungstandemwalzwerk
US10639688B2 (en) 2016-06-02 2020-05-05 Primetals Technologies Japan, Ltd. Strip profile control method of hot finishing tandem rolling mill and hot finishing tandem rolling mill
US11938528B2 (en) 2018-07-19 2024-03-26 Sms Group Gmbh Method for ascertaining control variables for active profile and flatness control elements for a rolling stand and profile and average flatness values for hot-rolled metal strip

Also Published As

Publication number Publication date
FI108923B (fi) 2002-04-30
EP0618020B1 (de) 1997-06-11
CN1058914C (zh) 2000-11-29
FI941430A (fi) 1994-09-30
ATE154262T1 (de) 1997-06-15
CA2120063A1 (en) 1994-09-30
CN1098032A (zh) 1995-02-01
JP3397877B2 (ja) 2003-04-21
DE4309986A1 (de) 1994-10-06
DE59403073D1 (de) 1997-07-17
KR100313172B1 (ko) 2001-12-28
KR940021142A (ko) 1994-10-17
CA2120063C (en) 2004-11-23
FI941430A0 (fi) 1994-03-28
US5651281A (en) 1997-07-29
JPH06304621A (ja) 1994-11-01
TW268906B (de) 1996-01-21
RU2125495C1 (ru) 1999-01-27

Similar Documents

Publication Publication Date Title
EP0618020B1 (de) Verfahren zum Walzen eines Walzbandes
EP0850704B1 (de) Verfahren zum Walzen eines Walzbandes
EP2155411B1 (de) Vorrichtung zur beeinflussung der temperaturverteilung über der breite
EP0771596B1 (de) Produktionsanlage zum kontinuierlichen- oder diskontinuierlichen Auswalzen von Warmband
DE3419261C3 (de) Walzenkühl- und/oder Schmiervorrichtung für Kaltbandwalzwerke, insbesondere Feinbandwalzwerke
EP0121148B1 (de) Verfahren zum Herstellen von Walzband mit hoher Bandprofil- und Bandplanheitsgüte
EP1456421B1 (de) Verfahren und einrichtung zum kontrollierten richten und kühlen von aus einem warmband-walzwerk auslaufendem, breitem metallband, insbesondere von stahlband oder blech
WO2017133867A1 (de) Durchlaufkühlvorrichtung und verfahren zum abkühlen eines metallbandes
EP0715019A2 (de) Verfahren und Vorrichtung zum Behandeln einer Materialbahn
EP0112969B2 (de) Verfahren zum Walzen von Metallbändern
EP1955787B1 (de) Verfahren und Vorrichtung zum Zugrecken von Metallbändern
DE102005029461B3 (de) Verfahren zum Aufbringen eines Kühlmittels und Walzgerüst zur Durchführung des Verfahrens
EP2651578A1 (de) WALZSTRAßE ZUR RÖHRENSTAHL- UND DÜNNBANDERZEUGUNG
DE3516779C2 (de)
EP0134957B1 (de) Walzgerüst mit axial verschiebbaren Arbeitswalzen
DE19962754A1 (de) Verfahren zum flexiblen Walzen eines Metallbandes
EP3284546A1 (de) Verfahren zum walzen eines walzguts in einer walzstrasse und walzstrasse
EP3941655B1 (de) Anlage und verfahren zur herstellung von metallischem warmband
EP0953384A2 (de) Verfahren zur Verbesserung der Kontur gewalzten Materials und zur Erhöhung der gewalzten Materiallänge
EP0032536A2 (de) Vorrichtung zur Erzielung einer gleichmässigen Temperaturverteilung in einem heissen Stahlband während des Walzprozesses
DE3331339A1 (de) Walzgeruest mit arbeits- und stuetzwalzen sowie zwischen diesen vorgesehenen zwischenwalzen
DE3823767A1 (de) Verfahren und vorrichtung zum steuern des profils und der planheit von metallbaendern in mehrgeruestigen walzstrassen
DE3245031C2 (de)
DE10156087A1 (de) Verfahren und Vorrichtung zur Herstellung und/oder Richten von Metallband mit variabler Querschnittsform
DE3515459C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19960118

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970611

REF Corresponds to:

Ref document number: 154262

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59403073

Country of ref document: DE

Date of ref document: 19970717

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970829

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: MANNESMANN AG

Effective date: 19980310

NLR1 Nl: opposition has been filed with the epo

Opponent name: MANNESMANN AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SMS DEMAG AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SMS DEMAG AG

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20010916

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLR2 Nl: decision of opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120928

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130321

Year of fee payment: 20

Ref country code: GB

Payment date: 20130321

Year of fee payment: 20

Ref country code: FR

Payment date: 20130408

Year of fee payment: 20

Ref country code: DE

Payment date: 20130321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130320

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130313

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130320

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59403073

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140323

BE20 Be: patent expired

Owner name: SCHLOEMANN-SIEMAG A.G. *SMS

Effective date: 20140323

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140322

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140325

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140322

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 154262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140323