EP0576448B1 - Procede et dispositif pour la ventilation de reservoirs - Google Patents

Procede et dispositif pour la ventilation de reservoirs Download PDF

Info

Publication number
EP0576448B1
EP0576448B1 EP92905556A EP92905556A EP0576448B1 EP 0576448 B1 EP0576448 B1 EP 0576448B1 EP 92905556 A EP92905556 A EP 92905556A EP 92905556 A EP92905556 A EP 92905556A EP 0576448 B1 EP0576448 B1 EP 0576448B1
Authority
EP
European Patent Office
Prior art keywords
fuel tank
tank ventilation
venting
fuel
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92905556A
Other languages
German (de)
English (en)
Other versions
EP0576448A1 (fr
Inventor
Helmut Denz
Ernst Wild
Andreas Blumenstock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0576448A1 publication Critical patent/EP0576448A1/fr
Application granted granted Critical
Publication of EP0576448B1 publication Critical patent/EP0576448B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system

Definitions

  • the invention relates to a method and a device for alternating execution of phases with and without tank ventilation when operating an internal combustion engine with tank ventilation system.
  • EP-A-0 208 069 describes a method according to which phases with and without tank ventilation, namely tank ventilation phases and basic adaptation phases, alternate in a fixed pattern. 5 minutes are given for the tank ventilation period and 1 minute for the basic adaptation period. In practice, the first period is somewhat shorter and the second is somewhat longer.
  • the time periods mentioned can also be changed depending on the engine speed in order to be able to carry out predetermined time cycles even when the accelerator pedal is operated frequently.
  • the duration of the tank ventilation period determines the size of the adsorption filter in which fuel vapor from the tank is adsorbed, and these sizes also determine the diameter of the tank ventilation valve, with the aid of which the adsorption filter is flushed with air becomes.
  • the size of the adsorption filter and the cross section of the tank ventilation valve must be such that Even with the greatest possible amount of fuel vapor, essentially all fuel vapor can be adsorbed during the basic adaptation periods and desorbed again during the tank ventilation periods.
  • the general problem in technology is to operate devices using such methods and to design them in such a way that the components are used as sensibly as possible. This problem also applied accordingly to methods and devices for carrying out phases with and without tank ventilation when operating an internal combustion engine with a tank ventilation system.
  • the device according to the invention is defined in claim 9.
  • tank ventilation is carried out continuously at full load without lambda control with the tank ventilation valve fully open. This is based on the knowledge that at full load without lambda control in the phases without tank ventilation, no basic adaptation can be carried out, so that it makes more sense to use the entire time for tank ventilation. Due to the fact that the valve is kept open rather than keyed, it is little stressed.
  • a diagnostic method for the functionality of the tank ventilation system is started during a tank ventilation phase, which requires a temporary closing of the tank ventilation valve
  • a basic adaptation phase is started immediately with the closing of the valve and the next tank ventilation phase becomes at least partial compensation for the previous one that has been canceled Extended phase.
  • the diagnostic time is used sensibly in parallel for adaptation.
  • the method with a variable ratio of the time periods mentioned makes it possible to design the adsorption filter and the tank ventilation valve for the throughput of an average amount of fuel from the tank ventilation instead of a maximum amount.
  • These parts which are thus smaller than previously, are nevertheless capable of satisfactorily satisfying even very high amounts of fuel vapor, as they occur from time to time to vent, because in this case the tank ventilation period is extended at the expense of the basic adaptation period.
  • Shortening the basic adaptation period z. B. up to 1 minute and extending the distance between two such periods to z. B. 15 minutes (duration of the extended tank ventilation period) leads to disadvantages only in exceptional cases, e.g. B. with very fast uphill driving a relatively steep road.
  • the amount of fuel vapor generated in the tank ventilation would be most accurately determined by a flow meter between the tank and the adsorption filter.
  • a flow meter would be extremely expensive and complex if it were to work accurately.
  • the greater the pressure difference measured by this sensor the stronger the fuel gas in the tank.
  • the ratio of tank ventilation to basic adaptation time can accordingly be made dependent on this pressure difference.
  • Another very advantageous possibility is to make the ratio mentioned dependent on the tank ventilation adaptation factor itself. This is because it is a direct measure of the amount of fuel vapor currently generated during tank ventilation. However, this value is not updated during the basic adaptation period.
  • the tank ventilation valve is actuated in a clocked manner, while in the basic adaptation time periods it is closed without current. It therefore contributes significantly to increasing the service life of the tank ventilation valve if it is only activated when this is actually required for tank ventilation.
  • Another control type of low load mentioned above is to keep the valve open all the time, which is without a load at full load Lambda control is possible.
  • the answer to the question of how much the tank ventilation period has to be extended in order to prevent the adsorption filter from becoming oversaturated depends not only on how much fuel vapor is supplied to the filter from the tank, but also on how good the filter is in each case Operating state can be rinsed.
  • the pressure at the outlet of the tank ventilation system is so low that the amount of purge gas must be limited by partially closing the tank ventilation valve (corresponding duty cycle).
  • the flushing effect is sometimes small even when the tank ventilation valve is fully open. It is therefore advantageous to increase the tank ventilation period not only with an increasing amount of fuel vapor supplied to the adsorption filter, but also with an increasing load, that is to say a decreasing purge effect.
  • FIG. 1 shows an internal combustion engine 10 with an intake pipe 11, in which a throttle valve 12 and an injection valve 13 are arranged, and with an exhaust pipe 14, in which an oxygen sensor 15 is attached.
  • the injection times with which the injection valve 13 is operated are determined by adapted pilot control with lambda control.
  • injection times are read out from an injection time map 16 as a function of speed n and load L and are linked to adaptation variables and a control factor FR.
  • the control factor FR is provided by a lambda controller 17, which forms this factor on the basis of a control algorithm based on a control deviation, which corresponds to the difference between a lambda setpoint value read from a setpoint map 18 and the actual lambda value supplied by the lambda probe 15 .
  • the control factor FR that is to say the manipulated value of the lambda control, is the basis for adapted values as they are formed by a basic adaptation device 19 and a tank ventilation adaptation device 20.
  • the basic adaptation device 19 calculates various correction variables in any known manner.
  • Fig. 1 illustrates three unspecified quantities for the basic adaptation. In this case, the first additive leakage air error can adapt, the second multiplicative air density changes can be compensated, and the third in turn can adapt additive change-in and fall-time changes of the injection valve 13.
  • the tank ventilation adaption device 20 provides a multiplicative factor FTEA for the tank ventilation, which has the value one during inactive tank ventilation, but in the case of active tank ventilation an adapted value greater or less one, depending on whether the tank ventilation contains a leaner or richer mixture in the Intake pipe leads when it is provided in the mixture formation without tank ventilation adaptation.
  • FTEA multiplicative factor
  • fuel can be supplied to the internal combustion engine 10 in two ways, namely either via the injection valve 13 or via a ventilation line 21 of a tank ventilation system.
  • the fuel injector 13 receives its fuel from a tank 23 via a fuel pump 22.
  • This tank 23 is vented via an adsorption filter 24, a tank vent valve 25 and the vent line 21.
  • the tank ventilation adaptation device 20 receives the value one as an input value, with the result that no adaptation is carried out. It outputs the value one as the tank ventilation factor FTEA.
  • the tank ventilation adaptation device 20 receives the output signal FR from the lambda controller, and it outputs the tank ventilation adaptation factor FTEA.
  • the basic adaptation device 19 receives the value one as an input value in this tank ventilation period. As a result, the basic adaptation sizes remain unchanged and continue to be output according to their last status.
  • the tank vent valve 25 is not necessarily fully opened in the tank venting periods. Rather, it is usually controlled with a certain duty cycle, which is read out from a duty cycle map 27 as a function of speed n and load L.
  • the pulse duty factors are dimensioned such that a maximum amount of air can pass through the tank ventilation valve 25. At idle, this amount is limited relatively sharply, while at full load the tank ventilation valve is opened completely.
  • the adsorption filter 24 is completely regenerated, the duty cycle TVH read out from the duty cycle map 27 remains unchanged. Otherwise, it is reduced with the aid of a limit control 28 depending on the value of the tank ventilation factor FTEA.
  • the limit value control outputs a factor FTVH that takes a maximum of one. The richer the mixture from the vent line 21 into the intake manifold 11, the more the duty cycle TVH read out from the duty cycle map 27 is reduced with the help of the factor FTVH mentioned.
  • sequence controller 29 In known methods and devices for alternately executing basic adaptation GA and tank ventilation adaptation TEA, the sequence controller bases fixed values on the basic adaptation period and the tank ventilation period, typically 1.5 minutes and 4 minutes . In the invention, however, the sequence control 29 varies the ratio of the tank ventilation to the basic adaptation period depending on the amount of fuel that arises during the tank ventilation.
  • a direct measure of the amount of fuel vapor generated in the tank ventilation is the value of the tank ventilation adaptation factor FTEA. If this value indicates a very rich tank ventilation mixture, the tank ventilation period is extended and the basic adaptation period is shortened. In the opposite case, the time periods mentioned are changed in reverse. However, it should be noted that when choosing the size FTEA as a measure of the amount of fuel generated in the tank ventilation, the basic adaptation period must not be chosen too long, since the size FTEA is not updated during this time and it is therefore unknown whether there is a lot or has little fuel accumulated in the adsorption filter 24.
  • Very large basic adaptation periods can, however, be selected if the pressure difference between the internal pressure of the tank 23 and the atmospheric pressure is used as a measure of the amount of fuel to be regenerated.
  • a differential pressure sensor 30 is connected to the tank. Its signal is fed to the sequence controller 29.
  • the differential pressure is an immediate indication of whether much or little fuel has evaporated and should be regenerated accordingly.
  • the differential pressure was initially very low and therefore a long basic adaptation period was chosen, but is If an increase in the differential pressure is observed during this period, the basic adaptation can be stopped and tank ventilation can be carried out.
  • step s2.1 it is first examined whether Dp is less than a lower threshold value Dp_SWU. If this is the case, an extended basic adaptation period of 10 minutes and a customary tank ventilation period of 4 minutes are set in a step s2.2. Otherwise, it is queried in a step s2.3 whether Dp is smaller than an average threshold value Dp_SWM. If this is the case, conventional time periods are selected, as entered in step s2.4 in FIG. 2. Otherwise, it is queried in a step s2.5 whether the differential pressure Dp is below a high threshold value Dp_SWH.
  • the basic adaptation period is shortened to 1 minute in a step s2.6, and the tank ventilation period is extended to 6 minutes. Otherwise, that is to say with a very high differential pressure, the tank ventilation period is extended even further in a step s2.7, namely to 15 minutes. However, the basic adaptation period remains at 1 minute. In the exemplary embodiment, this is the shortest period of time within which the basic adaptation can still be carried out expediently.
  • FIG. 3 illustrates a similar procedure if, instead of the differential pressure Dp, the tank ventilation adaptation factor FTEA is used as a measure for the amount of fuel to be regenerated in the tank ventilation.
  • the tank ventilation adaptation factor FTEA is used as a measure for the amount of fuel to be regenerated in the tank ventilation.
  • the differences are that in the latter case the basic adaptation period must not be extended for a reason mentioned above and that the factor mentioned increases with increasing The amount of fuel becomes smaller, while the differential pressure increases in this case. This leads to changed queries.
  • a step s3.1 it is examined whether the value of FTEA is less than a lower threshold FTEA_SWU. If this is the case, the basic adaptation period is shortened to the minimum value of 1 minute in a step s3.2, and the tank ventilation period is extended to 10 minutes. Otherwise, it is queried in a step s3.3 whether the value of FTEA is below a high threshold FTEA_SWH. If this is the case, the usual time periods are set in step s3.4, which represent the initial ratio of tank ventilation to basic adaptation time period. Otherwise, the tank venting period is shortened to 3 minutes in a step s3.5, while the basic adaptation period is increased slightly to 2 minutes. A longer extension is not justifiable because the value FTEA is not updated during the basic adaptation phases and it is therefore unclear whether the amount of fuel to be regenerated has changed.
  • step s4.1 after two marks A and B have been run through (see also FIG. 5), basic adaptation is first started.
  • step s4.2 a query is made as to whether Basic adaptation is currently running. Since this is the case after the start of the method, it is checked whether the basic adaptation period T_GA has already expired (step s4.3). The information on the current time period T_GA is supplied by a block bl. Shortly after the start of the method, this period of time has not yet expired, whereupon step s4.3 is followed by a step s4.8, in which a query is made as to whether the method should be ended.
  • step s4.2 If it is determined after some time in step s4.3 that the current value of the basic adaptation time period T_GA has been reached, the basic adaptation GA is ended in a step s4.5 and the tank ventilation adaptation TEA is started. It is then checked (step s4.6) whether the current tank ventilation period T_TEA has already expired. The value of this time period is made available from a block b2. If the time has not yet expired, after passing through two marks C and D (see also FIG. 6), steps s4.8, s4.2 and s4.6 are repeated until the time period T_TEA has expired. Then the tank ventilation adaptation is ended and the basic adaptation is started again (step s4.7). After step s4.8 of querying the end of the method, the sequence described from step s4.2 may follow again.
  • T_GA and T_TEA are determined according to one of the methods explained with reference to FIGS. 2 and 3.
  • T_TEA it is indicated in brackets in block b2 that this variable can additionally be selected depending on the load. This takes into account the fact that at high loads on the adsorption filter 24 there is only a slight pressure drop between the vent line 21 and the vent line 26, so that the filter is only slightly regenerated. It is now assumed that the differential pressure sensor 29 is a constant one Differential pressure is measured. The amount of fuel vapor generated at this average differential pressure can be regenerated better at medium loads than at high ones.
  • the ratio of the tank ventilation to the basic adaptation period not only as a function of the differential pressure Dp, but also as a function of the speed n and load L.
  • the load condition is of lesser importance, however, if the ratio mentioned is based on the tank ventilation Adaptation factor FTEA is set. If, under higher loads, regeneration is initially insufficient, this leads to a reduction in the FTEA factor, which automatically results in an increase in the tank ventilation period.
  • FIG. 5 illustrates an exemplary embodiment of how it can be used independently or between marks A and B in the course of FIG. 4. It is examined whether full load is present (step s5.1). If this is the case, tank ventilation is carried out (step s5.2) and step s5.1 is repeated until it is found there that the queried condition is no longer fulfilled. This procedure is based on the knowledge that at full load in engines with lambda control, this is generally switched off, which is why no basic adaptation can be carried out, so it is not worthwhile. to interrupt the tank ventilation, which does not work too effectively at full load anyway.
  • FIG. 6 illustrates an exemplary embodiment of how it can be used independently or between marks C and D in the course of FIG. 4. It is examined (step s6.3) whether a tank system diagnosis should be carried out with the tank ventilation valve closed.
  • a tank system diagnosis should be carried out with the tank ventilation valve closed.
  • the tank ventilation valve is closed after a negative pressure builds up on the adsorption filter in order to use the time behavior of the resulting reduction in the negative pressure to re-establish the functionality of the system.
  • the closing of the valve and the diagnosis are the subject of a step s6.2 in FIG. 6.
  • the tank ventilation phase is ended, a basic adaptation phase is started and an enlargement factor for the next tank ventilation period is output (step s6.3). .
  • the magnification factor has the value two in the exemplary embodiment.
  • it makes sense to limit the maximum tank ventilation time period, as obtained by multiplication by the enlargement factor, for the reasons explained in connection with FIG. 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

Un procédé pour l'exécution alternée de phases avec et sans ventilation du réservoir lors du fonctionnement d'un moteur à combustion interne (10) avec système de ventilation du réservoir (21, 24-26) est caractérisé en ce que le rapport de la durée avec et sans ventilation du réservoir est choisi en fonction des caractéristiques de régime du moteur ou du système de ventilation du réservoir. De préférence, la grandeur constituant un paramètre pour la quantité de carburant à régénérer lors de la ventilation du réservoir est mesurée et le rapport indiqué est augmenté en faveur de la durée de ventilation du réservoir relativement à un rapport initial, si la valeur de la grandeur mesurée dépasse une limite supérieure (Dp-SMW; FTEA-SWU). Ce procédé permet de dimensionner un filtre d'adsorption (24) et une soupape de ventilation du réservoir (25) dans le dispositif y afférant pour des débits moins grands que cela n'a été le cas jusqu'à présent, sans qu'il y ait le risque que des vapeurs de carburant sortent dans l'air ambiant. C'est pourquoi lors d'une grande quantité de vapeur de carburant, la durée de ventilation du réservoir est prolongée par rapport à la durée d'adaptation de base, ce qui régénère encore suffisamment le filtre d'adsorption réduit malgré la section réduite de la soupape de ventilation du réservoir.

Claims (9)

  1. Procédé pour réaliser de façon alternée des phases avec et sans ventilation du réservoir lors du fonctionnement d'un moteur à combustion interne (10) avec un système de ventilation du réservoir (21, 24, 26) et une régulation lambda (17),
    caractérisé en ce que
    - le rapport entre les périodes de temps avec et sans ventilation du réservoir est choisi en fonction de données de fonctionnement du système de ventilation du réservoir,
    - une grandeur (Dp ; FTEA) étant mesuré, grandeur qui est une mesure de la quantité de carburant à régénérer lors de la ventilation du réservoir,
    - et le rapport des périodes de temps avec et sans ventilation du réservoir étant augmenté en faveur de la période de temps avec ventilation par rapport à un rapport de départ, quand la quantité de carburant dépasse selon la grandeur de mesure une limite supérieure (Dp_SMW ; FTEA_SWU).
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    le rapport mentionné est abaissé par rapport au rapport de départ, quand la quantité de carburant dépasse selon la grandeur de mesure une limite inférieure (Dp_SUW ; FTEA_SWH).
  3. Procédé selon l'une des revendications 1 ou 2,
    caractérisé en ce que
    lors de l'augmentation du rapport mentionné on abaisse la période de temps sans ventilation (T_GA) seulement jusqu'à une valeur minimale prédéfinie et une autre augmentation a lieu en allongeant la période de temps de la ventilation du réservoir (T_TEA).
  4. Procédé selon l'une des revendications 1 à 3,
    caractérisé en ce qu'
    on utilise comme grandeur mesurée la différence de pression (Dp) entre la pression du réservoir et la pression environnante.
  5. Procédé selon l'une des revendications 1 à 4,
    caractérisé en ce qu'
    on utilise comme grandeur mesurée le facteur d'adaptation de la ventilation du réservoir (FTEA).
  6. Procédé selon l'une des revendications 1 à 5,
    caractérisé en ce que
    les périodes de temps (T_TEA), à charge élevée, de la ventilation du réservoir sont allongées plus fortement qu'à charge basse.
  7. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    à pleine charge sans régulation lambda on réalise en permanence la ventilation du réservoir avec la soupape (25) de ventilation du réservoir complètement ouverte.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    quand pendant une phase de ventilation du réservoir on ferme une soupape de ventilation du réservoir (25) à des fins de diagnostic, on fait démarrer aussitôt une phase d'adaptation de base pour la régulation lambda et on allonge la phase suivante de ventilation du réservoir.
  9. Dispositif (29) servant à effectuer de façon alternée des phases avec et sans ventilation du réservoir lors du fonctionnement d'un moteur à combustion interne (10) avec le système de ventilation du réservoir (21, 24 à 26),
    caractérisé en ce qu'
    il est constitué de telle façon qu'il choisit le rapport des périodes de temps avec et sans ventilation du réservoir en fonction de données de fonctionnement du système de ventilation du réservoir.
EP92905556A 1991-03-22 1992-02-21 Procede et dispositif pour la ventilation de reservoirs Expired - Lifetime EP0576448B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4109401 1991-03-22
DE4109401A DE4109401A1 (de) 1991-03-22 1991-03-22 Verfahren und vorrichtung zur tankentlueftung
PCT/DE1992/000127 WO1992016734A2 (fr) 1991-03-22 1992-02-21 Procede et dispositif pour la ventilation de reservoirs

Publications (2)

Publication Number Publication Date
EP0576448A1 EP0576448A1 (fr) 1994-01-05
EP0576448B1 true EP0576448B1 (fr) 1997-07-09

Family

ID=6427942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92905556A Expired - Lifetime EP0576448B1 (fr) 1991-03-22 1992-02-21 Procede et dispositif pour la ventilation de reservoirs

Country Status (5)

Country Link
US (1) US5372117A (fr)
EP (1) EP0576448B1 (fr)
JP (1) JP3396220B2 (fr)
DE (2) DE4109401A1 (fr)
WO (1) WO1992016734A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10319257A1 (de) * 2003-04-28 2004-11-18 Volkswagen Ag Verfahren zur Ablaufsteuerung von Tankentlüftungs- und Gemischadaptionsphasen bei einem Verbrennungsmotor und Verbrennungsmotor mit Ablaufsteuerung

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412275A1 (de) * 1994-04-09 1995-10-12 Bosch Gmbh Robert Verfahren zum Entlüften einer Brennstoffanlage für eine Brennkraftmaschine
JP3194670B2 (ja) * 1994-06-30 2001-07-30 三菱電機株式会社 内燃機関の電子制御装置
FR2731047B1 (fr) * 1995-02-28 1997-04-18 Siemens Automotive Sa Procede de diagnostic du fonctionnement d'un systeme de recuperation des vapeurs de carburant d'un vehicule automobile
DE19648711B4 (de) * 1996-11-25 2006-07-13 Robert Bosch Gmbh Verfahren zur Bestimmung der Durchflußmenge durch ein Regenerierventil einer Tankentlüftungsanlage
DE10126520C2 (de) * 2001-05-30 2003-07-03 Bosch Gmbh Robert Verfahren und Vorrichtung zur quantitativen Ermittlung einer Brennstoffausgasung in einer Brennstofftankanlage
DE10324813B4 (de) * 2003-06-02 2015-12-31 Robert Bosch Gmbh Verfahren zur Diagnose eines Tankentlüftungsventils
WO2005116427A1 (fr) 2004-04-30 2005-12-08 Volkswagen Aktiengesellschaft Procede de commande de deroulement de phases de ventilation de reservoir et d'adaptation du melange dans un moteur a combustion interne et moteur a combustion interne equipe d'une commande de deroulement
DE102007008119B4 (de) * 2007-02-19 2008-11-13 Continental Automotive Gmbh Verfahren zum Steuern einer Brennkraftmaschine und Brennkraftmaschine
DE102019203409A1 (de) * 2019-03-13 2020-09-17 Robert Bosch Gmbh Verfahren zum Adaptieren einer einzuspritzenden Kraftstoffmenge in einen Verbrennungsmotor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922066B2 (ja) * 1979-03-08 1984-05-24 日産自動車株式会社 内燃機関の蒸発燃料処理装置
JPS57165644A (en) * 1981-04-07 1982-10-12 Nippon Denso Co Ltd Control method of air-fuel ratio
JPS608458A (ja) * 1983-06-28 1985-01-17 Fuji Heavy Ind Ltd キヤニスタパ−ジ装置
JPS6065245A (ja) * 1983-09-19 1985-04-15 Toyota Motor Corp 内燃機関の空燃比制御装置
DE3502573C3 (de) * 1985-01-26 2002-04-25 Bosch Gmbh Robert Vorrichtung zur Entlüftung von Kraftstofftanks
DE3519475A1 (de) * 1985-05-31 1986-12-04 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur tankentlueftungssteuerung bei brennkraftmaschinen
JPH073211B2 (ja) * 1985-07-17 1995-01-18 日本電装株式会社 燃料蒸発ガス排出抑止装置
DE3822300A1 (de) * 1988-07-01 1990-01-04 Bosch Gmbh Robert Verfahren und vorrichtung zur tankentlueftungsadaption bei lambdaregelung
JP2721978B2 (ja) * 1988-08-31 1998-03-04 富士重工業株式会社 空燃比学習制御装置
DE4003751C2 (de) * 1990-02-08 1999-12-02 Bosch Gmbh Robert Tankentlüftungsanlage für ein Kraftfahrzeug und Verfahren zum Überprüfen deren Funktionstüchtigkeit
DE59000761D1 (de) * 1990-04-12 1993-02-25 Siemens Ag Tankentlueftungssystem.
US5085194A (en) * 1990-05-31 1992-02-04 Honda Giken Kogyo K.K. Method of detecting abnormality in an evaporative fuel-purging system for internal combustion engines
JP2606426B2 (ja) * 1990-09-14 1997-05-07 日産自動車株式会社 エンジンのキャニスタ装置
US5048493A (en) * 1990-12-03 1991-09-17 Ford Motor Company System for internal combustion engine
DE4112481A1 (de) * 1991-04-17 1992-10-22 Bosch Gmbh Robert Verfahren und vorrichtung zum ueberpruefen der funktionsfaehigkeit einer tankentlueftungsanlage
US5208342A (en) * 1992-03-30 1993-05-04 Hoechst Celanese Corporation Conversion of pyridine-2,3-dicarboxylic acid esters to cyclic anhydrides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, vol. 9, no. 202 (M-405)[1925], 20. August 1985; & JP-A-6065245 (TOYOTA) 15. April 1985 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10319257A1 (de) * 2003-04-28 2004-11-18 Volkswagen Ag Verfahren zur Ablaufsteuerung von Tankentlüftungs- und Gemischadaptionsphasen bei einem Verbrennungsmotor und Verbrennungsmotor mit Ablaufsteuerung

Also Published As

Publication number Publication date
WO1992016734A3 (fr) 1992-11-12
JP3396220B2 (ja) 2003-04-14
DE59208691D1 (de) 1997-08-14
JPH06505782A (ja) 1994-06-30
EP0576448A1 (fr) 1994-01-05
WO1992016734A2 (fr) 1992-10-01
DE4109401A1 (de) 1992-09-24
US5372117A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
DE19606848C2 (de) Luft/Brennstoffverhältnis-Regelvorrichtung für eine Brennkraftmaschine
DE19702584C2 (de) Verdampfersystem und Verfahren für dessen Diagnose
DE602004003404T2 (de) Partikelfilterregeneration
DE19938037B4 (de) Diagnose-System für einen Verbrennungsmotor
DE3813220C2 (de) Verfahren und Einrichtung zum Stellen eines Tankentlüftungsventiles
DE3423144C2 (de) Verfahren zum Steuern der Zufuhr von Kraftstoff zu einer Brennkraftmaschine bei Beschleunigung
DE69918914T2 (de) Verfahren und Vorrichtung zur Steuerung des Luft-Kraftstoffverhältnisses in einer Brennkraftmaschine
DE19842425C2 (de) Verfahren zur Korrektur der Kennlinie einer linearen Lambda-Sonde
DE19859462B4 (de) Verfahren zur Entgiftung eines Katalysators sowie Motorsteuersystem zur Durchführung des Katalysatorentgiftungsverfahrens
DE102005005537A1 (de) Steuergerät für Verbrennungsmaschine
DE3533287A1 (de) Verfahren zur feststellung einer abnormitaet in einem system zur detektion der konzentration eines auspuffgasbestandteiles bei einer brennkraftmaschine
DE3714151A1 (de) Steuereinrichtung fuer die drosselklappe eines verbrennungsmotors
EP0154710A1 (fr) Dispositif pour la commande des paramètres de fontionnement d'un moteur à C.I.
EP0576448B1 (fr) Procede et dispositif pour la ventilation de reservoirs
DE19545924B4 (de) Verfahren und Vorrichtungen zum Steuern des Luft/Kraftstoffverhältnis-Lernens eines Motors mit innerer Verbrennung
DE112019004370T5 (de) Verarbeitungsvorrichtung für verdampften Kraftstoff
DE4319772A1 (de) Verfahren und Vorrichtung zum Steuern einer Tankentlüftungsanlage
DE4120062C2 (de) Vorrichtung zum Erkennen von schwer verdampfbarem Kraftstoff
DE4442043C2 (de) Behältersteuervorrichtung für Kraftstoffdampf und Steuerverfahren für eine Verbrennungskraftmaschine
DE3918779C2 (fr)
DE19719278A1 (de) Verfahren zur Diagnose eines Abgasrückführungs (AGR) -Systems einer Brennkraftmaschine
DE60301168T2 (de) Vorrichtung und Verfahren zur Abgasreinigung einer Brennkraftmaschine
DE102004022999B3 (de) Verfahren zur Ermittlung der Steuerkennlinie eines Regenerierventils eines Kraftstoffdampf-Rückhaltesystems
DE19727297A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE3438465A1 (de) Verfahren zur steuerung der betriebsgroesse einer einrichtung zur steuerung des betriebes einer brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 19950215

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59208691

Country of ref document: DE

Date of ref document: 19970814

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040218

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110421

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59208691

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59208691

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120222