EP0519334B1 - Echangeur de chaleur à tubes plats, procédé pour sa fabrication, applications et tubes plats pour échangeur de chaleur - Google Patents

Echangeur de chaleur à tubes plats, procédé pour sa fabrication, applications et tubes plats pour échangeur de chaleur Download PDF

Info

Publication number
EP0519334B1
EP0519334B1 EP92109870A EP92109870A EP0519334B1 EP 0519334 B1 EP0519334 B1 EP 0519334B1 EP 92109870 A EP92109870 A EP 92109870A EP 92109870 A EP92109870 A EP 92109870A EP 0519334 B1 EP0519334 B1 EP 0519334B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
flat
flat tubes
exchanger according
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92109870A
Other languages
German (de)
English (en)
Other versions
EP0519334A2 (fr
EP0519334A3 (en
Inventor
Roland Dipl.-Ing. Haussmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermal-Werke Warme- Kalte- Klimatechnik GmbH
Original Assignee
Thermal-Werke Warme- Kalte- Klimatechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4120442A external-priority patent/DE4120442A1/de
Application filed by Thermal-Werke Warme- Kalte- Klimatechnik GmbH filed Critical Thermal-Werke Warme- Kalte- Klimatechnik GmbH
Publication of EP0519334A2 publication Critical patent/EP0519334A2/fr
Publication of EP0519334A3 publication Critical patent/EP0519334A3/de
Application granted granted Critical
Publication of EP0519334B1 publication Critical patent/EP0519334B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction

Definitions

  • the invention relates to a flat tube heat exchanger according to the preamble of claim 1.
  • a flat tube heat exchanger is known for example from DE-A1-37 20 483 (Fig. 4).
  • the invention further relates to a manufacturing method of such a flat tube heat exchanger, applications and flat tubes for installation in the flat tube heat exchanger according to the invention.
  • Zigzag lamellas and with these equivalent lamellas - in the following also sometimes just called lamellas - are sandwiched in the sequence flat tube - (zigzag) lamella - flat tube - (zigzag) lamella - etc. side by side.
  • This arrangement is not equivalent to the insertion of pipes into, usually with collars, fins of plate packs, where, unlike the flat tube heat exchangers of the invention, the fins or their collars surround the respective pipe all around (see, for example, GB-A-538 018 ); the latter arrangement is therefore not considered in the context of the invention drawn.
  • the known profiles of the narrow sides of the flat tubes prove to be only conditionally favorable in terms of flow with regard to the external heat exchange fluid passing through the fins, e.g. of an air flow.
  • the invention is therefore based on the object of improving the quality of connection of the fins with the flat tubes and taking account of aspects of the external flow dynamics, wherein the risk of falling rocks should also be reduced in the case of the use of the flat tube heat exchanger in a motor vehicle.
  • the c W value ie the coefficient of resistance of the heat exchanger with respect to the flow of the external heat exchange medium
  • the pressure loss of the external heat exchange medium is reduced.
  • the longitudinal extent 1 of the semicircularly rounded narrow side of the respective flat tube is equal to half the distance d between the flat sides of the flat tube or equal to their half width d.
  • the other known flat tube heat exchangers mentioned have even smaller values 1. This is not a coincidence, because up to now the longest possible soldering path along the flat sides of the flat tube profile has been attempted. The invention is consciously based on this previous design principle of all known flat tube heat exchangers in favor of the new effects mentioned. In addition, the soldering distance of the fins along the flat tube profile is also increased, since for the first time soldering also takes place in partial areas of the rounded narrow sides of the flat tube.
  • the measure according to claim 4 is preferably provided to continue the slats freely at least up to the two tangent planes to the vertices of the narrow sides in the area not soldered to the narrow sides.
  • the extended lamella areas at least partially cover the rounded narrow sides of the flat tubes to the outside and thus provide additional protection against damage, e.g. against stone chips in motor vehicles. If one were to let the known flat tube heat exchangers survive the fins only soldered to the flat sides via the imaginary tangential planes to the vertices of the rounded narrow sides of the flat tubes, then one would get rectangular protruding lamellar contours without covering the rounded narrow sides of the flat tubes; such protruding fins would be mechanically unstable, since they protrude freely over a relatively large distance up to the soldered areas with the flat sides of the flat tubes. Since, in the arrangement according to the invention, soldering also takes place with relatively large sections of the rounded narrow sides of the flat tubes, the free protrusion distance is, on the other hand, much less, which in turn leads to relatively greater mechanical stability.
  • Claim 6 gives a structurally particularly simple way of creating the supernatant with a good degree of coverage with an already existing radius of curvature. This does not conflict with the fact that the teaching of claim 5 can also be fulfilled with different degrees of curvature, possibly even in a linear continuation behind the soldered area, depending on how the desired coverage ratios of the rounded narrow sides of the flat tubes are selected.
  • the overall depth in the area of the collector is the determining dimension when installing it in a motor vehicle, for example.
  • this installation dimension is kept as small as possible, since it depends on the total length of the motor vehicle or its engine compartment, including the material consumption associated with this length problem in motor vehicle construction.
  • a saving of 3 mm in the collector area leads to a saving of 10 to 20 kg vehicle weight, especially sheet metal, depending on the vehicle type.
  • the collector could also be made of a plastic, for example, if the possibility of soldering, or an equivalent, is ensured, e.g. in the case of the plastic. a plastic weld.
  • soldering or an equivalent
  • the flat tubes are extruded profiles.
  • internal stiffeners such as the known intermediate webs
  • claims 14 to 17 are preferred and their dimensions correspond to optimal conditions in comparison with competitive heat exchangers according to the current state of the art. The same applies to the slat thickness for claim 18.
  • Claim 19 results in an additional mechanical solidification in addition to their better soldering to the flat tubes.
  • the heat exchangers according to the invention or manufactured according to the invention find their main fields of application as mass articles in the applications of claims 24 and 25.
  • other known applications such as, for example, as a cooler or as an evaporator, also come into question.
  • applications in motor vehicle construction are also preferred, without any areas of application in other fields of application, possibly also stationary arrangements, being excluded.
  • the invention also relates to Flat tubes for installation in a flat tube heat exchanger according to the invention.
  • claims 26 to 29 is based on the object of being able to produce and provide flat tubes for the flat tube heat exchanger according to the invention quickly and easily in a manner suitable for mass production.
  • the flat tube heat exchanger 2 according to FIG. 1 has two parallel collectors 4 which, without restriction of generality, have the design of the German utility model G 90 15 090.2.
  • the collectors have tube plates 6 which are parallel to one another and which are provided with slots 8 at equidistant intervals and in the two collectors opposite one another. Ends 10 of a flat tube 12 each engage in these slots 8.
  • the flat tubes 12 are gas-tight with the collectors 4 and thus also soldered liquid-tight.
  • the arrangement is such that the mutually parallel flat sides 14 of the flat tubes 12 run in the longitudinal direction L of the flat tube profile in the flow direction (arrow A) of the external heat exchange medium.
  • the flat tubes 12 have a heat exchange ribbing in the form of zigzag fins 16, or the sandwich-like type of installation flat tube - fin - flat tube - fin - etc. with such zigzag fins equivalent to other fins, which are soldered to the flat sides 14 of the flat tubes 12 adjacent edges 18 to the flat sides 14 of the flat tubes 12.
  • the scope of the respective collector 4 is composed of two components 20 and 22, of which the component 20 forms the tube sheet.
  • the tube sheet 20 has the slots 8 for receiving the flat tube ends 10 inserted therein, of which only one can be seen in the cross section according to FIG. 6.
  • the second component 22 together with the first component 20 complements the scope of the collector 4.
  • Separate caps are usually attached to the collector 4 at the end; however, these caps could also be integrally formed on one of the components 20 or 22. Separate caps are, however, sensible to provide if the second component 22 is preferably an extruded profile.
  • the first component 20 is expediently hard-solder coated on both sides.
  • the second component 22 is expediently free of solder.
  • Both components 20 and 22 overlap in two connection zones 24 extending along the collector 4 in three layers, a hard solder connection using the hard solder coating of the first component 20 in particular being present in the overlap zone.
  • the respective inner arm 32 of the fork-shaped design 30 is already arranged further inwards than the narrow sides of the mouth 28 of the flat tubes 12, so that the wall thickness of the inner arm 32 of the fork-shaped Training 30 contributes nothing to the depth, on the other hand, can be trained unimpaired according to the strength conditions.
  • the respective outer arm 34 of the fork-shaped configuration 30 can then, as already mentioned, be formed with a smaller wall thickness, as is also shown in FIG. 6.
  • the respective outer arm 34 is connected via a predetermined bending line in the form of a longitudinal groove 36 on the inside of the outer arm 34 at the base of the fork-shaped design 30, so that the outer arm 34 can be easily spread outwards. This promotes a desired clamping connection between the two arms 32 and 34 of the fork-shaped design 30 on the one hand and the wall webs 26 on the other hand.
  • the first component 20 is advantageously manufactured with its slots 8 as a flat part and provided with the solder coating 38 on both sides from the outset and only then bulged.
  • the flat tubes 12 are then expediently inserted into the receiving slots 8 and mechanically expanded therein.
  • the second component 22 with its fork-shaped configurations 30 is pushed onto the wall webs 26 of the first component 20.
  • the required braze joints are formed on the one hand in the connection zones 24 and on the other hand between the flat tubes 12 and the receiving slots 8 in a soldering furnace.
  • One collector 4 is provided with at least one partition 52 and on one side of the partition with an inlet 54 and on the other side of the partition with an outlet 56 for an internal heat exchange medium. If the other collector is then designed without such a partition, the internal heat exchange medium flows from inlet 54 through the connected part of the collector and the connected flat tubes 12 to the opposite collector and then through the other flat tubes 12 back into the other section of the former collector and out of the outlet 56.
  • the second collector can be dispensed with entirely and, if necessary, replaced by hairpin bypasses.
  • the profile of the flat tubes 12 can be seen from FIG. 3 in connection with FIGS. 4 and 5.
  • the profile has a profile length L.
  • the profile is a mirror image of the imaginary longitudinal center plane BB, on the two sides of which parallel profile walls 40 extend, which form the two mutually parallel flat sides 14 on the outside.
  • the parallel walls 40 are stiffened with respect to one another by intermediate webs 42 which are perpendicular to them, four equidistant intermediate webs being provided here without restricting the generality.
  • the parallel walls 40 continue in rounded walls 44, which end in an apex 46 of the profile and together result in rounded narrow sides 50 of the profile.
  • the longitudinal extent of one of these rounded narrow sides in the direction of dimension L here has dimension 1 in each case.
  • the rounded narrow sides 50 adjoin the outermost intermediate web 42.
  • FIG. 3 The representation of FIG. 3 is approximately true to scale in a ratio of 1: 8.
  • the fins 16 are not only soldered to the flat sides 14 of the flat tubes 12, but also to the areas 58 of the rounded narrow sides, specifically in the construction of two circular arcs r1 and r2 along the entire length of the two arcs with radius r2.
  • an imaginary tangential plane C to the adjacent apex 46 of adjacent flat tubes 12 can be seen in dashed lines. From Fig. 3 it can also be seen that the slats 16 on both sides of the rounded narrow side 50 in the vicinity of the circular arc with the radius r1 with the radius r2 extends freely, not only up to the tangential plane C, but also beyond this . At the end of the heat exchanger, the edges 60 of the fins 16, which are aligned in a straight line, only form a small gap 62 with respect to the apex 46 of the flat tube.
  • the lamella 16 is provided with a corrugation 64 which projects on both sides with respect to the otherwise essentially flat lamella plane and stiffens the lamella region which projects freely from the flat tubes.
  • This area is relatively small anyway, since, according to FIG. 3, the lamella is close to its apex 46, i.e. in the area of the entire circular arc with the radius r2, is soldered.
  • the length S of the respective slot 8 in the collector 4 is also smaller than the length L of the profile according to FIG. 3 of the flat tube in the area of the ribbing with the fins 16.
  • the ends 10 of the flat tubes can nevertheless be inserted into the slots 8 because they are drawn in relative to the other profile according to FIG. 3 of the flat tubes 12.
  • the ends 10 of the flat tubes 12 merge into the normal profile of the flat tubes according to FIG. 3 via a transition zone 66 located outside the collector.
  • the possibility of retracting the ends 10 of the flat tubes is based on the selected shape of the rounded narrow sides 50 of the flat tube profiles. If these are compressed in the longitudinal direction of their profile cross-section according to FIG. 7b or FIG. 7c - which is only practically usable due to the relatively elongated shape of the rounded narrow sides 50 of the profiles - the tube ends 10 are given a reduced effective length, which is an insertion in the slots 8 allows.
  • FIG. 7b and 7c illustrate two preferred options for this longitudinal compression of the profiles.
  • the deformation takes place with tube compression on the rounded narrow sides 50 in the longitudinal direction of the flat tube profiles while maintaining the length of the neutral fiber 68 (shown in broken lines).
  • the deformation takes place with tube compression on the rounded narrow sides 50 in the longitudinal direction of the flat tube profiles with simultaneous compression of the material wall thickness, so that the neutral fiber shown in broken lines is shortened.
  • a collection of material can be seen, in particular in the corner areas of the end faces of the compressed profile, as is indicated, for example, at a corner by reference number 70. This type of compression can go so far that a central fold 72 forms in the apex region of the compressed rounded section 50.
  • the end 10 of the flat tube engaging in the slot 8 can be expanded by a mandrel against the edge of the slot shown in dashed line in FIG. 7c 8 widen and thereby stretch the fold 72 which was initially formed again and bring it into straight contact with the narrow side of the edge of the slot.
  • the length of the fold initially formed can be used to fill the otherwise particularly critical corner areas of the slot when expanding.
  • This type of expansion technology involves a two-part training of the collector ahead of both components 20 and 22, the cover-like component 22 then being placed on the component 20 forming the tube sheet after the expansion.
  • the narrow side of the flat tube is also critical in terms of the quality of the soldering outdoors.
  • the transition region 66 into the retracted end 10 forms a relatively acute angle with the tube sheet 20, which is particularly suitable for solder absorption.
  • the transition region 66 can also serve as a tolerance-compensating stop for a form-fitting insertion of the pipe ends 10 into the slots 8 of the collector 4.
  • the respective material bridge 80 has a low material thickness and a short length in the plane of extension of the flat tubes 12.
  • the dimensions are selected apart from the desired function of the interlinked arrangement of the flat tubes 12 so that the entire interlinked arrangement can be produced as an integral extruded profile of indefinite length . This applies in particular to the minimum dimensions of the material bridges 80.
  • the maximum thickness of the material bridges 80 is chosen so that the separation line can be torn off, pressed, sheared, cut off or the like known separation process. Functionally, the following must also be taken into account when dimensioning:
  • the interlinked arrangement of the flat tubes 12, initially with an indefinite length should be able to be wound up as an integral extruded part on a core in order to be able to store it temporarily and, if necessary, to transport it.
  • the longitudinal extent 1 of the respective rounded narrow side 50 of the respective flat tube 12 and the distance d between the flat sides 14 of the respective flat tube 12 also correspond to the information given in the description of the flat tube heat exchanger according to the invention.
  • the direction of extension of the material bridges 80 is to be understood analogously in the direction of the longitudinal extension 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (29)

  1. Echangeur de chaleur à tube plat (2) avec une pluralité de tube plat (12), dont les côtés étroits (50) sont arrondis et avec des lamelles en zigzag (16) imbriquées en sandwich entre les côtés plats (16) des tubes plats (12) et brasées, sur leurs bords (18) voisins des côtés plats, avec les côtés plats des tubes plats,
       caractérisé en ce que la longueur de la partie arrondie de chaque tube plat (12), observée dans la direction de la longueur de sa section transversale (L), est supérieure à la demi largeur (d) du tube plat (12) et en ce que les lamelles en zigzag (16) sont également brasées à des sections (58) des deux côtés plats (50) arrondis du tube plat (12).
  2. Echangeur de chaleur selon la revendication 1, caractérisé en ce que la longueur de la partie arrondie de chaque tube plat (12), observée dans la direction de sa longueur (L) de section transversale, est supérieure à la largeur (d) du tube plat (12).
  3. Echangeur de chaleur selon la revendication 1 ou 2, caractérisé en ce que l'arrondi du côté étroit (50) est composé d'arcs de cercle de différents rayons, de préférence d'arcs de cercle avec deux rayons (r1, r2) différents, un arc de cercle de rayon (r1) minimal constituant le sommet (46) du côté étroit (50) et des arcs de cercle de rayon (r2), allant chaque fois en augmentant, s'y raccordant des deux côtés.
  4. Echangeur de chaleur selon l'une des revendications 1 à 3, caractérisé en ce que les lamelles en zigzag (16) s'étendent, des zones (58) brasées aux côtés étroits arrondis, librement, au moins jusqu'au deux plans tangentiels (C) imaginaires, au point sommet (16) des côtés étroits arrondis.
  5. Echangeur de chaleur selon la revendication 4, caractérisé en ce que les lamelles en zigzag (16) font saillie au moins sur un côté étroit (50) des tubes plats (12) sur le plan tangentiel (C) imaginaire concerné.
  6. Echangeur de chaleur selon la revendication 4 ou 5, caractérisé en ce que la zone s'étendant librement de la lamelle en zigzag (16) suit le dernier rayon de courbure (r2) dans la zone (58) brasée au côté étroit (50) arrondi.
  7. Echangeur de chaleur selon l'une des revendications 1 à 6, avec au moins un collecteur (4) doté de fentes (8), dans lesquelles les extrémités (10) voisine des tubes plats (12) sont enfichées, avec un brasage dense, caractérisé en ce que les fentes (8) ont chacune une longueur (S) inférieure à celle du tube plat (12 % de la longueur L) entre les points sommets (46) de leurs côtés étroits (50) arrondis, à l'intérieur de leur ailetage avec les lamelles en zigzag (16), et en ce que, le long de la distance d'emprise des extrémités (10) des tubes plats (12) dans le collecteur (4), les côtés étroits (50), arrondis dans la zone de l'ailetage, des tubes plats (12) sont formés de façon que les tubes plats (12) aient chacun une longueur diminuée, de manière correspondant à la longueur de fente (S).
  8. Echangeur de chaleur selon la revendication 7, caractérisé en ce que la déformation constitue un refoulement du tube sur les côtés étroits (50) arrondis, dans la direction longitudinale des profilés de tube plat, en conservant la longueur de la fibre neutre (68) (figure 7b).
  9. Echangeur de chaleur selon la revendication 7, caractérisé en ce que la déformation constitue un refoulement du tube sur les côtés étroits (50) arrondis, dans la direction longitudinale des profilés de tube plat, tout en simultanément refoulant l'épaisseur de paroi de matière, de sorte que la longueur de la fibre neutre (68) est raccourcie (figure 7c).
  10. Echangeur de chaleur selon l'une des revendications 7 à 9, caractérisé en ce que la profondeur de construction du collecteur, dans la direction d'écoulement (A) du milieu extérieur d'échange de chaleur, le long des lamelles en zigzag (16), est supérieure, au maximum d'une valeur inférieure au double de l'épaisseur de la paroi latérale du collecteur (4), à la profondeur de construction du tube plat (12) dans la zone de son ailetage.
  11. Echangeur de chaleur selon l'une des revendications 1 à 10, caractérisé en ce que les tube plats (12), les lamelles en zigzag (16) et/ou le collecteur (4) respectif sont en Al ou en alliage d'Al, de préférence en AlMn1.
  12. Echangeur de chaleur selon l'une des revendications 1 à 11, caractérisé en ce que les tubes plats (12) sont des profilés d'extrusion.
  13. Echangeur de chaleur selon l'une des revendications 1 à 12, caractérisé en ce que l'épaisseur de paroi des tubes plats (12) se situe dans la plage de 0,2 à 0,6 mm.
  14. Echangeur de chaleur selon l'une des revendications 1 à 13, caractérisé en ce que les tubes plats (12) ont dans la zone de leur ailetage une longueur L de la section transversale allant de 12 à 25 mm, de préférence de 15 à 20 mm.
  15. Echangeur de chaleur selon l'une des revendications 1 à 14, caractérisé en ce que les deux côtés étroits (50) arrondi des tubes plats (12) font conjointement 40 à 50 % de leur longueur L de section transversale.
  16. Echangeur de chaleur selon l'une des revendications 1 à 15, caractérisé en ce que l'espacement d entre les côtés plats (14) du tube plat (12) respectif est de 2 à 4 mm.
  17. Echangeur de chaleur selon l'une des revendications 12 à 16, caractérisé en ce qu'au point sommet (46) du côté étroit arrondi du tube plat (12) extrudé respectif, le rayon intérieur a au moins une valeur de 0,2 mm et le rayon extérieur une valeur d'au moins 0,6 mm.
  18. Echangeur de chaleur selon l'une des revendications 1 à 17, caractérisé en ce que l'épaisseur des lamelles en zigzag est de 0,12 à 0,2 mm.
  19. Echangeur de chaleur selon l'une des revendications 1 à 18, caractérisé en ce que les bords libres des lamelles en zigzag (16) présentent une ondulation (64) ressortant des deux côtés du reste du plan des lamelles en zigzag.
  20. Echangeur de chaleur selon l'une des revendications 1 à 19, caractérisé en ce que les tubes plats (12) sont réalisés avec rigidification intermédiaire (nervures transversales 42) entre leurs côtés plats (14).
  21. Echangeur de chaleur selon la revendication 20, caractérisé en ce que les rigidifications intermédiaires sont des nervures transversales (42), de préférence avec un espacement mutuel de 1 à 2 d.
  22. Procédé de fabrication d'un échangeur de chaleur à tube plat (12) selon la revendication 20 ou 21, où, d'abord, les extrémités (10) des tubes plats (12) présentant une rigidification intermédiaire entre leurs côtés plats sont enfichées dans des fentes (8) d'un collecteur (4), puis les extrémités (10) des tubes plats (12) sont découpées librement de leurs rigifications intermédiaires (42), puis les extrémités découpées librement sont agrandies en direction de la périphérie de la fente du collecteur (4), et enfin les extrémités (10) agrandies des tubes plats (12) sont reliées intimement au collecteur (4) par chauffage d'un revêtement de brasure, servant de moyen de liaison, du collecteur (4, 20).
  23. Procédé selon la revendication 22, pour fabriquer un échangeur de chaleur selon la revendication 9, caractérisé en ce que, d'abord, les côtés étroits (50) arrondis des extrémités (10), s'engageant dans le collecteur (4), des tubes plats (12) sont refoulés à un degré tel que, dans la zone de sommet (46), de la section (50) arrondie et refoulée, se constitue un pli (72) central et que, ensuite, est effectué l'agrandissement contre la périphérie de fente du collecteur, avec déploiement d'ouverture du pli central (72) .
  24. Utilisation d'un échangeur de chaleur selon l'une des revendications 1 à 21, ou d'un échangeur de chaleur (2) fabriqué selon le procédé des revendications 22 ou 23 comme condenseur d'une installation de climatisation pour véhicules.
  25. Utilisation d'un échangeur de chaleur selon l'une des revendications 1 à 21, ou d'un échangeur de chaleur (2) fabriqué selon le procédé des revendications 22 ou 23 comme radiateur pour moteur, pour boîte de vitesse, ou pour système hydraulique d'un véhicule automobile.
  26. Tubes plats destinés au montage dans un échangeur de chaleur à tubes plats selon l'une des revendications 1 à 21, les côtés étroits (50) des tubes plats étant arrondiq et la longueur de la partie arrondie des tubes plats (12), observée dans la direction de la longueur L de leurs sections transversales, est supérieure à la demi-largeur (d) des tubes plats (12),
    caractérisé en ce que les tubes plats (12) qui sont constitués du même matériau sont imbriqués ensemble par des ponts de matières (80), réalisés à partir du même matériau, aux sommets (46) de leurs côtés étroits (50) arrondis.
  27. Tube plat selon la revendication 26, caractérisé en ce que les tubes plats imbriqués ensemble par les ponts en matériau (80) constituent un profil extrudé monobloc
  28. tube plat selon la revendications 26 ou 27 caractérisé en ce que les ponts en matériau (80) ont une épaisseur de matériau de 0,05 à 0,3, de préférence 0,15 mm et/ou ont une longueur de 0,05 à 0,3 mm, de préférence de 0,2 mm.
  29. Tube plat selon l'une des revendications 26 à 28, caractérisé en ce qu'ils sont enroulés sur un noyau, en une disposition mutuellement imbriquée.
EP92109870A 1991-06-20 1992-06-11 Echangeur de chaleur à tubes plats, procédé pour sa fabrication, applications et tubes plats pour échangeur de chaleur Expired - Lifetime EP0519334B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4120442 1991-06-20
DE4120442A DE4120442A1 (de) 1991-06-20 1991-06-20 Flachrohrwaermetauscher, herstellungsverfahren desselben und anwendungen
DE4201791 1992-01-23
DE4201791A DE4201791A1 (de) 1991-06-20 1992-01-23 Flachrohre zum einbau in einen flachrohrwaermetauscher und verfahren zum vereinzeln der flachrohre

Publications (3)

Publication Number Publication Date
EP0519334A2 EP0519334A2 (fr) 1992-12-23
EP0519334A3 EP0519334A3 (en) 1993-04-21
EP0519334B1 true EP0519334B1 (fr) 1995-10-18

Family

ID=25904734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92109870A Expired - Lifetime EP0519334B1 (fr) 1991-06-20 1992-06-11 Echangeur de chaleur à tubes plats, procédé pour sa fabrication, applications et tubes plats pour échangeur de chaleur

Country Status (4)

Country Link
US (1) US5251692A (fr)
EP (1) EP0519334B1 (fr)
DE (2) DE4201791A1 (fr)
ES (1) ES2078590T3 (fr)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113100B2 (ja) * 1992-11-05 2000-11-27 株式会社デンソー 多穴管押出用ダイス及び多穴管
US5511613A (en) 1994-12-12 1996-04-30 Hudson Products Corporation Elongated heat exchanger tubes having internal stiffening structure
JP3449897B2 (ja) * 1997-01-20 2003-09-22 株式会社ゼクセルヴァレオクライメートコントロール 熱交換器及びその製造方法
JPH1144498A (ja) * 1997-05-30 1999-02-16 Showa Alum Corp 熱交換器用偏平多孔チューブ及び同チューブを用いた熱交換器
US5967228A (en) * 1997-06-05 1999-10-19 American Standard Inc. Heat exchanger having microchannel tubing and spine fin heat transfer surface
DE19729496A1 (de) * 1997-07-10 1999-01-14 Behr Gmbh & Co Flachrohr-Wärmeübertrager in Serpentinenbauweise
US6024086A (en) * 1998-07-22 2000-02-15 Rich; Albert Clark Solar energy collector having oval absorption tubes
WO2000045102A1 (fr) * 1999-01-28 2000-08-03 Norsk Hydro Asa Tube ovale plat
US6192978B1 (en) * 1999-10-27 2001-02-27 Brazeway, Inc. Micro-multiport (MMP) tubing with improved metallurgical strength and method for making said tubing
JP2001165532A (ja) * 1999-12-09 2001-06-22 Denso Corp 冷媒凝縮器
JP4482991B2 (ja) * 1999-12-14 2010-06-16 株式会社デンソー 複式熱交換器
EP1195570B1 (fr) 2000-10-06 2003-08-20 Visteon Global Technologies, Inc. Méthode de fabrication d'un tube d'échangeur de chaleur
US6536255B2 (en) 2000-12-07 2003-03-25 Brazeway, Inc. Multivoid heat exchanger tubing with ultra small voids and method for making the tubing
JP4767408B2 (ja) * 2000-12-26 2011-09-07 株式会社ヴァレオジャパン 熱交換器
JP3728534B2 (ja) * 2001-04-09 2005-12-21 漢拏空調株式会社 アルミニウムラジエータ
US20020195240A1 (en) * 2001-06-14 2002-12-26 Kraay Michael L. Condenser for air cooled chillers
US20030131976A1 (en) * 2002-01-11 2003-07-17 Krause Paul E. Gravity fed heat exchanger
US6675883B1 (en) 2002-07-08 2004-01-13 Modine Manufacturing Company Manifold for heat exchanger
CN1228591C (zh) * 2002-07-12 2005-11-23 株式会社电装 用于冷却空气的制冷剂循环系统
US20040112572A1 (en) * 2002-12-17 2004-06-17 Moon Seok Hwan Micro heat pipe with poligonal cross-section manufactured via extrusion or drawing
US20070130769A1 (en) * 2002-09-03 2007-06-14 Moon Seok H Micro heat pipe with pligonal cross-section manufactured via extrusion or drawing
US7165606B2 (en) * 2002-10-02 2007-01-23 Showa Denko K.K. Heat exchanging tube and heat exchanger
JP4124136B2 (ja) * 2003-04-21 2008-07-23 株式会社デンソー 冷媒蒸発器
US7624788B2 (en) * 2004-04-22 2009-12-01 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Heat exchanger
US6991026B2 (en) * 2004-06-21 2006-01-31 Ingersoll-Rand Energy Systems Heat exchanger with header tubes
DE502005003089D1 (de) * 2005-03-31 2008-04-17 Frape Behr Sa Wärmeübertrager, insbesondere Kondensator für Klimaanlage
KR101518205B1 (ko) 2006-11-22 2015-05-08 존슨 컨트롤스 테크놀러지 컴퍼니 다른 멀티채널 튜브를 갖는 멀티채널 열 교환기
WO2008064219A1 (fr) 2006-11-22 2008-05-29 Johnson Controls Technology Company Évaporateur multicanaux avec collecteur de mélange de flux
US8376034B2 (en) * 2007-09-26 2013-02-19 General Electric Company Radiant coolers and methods for assembling same
US20100006276A1 (en) * 2008-07-11 2010-01-14 Johnson Controls Technology Company Multichannel Heat Exchanger
US8234881B2 (en) 2008-08-28 2012-08-07 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
US20120198882A1 (en) * 2009-10-19 2012-08-09 Showa Denko K.K. Evaporator
US9151540B2 (en) 2010-06-29 2015-10-06 Johnson Controls Technology Company Multichannel heat exchanger tubes with flow path inlet sections
US9267737B2 (en) 2010-06-29 2016-02-23 Johnson Controls Technology Company Multichannel heat exchangers employing flow distribution manifolds
JP5655676B2 (ja) * 2010-08-03 2015-01-21 株式会社デンソー 凝縮器
KR101224071B1 (ko) * 2012-07-05 2013-01-21 문은국 튜브형 열교환기
AU2015100762B4 (en) * 2012-09-14 2015-08-13 Revent International Ab Hot air oven
JP6194700B2 (ja) * 2013-08-30 2017-09-13 富士通株式会社 放熱器および放熱器の製造方法
US10697707B2 (en) 2013-12-21 2020-06-30 Kyocera Corporation Heat exchange member and heat exchanger
EP2975349A1 (fr) * 2014-07-14 2016-01-20 MAHLE International GmbH Tuyau
US10175003B2 (en) 2017-02-28 2019-01-08 General Electric Company Additively manufactured heat exchanger
KR102400223B1 (ko) * 2017-12-21 2022-05-23 한온시스템 주식회사 열교환기
US10962306B2 (en) * 2018-03-23 2021-03-30 Raytheon Technologies Corporation Shaped leading edge of cast plate fin heat exchanger
SG11202012923YA (en) 2018-06-29 2021-01-28 Nat Univ Singapore Heat exchange unit and method of manufacture thereof
CN111366013A (zh) * 2018-12-26 2020-07-03 浙江盾安热工科技有限公司 扁管及换热器
CN110544803A (zh) * 2019-06-21 2019-12-06 宁波利维能储能系统有限公司 一种水冷流道的制造方法
DE102019217368A1 (de) * 2019-11-11 2021-05-12 Mahle International Gmbh Rohrkörper für einen Wärmeübertrager sowie Wärmeübertrager
US11988461B2 (en) * 2021-12-13 2024-05-21 Hamilton Sundstrand Corporation Additive airfoil heat exchanger

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR362825A (fr) * 1906-01-30 1906-07-10 Ramier & Mauberque Soc Radiateur
US1974595A (en) * 1930-06-02 1934-09-25 Fedders Mfg Co Inc Radiator
US2035403A (en) * 1933-11-17 1936-03-24 Fedders Mfg Co Inc Heat exchange device
US2063757A (en) * 1934-12-29 1936-12-08 Gen Motors Corp Radiator core
GB538018A (en) * 1939-12-15 1941-07-17 Morris Motors Ltd Improvements relating to water, oil or other liquid coolers
FR937383A (fr) * 1946-12-17 1948-08-16 Schneider & Cie Procédé et dispositif pour la fabrication des barres de petit diamètre en métaux relativement mous
GB633250A (en) * 1948-02-06 1949-12-12 Morris Motors Ltd Improvements relating to secondary surface heat exchangers
DE1000407B (de) * 1952-05-21 1957-01-10 Rudolf Schmitz Aus einem Stueck bestehendes Lamellenband
GB723398A (en) * 1952-11-20 1955-02-09 Coventry Radiator & Presswork Improvements relating to demountable heat-exchange tubes
FR1114983A (fr) * 1954-11-12 1956-04-18 Cie Francaise Othermo Faisceau tubulaire pour échangeur thermique et appareil en comportant application
US2970812A (en) * 1956-06-14 1961-02-07 Richard W Kritzer Drum type heat exchanger
US3298432A (en) * 1964-05-22 1967-01-17 Przyborowski Stanislaus Radiators
US3254400A (en) * 1964-06-30 1966-06-07 Alfred J Gordon Method and apparatus for forming extrusions
SU469039A1 (ru) * 1972-07-18 1975-04-30 Ордена Трудового Красного Знамени Предприятие П/Я А-1665 Коллектор трубчатого теплообменника
JPS5680698A (en) * 1979-11-30 1981-07-02 Nippon Denso Co Ltd Heat exchanger
JPS56155391A (en) * 1980-04-30 1981-12-01 Nippon Denso Co Ltd Corrugated fin type heat exchanger
DE3131155A1 (de) * 1981-08-06 1983-02-24 Julius & August Erbslöh GmbH + Co, 5600 Wuppertal "verfahren zur herstellung von strangpressprofilen aus leichtmetall"
JPS60243489A (ja) * 1984-05-17 1985-12-03 Nippon Denso Co Ltd 熱交換器
JPS611994A (ja) * 1984-06-13 1986-01-07 Mitsubishi Heavy Ind Ltd 偏平熱交換管の製造方法
DE3610618A1 (de) * 1986-03-29 1987-10-01 Mtu Muenchen Gmbh Profilroehrchen mit elliptischem oder lanzettfoermigem querschnitt fuer roehrchenwaermetauscher und verfahren zur herstellung
DE3720483C3 (de) * 1986-06-23 1994-07-14 Showa Aluminium Co Ltd Wärmetauscher
EP0480914A3 (en) * 1986-07-29 1992-05-13 Showa Aluminum Kabushiki Kaisha Condenser
DE3743293C2 (de) * 1987-12-19 1994-09-01 Laengerer & Reich Kuehler Wärmetauscherflachrohr
DE3918312A1 (de) * 1988-12-22 1990-12-06 Thermal Waerme Kaelte Klima Flachrohrverfluessiger, herstellungsverfahren und anwendung
DE3900744A1 (de) * 1989-01-12 1990-07-26 Sueddeutsche Kuehler Behr Waermetauscher
US5069277A (en) * 1990-03-13 1991-12-03 Diesel Kiki Co., Ltd. Vehicle-loaded heat exchanger of parallel flow type
DE9015090U1 (fr) * 1990-11-02 1991-01-17 Thermal-Werke, Waerme-, Kaelte-, Klimatechnik Gmbh, 6832 Hockenheim, De

Also Published As

Publication number Publication date
DE59204039D1 (de) 1995-11-23
US5251692A (en) 1993-10-12
ES2078590T3 (es) 1995-12-16
EP0519334A2 (fr) 1992-12-23
EP0519334A3 (en) 1993-04-21
DE4201791A1 (de) 1993-07-29

Similar Documents

Publication Publication Date Title
EP0519334B1 (fr) Echangeur de chaleur à tubes plats, procédé pour sa fabrication, applications et tubes plats pour échangeur de chaleur
EP1281923B1 (fr) Tube plat pour échangeur de chaleur et procédé de fabrication
EP0656517B1 (fr) Echangeur de chaleur eau-air en aluminium pour véhicules automobiles
DE60217515T2 (de) Metallplatte zur herstellung eines flachrohrs, flachrohr und verfahren zur herstellung des flachrohrs
EP1774245B1 (fr) Echangeur thermique integralement metallique et procede de fabrication associe
EP1036296B1 (fr) Tube plat avec une partie coudee en u, decalee transversalement, et echangeur de chaleur con u a partir de ce dernier
EP0632245B1 (fr) Echangeur de chaleur eau-air en aluminium pour véhicules automobiles
EP1613916B1 (fr) Echangeur de chaleur
DE19644586C2 (de) Rippenrohrblock für einen Wärmeübertrager
EP3531055A1 (fr) Échangeur de chaleur à plaques et son procédé de fabrication
DE112005001295T5 (de) Wärmetauscher
EP1555503A2 (fr) Tube plat d'échangeur de chaleur, en particulier pour condenseur
EP1468235B1 (fr) Tube a plusieurs chambres soude
DE112005001950T5 (de) Flachrohr, plattenförmiger Körper zur Herstellung des Flachrohrs und Wärmetauscher
DE69729836T2 (de) Verdampfer
DE10054158A1 (de) Mehrkammerrohr mit kreisförmigen Strömungskanälen
EP0912869A1 (fr) Echangeur de chaleur a tubes aplatis avec deux flux ou davantage et un fond de deviation pour vehicules a moteur, ainsi que son procede de fabrication
EP1411310B1 (fr) Echangeur de chaleur à structure en serpentin
EP1640684A1 (fr) echangeur de chaleur à tubes plats et ailettes ondulées
DE102006002932A1 (de) Wärmetauscher und Herstellungsverfahren für Wärmetauscher
EP1731864A1 (fr) Echangeur de chaleur métallique et procédé de fabrication de celui-ci
DE69711351T9 (de) Endkammer in zwei Teilen für Wärmetauscher
EP1567820B1 (fr) Échangeur thermique
DE4120442A1 (de) Flachrohrwaermetauscher, herstellungsverfahren desselben und anwendungen
EP1771697B1 (fr) Echangeur thermique, boite destinee a recevoir un fluide pour un echangeur thermique, et procede de production de cette boite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES GB

17P Request for examination filed

Effective date: 19930603

17Q First examination report despatched

Effective date: 19940120

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951024

REF Corresponds to:

Ref document number: 59204039

Country of ref document: DE

Date of ref document: 19951123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2078590

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19951218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080613

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080605

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090612