EP0584304B1 - Verfahren zum steuern eines bewegungsablaufs in einer spulmaschine sowie eine spulmaschine zur durchführung des verfahrens - Google Patents

Verfahren zum steuern eines bewegungsablaufs in einer spulmaschine sowie eine spulmaschine zur durchführung des verfahrens Download PDF

Info

Publication number
EP0584304B1
EP0584304B1 EP93903783A EP93903783A EP0584304B1 EP 0584304 B1 EP0584304 B1 EP 0584304B1 EP 93903783 A EP93903783 A EP 93903783A EP 93903783 A EP93903783 A EP 93903783A EP 0584304 B1 EP0584304 B1 EP 0584304B1
Authority
EP
European Patent Office
Prior art keywords
time
spooler
starting point
path
waypoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93903783A
Other languages
English (en)
French (fr)
Other versions
EP0584304A1 (de
Inventor
Armin Wirz
Arthur Haag
Peter Busenhart
Thomas Gisel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP0584304A1 publication Critical patent/EP0584304A1/de
Application granted granted Critical
Publication of EP0584304B1 publication Critical patent/EP0584304B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/70Other constructional features of yarn-winding machines
    • B65H54/72Framework; Casings; Coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H67/00Replacing or removing cores, receptacles, or completed packages at paying-out, winding, or depositing stations
    • B65H67/04Arrangements for removing completed take-up packages and or replacing by cores, formers, or empty receptacles at winding or depositing stations; Transferring material between adjacent full and empty take-up elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/60Details of processes or procedures
    • B65H2557/65Details of processes or procedures for diagnosing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the present invention relates to a method for controlling a Movement of moving elements according to Preamble of claim 1 and a winding machine for Execution of the procedure according to the preamble of claim 6.
  • Threads made from textured filaments are wound onto bobbin tubes at a high speed, a few thousand meters per minute. After reaching a predetermined amount of yarn on the bobbin, the latter is automatically pivoted from the bobbin position into a removal position and at the same time an empty tube from the waiting position, which corresponds to the later removal position, is brought into the winding position. The transfer of the thread running onto the full bobbin to the empty tube takes place fully automatically and without waste.
  • Various methods and devices are known from the prior art, in which the coils or sleeves are seated on a rotatable turret which can be pivoted for changing the bobbin.
  • thread lifting devices for lifting the thread out of the traversing device, means for guiding the thread running towards the center of the bobbin to the side, means for lifting the thread still running onto the full bobbin from the transfer area and the new bobbin brought into the winding position necessary to deflect the thread laterally via a catch slot on the empty tube. All of these mechanical, movable means for hand-lifting (deflecting or shifting, etc.) the thread must begin with the movement at a precisely predetermined point in time, run through a predetermined path, in a predetermined time and / or with a predetermined course of speed.
  • control signals required for this are stored in a programmable logic controller and are forwarded and monitored by the latter at the specified times to the mechanical drives (actuators) which drive the means.
  • the mechanical drives actuators
  • the reaching of the end positions of the mechanical drives is monitored by further control means (sensors).
  • a lack of movement can consequently be determined by the non-arrival of the driven means at the destination.
  • Angular position errors of the turret are due to aging, tolerance or contamination, both with regard to the turret (driven element) and its drive means (driving element). Continuous monitoring is essential to maintain high quality. The same problems arise with linear movements if the elements of a length measuring system have different tolerances or are temperature-dependent.
  • the machine controls of the well-known automatic winding machines can probably determine if a movement is not or not completely carried out has been because the driven element does not reach the destination exactly Has; Movements that do not take place in the specified manner it is a linear or a non-linear movement, are not monitored and the resulting changes in the timing of the Process steps and thus possible errors in the end product can only after a thread break or at most when processing the Coil or on the end product itself. This can cause that over a long period of time - minutes, hours, or days - by one slight change in a course of movement, be it with regard to the distance traveled or in terms of timing, more expensive Committee arise. The committee is also unable to determine whether this would at best meet a lower quality level or is useless at all.
  • German Offenlegungsschrift 2944219 Apparatus known with which the function of a work unit in checked mechanically and their adjustment and operation even if it is not dynamically balanced and the sequence of their actual starting and stopping processes by deviates from the relevant permissible time tolerance ranges.
  • the invention seeks to remedy this.
  • the invention as characterized in claims 1 and 6, solves the task of creating a method and a winding machine which the movement sequences of the moving participants participating in the spool change Elements related to the distance traveled, location and / or that controls time.
  • the method according to the invention enables the detection of the current locations and / or the course of the movement with respect to the instantaneous speed of the mechanical elements involved in the monitoring and a corresponding correction of the control impulses which control the drives of the driven elements.
  • the temporal linkages of the motion sequences of pneumatic drive elements can be corrected by changing the chronological sequence of the control pulses for the compressed air supply and thus changes in the movement paths or speeds due to increased friction or other influences from the setpoint or setpoint curve can be compensated.
  • the necessary measures can be taken, for example, stopping the machine immediately or stopping the machine after the next bobbin change in order to avoid faulty bobbins.
  • a marking can also be carried out which enables classification without having to reject all coils as faulty.
  • the method enables monitoring and / or control of individual motion sequences within the overall sequence and depending on the interaction of individual actuator or sensor elements. Consequently, environmental influences such as temperature, humidity, pollution, etc., manufacturing conditions such as dimensional tolerances, assembly inaccuracies, signs of aging and wear and tear can be recorded and corrected within limits.
  • the invention enables the detection of a deviation of an angle or a distance at a predetermined location and can bring about an approximation to the desired value in the subsequent same operation by correcting the path or angle. The correction can be continued until the setpoint is reached and / or repeated if there is another deviation.
  • Revolvers 5 which can be pivoted about axis A, are two mandrels 7 rotatably mounted.
  • sleeves 9 On the spindles 7 are sleeves 9 for receiving one from a supplied thread 11 assembled bobbin 13.
  • the Sleeves 9 are by known clamping means 15 installed in the thorns 7 held non-rotatably.
  • the clamping means 15 are operatively connected to a Clamping drive 17, e.g. a pneumatic actuator.
  • a driven speedometer roller 19 preferably has an electric drive 21 and a Tachometer 23 for determining the peripheral speed of the speedometer roller 19th
  • a pivotable thread deflection and changing device 31 is articulated on the housing of the winding machine 3 and can be moved by a pneumatic drive 33 from an initial or rest position A via a plurality of intermediate positions B, C, D, G to a change position F and back to the rest position A.
  • the tachometer roller 19 is mounted on a cantilever 35 which is vertically movable in a vertical guide on the housing of the winding machine 3.
  • the load of the arm 35 is supported on pneumatically or hydraulically actuated linear drives 37, which are fed by a pneumatic or hydraulic pressure source 38.
  • pressure sensors 41 are installed, for example in the bearings of the speedometer roller 19.
  • driven elements and their driving elements there are of course further components not mentioned here on the winding machine, the function of which is not relevant to the description of the invention.
  • the pivoting movement of the thread changing device 31 is used as the driven element and its pneumatic linear drive 33 as the driving element (FIG. 2).
  • a solenoid valve 45 which is connected on the one hand to a pipe 47 to the linear drive 33 and on the other hand to an electronic control 49 arranged in the winding machine 3, is fed from a compressed air source 43.
  • the movement path of the thread changing device 31 is monitored with respect to the end positions A and F and - if desired - also with regard to the intermediate positions B, C, D and E by a displacement sensor 51.
  • the movement path can also be monitored with respect to the temporal course of the movement between the end positions A and F or all intermediate positions B to E.
  • the intermediate positions B to E can be stations in which the thread changing device 31 is temporarily stopped, or it can be exclusively measuring points that serve to monitor the movement path with regard to location and time between the end positions A and F.
  • the displacement sensor 51 preferably consists of contact-free sensor elements (linear potentiometer or the like), which can detect the current position of the thread changing device 31. Such sensor elements are commercially available and are not explained in detail.
  • the displacement sensor 51 is connected to an evaluation electronics 53, which converts the measured values into electrical signals.
  • the evaluation electronics 53 is also connected to a comparison electronics 55, which compares the measured values from the displacement sensor 51 with the target values, which are stored in a target value generator 57.
  • the setpoint generator 57 in turn is connected to a trigger 59.
  • a line leads from the controller 49 to an alarm 61, which can have a visual or acoustic display or devices for switching off the winding machine 3, a further line leads to a memory 63 (memo) and from there to a display and / or printer 65 for displaying the operating status and / or other data.
  • alarm 61 which can have a visual or acoustic display or devices for switching off the winding machine 3
  • a further line leads to a memory 63 (memo) and from there to a display and / or printer 65 for displaying the operating status and / or other data.
  • the sequence of movements of the thread changing device 31 with respect to the path and the time depends on the selected and described example Position of the turret 5 or the diameter of the full coil 13 and the empty sleeve 9 on the turret 5.
  • the thread changing device 31 is assumed that the pivoting process of the turret 5 both in terms of path and in terms of the time takes place exactly in the specified manner.
  • a corresponding Path / time monitoring can be provided.
  • the (electrical) logic signals sent by the controller 49 to the pneumatic valve 45 for the compressed air supply of the linear drive 33 exactly at the predetermined time are compared with the effectively traveled path of the thread changing device 31 (driven element).
  • the lower graphic shows the switch-on time t 1 (setpoint) and the switching current I for the pneumatic valve 45 (driving element) as well as two time windows (t 1u -t 1o and t 2u -t 2o ), within which the switch-on time t 1 and the switch-off time t 2 are located.
  • the upper graph shows the effective course of the thread changing device 31 (driven element) with respect to distance and time.
  • the thread changing device 31 is in the pivoted-out position shown in broken lines (FIG. 2).
  • the pneumatic valve 45 receives a command from the controller 49 by supplying current to the solenoid valve to supply the linear drive 33 with compressed air through the line 47.
  • the thread changing device 31 only begins the pivoting movement clockwise at time t 3 . If the movement according to the straight curve K in the upper graph in FIG.
  • the driven element reaches the end point F of the distance to be covered at time t 4 .
  • the point in time t 3 of the beginning of the movement is irrelevant if no further moving elements move in the path of movement of the thread changing device. This is assumed in the example.
  • the point in time t 4 at which the thread changing device 31 reaches its target F is important. In the example shown, t 4 lies between t 2u and t 2o within the time window. As a result, the movement has progressed according to plan within the specified limits with regard to both the path (end point F) and the time (t 2u -t 2o ).
  • the driven element, the thread changing device 31, does not reach the end point F until shortly before the time t 2o .
  • the arrival time t 4 is thus still within the time window t 2u and t 2o , and it is therefore not necessary to interrupt the machine.
  • the delay in the arrival time may have been caused by increased friction in the driven or in the driving element, so that the start time t 1 lies outside the time window t 1u -t 1o .
  • the controller 49 is designed in such a way that it tries to keep the arrival time t 4 as possible in the middle of the time window t 2u -t 2o . In the event of a deviation, the return takes place in appropriate steps.
  • the size of the steps can be selected, for example, in proportion to the size of the discrepancy found (closed control loop with an integral character).
  • the machine thus runs in an optimal range, and a fault message only occurs in the event of a serious error in which the control system is no longer able to make the correction correspondingly large (limit of the control range).
  • the time window for the start time of the movement cannot be extended as desired, but must also be within limits.
  • the size of the windows depends on various factors and must be determined individually for each element. The upper and lower limits of these windows must be selected so that the machine remains functional. Signs of wear or increased friction in the driven element can be corrected after each work cycle , as long as the new starting point is still within the time window t 1u -t 1o .
  • the movement of the driven element here again the thread changing device 31, started at the predetermined time t 3 , but took longer, for example as a result of increased friction in the linear drive 33, and only reached the end point F of the movement path at time t 4 .
  • t 4 lies outside the time window between t 2u and t 2o .
  • the time at which the end position F is reached can be returned to the time window t 2u -t 2o be pushed in. In this case, however, the machine should first be stopped or an alarm signal issued and the cause of the deviation clarified.
  • the displacement sensor 51 not only detects the start and end positions A and F, but also the C, D, E and F in between. In this way it can be determined whether the movement of the driven element Is linear, as in Figures 3-5, or whether the movement is non-linear and takes place in a predetermined manner.
  • the solid curve K1 shown in FIG. 6 is probably within the predetermined range limits X, Y with regard to the start and end points. However, it almost touches the lower range limit Y at one point. It is therefore very possible that the driven element, in our case again the thread changing device 31, at this point, designated by arrow P, with another element, for example with the pivoting element Coil 13 collides. Analogously to the procedure in FIG.
  • the curve can be shifted to the left by selecting an earlier start time t 1 within the window t 1u -t 1o without the start and end points falling outside the desired ranges. This shift is of course only possible within narrow limits, since otherwise the controller 49 initiates an opposite correction as a result of the deviation of the driven element outside the time window t 2u -t 2o . If the curve K2 (shown in dashed lines) exceeds the range limit Y, although the start and end point are within the corresponding time window, the control unit will trigger an alarm or stop signal. In this case, there is no correction, since the fault must be remedied by the operator.
  • the correction made by the controller 49 can be made from the memory 63 or corrections from past workflows and based on the output on the display or on a printout Data directly drawn conclusions or defects in the moving elements will.
  • the position of the bobbin tube 107 with respect to the tachometer or friction roller 119 is shown with a gap S between the surface of the tachometer roller 119 and the thread turns 130 already on the bobbin tube 107.
  • the width of the gap S must always be the same size within narrow limits at the beginning of the winding process in order to ensure that, on the one hand, a synchronous running of the two elements is achieved on contact with the surface of the spool with the tachometer roller and / or on the other hand, the contact with the one determined in advance Time.
  • the speed n S of the bobbin 113 decreases in accordance with the increase in its diameter due to the thread 111 wound on it and is designed arithmetically so that when the gap S is filled and the outer thread layers begin to come into contact with the tachometer roller 119, the peripheral speeds of both elements should be the same.
  • the revolver 105 is rotated by a motor 104
  • a worm wheel 106 is attached to shaft 157, which is connected to worm 108 combs on the revolver 105.
  • a rotation angle detection means can be on the shaft of the motor 104 110 put on.
  • One turret rotation when changing the bobbin corresponds 180 °.
  • This 180 ° rotation of the turret 105 corresponds, for example thousand pulses in the turret rotation angle detection means 110.
  • the drive motor 104 is driven as long as the bobbin change until a thousand pulses are measured. Then the engine 104 stopped.
  • the drive probably receives the predetermined number of pulses but the revolver 105 does not come at the scheduled time and / or at the desired point to a standstill. For example, that the current actual position of the revolver 105 by a ten Impulse corresponding distance over the ideal end position (angle alpha) comes to a standstill, but this still within a predetermined Window of, for example, +/- 20 pulses.
  • the number of impulses is increased by a detection means 154 which Can be part of the control 155, recognized as a deviation, recorded and in of the control 155 and stored at the next turret rotation an appropriate correction has been taken into account that for an exact positioning of the driven element 105 the Target pulse number is 990. So the desired one with the following turret rotation Position is reached, must still be from the target pulse number 990 the ten impulses from the first rotation that lie above the target position be counted so that for the second turret rotation effectively 980 Impulses are necessary.
  • the number of 990 pulses makes up for the following Process the basis for the correction.
  • the turret rotation angle detection determines that the turret 105 has been effectively positioned at 992 pulses (actual position). In the subsequent correction, two fewer pulses must therefore be used as the switching path and the excess two switched pulses must also be subtracted. In other words, the third turret rotation therefore requires 986 pulses. Instead of the impulses described, time units could also occur during which the turret drive is switched on.
  • the angle of rotation can also be detected directly on the turret 105, for example on its axis 112.
  • a fixed stop or cam 117 which can be engaged in the path of rotation of the turret 105 and which is intended to snap into the correspondingly provided recesses on the turret 105 can serve as the zero or starting point for the first measurement. Later in operation, the cam 117 is of course not locked in order to enable the turret to rotate. Analogous to the detection of deviations from angles of rotation, deviations from linear movements can of course also be recorded, stored and corrected accordingly in the subsequent cycle.
  • time intervals and analog signals can also be used as measuring units.
  • the third example of the invention according to FIG. 9 relates to a determination of the location at the end of a displacement of a driven element and is explained on the basis of the vertically running movement path S of the boom 35 on the machine housing 1 in FIG. 8.
  • the diagram in FIG. 9 shows the boom position with respect to the signal of the measuring system (path, length, time intervals).
  • an inductive length measuring system 173 supplies a signal of a current I proportional to the cantilever movement according to curves K1, K2, K3 in FIG. 9.
  • Both the zero point and the slope of the curves are from the length measuring system 173, as described, for example, by AIP Wild IW251 / 200-0.5 is manufactured differently, ie the individual values of each device vary within a certain tolerance range, which can also depend on the temperature, among other things.
  • the "zero point" and the effective slope of the curve are determined as follows: The lowest boom position "u" gives the zero point of the system. This position is to be defined in such a way that, for example, the speedometer roller 19 attached to the boom 135 is uniquely determined by a stop 170 with respect to the mandrel 7, which is in the winding position. This position is set within a narrow tolerance range during assembly of the machine and is not changed during the entire service life of the machine.
  • the top boom position "o" was also defined during the assembly of the machine so that the boom 135 travels a precisely defined path s between the bottom position "u” (stop 170) and the top position "o” (stop 172).
  • the top position "o” also remains unchanged throughout the life of the machine.
  • the initialization of the length measuring system for measuring the distance covered by the boom 35 is carried out as follows: Each time the machine is started, the boom 135 is lowered to the lowest position by a lifting drive 136. The lowest position is considered reached when the position of the boom 135 no longer changes. Now the position "u" is read out and tested for plausibility. If the position "u" is plausible and the output signal is within the specified lower tolerance band (I umin - I umax ), the control system remembers this lowest position. The boom 35 now moves to the uppermost position "o". The uppermost position is considered to have been reached as soon as the position of the boom 35 no longer changes. Again, a plausibility test is carried out and the value of the output signal is saved.
  • the machine can be started (curves K1 and K2). If, on the other hand, one of the signals, as represented by curve K3, is above the lower tolerance band, for example due to a change in temperature, the machine must be stopped. Analogous to the first example of the invention, instead of shifting the time of the output signal of the driving element, the output signal I of the length measuring system 173 is shifted. After determining I o and I u , narrower operating tolerance bands can be placed over the points I o and I u will.
  • the boom position can be tested for plausibility each time the boom 35 is lowered, ie the signal value is tested to determine whether it is within the operating tolerance range.
  • a plausibility test in the top boom position is usually carried out after every start of the machine, e.g. after a thread break etc.
  • the operating tolerance band of the top boom position can be much narrower can be chosen because the top position is absolutely unchangeable in the Contrary to the lowest position that can be reached during winding operation is.
  • the lowest position is with the tolerances of the sleeves 9 and, if you start with a gap, also with the size of the gap afflicted.
  • the length measuring system 173 or the evaluation unit can itself, if a clearly defined route length (route) and absolutely defined Positions in the end positions are specified, the slope of the curve and determine their location.
  • the device for monitoring and correcting temporal and path-dependent processes can be integrated in the machine control 49 and consequently be in continuous use. However, it can also be accommodated in an independent diagnosis and setting device 71, which can be connected to the winding machine 3 via an interface 73, with which the functional accuracy of the moving elements of winding machines in production or in the workshop can be checked and - if necessary - corrected .
  • the sensors for recording the actual values are arranged in the winding machine, and a data memory for storing measured values as well as for the data and correction values transmitted by an independent diagnostic and setting device is integrated in the winding machine.
  • the stationary or mobile diagnostic and setting device can consequently be used for the evaluation and / or a new setting or calculation of parameters.
  • the method and the device according to the invention are suitable to be used where complex processes with mutual Movements of several actuator elements are to be controlled. Such processes are known for example from EP-B-25128 and from EP-B-73930.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)

Abstract

Die Erfindung betrifft eine Textilmaschine mit einer Vorrichtung zum Erkennen und Korrigieren von Abweichungen des Bewegungsverlaufes eines durch ein antreibendes Element (33) angetriebenen Elementes (31). Eine Einrichtung (51) erfasst den Ankunftszeitpunkt (t4) des angetriebenen Elementes (31) und korrigiert den Startzeitpunkt (t1) des antreibenden Elementes (33) innerhalb eines vorgegebenen Zeitfensters (t1u-t1o) bis der Ankunftszeitpunkt (t4 des angetriebenen Elementes (31) wieder innerhalb eines vorgegebenen Zeitfensters (t2u-t2o) liegt.

Description

Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Steuern eines Bewegungsabläufes von bewegten Elemente gemäss Oberbegriff des Anspruches 1 sowie eine Spulmaschine zur Durchführung des Verfahrens gemäss Oberbegriff des Ansprüches 6.
Aus texturierten Filamenten hergestellte Fäden werden mit hoher Geschwindigkeit, einige tausend Meter pro Minute, auf Spulenhülsen aufgespult. Nach Erreichen einer vorgebbaren Menge von Garn auf der Spule wird letztere automatisch von der Spulstellung in eine Entnahmestellung geschwenkt und gleichzeitig eine leere Hülse aus der Wartestellung, die der späteren Entnahmestellung entspricht, in die Aufspulstellung gebracht. Die Uebergabe des auf die volle Spule auflaufenden Fadens an die leere Hülse erfolgt vollautomatisch und ohne Abfall.
Aus dem Stand der Technik sind verschiedene Verfahren und Vorrichtungen bekannt, bei denen die Spulen bzw. Hülsen auf einem drehbaren Revolver sitzen, der für den Spulenwechsel geschwenkt werden kann.
Zur Uebergabe des zulaufenden Fadens sind Fadenaushebevorrichtungen zum Ausheben des Fadens aus der Changiervorrichtung, Mittel zum zur Seite Führen des auf das Zentrum der Spule zulaufenden Fadens, Mittel zum Abheben des noch auf die volle Spule auflaufenden Fadens vom Uebergabebereich in die Aufspulstellung gebrachten neuen Spulhülse sowie Mittel zum seitlichen Auslenken des Fadens über einen Fangschlitz an der leeren Hülse nötig. Alle diese mechanischen, bewegbaren Mittel zum Handhahen (Auslenken oder Verschieben etc.) des Fadens müssen zu einem exakt vorgegebenen Zeitpunkt mit der Bewegung beginnen, einen vorgegebenen Weg, in einer vorgegebenen Zeit und/oder mit einem vorgegebenen Geschwindigkeitsverlauf durchlaufen. Die dazu notwendigen Steuersignale sind in einer speicherprogrammierbaren Steuerung gespeichert und werden von dieser zu den vorgegebenen Zeiten an die mechanischen Antriebe (Aktorik), die die Mittel antreiben, weitergegeben und überwacht. Durch weitere Kontrollmittel (Sensorik) werden in den bekannten Vorrichtungen beispielsweise das Erreichen der Endstellungen der mechanischen Antriebe überwacht. Ein Ausbleiben einer Bewegung kann folglich durch das Nichteintreffen des angetriebenen Mittels am Zielort festgestellt werden. Es ist auch bekannt, die gegenseitigen Aktivitäten von mechanischen Elementen und die Signale für die Antriebe (Aktorik) zu koordinieren, um einen falschen zeitlichen Ablauf der Bewegungen zu verhindern, der zu Kollisionen von zwei oder mehreren, eine bestimmte Koordinate durchlaufenden Elementen führen würde.
Qualitätsprobleme bei der Garnherstellung, wie auch bei anderen Verfahren auf dem Gebiet der Textilherstellung, können auch durch nicht exakt zeitlich koordiniertes oder synchronisiertes Zusammenführen zweier eine Bewegung durchlaufender Maschinenelemente entstehen.
Diese Probleme treten auf, wenn der Revolver beim Spulenwechsel nicht örtlich und im richtigen Zeitpunkt exakt die vorgegebene Winkelstellung erreicht, in welcher das Aufspulen und/oder die Kontaktnahme mit der Tachowalze erfolgen soll. Die Winkelstellung des Revolvers bestimmt nämlich den Abstand der Hülse von der Tachowalze. Bereits ein geringer Winkelfehler des Revolvers bezüglich der Tachowalze kann zu Qualitätseinbussen führen.
Winkellagefehler des Revolvers sind sowohl bezüglich des Revolvers (angetriebenes Element) als auch dessen Antriebsmittel (antreibendes Element) alterungs-, toleranz- oder verschmutzungsbedingt. Eine dauernde Überwachung ist für die Einhaltung hoher Qualität unumgänglich. Dieselben Probleme ergeben sich auch bei linear verlaufenden Bewegungen, wenn die Elemente eines Längenmessystemes mit unterschiedlichen Toleranzen behaftet oder temperaturabhängig sind.
Die Maschinensteuerungen der bekannten Spulautomaten können wohl feststellen, wenn eine Bewegung nicht oder nicht vollständig durchgeführt worden ist, weil das angetriebene Element das Ziel nicht exakt erreicht hat; Bewegungsabläufe, die nicht in der vorgegebenen Weise erfolgen, sei es eine lineare oder eine nichtlineare Bewegung, werden nicht überwacht und die sich daraus ergebenden Änderungen des zeitlichen Ablaufes der Verfahrensschritte und damit mögliche Fehler am Endprodukt können erst nach einem Fadenbruch oder allenfalls bei der Weiterverarbeitung der Spule oder am Endprodukt selbst festgestellt werden. Dies kann dazu führen, dass über längere Zeit - Minuten, Stunden oder Tage - durch eine geringfügige Veränderung eines Bewegungsablaufes, sei es bezüglich des zurückgelegten Weges oder bezüglich des zeitlichen Ablaufes, kostspieliger Ausschuss entstehen. Beim Ausschuss ist zudem nicht feststellbar, ob dieser allenfalls noch einer tieferen Qualitätsstufe genügen würde oder überhaupt unbrauchbar ist.
Aus der deutschen Offenlegungsschrift 2944219 sind ein Verfahren und eine Vorrichtung bekannt, mit denen die Funktion einer Arbeitseinheit in mechanischer Hinsicht kontrolliert und deren Einstellung sowie Betätigung auch in dem Falle ermöglicht, wenn sie nicht dynamisch ausgewuchtet ist und die Zeitfolge ihrer eigentlichen Anlass- und Abstellvorgänge von den betreffenden zulässigen Zeittoleranzbereichen abweicht.
Hier will die Erfindung Abhilfe schaffen.
Die Erfindung wie sie den Ansprüchen 1 und 6 gekennzeichnet ist, löst die Aufgabe, ein Verfahren und eine Spulmaschine zu schaffen, welche die Bewegungsabläufe der am Spulenwechsel teilnehmenden bewegten Elemente bezüglich des zurückgelegten Weges, des Ortes und/oder der Zeit steuert.
Das erfindungsgemässe Verfahren ermöglicht die Erfassung der momentanen Aufenthaltsorte und/oder den Verlauf der Bewegung bezüglich der Momentangeschwindigkeit der in die Überwachung einbezogenen mechanischen Elemente und eine entsprechende Korrektur der Steuerimpulse, welche die Antriebe der angetriebenen Elemente ansteuern. Innerhalb von vorgebbaren Grenzen können damit beispielsweise die zeitlichen Verknüpfungen der Bewegungsabläufe von pneumatischen Antriebselementen durch Änderung der zeitlichen Abfolge der Steuerimpulse für die Druckluftspeisung korrigiert und damit Änderungen der Bewegungswege oder -geschwindigkeiten infolge erhöhter Reibung oder anderer Einflüsse vom Sollwert oder Sollwertverlauf kompensiert werden. Gleichzeitig können bei Überschreiten von Eckdaten einzelner Bewegungsabläufe die notwendigen Massnahmen ergriffen werden, z.B. sofortiger Stop der Maschine oder Stop der Maschine nach dem nächsten Spulenwechsel, um fehlerhafte Spulen zu vermeiden. Bei Spulen mit festgestellten Fehlern kann auch eine Markierung erfolgen, die eine Klassifizierung ermöglicht, ohne sämtliche Spulen als fehlerhaft ausscheiden zu müssen.
Das Verfahren ermöglicht eine Überwachung und/oder Steuerung einzelner Bewegungsabläufe innerhalb des Gesamtablaufes und in Abhängigkeit der Wechselwirkung einzelner Aktorik- bzw. Sensorikelemente. Es können folglich Umwelteinflüsse, wie Temperatur, Luftfeuchtigkeit, Verschmutzung, etc., Herstellungsbedingungen wie Masstoleranzen, Montageungenauigkeiten, Alterungserscheinungen und Verschleiss erfasst und in Grenzen korrigiert werden.
Die Erfindung ermöglicht die Erfassung einer Abweichung einer Winkeloder einer Wegstrecke an einem vorbestimmten Ort und kann durch eine Korrektur des Weges oder Winkelweges eine Annäherung an den Sollwert beim nachfolgenden gleichen Arbeitsgang erwirken. Die Korrektur kann bis zum Erreichen des Sollwertes weitergeführt und/oder bei einer erneuten Abweichung wiederholt werden.
Anhand eines illustrierten Ausführungsbeispieles wird die Erfindung näher erläutert. Es zeigen:
Figur 1
eine schematische Darstellung einer Spulmaschine und
Figur 2
eine schematische Darstellung einer Ueberwachungsvorrichtung mit einem Schema,
Figuren 3 bis 6
eine Graphik eines pneumatisch bewegten Bauteiles und das Logiksignal für das Pneumatikventil des Antriebsmittels.
Figur 7
eine schematische Darstellung der Spulenwalze und der Tachowalze während des Auffüllens des Spaltes,
Figur 8
eine schematische Darstellung einer Textilmaschine mit einem zwei Spulendorne tragenden Revolver und einer Tachowalze,
Figur 9
ein Diagramm der Ausleger-Bewegungsposition s bezüglich des Ausgangsstromes I.
Im Gehäuse 1 einer automatischen Spulmaschine 3 mit zwei auf einer durch einen Antrieb 4, z.B. einen Schrittmotor oder einen Pneumatikmotorantrieb, um die Achse A schwenkbaren Revolver 5 sind zwei Spulendorne 7 drehbar gelagert. Auf den Spulendornen 7 sind Hülsen 9 zur Aufnahme einer aus einem zugeführten Faden 11 aufgebauten Spule 13 aufgesteckt. Die Hülsen 9 werden durch in den Dornen 7 eingebaute bekannte Klemmittel 15 drehfest gehalten. Die Klemmittel 15 stehen in Wirkverbindung mit einem Klemmittelantrieb 17, z.B. einem Pneumatikantrieb. Zur Erlangung einer regelmässigen Spulenoberfläche und gleichzeitig zur Überprüfung der Oberflächengeschwindigkeit der Spulen 13 stehen diese beim Aufspulen in Anlage mit einer angetriebenen Tachowalze 19 in Reibkontakt. Die Tachowalze 19 verfügt vorzugsweise über einen elektrischen Antrieb 21 und einen Drehzahlmesser 23 zur Bestimmung der Umfangsgeschwindigkeit der Tachowalze 19.
Über der Tachowalze 19 ist eine Verlegevorrichtung 25 mit Fadenführern 27, die den einzelnen Spulen 13 zugeordnet sind, angebracht. Der Antrieb der Verlegevorrichtung 25 bzw. von dessen Fadenführer 27 erfolgt über einen Motor 29.
Eine schwenkbare Fadenumlenk- und Wechselvorrichtung 31 ist am Gehäuse der Spulmaschine 3 angelenkt und durch einen pneumatischen Antrieb 33 aus einer Ausgangs- oder Ruhestellung A über mehrere Zwischenstellungen B,C,D,G in eine Wechselstellung F und zurück in die Ruhestellung A verfahrbar.
Um einen konstanten Anpressdruck der Tachowalze 19 auf die Spulenoberflächen aufrechterhalten zu können, ist die Tachowalze 19 an einem Ausleger 35 gelagert, welcher in einer vertikalen Führung am Gehäuse der Spulmaschine 3 vertikal verfahrbar gelagert ist. Die Last des Armes 35 ist dabei auf pneumatisch oder hydraulisch betätigten Linearantrieben 37 abgestützt, welche von einer pneumatischen oder hydraulischen Druckquelle 38 gespiesen werden. Zur Überwachung des Anpressdruckes der Tachowalze 19 auf der Spulenoberfläche sind Drucksensoren 41, beispielsweise in den Lagerungen der Tachowalze 19, eingebaut.
Nebst den bereits erwähnten angetriebenen Elementen und deren antreibende Elemente sind an der Spulmaschine selbstverständlich weitere hier nicht erwähnte Bauteile vorhanden, deren Funktion für die Beschreibung der Erfindung nicht relevant ist.
Zur näheren Erläuterung des ersten Beispieles der Erfindung wird die Schwenkbewegung der Fadenwechselvorrichtung 31 als angetriebenes Element und deren pneumatischer Linearantrieb 33 als antreibendes Element herangezogen (Figur 2).
Aus einer Druckluftquelle 43 wird ein Magnetventil 45, das zum einen mit einer Rohrleitung 47 zum Linearantrieb 33 und zum anderen mit einer in der Spulmaschine 3 angeordneten elektronischen Steuerung 49 verbunden ist, gespeist. Der Bewegungsweg der Fadenwechselvorrichtung 31 wird bezüglich der Endstellungen A und F und - falls erwünscht - auch bezüglich der Zwischenstellungen B,C,D und E durch einen Wegsensor 51 überwacht. Die Überwachung des Bewegungsweges kann zusätzlich bezüglich des zeitlichen Verlaufes der Bewegung zwischen den Endstellungen A und F oder sämtlicher Zwischenstellungen B bis E erfolgen. Die Zwischenstellungen B bis E können Stationen sein, in denen die Fadenwechselvorrichtung 31 zeitweilig stillgesetzt wird, oder es können ausschliesslich Messstellen sein, die der Überwachung des Bewegungsweges bezüglich Ort und Zeit zwischen den Endstellungen A und F dienen. Der Wegsensor 51 besteht vorzugsweise aus berührungsfrei arbeitenden Sensorelementen (Linearpotentiometer oder dgl.), welche die gegenwärtige Stellung der Fadenwechselvorrichtung 31 erfassen können. Solche Sensorelemente sind im Handel erhältlich und werden nicht näher erläutert.
Der Wegsensor 51 ist mit einer Auswerteelektronik 53 verbunden, welche die erfassten Messwerte in elektrische Signale umwandelt.
Die Auswerteelektronik 53 ist weiter mit einer Vergleichselektronik 55 verbunden, die die Messwerte vom Wegsensor 51 mit den Sollwerten, die in einem Sollwertgeber 57 gespeichert sind, vergleicht. Der Sollwertgeber 57 seinerseits ist mit einem Trigger 59 verbunden. Die Ergebnisse der Vergleichselektronik 55 werden zur Verarbeitung an die Steuerung 49 weitergeleitet.
Von der Steuerung 49 führt eine Leitung zu einem Alarm 61, der eine optische oder akustische Anzeige oder Einrichtungen zur Abschaltung der Spulmaschine 3 aufweisen kann, eine weitere Leitung führt zu einem Speicher 63 (Memo) und von dort zu einem Display und/oder Drucker 65 für die Anzeige des Betriebszustandes und/oder weiterer Daten.
Der Bewegungsablauf der Fadenwechselvorrichtung 31 bezüglich des Weges und der Zeit hängt im ausgewählten und beschriebenen Beispiel von der Position des Revolvers 5 bzw. dem Durchmesser der vollen Spule 13 und der leeren Hülse 9 auf dem Revolver 5 ab. Für die Erklärung des Bewegungsablaufes der Fadenwechselvorrichtung 31 wird vorausgesetzt, dass der Schwenkvorgang des Revolvers 5 sowohl bezüglich Weg als auch bezüglich der Zeit exakt in der vorgegebenen Weise erfolgt. Eine entsprechende Weg-/Zeitüberwachung kann vorgesehen sein.
Anhand der Figur 3 werden die von der Steuerung 49 exakt zu der vorbestimmten Zeit an das Pneumatikventil 45 für die Druckluftspeisung des Linearantriebes 33 ausgesendeten (elektrischen) Logiksignale mit dem effektiv zurückgelegten Weg der Fadenwechselvorrichtung 31 (angetriebenes Element) verglichen. Die untere Graphik zeigt den Einschaltzeitpunkt t1 (Sollwert) und den Schaltstrom I für das Pneumatikventil 45 (antreibendes Element) sowie zwei Zeitfenster (t1u-t1o und t2u-t2o), innerhalb welchen sich der Einschaltzeitpunkt t1 und der Ausschaltzeitpunkt t2 befinden. Die obere Graphik zeigt den effektiven Verlauf der Fadenwechselvorrichtung 31 (angetriebenes Element) bezüglich Weg und Zeit. Im Zeitpunkt to, wenn der Wechsel einer vollen Spule 13 gegen eine leere Hülse 9 durch Drehen des Revolvers 5 eingeleitet wird, befindet sich die Fadenwechselvorrichtung 31 in der ausgeschwenkten, in gebrochenen Linien dargestellten Lage (Figur 2). Nach Ablauf der Zeit t1 erhält das Pneumatikventil 45 von der Steuerung 49 durch Zufuhr von Strom zum Magnetventil den Befehl, den Linearantrieb 33 durch die Leitung 47 mit Druckluft zu versorgen. Infolge der Verzögerung der Druckfortpflanzung in der Leitung 47, einer allfälligen Dehnung der Leitung 47 und/oder Reibung zwischen den Kolben und dem Zylinder, beginnt die Fadenwechselvorrichtung 31 erst zum Zeitpunkt t3 die Schwenkbewegung im Uhrzeigersinn. Wenn die Bewegung gemäss der gerade verlaufenden Kurve K in der oberen Graphik in der Figur 3 mit gleichbleibender Geschwindigkeit verläuft, erreicht das angetriebene Element zum Zeitpunkt t4 den Endpunkt F der zurückzulegenden Wegstrecke. Der Zeitpunkt t3 des Beginns der Bewegung spielt keine Rolle, wenn keine weiteren bewegten Elemente sich in der Bewegungsbahn der Fadenwechselvorrichtung bewegen. Davon wird im Beispiel ausgegangen. Wichtig ist der Zeitpunkt t4, zu dem die Fadenwechselvorrichtung 31 ihr Ziel F erreicht. Im dargestellten Beispiel liegt t4 innerhalb des Zeitfensters zwischen t2u und t2o. Die Bewegung ist folglich plangemäss innerhalb der vorgegebenen Grenzen sowohl bezüglich des Weges (Endpunkt F) als auch der Zeit (t2u-t2o) abgelaufen.
In den Graphiken gemäss Figur 4 erreicht das angetriebene Element, die Fadenwechselvorrichtung 31, den Endpunkt F erst kurz vor Ablauf der Zeit t2o. Die Ankunftszeit t4 befindet sich damit wohl noch innerhalb des Zeitfensters t2u und t2o, und ein Unterbruch der Maschine ist daher nicht nötig. Die Verzögerung der Ankunftszeit kann durch erhöhte Reibung im angetriebenen oder im antreibenden Element verursacht worden sein, so dass die Startzeit t1 ausserhalb des Zeitfensters t1u-t1o liegt. Durch eine zeitliche Vorverlegung des präzise bestimmbaren, da elektronisch gesteuerten Startpunktes t1 auf t1 ,, der jedoch noch innerhalb des Zeitfensters liegen muss, kann die Ankunftszeit t4 des angetriebenen Elementes wieder in den zentralen Bereich des Zeitfensters t2u-t2o zurückgeführt werden (gestrichelte Linien). Die Steuerung 49 ist so ausgelegt, dass sie versucht, die Ankunftszeit t4 möglichst in der Mitte des Zeitfensters t2u-t2o zu halten. Bei einer Abweichung erfolgt die Rückführung in der Abweichung angemessenen Schritten. Die Grösse der Schritte kann z.B. proportional zur Grösse der festgestellten Abweichung gewählt werden (geschlossener Regelkreis mit Integralcharakter). Die Maschine läuft damit in einem optimalen Bereich, und eine Störungsmeldung tritt nur noch auf bei einem gravierenden Fehler, bei dem die Steuerung nicht mehr in der Lage ist, die Korrektur entsprechend gross zu machen (Grenze des Regelbereiches).
Selbstverständlich kann das Zeitfenster für die Startzeit der Bewegung nicht beliebig ausgedehnt werden, sondern muss ebenfalls innerhalb von Grenzen liegen. die sicherstellen, dass das angetriebene Element seine Bewegung nicht zu früh beginnt und allenfalls mit einem anderen Element, das sich dann noch im Bereich der Bahn des angetriebenen Elementes befindet, kollidiert. Die Grösse der Fenster hängt von verschiedenen Faktoren ab und ist für jedes Element individuell zu bestimmen. Die obere und untere Grenze dieser Fenster muss so gewählt sein, damit die Maschine funktionstüchtig bleibt. Abnützungserscheinungen oder erhöhte Reibung im angetriebenen Element lassen sich nach jedem Arbeitstakt korrigieren, solange der neue Startpunkt sich noch innerhalb des Zeitfensters t1u-t1o befindet.
In der Darstellung gemäss Figur 5 hat die Bewegung des angetriebenen Elementes, hier wieder der Fadenwechselvorrichtung 31, zum vorbestimmten Zeitpunkt t3 begonnen, jedoch länger gedauert, z.B. infolge erhöhter Reibung im Linearantrieb 33, und erst im Zeitpunkt t4 den Endpunkt F des Bewegungsweges erreicht. t4 liegt ausserhalb des Zeitfensters zwischen t2u und t2o. Mit einer Korrektur des Startzeitpunktes t3 um mindestens die Zeit (t4-t2o), der jedoch immer noch innerhalb des Zeitfensters t1u-t1o liegt, kann der Zeitpunkt des Erreichens der Endposition F wieder in das Zeitfenster t2u-t2o hineingeschoben werden. In diesem Fall sollte die Maschine vorerst jedoch angehalten oder ein Alarmsignal abgegeben werden und die Ursache der Abweichung geklärt werden.
In der Ausgestaltung der Erfindung gemäss Figur 6 werden durch den Wegsensor 51 nicht nur die Anfangs- und Endpositionen A und F festgestellt, sondern auch die dazwischenliegenden C,D,E und F. Auf diese Weise lässt sich feststellen, ob die Bewegung des angetriebenen Elementes linear erfolgt, wie in den Figuren 3-5, oder ob der Bewegungsablauf nichtlinear ist und in vorbestimmter Weise erfolgt. Die in der Figur 6 dargestellte ausgezogene Kurve K1 liegt wohl bezüglich der Anfangs- und Endpunkte innerhalb der vorgegebenen Bereichsgrenzen X,Y. Sie berührt aber an einer Stelle beinahe die untere Bereichsgrenze Y. Es ist daher sehr wohl möglich, dass das angetriebene Element, in unserem Falle wiederum die Fadenwechselvorrichtung 31, an dieser Stelle, bezeichnet mit Pfeil P, mit einem anderen Element, beispielsweise mit der wegschwenkenden Spule 13 kollidiert. Analog zur Vorgehensweise in der Figur 4 kann die Kurve durch die Wahl eines früheren Startzeitpunktes t1 innerhalb des Fensters t1u-t1o nach links verschoben werden, ohne dass die Anfangs- und Endpunkte ausserhalb die gewünschten Bereiche fallen. Diese Verschiebung ist selbstverständlich nur innerhalb enger Grenzen möglich, da sonst von der Steuerung 49 infolge Abweichung ein Eintreffen des angetriebenen Elementes ausserhalb des Zeitfensters t2u-t2o eine gegenläufige Korrektur eingeleitet wird.
Überschreitet die Kurve K2 (gestrichelt gezeichnet) die Bereichsgrenze Y, obwohl der Anfang und der Endpunkt innerhalb der entsprechenden Zeitfenster liegen, so wird durch die Steuerung ein Alarm- oder Stopsignal ausgelöst werden. Eine Korrektur bleibt in diesem Falle aus, da die Störung durch die Bedienungsperson behoben werden muss.
Aus dem Speicher 63 können die von der Steuerung 49 vorgenommene Korrektur oder Korrekturen aus den vergangenen Arbeitsabläufen abgerufen werden und anhand der auf dem Display oder auf einem Ausdruck ausgegebenen Daten direkt Rückschlüsse oder Mängel in den bewegten Elementen gezogen werden.
Bei den Beispielen wurde, wie bereits oben erklärt, stets davon ausgegangen, dass die übrigen, mit dem bewegten Element zusammenwirkenden Elemente der Maschine korrekt funktionieren. Es ist nun selbstverständlich möglich, weitere Elemente und Bauteile, z.B. den zeitlichen Ablauf der Drehung des Revolvers zu erfassen und, falls nötig, in analoger Weise zu korrigieren, wenn die Abweichungen innerhalb tolerabler Grenzen liegen.
Im zweiten Beispiel der Erfindung gemäss Figur 7 ist die Lage der Spulenhülse 107 bezüglich der Tacho- oder Reibwalze 119 mit einem Spalt S zwischen der Oberfläche der Tachowalze 119 und den bereits auf der Spulenhülse 107 befindlichen Fadenwindungen 130 dargestellt. Die Breite des Spaltes S muss zu Beginn des Spulvorganges in engen Grenzen stets gleich gross sein, um zu gewährleisten, dass einerseits beim Kontakt mit der Spulenoberfläche mit der Tachowalze ein synchroner Lauf der beiden Elemente erreicht wird und/oder anderseits der Kontakt zum im voraus bestimmten Zeitpunkt erfolgt. Die Drehzahl nS der Spule 113 nimmt entsprechend der Zunahme ihres Durchmessers durch den auf ihr aufgespulten Faden 111 ab und ist rechnerisch derart ausgelegt, dass bei aufgefülltem Spalt S und beginnendem Kontakt der aussenliegenden Fadenlagen mit der Tachowalze 119 die Umfangsgeschwindigkeiten beider Elemente gleich sein sollte.
Bereits eine geringfügige Abweichung beta vom Sollwert des Winkels alpha des Revolvers 105 führt auch dazu, dass der Spulendurchmesser der Pakkung am Ende des Packungsaufbaus nicht dem vorgegebenen Wert entspricht, weil der Durchmesser durch den vom Ausleger zurückgelegten Weges während des Spulenaufbaus bestimmt wird.
Die Drehung des Revolvers 105 erfolgt durch einen Motor 104, an dessen Welle 157 ein Schneckenrad 106 aufgesetzt ist, das mit der Schnecke 108 auf dem Revolver 105 kämmt. Zur Erfassung des Drehwinkels des Revolvers 105 kann auf der Welle des Motors 104 ein Drehwinkel Erfassungsmittel 110 aufgesetzt sein. Eine Revolverdrehung beim Spulenwechsel entspricht 180°. Dieser 180°-Drehung des Revolvers 105 entsprechen beispielsweise tausend Impulse im Revolverdrehwinkel-Erfassungsmittel 110. Für eine Revolverdrehung zum Spulenwechsel wird der Antriebsmotor 104 solange angetrieben bis tausend Impulse gemessen werden. Dann wird der Motor 104 gestoppt. Durch Einflüsse, wie Reibung, Masse der Spule, Masse der Antriebselemente für den Revolver 105 (Motor 104), Getriebe, Spiel, Schneckenrad 106 etc., erhält der Antrieb wohl die vorgegebene Impulszahl aber der Revolver 105 kommt nicht zum geplanten Zeitpunkt und/oder an der gewünschten Stelle zum Stillstand. Es wird beispielsweise festgestellt, dass die aktuelle Ist- Position des Revolvers 105 um eine zehn Impulse entsprechende Wegstrecke über der idealen Endposition (Winkel alpha) zum Stillstand kommt, diese jedoch noch innerhalb eines vorgegebenen Fensters von beispielsweise + /- 20 Impulse liegt. Diese um zehn Impulse zu grosse Anzahl wird wird von einem Erfassungsmittel 154, das Teil der Steuerung 155 sein kann, als Abweichung erkannt, erfasst und in der Steuerung 155 gespeichert und bei der nächsten Revolverdrehung durch eine entsprechende Korrektur berücksichtigt Man hat also festgestellt, dass für eine genaue Positionierung des angetriebenen Elementes 105 die Sollimpulszahl 990 ist. Damit bei der folgenden Revolverdrehung die gewünschte Position erreicht wird, müssen von der Sollimpulszahl 990 noch die über der Sollposition liegenden zehn Impulse aus der ersten Drehung abgezählt werden, so dass für die zweite Revolverdrehung effektiv 980 Impulse notwendig sind. Die Zahl von 990 Impulsen bildet für den folgenden Ablauf die Basis für die Korrektur. Entsprechend bildet die Zahl von 988 Impulsen für den folgenden Ablauf die Basis für die Korrektur.
Bei der Messung nach der zweiten Revolverdrehzahl stellt die Revolverdrehwinkelerfassung fest, dass der Revolver 105 bei 992 Impulsen effektiv positioniert worden ist (Ist-Position). Bei der darauffolgenden Korrektur müssen folglich wiederum zwei Impulse weniger als Schaltweg eingesetzt werden und zudem die zuviel geschalteten zwei Impulse abgezogen werden. Mit anderen Worten: bei der dritten Revolverdrehung sind folglich 986 Impulse notwendig.
Anstelle der beschriebenen Impulse könnten auch Zeiteinheiten treten, während denen der Revolverantrieb eingeschaltet ist.
Je geringer die Abweichung nach dem Auslaufen des Revolvermotors 104 vom Sollwert liegt, umso geringer ist selbstverständlich die notwendige Korrektur. Auf diese kann im allgemeinen nicht verzichtet werden, da durch Spiel in den Antrieben Reibung etc. neue Korrekturen notwendig werden; im allgemeinen jedoch in geringerem Ausmass als zu Beginn.
Die Drehwinkelerfassung kann alternativ auch direkt am Revolver 105, beispielsweise auf dessen Achse 112, erfolgen.
Als Null- oder Anfangspunkt für die erste Messung kann ein fester, in den Drehweg des Revolvers 105 einrückbarer Anschlag oder Nocken 117 dienen, der an entsprechend angebrachten Ausnehmungen am Revolver 105 einzurasten bestimmt ist. Später im Betrieb ist der Nocken 117 selbstverständlich nicht eingerastet, um die Revolverdrehung zu ermöglichen. Analog zur Erfassung von Abweichungen von Drehwinkeln können selbstverständlich auch Abweichungen linearer Bewegungen erfasst, gespeichert und entsprechend beim darauffolgenden Takt korrigiert werden.
Alternativ zu einer Aufteilung in Impulse können auch Zeitintervalle und analoge Signale als Messeinheiten verwendet werden.
Das dritte Beispiel der Erfindung gemäss Figur 9 bezieht sich auf eine Bestimmung des Ortes am Ende einer Verschiebung eines angetriebenen Elementes und wird anhand des vertikal verlaufenden Bewegungsweges S des Auslegers 35 am Maschinengehäuse 1 in Figur 8 erläutert. Das Diagramm in Figur 9 zeigt die Auslegerposition bezüglich des Signales des Messystemes (Weg,Länge, Zeitintervalle).
Im Beispiel liefert ein induktives Längenmessystem 173 ein zur Auslegerbewegung proportionales Signal eines Stromes I gemäss den Kurven K1, K2, K3 in Figur 9. Sowohl der Nullpunkt als auch die Steilheit der Kurven ist vom Längenmessystem 173, wie es beispielsweise von AIP Wild unter der Bezeichnung IW251/200-0,5 hergestellt wird, unterschiedlich, d.h. die individuellen Werte jedes Gerätes streuen in einem bestimmten Toleranzbereich, der unter anderem auch von der Temperatur abhängig sein kann. Der "Nullpunkt" und die effektive Steilheit der Kurve werden wie folgt bestimmt: Die unterste Auslegerposition "u" ergibt den Nullpunkt des Systems. Diese Position ist so zu definieren, dass beispielsweise die am Ausleger 135 befestigte Tachowalze 19 bezüglich des Dornes 7, der sich in Spulposition befindet, durch einen Anschlag 170 eindeutig bestimmt ist. Diese Position wird bei der Montage der Maschine in einem engen Toleranzbereich eingestellt und während der ganzen Lebensdauer der Maschine nicht verändert. Die oberste Auslegerposition "o" ist ebenfalls bei der Montage der Maschine so definiert worden, dass der Ausleger 135 zwischen der untersten Position "u" (Anschlag 170) und der obersten Position "o" (Anschlag 172) einen genau definierten Weg s zurücklegt. Auch die oberste Position "o" bleibt während der gesamten Lebensdauer der Maschine unverändert. Diese beiden Positionen (unterste und oberste) bestimmen den Bezug des Ausgangssignales I zur Maschine (beispielsweise 5 mA für die unterste Position "u" und 15 mA für die oberste Position "o").
Die Initialisierung des Längenmessystems für die Messung des vom Ausleger 35 zurückgelegten Weges wird wie folgt durchgeführt: Bei jedem Maschinenstart wird der Ausleger 135 durch einen Hubantrieb 136 bis auf die unterste Position abgesenkt. Die unterste Position gilt dann als erreicht, wenn sich die Position des Auslegers 135 nicht mehr verändert. Nun erfolgt das Auslesen und Testen der Position "u" auf Plausibilität. Ist die Position "u" plausibel und liegt das Ausgangssignal innerhalb des vorgegebenen unteren Toleranzbandes (Iumin - Iumax), so merkt sich die Steuerung diese unterste Position. Jetzt fährt der Ausleger 35 in die oberste Position "o". Die oberste Position gilt als erreicht, sobald sich die Lage des Auslegers 35 nicht mehr verändert. Auch hier wird wiederum ein Plausibilitätstest durchgeführt und der Wert des Ausgangssignales gespeichert.
Liegen die Signale des Längenmessystems 173, d.h. das obere uns das untere innerhalb der vorgegebenen Toleranzbänder (Iumin - Iumax) und (Iomin - Iomax), so kann die Maschine gestartet werden (Kurven K1 und K2). Liegt hingegen eines der Signale, wie es durch die Kurve K3 dargestellt ist, über dem unteren Toleranzband, z.B. wegen einer Temperaturänderung, so muss die Maschine gestoppt werden.
Analog zum ersten Beispiel der Erfindung erfolgt hier statt einer Verschiebung des Zeitpunktes des Ausgangssignales des antreibenden Elementes eine Verschiebung des Ausgangssignales I des Längenmessystemes 173. Nach dem Bestimmen von Io und Iu können schmalere Betriebstoleranzbänder über die über die Punkte Io und Iu gelegt werden.
Die Auslegerposition kann nach jedem Absenken des Auslegers 35 auf Plausibilität getestet werden, d.h. der Signalwert wird darauf getestet, ob er sich innerhalb des Betriebstoleranzbereiches befindet. Ein Plausibilitätstest in der obersten Auslegerposition erfolgt in der Regel nach jedem Start der Maschine, z.B. nach einem Fadenbruch etc.
Das Betriebstoleranzband der obersten Auslegerposition kann viel enger gewählt werden, da die oberste Position absolut unveränderlich ist, im Gegensatz zur untersten Position, die während des Spulbetriebes erreichbar ist. Die unterste Position ist mit den Toleranzen der Hülsen 9 und, falls mit einem Spalt angefahren wird, auch mit der Grösse des Spaltes behaftet.
Die Stetigkeit der Positionswerte zwischen den beiden Extremstellungen kann während der gesamten Spulreise untersucht werden. Es ist also nötig, dass jede ausgelesene Position innerhalb eines Toleranzbandes zur letzten liegen muss.
Das Längenmessystem 173 bzw. die Auswerteeinheit kann so selbst, wenn eine klar definierte Streckenlänge (Wegstrecke) und absolut definierte Lagen in den Endpositionen vorgegeben sind, die Steilheit der Kurve und deren Lage festzulegen.
Nebst den beschriebenen antreibenden und angetriebenen Elementen können auch andere bewegte Teile einer Spulmaschine bezüglich ihrer gegenseitigen Bewegungen in zeitlicher und örtlicher Hinsicht überwacht und korrigiert werden. Es ist insbesondere auch möglich, die axialen Auslenkungen des Fadens durch die Fadenwechselvorrichtung beim Spulenwechsel bezüglich der jeweiligen Lage der beiden Spulen und der Lage der Fadenwechselvorrichtung bezüglich des Bewegungsablaufes zu überwachen und zu korrigieren, um einerseits Kollisionen zu vermeiden und andererseits eine positionsgenaue Fadenführung zu erlangen.
Die Vorrichtung für die Überwachung und Korrektur zeitlicher und wegabhängiger Abläufe kann in der Maschinensteuerung 49 integriert und folglich dauernd im Einsatz sein. Sie kann aber auch in einem unabhängigen, über eine Schnittstelle 73 mit der Spulmaschine 3 verbindbaren Diagnose- und Einstellgerät 71 untergebracht sein, mit dem die Funktionsgenauigkeit der bewegten Elemente von Spulmaschinen in der Produktion oder in der Werkstatt kontrolliert und - falls nötig - korrigiert werden kann.
In beiden alternativen Ausführungen sind die Sensoren für die Aufnahme der Ist-Werte in der Spulmaschine angeordnet, und es ist auch ein Datenspeicher für die Speicherung gemessener Werte wie auch für die von einem unabhängigen Diagnose- und Einstellgerät übertragenen Daten und Korrekturwerte in der Spulmaschine integriert.
Das stationäre oder fahrbare Diagnose- und Einstellgerät kann folglich für die Auswertung und/oder eine Neueinstellung oder -berechnung von Parametern eingesetzt werden.
Generell sind das erfindungsgemässe Verfahren und die Vorrichtung geeignet, dort eingesetzt zu werden, wo komplexe Abläufe mit gegenseitigen Bewegungen mehrerer Aktorikelemente zu steuern sind. Solche Abläufe sind beispielsweise aus der EP-B-25128 und aus der EP-B-73930 bekannt.

Claims (12)

  1. Verfahren zum automatischen Spulenwechsel auf einer Spulmaschine, bei dem nach Erreichen einer vorgebbaren Fadenmenge die volle Spule aus der Aufspulstellung in eine Entnahmestellung und eine leere Hülse aus der Wartestellung in Spulstellung gebracht werden
    und der zulaufende Faden von der vollen Spulen an die leere Hülse übergeben wird
    dadurch gekennzeichnet,
    dass während des Spulenaufbaus und/oder des Spulenwechsels der Weg- und/oder der zeitliche Verlauf zwischen einem Ausgangspunkt und einem Endpunkt mindestens eines der am Verfahren beteiligten Elemente (31,105,135) der Spulmaschine (3) erfasst wird und bei Abweichungen vom Endpunkt der Verlauf innerhalb von vorgegebenen Grenzen des Endpunktes korrigiert wird, solange auch der Ausgangspunkt innerhalb von vorgegebenen Grenzen bleibt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei einem beteiligten Element um einen sogenannten Revolver (105) handelt, bei dessen Drehung für den Spulenwechsel eine vorgegebene Anzahl Impulse oder Zeiteinheiten oder analoge Signale gezählt werden, wobei, falls der Revolver (105) nach der genannten vorgegebenen Anzahl Impulse, bzw. Zeiteinheiten, bzw. analogen Signale, nicht zum geplanten Zeitpunkt und/oder an der gewünschten Stelle, jedoch innerhalb vorgegebener, als Fenster benannter Grenzen, der zum Endpunkt gehörender Anzahl Impulse, bzw. Zeiteinheiten, bzw. analoger Signale, zum Stillstand gekommen ist, die genannten Abweichungen erkannt und als Korrektur für die folgende Drehung des Revolvers gespeichert werden.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei einem beteiligten Element um eine Fadenwechselvorrichtung (31) handelt, dessen Bewegung durch einen Wegsensor und einer Überwachung des zeitlichen Verlaufs bezüglich des Wegverlaufes zwischen dem Ausgangspunkt und dem Endpunkt überwacht wird, wobei der Endpunkt des Weges zeitlich innerhalb vorgegebener Zeitgrenzen erreicht werden soll und bei Nichterreichen entweder der Zeitstartpunkt innerhalb vorgegebener Grenzen, bei gleichbleibender Bewegungsgeschwindigkeit oder die Bewegungsgeschwindigkeit bei gleichbleibendem Zeitstartpunkt korrigiert wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass falls der Weg- und/oder der Zeitverlauf sich nicht innerhalb der vorgegebenen Grenzen korrigieren lässt, wird ein Alarm und/oder eine Abschaltung der Maschine ausgelöst.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Bewegungsablauf der Fadenwechselvorrichtung (31) bezüglich des Weges bzw. der Zeit von der Position des Revolvers bzw. dem Durchmesser der vollen Spule und der leeren Hülse abhängt.
  6. Spulmaschine zum automatischen Aufspulen von Fäden, mit mindestens einem aus einem antreibenden Element (33,104,136) und einem angetriebenen Element (31,105,135) bestehenden Bauteil, wobei das antreibende Element dazu ausgebildet ist, das angetriebene Element in vorbestimmter Art und Weise bezüglich Zeit und/oder Weg von einem Ausgangspunkt zu einem Wegpunkt zu führen,
    gekennzeichnet durch
    eine Steuerung mit Mittel zum Steuern der antreibenden Elemente und Mittel zum Überwachen der angetriebenen Elemente bezüglich des Erreichens des Wegpunktes,
    mit Einrichtungen zum Erfassen eines Ist-Wertes dieses Wegpunktes sowie, zum Vergleichen des genannten Ist-Wertes mit einem Soll-Wert des Wegpunktes und zum Erkennen einer Abweichung vom Soll-Wert des genannten Wegpunktes innerhalb vorgegebener Grenzen des Wegpunktes
    und zum Korrigieren des genannten Wegpunktes des angetriebenen Elementes, solange der Ausgangspunkt innerhalb vorgegebener Grenzen bleibt.
  7. Spulmaschine nach Anspruch 6, dadurch gekennzeichnet, dass das angetriebene Element ein sogenannter Revolver (105) ist und die genannten Einrichtungen zum Erfassen des genannten Ist-Wertes ein Drehwinkel-Erfassungsmittel (110) und zum Vergleichen des genannten Ist-Wertes mit dem genannten Soll-Wert und Erkennen der genannten Abweichung und zum genannten Korrigieren des Startpunktes, ein Impuls-Erfassungsmittel (154) und eine Steuerung (155) sind.
  8. Spulmaschine nach Anspruch 6, dadurch gekennzeichnet, dass das angetriebene Element eine Fadenwechselvorrichtung (31) und die Einrichtung zum Erfassen des genannten Ist-Wertes ein Wegsensor (51), die Einrichtung zum Vergleichen des genannten Ist-Wertes und zum Erkennen der genannten Abweichung vom Soll-Wert und zum Korrigieren des genannten Startpunktes, eine elektronische Steuerung (49,53,55,57,59,63,65) ist.
  9. Spulmaschine nach Anspruch 6, dadurch gekennzeichnet, dass ein Mittel (61) vorgesehen ist, um die Maschine zu stoppen, wenn das angetriebene Element (31,105,135) ausserhalb der vorgegebenen Grenzen des genannten Wegpunktes liegt.
  10. Spulmaschine nach Anspruch 7, dadurch gekennzeichnet, dass anstelle eines Drehwinkel-Erfassungsmittels und Impulserfassungsmittels (110) ein Mittel zum Erfassen von Zeiteinheiten oder ein Mittel zum Erfassen analoger Signale vorgesehen ist.
  11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei einem beteiligten Element um eine linear verschiebbare Tacho- oder Reibwalze (119) handelt, deren lineare Bewegung durch ein induktives Längenmesssystem (173) gemessen wird, indem ein zur Auslegerbewegung proportionales Signal eines Stromes (I) geliefert wird, und indem je für den Ausgangspunkt wie auch für den Endpunkt die genannten Grenzen am Ausgangspunkt und am Endpunkt festgelegt werden.
  12. Spulmaschine nach Anspruch 6, dadurch gekennzeichnet, dass das angetriebene Element eine linear verschiebbare Tacho- bzw. Reibwalze (119) ist und die genannte Einrichtung zum Erfassen des genannten Ist-Wertes ein induktives Längenmesssystem (173) ist, welches Signale eines Stromes (I) abgibt, welche dem Ist-Wert der Lage der Reibwalze (119) entsprechen.
EP93903783A 1992-03-06 1993-03-04 Verfahren zum steuern eines bewegungsablaufs in einer spulmaschine sowie eine spulmaschine zur durchführung des verfahrens Expired - Lifetime EP0584304B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CH729/92 1992-03-06
CH72992 1992-03-06
CH2272/92 1992-07-17
CH227292 1992-07-17
PCT/CH1993/000055 WO1993017948A1 (de) 1992-03-06 1993-03-04 Verfahren und vorrichtung zum überwachen von bewegungsabläufen an spulmaschinen

Publications (2)

Publication Number Publication Date
EP0584304A1 EP0584304A1 (de) 1994-03-02
EP0584304B1 true EP0584304B1 (de) 1998-12-30

Family

ID=25685508

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93903783A Expired - Lifetime EP0584304B1 (de) 1992-03-06 1993-03-04 Verfahren zum steuern eines bewegungsablaufs in einer spulmaschine sowie eine spulmaschine zur durchführung des verfahrens

Country Status (4)

Country Link
EP (1) EP0584304B1 (de)
JP (1) JPH06507367A (de)
DE (1) DE59309255D1 (de)
WO (1) WO1993017948A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019006629A1 (de) * 2019-09-20 2021-03-25 Oerlikon Textile Gmbh & Co. Kg Schmelzspinnanlage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS210059B1 (en) * 1978-12-29 1982-01-29 Karel Mikulecky Device for the control,adjustment and regulation of the working place e.g.textile production unit or machine with the said units
JPH075222B2 (ja) * 1985-12-28 1995-01-25 津田駒工業株式会社 ドラム式緯糸貯留装置の係止ピン制御装置
JPS6342940A (ja) * 1986-08-11 1988-02-24 津田駒工業株式会社 よこ入れ制御装置
DE3930136A1 (de) * 1989-09-09 1991-03-21 Schlafhorst & Co W Verfahren und einrichtung zur uebergabe eines fadens an eine spulstelle einer textilmaschine

Also Published As

Publication number Publication date
JPH06507367A (ja) 1994-08-25
EP0584304A1 (de) 1994-03-02
WO1993017948A1 (de) 1993-09-16
DE59309255D1 (de) 1999-02-11

Similar Documents

Publication Publication Date Title
EP0999992B1 (de) Verfahren und changiereinrichtung zum verlegen eines fadens
DE3932184C1 (de)
EP0770030B1 (de) Verfahren zum steuern des drehantriebs einer aufspulmaschine
DE10223484B4 (de) Verfahren und Spulmaschine zum Aufwickeln eines kontinuierlich zulaufenden Fadens auf eine Hülse zu einer Spule
EP1370720B1 (de) Verfahren zur produktionsüberwachung/einstellung einer strickmaschine, und produktionsüberwachungs/einstellungs-vorrichtung
EP1679277B1 (de) Verfahren und Vorrichtung zum Betreiben einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine
EP1125880A2 (de) Vorrichtung zur Herstellung von Spulen auf einer OE-Spinnmaschine
EP0423067A1 (de) Konusschärmaschine und Schärverfahren
CH670838A5 (de)
EP2810908B1 (de) Verfahren zum Einstellen einer Drehwinkelstellung eines eine Spulenhülse drehbeweglich halternden Spulenrahmens und Spulen herstellende Textilmaschine mit mehreren Spulstellen
EP0584304B1 (de) Verfahren zum steuern eines bewegungsablaufs in einer spulmaschine sowie eine spulmaschine zur durchführung des verfahrens
EP3074333A1 (de) Changiereinheit und verfahren zur steuerung einer changiereinheit
EP0307769B1 (de) Strickmaschine mit Fadenwechseleinrichtung
EP1736429A2 (de) Verfahren und Spulmaschine zum Aufwickeln eines kontinuierlich zulaufenden Fadens auf eine Hülse zu einer Spule
DE2230628B2 (de) Vorrichtung zum steuern des antriebs der verlegevorrichtung von spulmaschinen, insbesondere bei drahtziehmaschinen
DE4421778C2 (de) Vorrichtung zum selbsttätigen Zu- oder Abführen voller Spulen oder leerer Hülsen für eine Textilmaschine
EP0770153B1 (de) Verfahren und vorrichtung zum bestücken der spulendorne eines spulengatters
DE19631753C2 (de) Verfahren zur Kollisionsüberwachung eines bewegbaren Elements einer Spinnereimaschine
DE4335764C2 (de) Vorrichtung zum geordneten Abräumen von Kreuzspulen von einem entlang einer Kreuzspulen herstellenden Maschine verlaufenden Förderband
DE102004002521A1 (de) Lösch- und Reinigungsvorrichtung für Zylinder einer Druckmaschine
EP4119706A1 (de) Spinn- oder spulmaschine sowie verfahren zum betreiben einer spinn- oder spulmaschine
DE10354587A1 (de) Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine
DE10253253A1 (de) Spulmaschine und Verfahren zum Aufwickeln eines kontinuierlich zulaufenden Fadens auf eine Spule
CH680116A5 (de)
DE10206761A1 (de) Textilmaschine mit einer Erfassungseinrichtung für den Spulendurchmesser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19970527

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GISEL, THOMAS

Inventor name: BUSENHART, PETER

Inventor name: HAAG, ARTHUR

Inventor name: WIRZ, ARMIN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981230

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981230

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59309255

Country of ref document: DE

Date of ref document: 19990211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990224

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990303

Year of fee payment: 7

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19981230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304