EP0583851B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP0583851B1
EP0583851B1 EP93202885A EP93202885A EP0583851B1 EP 0583851 B1 EP0583851 B1 EP 0583851B1 EP 93202885 A EP93202885 A EP 93202885A EP 93202885 A EP93202885 A EP 93202885A EP 0583851 B1 EP0583851 B1 EP 0583851B1
Authority
EP
European Patent Office
Prior art keywords
headers
tubes
heat exchanger
tube
flow paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP93202885A
Other languages
English (en)
French (fr)
Other versions
EP0583851A3 (de
EP0583851A2 (de
Inventor
Leon Arnold Guntly
Jack C. Dudley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27120095&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0583851(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Publication of EP0583851A2 publication Critical patent/EP0583851A2/de
Publication of EP0583851A3 publication Critical patent/EP0583851A3/de
Application granted granted Critical
Publication of EP0583851B1 publication Critical patent/EP0583851B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • This invention relates to a heat exchanger for exchanging heat between the ambient and a refrigerant that may be in a liquid or vapour phase, comprising: a pair of spaced generally parallel headers, one of said headers having a refrigerant inlet, and one of said headers having a refrigerant outlet; and a heat exchanger tube extending between said headers and in fluid communication with each of said headers, said tube having a generally flat cross-section and defining a plurality of hydraulically parallel refrigerant flow paths between said headers, each of said refrigerant flow paths having a hydraulic diameter up to 1.778mm (0.07 inches).
  • the invention is particularly applicable to a condenser for condensing a refrigerant using ambient air as a cooling medium.
  • condensers employed in air conditioning or refrigeration systems at the present time utilize one or more serpentine conduits on the vapour side. Such condensers are shown, for example, in GB-A-2133525 and JP-U-5913877.
  • the present invention is characterised in that said headers each have a series of openings with the openings in the series on one header being aligned with and facing the openings in the series on the other header; a tube row defined by a plurality of straight said tubes of generally flat cross section extends in parallel between said headers, the opposed ends of said tubes being disposed in corresponding aligned ones of said openings and in fluid communication with the interiors of said headers, at least some of said tubes being in hydraulic parallel to each other; webs within said tubes extend between and are joined to opposed side walls of the tubes at spaced intervals to (a) define a plurality of non-circular said flow paths within each tube, (b) absorb forces resulting from internal pressure within said heat exchanger and tending to expand said tubes, and (c) conduct heat between fluid in said flow paths and both said opposed side walls of said tubes; said webs and/or said flat side walls defined to least one concave zone at the intersection of converging surface segments in each of said flow paths extending along the length thereof; and serpentine fin
  • hydroaulic diameter means the cross sectional area of a flow path multiplied by four and divided by the wetted perimeter of the flow path.
  • the heat exchanger according to the present invention has a relatively low frontal area on the air side that is blocked by tubes allowing an increase in the air side heat exchange surface area without increasing air side pressure drop and without increasing vapour and/or condensate side pressure drop.
  • FIG. 1 An exemplary embodiment of a condenser made according to the invention is illustrated in Figure 1 and is seen to include opposed, speced, generally parallel headers 10 and 12.
  • the headers 10 and 12 are made up from generally cylindrical tubing. On their facing sides, they are provided with a series of generally parallels slots or openings 14 for receipt of corresponding ends 16 and 18 of condenser tubes 20.
  • each of the headers 10 and 12 is provided with a somewhat spherical dome to improve resistance to pressure as explained more fully in US-A-4615385 the details of which are herein incorporated by reference.
  • the header 10 has one end closed by a cap 24 brazed or welded thereto. Brazed or welded to the opposite end is a fitting 26 to which a tube 28 may be connected.
  • the lower end of the header 12 is closed by a welded or brazed cap 30 similar to the cap 24 while its upper end is provided with a welded or brazed in place fitting 32.
  • a welded or brazed cap 30 similar to the cap 24 while its upper end is provided with a welded or brazed in place fitting 32.
  • one of the fittings 26 and 32 serves as a vapour inlet while the other serves as a condensate outlet.
  • the fitting 26 will serve as a condensate outlet.
  • a plurality of the tubes 20 extend between the headers 10 and 12 and are in fluid communication therewith.
  • the tubes 20 are geometrically parallel to each other and hydraulically in parallel as well.
  • Disposed between adjacent ones of the tubes 20 are serpentine fins 34 although plate fins could be used if desired.
  • Upper and lower channels 36 and 38 extend between and are bonded by any suitable means to the headers 10 and 12 to provide rigidity to the system.
  • each of the tubes 20 is a flattened tube and within its interior includes an undulating spacer 40.
  • the spacer 40 appears as shown in Figure 2 and it will be seen that alternating crests are in contact along their entire length with the interior wall 42 or the tube 20 and bonded thereto by fillets 44 of solder or braze metal.
  • a plurality of substantially discrete hydraulically parallel fluid flow paths 46,48,50,52,54,56,58 and 60 are provided within each of the tubes 20. That is to say, there is virtually no fluid communication from one of such flow paths to the adjacent flow paths on each side.
  • This effectively means that each of the walls separating adjacent fluid flow paths 46,48,50,52,54,56,58 and 60 are bonded to both of sides of the flattened tube 20 along their entire length.
  • a second advantage resides in the fact the condensers such as that of the present invention are employed on the outlet side of a compressor and therefore are subjected to extremely high pressure. Conventionally, this high pressure will be applied to the interior of the tubes 20. Where so-called "plate" fins are utilized in lieu of the serpentine fins 34 illustrated in the drawings, the same tend to confine the tubes 20 and support them against the internal pressure employed in a condenser application. Conversely, serpentine fins such as those shown at 34 are incapable of supporting the tubes 20 against substantial internal pressure. According to the described embodiment of the invention, however, the desired support in a serpentine fin heat exchanger is accomplished by the fact that the spacer 40 and specifically the crests thereof are bonded along their entire lengths to the interior wall 42 of each tube 20. This bond results in various parts of the spacer 40 being placed in tension when the tube 20 is pressurized to absorb the force resulting from internal pressure within the tube 20 tending to expand the tube 20.
  • each of the flow paths 48,50,52,54,56 and 58 and to the extent possible depending upon the shape of the insert 40, the flow paths 46 and 60 as well, have a hydraulic diameter in the range of about 0.381 to 1.778mm (0.015 to 0.070 inches). Given current assembly techniques known in the art, a hydraulic diameter of approximately 0.889mm (0.035 inches) optimizes ultimate heat transfer efficiency and ease of construction. Hydraulic diameter is as conventionally defined, namely, the cross-sectional area of each of the flow paths multiplied by four and in turn divided by the wetted perimeter of the corresponding flow path.
  • the tube dimension across the direction of air flow through the core is desirable to make the tube dimension across the direction of air flow through the core as small as possible. This in turn will provide more frontal area in which fins, such as the fins 34, may be disposed in the core without adversely increasing air side pressure drop to obtain a better rate of heat transfer.
  • one or more additional rows of the tubes can be included.
  • the preferred embodiment contemplates that tubes with separate spacers such as illustrated in Figure 2 be employed as opposed to extruded tubes having passages of the requisite hydraulic diameter.
  • Current extrusion techniques that are economically feasible at the present for large scale manufacture of condensers generally result in a tube wall thickness that is greater than that required to support a given pressure using a tube and spacer as disclosed herein.
  • the overall tube width of such extruded tubes is somewhat greater for a given hydraulic diameter than a tube and spacer combination, which is undesirable for the reasons stated immediately preceding. Nonetheless, the invention contemplates the use of extruded tubes having passages with a hydraulic diameter within the stated range.
  • the ratio of the outside tube periphery to the wetted periphery within the tube be made as small as possible so long as the flow path does not become sufficiently small that the refrigerant cannot readily pass therethrough. This will lessen the resistance to heat transfer on the vapour and/or conduit side.
  • Figure 3 for example, on the right-hand side, plots the heat transfer rate against the cavity or hydraulic diameter at air flows varying from 12.74 to 90.61m 3 (450 to 3200 Standard Cubic Feet) per minute for production condenser cores made by the applicant. Heat transfer rate is plotted in kW (thousands of BTU per hour) and the hydraulic diameter is plotted in mm (inches).
  • the curves designated "A" represent heat transfer at the stated air flows for a core such as shown in Figure 1 having a frontal area of 0.186m 2 (two square feet) utilizing tubes approximately 0.61m (24 inches) long and having a 0.381mm (0.015 inch) tube wall thickness, a 13.51mm (0.532 inch) tube major dimension, 43.3°C (110°F) inlet air, 82.2°C (180°F) inlet temperature and 1.619 MPa (235 psig) pressure for R-12 and assuming 1.1 degree C (2 degree F) of subcooling of the exiting refrigerant after condensation.
  • the core was provided with 18 fins per 25.4mm (inch) between tubes and the fins were 15.88mm (0.625 inches) by 13.72mm (0.540 inches by 0.152mm (0.006 inches).
  • Both the core made according to the invention and the conventional core have the same design point which is, as shown in Figure 4, a heat transfer rate of 7.62kW (26,000 BTU per hour) at an air flow of 50.97m 3 (1800 Standard Cubic Feet) per minute.
  • the actual observed equivalence of the two cores occurred at 8.21kW (28,000 BTU per hour) and 56.63m 3 (2,000 standard cubic feet) per minute; and those parameters may be utilized for comparative purposes.
  • Curves "H” and "J" respectively for the conventional condenser and the condenser of an embodiment of the subject invention illustrate a considerable difference in the pressure drop of the refrigerant across the condenser.
  • a core made according to an embodiment of the invention when compared with the conventional core, holds less refrigerant.
  • the core of embodiment of the invention reduces the system requirement for refrigerant.
  • there is lesser space required for installation of the inventive core because of its lesser depth.
  • Figure 5 compares, at various air velocities, the heat transfer rate per unit mass of core of the conventional condenser (curve "K") versus heat transfer per unit mass of core of a condenser made according to the invention (curve “L” ).
  • heat transfer rate per unit mass is plotted in W kg -1 (BTU per pound) and air flow is plotted in m 3 (Standard Cubic Feet) per minute.
  • W kg -1 BTU per pound
  • m 3 Standard Cubic Feet
  • FIG. 6 in curve "M” thereon, illustrates the air side pressure drop, plotted in Pa (inches of water), for a conventional core and for a core according to the invention for various air flows plotted in m 3 (Standard Cubic Feet) per minute.
  • Curve “N” illustrates the air side pressure drop for the core of the present invention. It will be appreciated that the air side pressure drop, and thus fan energy, is reduced when a core made according to the invention is utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Switches With Compound Operations (AREA)
  • Catching Or Destruction (AREA)
  • Power Steering Mechanism (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (8)

  1. Wärmetauscher zum Wärmetausch zwischen der Umgebung und einem Kühlmittel, das sich in einer Flüssig- oder Dampfphase befinden kann, welcher umfaßt: ein Paar mit Abstand voneinander versehene allgemein parallele Sammelrohre (10, 12), von denen eines der Sammelrohre einen Kühlmitteleinlaß (26 oder 32) und eines der Sammelrohre einen Kühlmittelauslaß (32 oder 26) besitzt; und ein sich zwischen den Sammelrohren (10, 12) und in Fluidverbindung mit jedem der Sammelrohre erstreckendes Wärmetauscherrohr (20), welches Rohr einen allgemein flachen Querschnitt besitzt und eine Vielzahl von hydraulisch parallelen Kühl mittel-Strömungswegen (46,48,50,52,54,58,60) zwischen den Sammelrohren bestimmt, von denen jeder der Kühlmittel-Strömungswege (46, 48,50,52,54,58,60) einen Hydraulik-Durchmesser bis zu 1,778 mm (0,07 inch) besitzt; dadurch gekennzeichnet, daß: die Sammelrohre (10, 12) jeweils eine Reihe von Öffnungen (14) besitzen, von denen die Öffnungen in der Reihe an einem Sammelrohr mit den Öffnungen in der Reihe an dem anderen Sammelrohr ausgerichtet sind und ihnen zugewendet sind; das Wärmetauscherrohr eine Rohrreihe umfaßt, die durch eine Vielzahl von geraden Rohren (20) von allgemein flachem Querschnitt bestimmt ist, die sich parallel zueinander zwischen den Sammelrohren erstrecken, wobei die einander gegenüberliegenden Enden der Rohre (20) in entsprechend ausgerichteten der Öffnungen (14) und in Fluidverbindung mit dem Innenraum der Sammelrohre (10, 12) angeordnet sind, mindestens einige der Rohre (20) hydraulisch parallel zueinander liegen; Stege (40) innerhalb der Rohre sich zwischen den einander gegenüberliegenden Seitenwänden (42) der Rohre an mit Abstand versehenen Intervallen erstrecken und mit diesen Seitenwänden verbunden sind, um (a) eine Vielzahl von nicht kreisförmigen Strömungswegen (46-60) innerhalb jedes Rohres (20) zu bestimmen, (b) Kräfte zu absorbieren, die sich durch den Innendruck innerhalb des Wärmetauschers ergeben und dazu neigen, die Rohre (20) zu dehnen, und (c) Wärme zwischen dem Fluid in den Strömungswegen und den einander gegenüberliegenden beiden Seitenwänden der Rohre zu leiten; welche Stege und/oder flachen Seitenwände mindestens eine konkave Zone an der Überschneidung von konvergierenden Oberflächen-Segmenten in jedem der Strömungswege bestimmen, die sich in deren Längsrichtung erstreckt; und serpentinenförmige Grate (34), die die Rohre (20) nicht gegen wesentlichen Innendruck abstützen können, sich zwischen einander zugewendeten gegenüberliegenden Seitenwänden benachbarter Rohre erstrecken.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß der Auslaß (32 oder 26) ein Kondensat-Auslaß und der Wärmetauscher ein Kondensor ist.
  3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zwischen den Öffnungen (14) jedes der Sammelrohre (10, 12) mit einer teil-kugelförmigen Kuppel versehen ist.
  4. Wärmetauscher nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Stege durch einen gewellten Einsatz (40) bestimmt sind, der mit den einander gegenüberliegenden Seitenwänden (42) verbunden ist.
  5. Wärmetauscher nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß eine Vielzahl der konkaven Zonen bei mindestens einigen der Strömungswege vorhanden ist.
  6. Wärmetauscher nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Steg mit den flachen Seitenwänden durch Kehlfüllungen (44) aus Löt- oder Hartlot-Metall verbunden ist.
  7. Wärmetauscher nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Sammelrohre (10, 12) durch allgemein zylindrische Rohre bestimmt sind.
  8. Warmetauscher nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die nicht kreisförmigen Strömungswege (46-58) diskrete Strömungswege sind.
EP93202885A 1985-10-02 1986-09-17 Wärmetauscher Revoked EP0583851B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US78308785A 1985-10-02 1985-10-02
US783087 1985-10-02
US90269786A 1986-09-05 1986-09-05
US902697 1986-09-05
EP86307161A EP0219974B1 (de) 1985-10-02 1986-09-17 Verflüssiger mit einen kleinen hydraulischen Durchmesser aufweisender Strömungsbahn

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP86307161A Division EP0219974B1 (de) 1985-10-02 1986-09-17 Verflüssiger mit einen kleinen hydraulischen Durchmesser aufweisender Strömungsbahn
EP86307161.9 Division 1986-09-17

Publications (3)

Publication Number Publication Date
EP0583851A2 EP0583851A2 (de) 1994-02-23
EP0583851A3 EP0583851A3 (de) 1994-03-09
EP0583851B1 true EP0583851B1 (de) 1997-11-19

Family

ID=27120095

Family Applications (2)

Application Number Title Priority Date Filing Date
EP86307161A Revoked EP0219974B1 (de) 1985-10-02 1986-09-17 Verflüssiger mit einen kleinen hydraulischen Durchmesser aufweisender Strömungsbahn
EP93202885A Revoked EP0583851B1 (de) 1985-10-02 1986-09-17 Wärmetauscher

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP86307161A Revoked EP0219974B1 (de) 1985-10-02 1986-09-17 Verflüssiger mit einen kleinen hydraulischen Durchmesser aufweisender Strömungsbahn

Country Status (9)

Country Link
EP (2) EP0219974B1 (de)
JP (1) JPS62175588A (de)
KR (1) KR950007282B1 (de)
AT (2) ATE160441T1 (de)
BR (1) BR8604768A (de)
CA (1) CA1317772C (de)
DE (2) DE3650658T2 (de)
ES (1) ES2002789A6 (de)
MX (1) MX167593B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137907A1 (de) * 2001-08-02 2003-02-20 Modine Mfg Co Luftgekühlte Wärmeübertragungsanordnung
US8166776B2 (en) 2007-07-27 2012-05-01 Johnson Controls Technology Company Multichannel heat exchanger
US8281615B2 (en) 2006-11-22 2012-10-09 Johnson Controls Technology Company Multichannel evaporator with flow mixing manifold

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1317772C (en) * 1985-10-02 1993-05-18 Leon A. Guntly Condenser with small hydraulic diameter flow path
US4688311A (en) * 1986-03-03 1987-08-25 Modine Manufacturing Company Method of making a heat exchanger
DE3765875D1 (de) * 1986-07-29 1990-12-06 Showa Aluminium Co Ltd Verfluessiger.
US4936379A (en) * 1986-07-29 1990-06-26 Showa Aluminum Kabushiki Kaisha Condenser for use in a car cooling system
US5482112A (en) * 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
US5458190A (en) * 1986-07-29 1995-10-17 Showa Aluminum Corporation Condenser
US5190100B1 (en) * 1986-07-29 1994-08-30 Showa Aluminum Corp Condenser for use in a car cooling system
US5246064A (en) * 1986-07-29 1993-09-21 Showa Aluminum Corporation Condenser for use in a car cooling system
JPH0544679Y2 (de) * 1988-07-12 1993-11-12
DE3843306A1 (de) * 1988-12-22 1990-06-28 Thermal Waerme Kaelte Klima Flachrohrverfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
DE3918312A1 (de) * 1988-12-22 1990-12-06 Thermal Waerme Kaelte Klima Flachrohrverfluessiger, herstellungsverfahren und anwendung
DE3843305A1 (de) * 1988-12-22 1990-06-28 Thermal Waerme Kaelte Klima Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
DE3923936C2 (de) * 1989-07-19 1996-07-11 Laengerer & Reich Kuehler Wärmeaustauscher, insbesondere Ölkühler
JPH0363497A (ja) * 1989-07-28 1991-03-19 Matsushita Refrig Co Ltd 伝熱管
US5099576A (en) * 1989-08-29 1992-03-31 Sanden Corporation Heat exchanger and method for manufacturing the heat exchanger
US5197539A (en) * 1991-02-11 1993-03-30 Modine Manufacturing Company Heat exchanger with reduced core depth
WO1992015833A1 (en) * 1991-03-11 1992-09-17 Modine Manufacturing Company Condenser with small hydraulic diameter flow path
US6016864A (en) * 1996-04-19 2000-01-25 Heatcraft Inc. Heat exchanger with relatively flat fluid conduits
EP1223391B8 (de) 1996-12-25 2005-12-21 Calsonic Kansei Corporation Kondensatoraufbaustruktur
DE19845336A1 (de) 1998-10-01 2000-04-06 Behr Gmbh & Co Mehrkanal-Flachrohr
GB2346680A (en) 1999-02-11 2000-08-16 Llanelli Radiators Ltd Condenser
EP1065454A1 (de) 1999-07-02 2001-01-03 Modine Manufacturing Company Luftgekühlter Kondensator
DE10025486A1 (de) 2000-05-23 2001-11-29 Behr Gmbh & Co Wärmeübertragerblock
DE10054158A1 (de) 2000-11-02 2002-05-08 Behr Gmbh Mehrkammerrohr mit kreisförmigen Strömungskanälen
JP2002318086A (ja) * 2001-04-16 2002-10-31 Japan Climate Systems Corp 熱交換器用チューブ
ES2266331T3 (es) 2001-04-28 2007-03-01 BEHR GMBH & CO. KG Tubo plano multicamara plegado.
DE50205000D1 (de) 2001-06-07 2005-12-29 Behr Gmbh & Co Kg Rippe, Rohr und Wärmetauscher
DE10212249A1 (de) * 2002-03-20 2003-10-02 Behr Gmbh & Co Wärmetauscher und Kühlsytem
DE20208337U1 (de) * 2002-05-28 2003-10-16 Thermo King Deutschland GmbH, 68766 Hockenheim Anordnung zum Klimatisieren eines Fahrzeugs
DE10223712C1 (de) * 2002-05-28 2003-10-30 Thermo King Deutschland Gmbh Anordnung zum Klimatisieren eines Fahrzeugs
FR2846733B1 (fr) 2002-10-31 2006-09-15 Valeo Thermique Moteur Sa Condenseur, notamment pour un circuit de cimatisation de vehicule automobile, et circuit comprenant ce condenseur
EP1503164B1 (de) * 2003-07-28 2019-05-01 Mahle Behr France Rouffach S.A.S Wärmeübertrager
GB0326443D0 (en) 2003-11-13 2003-12-17 Calsonic Kansei Uk Ltd Condenser
WO2008064257A2 (en) 2006-11-22 2008-05-29 Johnson Controls Technology Company Method for brazing and hot forming a multichannel heat exchanger, the hot forming using the heating energy of the brazing step
DE102006062261A1 (de) * 2006-12-22 2008-06-26 Konvekta Ag Klimaanlage für Fahrzeuge mit Wärmetauschereinheit mit mindestens einem nicht modular zusammengesetzten Wärmetauscher
US20090025405A1 (en) 2007-07-27 2009-01-29 Johnson Controls Technology Company Economized Vapor Compression Circuit
US8234881B2 (en) 2008-08-28 2012-08-07 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
US8439104B2 (en) 2009-10-16 2013-05-14 Johnson Controls Technology Company Multichannel heat exchanger with improved flow distribution
KR20130065174A (ko) * 2011-12-09 2013-06-19 현대자동차주식회사 차량용 열교환기
DE102015210231A1 (de) * 2015-06-03 2016-12-08 Bayerische Motoren Werke Aktiengesellschaft Wärmetauscher für ein Kühlsystem, Kühlsystem sowie Baugruppe
WO2017004061A1 (en) * 2015-06-29 2017-01-05 Carrier Corporation Microtube heat exchanger
CN113091380A (zh) * 2020-01-08 2021-07-09 青岛海尔电冰箱有限公司 冷凝系统及冰箱

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913877U (ja) * 1982-07-13 1984-01-27 株式会社デンソー 熱交換器

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1768258A (en) * 1927-07-21 1930-06-24 Robert L King Condenser
US1958226A (en) * 1932-04-06 1934-05-08 Fedders Mfg Co Inc Condenser for refrigerating apparatus
US2136641A (en) * 1936-12-21 1938-11-15 Gen Motors Corp Refrigerating apparatus
CH221087A (fr) * 1939-12-15 1942-05-15 Morris Motors Ltd Réfrigérant pour liquides.
US2373218A (en) * 1942-11-11 1945-04-10 Modine Mfg Co Oil cooler tube
JPS432682Y1 (de) * 1964-12-28 1968-02-03
US3457990A (en) * 1967-07-26 1969-07-29 Union Carbide Corp Multiple passage heat exchanger utilizing nucleate boiling
US3486489A (en) * 1968-02-12 1969-12-30 Modine Mfg Co Oil cooler
US3907032A (en) * 1971-04-27 1975-09-23 United Aircraft Prod Tube and fin heat exchanger
JPS4849054A (de) * 1971-10-22 1973-07-11
JPS49114145A (de) * 1973-03-09 1974-10-31
JPS5149642U (de) * 1974-10-11 1976-04-14
JPS6049837B2 (ja) * 1976-06-02 1985-11-05 日立電線株式会社 凝縮器用伝熱管
US4190105A (en) * 1976-08-11 1980-02-26 Gerhard Dankowski Heat exchange tube
US4159034A (en) * 1977-05-12 1979-06-26 Modine Manufacturing Company Weldment heat exchanger
GB1559318A (en) * 1977-08-12 1980-01-16 Hammond J A Heat recovery
JPS5485461A (en) * 1977-12-21 1979-07-07 Furukawa Metals Co Insideegrooved heat transfer tube
GB1601954A (en) * 1978-05-15 1981-11-04 Covrad Ltd Heat exchanger
JPS564834A (en) * 1979-06-25 1981-01-19 Fujitsu Ltd Photo detection control system by light pen
JPS592715Y2 (ja) * 1979-06-27 1984-01-25 製鉄化学工業株式会社 内装コンテナ−
GB2058324B (en) * 1979-09-14 1983-11-02 Hisaka Works Ltd Surface condenser
GB2059562B (en) * 1979-09-21 1983-11-16 Berti P M Liquid-type evaporator
JPS6324395Y2 (de) * 1980-04-09 1988-07-04
JPS5913877B2 (ja) * 1980-06-03 1984-04-02 グンゼ株式会社 自動縫製方法
JPS5766389U (de) * 1980-10-06 1982-04-20
JPS57198992A (en) * 1981-05-29 1982-12-06 Tsuchiya Mfg Co Ltd Manufacture of flat tube type heat exchanger
JPS5837465A (ja) * 1981-08-31 1983-03-04 株式会社デンソー 冷媒蒸発器
JPS58169386U (ja) * 1982-04-30 1983-11-11 三菱重工業株式会社 伝熱管
JPS58221390A (ja) * 1982-06-18 1983-12-23 Nippon Denso Co Ltd 熱交換器
US4569390A (en) * 1982-09-24 1986-02-11 Knowlton Bryce H Radiator assembly
JPS5971084U (ja) * 1982-10-29 1984-05-14 株式会社神戸製鋼所 内面溝付き伝熱管
JPS59129392A (ja) * 1983-01-10 1984-07-25 Nippon Denso Co Ltd 熱交換器
JPS59129392U (ja) * 1983-02-17 1984-08-30 シャープ株式会社 サ−ボモ−タの制御回路
JPS59205591A (ja) * 1983-05-09 1984-11-21 Nippon Denso Co Ltd 熱交換器
JPS6091977U (ja) * 1983-11-28 1985-06-24 住友軽金属工業株式会社 熱交換器
CA1317772C (en) * 1985-10-02 1993-05-18 Leon A. Guntly Condenser with small hydraulic diameter flow path
US4688311A (en) * 1986-03-03 1987-08-25 Modine Manufacturing Company Method of making a heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913877U (ja) * 1982-07-13 1984-01-27 株式会社デンソー 熱交換器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137907A1 (de) * 2001-08-02 2003-02-20 Modine Mfg Co Luftgekühlte Wärmeübertragungsanordnung
US6772602B2 (en) 2001-08-02 2004-08-10 Modine Manufacturing Company Cooling system for a vehicle
US8281615B2 (en) 2006-11-22 2012-10-09 Johnson Controls Technology Company Multichannel evaporator with flow mixing manifold
US8166776B2 (en) 2007-07-27 2012-05-01 Johnson Controls Technology Company Multichannel heat exchanger

Also Published As

Publication number Publication date
KR950007282B1 (ko) 1995-07-07
DE3650658D1 (de) 1998-01-02
DE3650648D1 (de) 1997-10-30
EP0583851A3 (de) 1994-03-09
EP0219974B1 (de) 1996-11-06
EP0219974A3 (de) 1989-08-02
CA1317772C (en) 1993-05-18
ES2002789A6 (es) 1988-10-01
EP0219974A2 (de) 1987-04-29
DE3650658T2 (de) 1998-05-14
MX167593B (es) 1993-03-31
DE3650648T2 (de) 1999-04-15
ATE145051T1 (de) 1996-11-15
ATE160441T1 (de) 1997-12-15
BR8604768A (pt) 1987-06-30
KR880004284A (ko) 1988-06-03
EP0583851A2 (de) 1994-02-23
JPH0587752B2 (de) 1993-12-17
JPS62175588A (ja) 1987-08-01

Similar Documents

Publication Publication Date Title
EP0583851B1 (de) Wärmetauscher
US4998580A (en) Condenser with small hydraulic diameter flow path
US6179051B1 (en) Distributor for plate heat exchangers
US5372188A (en) Heat exchanger for a refrigerant system
US5279360A (en) Evaporator or evaporator/condenser
EP0643278B1 (de) Verdampfer für Kühler in Kraftwagen
US3147800A (en) Serpentined heat exchanger
US3732919A (en) Heat exchanger
CN101490494A (zh) 螺旋扁平管式换热器
WO2008105760A2 (en) Multi-channel flat tube evaporator with improved condensate drainage
KR19990067881A (ko) 액체 냉각식 2상 열교환기
US5042578A (en) Heat exchanger
US5246064A (en) Condenser for use in a car cooling system
US5190100A (en) Condenser for use in a car cooling system
US4485643A (en) Evaporator for refrigerators and the like
JP3661275B2 (ja) 積層型蒸発器
JPS6214751B2 (de)
US5680773A (en) Refrigerant evaporator having upstream and downstream tanks of different cross sections
GB2391296A (en) Plate heat exchanger and its method of manufacture
CN212747461U (zh) 换热器及空调器
CN111595192A (zh) 换热器及空调器
WO1992015833A1 (en) Condenser with small hydraulic diameter flow path
WO1994027105A1 (en) Mechanically assembled high internal pressure heat exchanger
JP2677420B2 (ja) 冷媒凝縮器用熱交換器
JPH0395368A (ja) 凝縮器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AC Divisional application: reference to earlier application

Ref document number: 219974

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19940322

17Q First examination report despatched

Effective date: 19950215

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 219974

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 160441

Country of ref document: AT

Date of ref document: 19971215

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3650658

Country of ref document: DE

Date of ref document: 19980102

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SHOWA ALUMINUM CORPORATION / MITSUBISHI HEAVY INDU

Effective date: 19980814

Opponent name: BEHR GMBH & CO.

Effective date: 19980814

Opponent name: VALEO THERMIQUE MOTEUR

Effective date: 19980811

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

NLR1 Nl: opposition has been filed with the epo

Opponent name: SHOWA ALUMINUM CORPORATION / MITSUBISHI HEAVY INDU

Opponent name: BEHR GMBH & CO.

Opponent name: VALEO THERMIQUE MOTEUR

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VALEO THERMIQUE MOTEUR * 19980814 BEHR GMBH & CO.

Effective date: 19980811

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VALEO THERMIQUE MOTEUR * 19980814 BEHR GMBH & CO.

Effective date: 19980811

NLR1 Nl: opposition has been filed with the epo

Opponent name: SHOWA ALUMINUM CORPORATION / MITSUBISHI HEAVY INDU

Opponent name: BEHR GMBH & CO.

Opponent name: VALEO THERMIQUE MOTEUR

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

R26 Opposition filed (corrected)

Opponent name: VALEO THERMIQUE MOTEUR * 19980814 BEHR GMBH & CO.

Effective date: 19980811

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

NLR1 Nl: opposition has been filed with the epo

Opponent name: SHOWA ALUMINUM CORPORATION / MITSUBISHI HEAVY INDU

Opponent name: BEHR GMBH & CO.

Opponent name: VALEO THERMIQUE MOTEUR

NLR1 Nl: opposition has been filed with the epo

Opponent name: SHOWA ALUMINUM CORPORATION / MITSUBISHI HEAVY INDU

Opponent name: BEHR GMBH & CO.

Opponent name: VALEO THERMIQUE MOTEUR

26 Opposition filed

Opponent name: ADAM OPEL AG

Effective date: 20000831

Opponent name: SHOWA ALUMINUM CORPORATION / MITSUBISHI HEAVY INDU

Effective date: 19980814

Opponent name: BEHR GMBH & CO.

Effective date: 19980814

Opponent name: VALEO THERMIQUE MOTEUR

Effective date: 19980811

NLR1 Nl: opposition has been filed with the epo

Opponent name: ADAM OPEL AG

Opponent name: SHOWA ALUMINUM CORPORATION / MITSUBISHI HEAVY INDU

Opponent name: BEHR GMBH & CO.

Opponent name: VALEO THERMIQUE MOTEUR

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: VALEO THERMIQUE MOTEUR * 19980814 BEHR GMBH & CO.

Effective date: 19980811

R26 Opposition filed (corrected)

Opponent name: VALEO THERMIQUE MOTEUR * 19980814 BEHR GMBH & CO.

Effective date: 19980811

NLR1 Nl: opposition has been filed with the epo

Opponent name: SHOWA DENKO K.K.

Opponent name: ADAM OPEL AG

Opponent name: SHOWA ALUMINUM CORPORATION / MITSUBISHI HEAVY INDU

Opponent name: BEHR GMBH & CO.

Opponent name: VALEO THERMIQUE MOTEUR

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030902

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030909

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030910

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030918

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030919

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031031

Year of fee payment: 18

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20030703

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20030703

NLR2 Nl: decision of opposition

Effective date: 20030703

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO