EP0517952B1 - Mehrpoliger Steckverbinder für elektronische Signalleitungen - Google Patents

Mehrpoliger Steckverbinder für elektronische Signalleitungen Download PDF

Info

Publication number
EP0517952B1
EP0517952B1 EP91119122A EP91119122A EP0517952B1 EP 0517952 B1 EP0517952 B1 EP 0517952B1 EP 91119122 A EP91119122 A EP 91119122A EP 91119122 A EP91119122 A EP 91119122A EP 0517952 B1 EP0517952 B1 EP 0517952B1
Authority
EP
European Patent Office
Prior art keywords
signal lines
electrical connector
filter
base plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91119122A
Other languages
English (en)
French (fr)
Other versions
EP0517952A2 (de
EP0517952A3 (en
Inventor
Bernhard Plass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FILTEC GmbH Filtertechnologie fuer die Elektronikindustrie
Original Assignee
FILTEC GmbH Filtertechnologie fuer die Elektronikindustrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FILTEC GmbH Filtertechnologie fuer die Elektronikindustrie filed Critical FILTEC GmbH Filtertechnologie fuer die Elektronikindustrie
Priority to CA002071122A priority Critical patent/CA2071122C/en
Priority to JP15526892A priority patent/JPH06181080A/ja
Publication of EP0517952A2 publication Critical patent/EP0517952A2/de
Publication of EP0517952A3 publication Critical patent/EP0517952A3/de
Application granted granted Critical
Publication of EP0517952B1 publication Critical patent/EP0517952B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/719Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters

Definitions

  • the invention relates to a multipole connector with a housing provided with at least one conductive shell, through which lines, in particular digitized signals, run and in which a planar filter is arranged on a base plate, with capacitors provided for at least some of the signal lines, which are formed by a on the base plate applied base electrode, on which a dielectric layer and on which in turn a counter electrode is applied, wherein one of the electrodes, formed continuously as a ground electrode, divided with the housing and the other of the electrodes into individual signal electrodes, conductively connected to the signal lines and wherein the base plate and the dielectric layer and at least one of the electrodes have cutouts for the passage of the signal lines.
  • Multipole connectors are used in electronics, in particular in data processing, to transmit signals from one electronic unit to another, e.g. from a first computer to a second computer.
  • the signals are transmitted as pulses with a (relatively) high pulse train via the cables connected to the devices, this transmission being disturbed by the computer's pulse trains with pulse edges that correspond to even higher frequencies and are much higher in the MHz range, so that the range of the transmission is reduced particularly via parallel interfaces.
  • the interference fields in the environment also contribute to the interference, the electromagnetic interference fields, more or less attenuated by shielding measures, also cause interference signals that lead to errors in the signal transmission.
  • multipole connectors In order to eliminate these interferences, in particular the internal interferences coming from the device, multipole connectors have already been proposed, for example in US Patents 2,841,508, 3,200,355, 3,447,104, 3,538,464 and the French publication 78.10242.
  • a planar filter essentially formed from capacitors is installed in the multipole connector, the capacitors being connected from the signal line to the ground electrode and representing low-pass filters.
  • a ceramic carrier is provided with a first electrode, which is electrically connected to the housing, to which an insulating layer is applied, which forms the dielectric of the capacitor, and which in turn has a counter electrode which is conductively connected to the signal line is applied.
  • Such a connector covering the preamble of claim 1 is known from EP-A-0 123 457. With temperature differences, difficulties arise here, which are to be found in mechanical stresses between the carrier and especially the dielectric layer as a result of un different temperature expansion coefficients.
  • the invention comes in, which is based on the object of further developing such filter inserts that they, in the multipole Integrated plug-in as low-pass filter, are able to withstand temperature differences without failures;
  • the multi-pin plug connectors are to be further developed into pi filters that reliably filter out high-frequency interference.
  • each of the signal lines is provided with a capacitance which leads to the ground electrode and which alone is capable of acting as a low-pass filter.
  • the anchoring of the material of the dielectric layer, generally a titanate, for example barium titanate, on the aluminum oxide or ferromagnetic ceramic carrier is made possible by the recesses in the area of each of the pin recesses, by means of a direct material contact between these two layers is made.
  • the use of a ferromagnetic ceramic increases the longitudinal inductance of the signal line running through the ceramic carrier, so that the low-pass effect is enhanced.
  • the further cutouts of the base electrode surround the feedthrough cutout like a grid; in addition, it is proposed that at least some of the further cutouts lie on the center line of two adjacent feedthrough cutouts.
  • This arrangement of the anchoring points around the signal line bushing increases their symmetry, improves the manufacturability and thus also the resistance to temperature changes.
  • Structures of this type are produced by the production processes customary in thick-film technology, for example by coating by means of screen printing processes or by means of Photolithography by applying photoresist, exposing with a template having the structure and loosening and / or etching the unexposed areas, the further cutouts surrounding the feedthrough cutouts or the feedthrough electrodes and also being arranged between them.
  • the metallization, which forms the common electrode is guided down to at least one edge of the base plate and the metallization, which forms the individual electrodes connected to the signal lines, into lead-through recesses to form corresponding contact strips.
  • This expansion of the metallization on the insulating carrier creates a simple possibility of establishing the electrically conductive connection between the electrode acting as the signal electrode of the capacitor and the signal line to be connected, for example by means of a dip-soldering process.
  • the metallization which forms the common electrode is guided to form a corresponding contact strip except for at least one preferably metallized edge of the base plate; in another, likewise preferred embodiment, the metallization, which forms the individual electrodes connected to the signal lines, is guided down to the individual lead-through recesses for the signal lines to form corresponding contact strips.
  • an arrangement is created that can be contacted in a simple manner.
  • the edge strips are metallized by means of solder paste which is customary in screen printing technology, so that the edge is also melted when the individual electrodes are soldered to the signal lines, and thus forms a complete coating. It is advantageous if this melted metallization is additionally coated with a conductive varnish. With this gapless varnish coating it is achieved that the filter insert thus prepared can also be inserted into a carrier with good contact if there are dimensional deviations or slight deformations caused by temperature fluctuations.
  • a metallic filter carrier provided with contact tongues is provided for receiving the planar filter, where the contact tongues press on the preferably metallized edges of the base plate of the planar filter to make electrical contact with the common electrode produce.
  • the filter carrier can be inserted in a form-fitting manner in at least one shell of the two-shell housing of the multipole connector in such a way that the metallic filter carrier and the shell of the housing are electrically conductively connected.
  • This training allows a simple manufacture of the finished planar filter, which is then used (or in the event of a failure due to replacement) in the metal carrier, which in turn is then inserted into the metallic housing or in one of its half-shells and via the contact tongues and / or the clamp in the shell with this and thus with the common ground electrode is electrically connected without the need for soldering.
  • the elasticity of the contact tongues and / or the metallic shell bridges dimensional deviations, e.g. due to thermal expansion.
  • the contact is made by applying or pressing on a conductive insert, for example made of an electrically conductive plastic or rubber or the like. provided, which is arranged between the metallic filter carrier and the planar filter.
  • a conductive insert for example made of an electrically conductive plastic or rubber or the like.
  • the conductivity of this insert is advantageously in the range of 103 S. It is sufficient it if the insert is designed as a circumferential frame.
  • a secure contact is achieved due to the flat contact with the elastic insert, which contact is maintained even with dimensional deviations caused by thermal expansions.
  • planar filter inserted into the filter carrier is provided with a cover made of non-conductive plastic or rubber, which is provided with through holes for the signal lines and is arranged on one or both sides.
  • contact is made via the contact tongues, which are in direct contact with the filter housing, or via the electrically conductive insert.
  • the planar filter and in particular the capacitors are protected by this cover, which forms a support, in particular against impacts.
  • the base electrode applied to the base plate is continuous up to the preferably metallized edge of the base plate and forms the contact strip on the edge, which acts as the ground electrode with the filter carrier is connectable, while the counterelectrode applied to the dielectric layer for each signal line in the area of its bushings is drawn approximately in a cup-like manner up to the surface of the base plate and is guided into the bushings as a contact strip for connection to the signal lines, the in the base electrode for the Recesses provided by connecting bridges surround the signal lines carried out approximately at a distance in a grid-like manner.
  • the base electrode applied to the base plate, provided with the lead-through recesses and the further cut-outs is subdivided into individual electrodes and, in the regions of the leadthroughs, leads into these, the contact strips of the signal electrodes for connection to the Forms signal lines, while the counterelectrode is designed as a continuous ground electrode in the edge regions, approximately like a cake plate pulled up to the height of the base plate and guided on its preferably metallized edge forms the contact strip and can be connected to the filter carrier, the recesses provided in the counter electrode surrounding the signal lines at a distance.
  • the electrode which is applied flat on the carrier, is designed as a ground electrode which is led to the edges of the base plate, the signal electrodes form individual “islands” which surround the pins of the signal lines.
  • the ground electrode is applied to the dielectric
  • the signal electrodes which here also form “islands” around the pins of the signal lines, rest on the base plate and have an approximately lattice-like structure. The individual distances ensure that electrical short circuits are avoided.
  • the counterelectrode applied to the dielectric layer is covered with an insulating coating, the connections to the signal lines, which are designed as soldered joints, preferably being left out. With this cover, the influence of moisture precipitation is reduced, a silicone resin advantageously being used as a coating.
  • the signal lines are provided with voltage-suppressing switching elements.
  • these are advantageously designed as tens or avalanche diodes or as varistors, which are preferably soldered onto the side of the base plate facing away from the capacitors between the contact strip on its edge and the contact strip for carrying out the signal line.
  • This design ensures that the planar filter used absorbs voltage peaks and thus protects the downstream electronics. Using such components, voltage peaks can be limited in such a way that damage that goes beyond a mere malfunction occurs, for example, in the input of a corresponding computer or avoided in the printer input.
  • At least some of the signal lines at least on one of the sides of the planar filter arranged in the filter receptacle, preferably on both sides with an attenuator increasing the longitudinal inductance in the form of a ferrite bead or the like. are provided to form an L or T filter arrangement. It is advantageous as an attenuator increasing the longitudinal inductance, which is provided from a ferromagnetic material, preferably made of ferromagnetic ceramic, pin receptacle.
  • beads or hollow cores made of a ferromagnetic ceramic increase the longitudinal inductance of the signal line in question, so that the filtering effect of the transverse capacitance increases by forming appropriate L or T filter arrangements and Limit frequency or the limit frequencies is / are shifted into the desired range and possibly to lower values.
  • the housing is formed by a first and a second shell, the plug connections for the signal lines in one of the shells being designed as plug pins, in the other as plug sockets or as plug pins such that the plug connector can be used as an intermediate plug.
  • Signal lines from the plug pins / sockets of the connector part inserted into the first shell of the housing are connected to those of the second connector part.
  • the design as an adapter also allows electronic components to be provided as adaptation elements in at least some connections between the signal lines of the first shell of the housing and the signal lines of the second shell of the housing.
  • a planar filter is arranged in each of the two shells of the housing, and at least some of the signal lines between these planar filters are provided with additional ferromagnetic attenuators which are pushed onto the signal lines in the form of hollow cores or beads, which increase their longitudinal inductance and arranged between the transverse capacitors, form a pi filter which is effective for the signal line connected in this way.
  • FIG. 1 shows an exploded view of the structure of a multi-pin connector 1 with sockets 6 and a multi-pin connector 2 with pins 7.
  • Both connectors 1 and 2 are provided with a metallic housing 4, which is designed with two shells and receives the inside of the connector from both sides, and via which the ground connection can be made.
  • the housing 4 has a protruding collar 4.1, which receives the socket strip 6 with the sockets 6.1 or the plug pins 7.1 and forms their shielding, which receives its ground connection via the connector to be connected.
  • the backs of the sockets 6.1 are provided with the connection pins 6.2 and those of the pins 7.1 with the connection pins 7.2, which protrude from the housing 4 of the assembled connector and can be soldered onto a plug-in card or a circuit board, for example as solder pins.
  • a filter carrier 9 is inserted, which receives the filter 10, the filter carrier 9 being provided with contact tongues 9.1, which on the metallization 14.1 or at least one of the outer, metallized edges 11.1 of the base plate 11 of the plate-shaped planar filter 10 16.1 of the common electrode 14 or 16 (FIG. 8), so that they establish an electrical connection with the filter carrier 9.
  • the filter carrier 9, for its part is inserted into the metallic housing 4 in a conductive manner, the housing edge having a corresponding shape or corresponding contact tongues which achieve reliable contacting by clamping.
  • FIG. 2 shows a connector 1 provided with sockets 6.1 in detail.
  • the structure with the two shells of the housing 4 can be seen, with their collars 4.1 facing outwards.
  • the receptacles 6.1 receiving the receptacles 6, the shape of the shape of the associated shell of the housing 4 and the receptacles 6.2 receiving the pins 6.2.
  • the filter holder 9 with the filter (not shown) is arranged so that each of the connecting lines from one of the socket 6.1 to the associated pin 6.2 is passed through the filter, for which purpose the planar filter 10 for each of these lines 12.1 Breakthrough 12 (see figure 7).
  • This pin receptacle 8.1 at the same time forms a support securing the planar filter 10 inserted into the filter holder 9, which is made of a non-conductive plastic or rubber with a Shore hardness of approximately 40 ° to 60 °, protects the planar filter from shocks and vibrations and gives it a " Work "allowed in case of expansion in the housing due to temperature changes.
  • the section according to FIG. 2c shows the filter holder 9 inserted between the shells of the housing 4.
  • the view according to FIG. 2b shows the compactness of the multi-pole connector thus provided with a filter.
  • FIG. 3 shows the same conditions for a multipole plug connector 2, in which plug pins 7.1 are provided as plug elements instead of the sockets 6.1 (FIG. 2).
  • a connector pin strip 7 is provided, which replaces the socket strip 6.
  • the sectional view of Figure 3c shows the connector pins angled by 90 °, for soldering onto a circuit board.
  • the view according to FIG. 3b shows the compactness of the multi-pole connector.
  • FIG. 4 shows an embodiment of the multi-pole connector as an intermediate connector 3.1, in the two-shell housing 4 of which the filter carrier 9 with the planar filter 10, which is connected to at least one shell of the housing 4, is arranged.
  • the signal lines that connect the sockets 6.1 and pins 7.1 to one another are led through the pin receptacle 8.1, which, when made from an aluminum oxide ceramic, forms an excellent insulator with a predeterminable dielectric constant.
  • this pin receptacle 8.1 consists of a ferromagnetic material that forms a longitudinal inductance for the signal lines.
  • each of the signal lines is provided with an inductance connected upstream or downstream of the capacitor, so that L-filter arrangements are formed in this way.
  • the design can be designed as a "plug-in socket / plug-in plug” or - according to FIG. 4c - as a "plug-in / plug-in plug", it being understood that an embodiment " Socket / socket adapter "is possible.
  • the structure essentially corresponds to the structure of the multipole plug connector according to FIGS. 1 to 3.
  • FIG. 5 shows a multipole connector designed as an adapter 3, in which - in contrast to the intermediate connectors 3.1 according to FIG. 4 - different connector configurations on both sides of the connector and / or different line connections within the adapter 3 are also possible.
  • the structure is shown in the exploded view according to FIG. 5a.
  • the adapter intermediate piece 5 here connects the two shells of the housing 4 and also establishes the through-connection of the ground connections led over the metallic housing shells; at least its outside is metallized. With this metallization, shielding is also achieved in addition to the plated-through hole, which effectively prevents interference signals from being radiated in.
  • the internal connections are in this adapter spacer 5 and can be performed here according to the requirements; For example, a transition from 2-row connectors to 3-row connectors is possible, as is changing the connection scheme, for example for cables to connect incompatible interfaces.
  • the adapter intermediate housing 5 also allows the use of two filter carriers 9 with their possibly different planar filters 10, as can be seen from the exploded view according to FIG. 5a and the sectional view from FIG. 5c.
  • the view according to FIG. 5b again shows that the filters can be used to achieve an extremely compact design of the multipole connector.
  • FIG. 6 shows an illustration of a with a conductive frame 8.2 filter carrier 9 inserted into the metallic housing 4.1 with the planar filter 10.
  • This conductive frame 8.2 here makes contact with the housing 4.1 lying at ground potential and thus ensures a good ground connection, which also with dimensional deviations or (small) deformations due to the elasticity of the plastic or the rubber with a Shore hardness of 40 ° to 60 ° of the frame 8.2 is retained.
  • this frame 6.2 is squeezed as a result of the compression, so that the resiliently elastic plastic or the rubber lies flat all around and ensures good contact, even in the event of deformation when handling the connector.
  • Figure 7 shows a highly schematic exploded view of the structure of the planar filter.
  • a metal electrode layer is applied as a base electrode 14 to a base plate 11 made of a ceramic, in particular made of aluminum oxide, which surrounds the base plate 11 with angled strips 14.1 and is in electrical contact with the advantageously likewise metallized outer sides 11.1 of the base plate 11, possibly by soldering.
  • the next layer 15 is formed by the dielectric, which is constructed in particular on a titanate basis.
  • the counterelectrodes 16 necessary for the formation of the capacitors are provided, which are shown as individual electrodes in the selected illustration.
  • This essentially flat structure is covered by an insulating protective coating 17, a plastic or a lacquer, so that the planar filter is protected from external influences, such as, for example, from air humidity or corrosive gases.
  • All layers have aligned, hole-shaped recesses 12 for the passage of the signal lines 12.1 (FIG. 8); these bushings (not shown in more detail in FIG. 7) are shown in FIG Cases dashed, clarified with the reference numeral 12, wherein all bushings through the metallic base electrode 14, which forms the common (ground) electrode in the illustrated embodiment, are marked with a cross.
  • FIG. 7a shows a different embodiment of the base electrode 14 corresponding to the illustration in FIG. 7, in which the cross-sectional shapes of the further openings 14.2 are different.
  • the ceramic of the dielectric layer 15 is firmly connected, quasi anchored, to the ceramic of the base plate 11 through the recesses provided in the holes 14.2.
  • This anchoring is of crucial importance for the load-bearing capacity of the connection, in particular due to stresses resulting from different coefficients of thermal expansion.
  • the individual bushings 12 for the signal lines 12.1 are such that the base plate 11 lies (relatively) closely against the signal line 12.1.
  • the metallization of the base electrodes 14 is drawn into the feedthrough 12 so that the electrical connection to the base electrode 14 can be made by simple soldering. This is irrespective of whether the base electrode 14 is designed as a common (ground) electrode (as shown in FIG. 8a) or whether the base electrode 14 disintegrates into individual electrodes, each of which is connected to the assigned signal line 12.1 (as shown in Figure 8b).
  • the dielectric layer 15 is recessed in the area of the bushings 12, so that there are depressions around the bushings 12, in the bottom of which there is the solder joint 12.2, which creates the connection from the corresponding signal line 12.1 to the single electrode.
  • the free top of the dielectric layer 15 carries the counter electrode 16, which in turn is covered by the protective coating 17.
  • planar filter 10 or 10 'constructed in this way is inserted into a metallic filter holder 10.1 which is in an electrically conductive connection with the contact strips 14.1 or 16.1 at the preferably metallized edges 11.1 of the base plate 11 and which in turn is in the filter carrier 9 (FIG. 1 to 5) is used.
  • the base electrode 14 is shown as a continuous, common electrode, which on both longitudinal sides into both outer edges 11.1 of the base plate 11, which are preferably provided with a metal support, result in the contact strips 14.1 with which the ground connection via the filter carrier 9 and the like Housing 4 of the connector according to Figures 1 to 5 is made.
  • the counter electrode 16 is designed here as a single electrode, which surrounds each of the bushings 12 for the signal lines 12.1 in an island-like manner, so that one electrode is available for each of the signal lines 12.1, which extends over the edge of the cup-like depression in the dielectric layer 15 surrounding the bushing 12 runs and thus reaches the bottom of each of the bushings 12 and can be connected to the signal line 12.1 by means of the solder joint 12.2.
  • FIG. 8b shows the reversal: here the counter electrode forms the continuous, common electrode which, on the two long sides, extends to the edges 11.1 of the base plate 11, which forms the contact strip 16.1 which makes ground contact.
  • the base electrode 14 is broken down into individual electrodes and is introduced into each of the recesses in the base plate as a contact strip 14.1 for soldering to the associated signal line 12.1, the individual electrodes of the base electrode 14 surrounding the signal line bushings island-like here.
  • FIG. 9 shows an embodiment in which some or all of the signal lines 12.1 carried out, the sockets 6.1 and 7.1 pins (or sockets-sockets or pins-pins) of an intermediate plug or pins 7.1 and pins 7.2 (or sockets-pins) of a solderable connector connect, by means of a surge suppressor 19, for example soldered on using SMD technology in the form of tens or avalanche diodes, are particularly protected against voltage peaks.
  • a surge suppressor 19 for example soldered on using SMD technology in the form of tens or avalanche diodes
  • the attenuation of some or all of the signal lines 12.1 can be achieved by a damping bead 18, e.g.
  • the damping bead is advantageously designed such that it is received by the cup-like depression in the dielectric layer 15 and embedded in the protective coating 17. This arrangement is shown enlarged in FIG. 9a, a ferrromagnetic bead 18 being pushed onto the signal line 12.1 for additional longitudinal damping.

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Description

  • Die Erfindung betrifft einen mehrpoligen Steckverbinder mit einem mit mindestens einer leitfähigen Schale versehenen Gehäuse, durch das insbesondere digitalisierte Signale führende Leitungen verlaufen und in dem ein auf einer Basisplatte aufgebautes Planarfilter angeordnet ist, mit für zumindest einige der Signalleitungen vorgesehenen Kondensatoren, die gebildet sind von einer auf die Basisplatte aufgebrachte Basiselektrode, auf die eine dielektrische Schicht und auf die wiederum eine Gegenelektrode aufgebracht ist, wobei jeweils die eine der Elektroden, durchgehend als Masseelektrode ausgebildet, mit dem Gehäuse und die andere der Elektroden in einzelne Signalelektroden unterteilt, mit den Signalleitungen leitend verbunden sind und wobei Basisplatte und dielektrische Schicht und zumindest eine der Elektroden Aussparungen zum Durchführen der Signalleitungen aufweisen.
  • Mehrpolige Steckverbinder dienen in der Elektronik, insbesondere in der Datenverarbeitung der Übermittlung von Signalen von einer elektronischen Einheit zu einer anderen, z.B. von einem ersten Rechner zu einem Zweiten Rechner. Bei dieser Signalübermittlung werden über die an die Geräte angeschlossenen Kabel die Signale als Impulse mit (relativ) hoher Impulsfolge übertragen, wobei diese Übertragung von den wesentlich höher im MHz-Bereich liegenden Impulsfolgen des Rechners mit Impulsflanken, die noch höheren Frequenzen entsprechen, gestört wird, so daß die Reichweite der Übermittlung besonders über parallele Schnittstellen verkleinert ist. Zu den auftretenden Störungen tragen auch die Störfelder der Umgebung bei, deren elektromagnetische Störfelder, mehr oder weniger gedämpft durch Abschirmungsmaßnahmen, ebenfalls Störsignale verursachen, die zu Fehlern in der Signalübermittlung führen. Um diese Störungen, insbesondere die vom Gerät her kommenden inneren Störeinflüsse auszuschalten, sind bereits mehrpolige Steckverbinder vorgeschlagen worden, so z.B in den US-Patenten 2.841.508, 3.200.355, 3.447.104, 3.538.464 und der französischen Veröffentlichung 78.10242. Bei diesen Vorschlägen wird ein im wesentlichen aus Kondensatoren gebildetes Planarfilter in den mehrpoligen Steckverbinder eingebaut, wobei die Kondensatoren von der Signalleitung zu der Masseelektrode geschaltet sind und Tiefpässe darstellen. Bei den vorgeschlagenen Planarfiltern ist ein keramischer Träger mit einer ersten Elektrode versehen, die elektrisch lei tend mit dem Gehäuse verbunden ist, auf die eine isolierende Schicht aufgetragen ist, die das Dielektrikum des Kondensators bildet und auf die ihrerseits wiederum eine mit der Signalleitung leitend verbundene Gegenelektrode aufgebracht ist. Ein solcher, den Oberbegriff des Anspruches 1 abdeckenden Steckverbinder ist aus EP-A-0 123 457 bekannt. Bei Temperaturunterschieden treten hier Schwierigkeiten auf, die in mechanischen Spannungen zwischen dem Träger und vor allem der dielektrischen Schicht infolge un terschiedlicher Temperatur-Ausdehnungskoeffizienten zu suchen sind.
  • Hier setzt die Erfindung ein, der die Aufgabe zugrunde liegt, derartige Filtereinsätze so weiter zu bilden, daß sie, in den mehrpoligen Steckverbinder als Tiefpaß integriert, in der Lage sind, Temperaturunterschiede ohne Ausfälle zu überstehen; in einer Weiterführung der Aufgabe sollen die mehrpoligen Steckverbinder zu Pi-Filtern weitergebildet werden, die hochfrequente Störungen sicher ausfiltern.
  • Diese Aufgabe wird nach der Erfindung durch die Merkmale des kennzeichnenden Teiles des Anspruches 1 gelöst. Durch diese Ausbildung wird erreicht, daß jede der Sinalleitungen mit einer zur Masseelektrode ableitenden Kapazität versehen ist, die allein schon als Tiefpaß zu wirken in der Lage ist. Die Verankerung des Materials der dielektrischen Schicht, im allgemeinen ein Titanat, beispielsweise Barium-Titanat, auf dem aluminiumoxidischen oder ferromagnetischen Keramik-Träger wird durch die Aussparungen im Bereich jeder der Stift-Aussparung ermöglicht, durch die ein direkter Material-Kontakt zwischen diesen beiden Schichten hergestellt ist. Der neben der Verwendung aluminiumoxidischer Keramik mögliche Einsatz einer ferromagnetischen Keramik erhöht die Längs-Induktivität der durch den keramischen Träger verlaufenden Signalleitung, so daß die Tiefpaßwirkung verstärkt wird.
  • In einer Weiterbildung wird vorgeschlagen, daß die weiteren Aussparungen der Basiselektrode gitterähnlich die Durchführungs-Aussparung umgeben; darüber hinaus wird vorgeschlagen, daß zumindest einige der weiteren Aussparungen auf der Mittelline zweier benachbarter Durchführungsaussparungen liegen. Diese Anordnung der Verankerungsstellen, um die Signalleitungsdurchführung herum, erhöht deren Symmetrie, verbessert die Herstellbarkeit und somit auch die Beständigkeit gegen Temperaturwechsel. Die Herstellung derartiger Strukturen erfolgt nach den in der Dickschichttechnik üblichen Herstellungsverfahren, z.B. über Beschichtung mittels Siebdruckverfahren oder mittels Photolithographie durch Photolack-Auftrag, Belichten mit einer die Struktur aufweisenden Vorlage und Lösen und/oder Ätzen der unbelichteten Bereiche, wobei die weiteren Aussparungen die Durchführungsaussparungen bzw. die Durchführungselektroden umgeben und auch zwischen diesen angeordnet sind. Vorteilhaft ist, daß die Metallisierung, die die gemeinsame Elektrode bildet, bis auf zumindest einen Rand der Basisplatte und die Metallisierung, die die mit den Signalleitungen verbundene Einzelelektroden bildet, bis in Durchführungs-Aussparungen geführt sind, zur Bildung entsprechender Kontaktstreifen. Durch diese Ausdehnung der Metallisierung auf dem isolierenden Träger wird eine einfache Möglichkeit geschaffen, die elektrisch leitende Verbindung zwischen der als Signalelektrode des Kondensators wirkenden Elektrode und der anzuschließenden Signalleitung, zum Beispiel mittels eines Tauch-Lötverfahrens, herzustellen.
  • In bevorzugter Ausführungsform ist die Metallisierung, die die gemeinsame Elektrode bildet, zur Bildung eines entsprechenden Kontaktstreifens bis auf zumindest einen vorzugsweise metallisierten Rand der Basisplatte geführt; in anderer, ebenfalls bevorzugter Ausführungsform ist die Metallisierung, die die mit den Signalleitungen verbundenen Einzelelektroden bildet, zur Bildung entsprechender Kontaktstreifen bis in die einzelnen Durchführungs-Aussparungen für die Signalleitungen geführt. Mit diesen Ausführungsformen wird eine Anordnung geschaffen, die in einfacher Weise kontaktierbar ist. Die Metallisierung des Randstreifen wird dabei mittels in der Siebdrucktechnik üblicher Lötpaste vorgenommen, so daß der Rand beim Verlöten der Einzelelektroden mit den Signalleitungen mit aufgeschmolzen wird, und so einen lückenlosen Überzug bildet. Vorteilhaft ist es, wenn diese aufgeschmolzene Metallisierung zusätzlich noch mit einem Leitfähigkeitslack überzogen wird. Mit diesem lückenlosen Lacküberzug wird erreicht, daß der so vorbereitete Filtereinsatz auch dann mit guter Kontaktgabe in einen Träger eingesetzt werden kann, wenn Maßabweichungen oder etwa durch Temperaturschwankungen bedingte, leichte Verformungen vorliegen.
  • Zum Kontaktieren, sei es durch Verlöten oder durch Klemmkontakte ist es vorteilhaft, wenn ein mit Kontaktzungen versehener, metallischer Filterträger zur Aufnahme des Planarfilters vorgesehen ist, wo bei die Kontaktzungen auf die vorzugsweise metallisierten Ränder der Basisplatte des Planarfilters drückend den elektrischen Kontakt zu der gemeinsamen Elektrode herstellen. Damit wird ein Filterträger geschaffen, der zum einen das Planarfilter so aufnimmt, daß der Filterträger in elektrischem Kontakt mit der gemeinsamen Elektrode steht und so eine Durchkontaktierung in einfacher Weise ermöglicht, wobei der Kontakt auch bei thermischer Ausdehnung erhalten bleibt.
  • Nach einer vorteilhaften Weiterbildung ist der Filterträger in zumindest eine Schale des zweischaligen Gehäuses des mehrpoligen Steckverbinders formschlüssig derart einsetzbar, daß der metallische Filterträger und die Schale des Gehäuses elektrisch leitend verbunden sind. Diese Ausbildung erlaubt ein einfaches Herstellen des fertigen Planarfilters, das danach (oder bei einem Ausfall anläßlich des Austauschs) in den Metallträger eingesetzt wird, der dann seinerseits in das metallische Gehäuse oder in eine seiner Halbschalen eingesetzt wird und über die Kontaktzungen und/ oder die Klemmung in der Schale mit diesem und somit mit der gemeinsamen Masseelektrode elektrisch leitend verbunden ist, ohne daß es dazu einer Lötung bedarf. Hier überbrückt die Elastizität der Kontaktzungen und/oder der metallischen Schale auftretende Maßabweichungen z.B. infolge thermischer Ausdehnungen.
  • In vorteilhafte Ausgestaltung wird die Kontaktierung durch Anlegen bzw. Andrücken an eine leitfähige Einlage etwa aus einem elektrisch leitenden Kunststoff oder Gummi o.dgl. vorgesehen, die zwischen dem metallischen Filterträger und dem Planarfiler angeordnet ist. Bei der Montage wird das Planarfilter auf diese elektrisch leitende Einlage gelegt, beim Schließen der Filterträgers auch angedrückt oder angepreßt, so daß eine sichere und für die Zwecke des Filters auch hinreichende Kontaktierung gegeben ist. Die Leitfähigkeit dieser Einlage liegt dabei vorteilhaft im Bereich vom 10³ S. Dabei genügt es, wenn die Einlage als ein umlaufender Rahmen ausgebildet ist. Auch hier wird durch das flächige Anliegen an der elastischen Einlage eine sichere Kontaktierung erreicht, die auch bei etwa durch thermische Ausdehnungen bedingten Maßabweichungen erhalten bleibt.
  • Eine vorteilhafte Weiterbildung wird darin gesehen, daß das in den Filterträger eingesetzte Planarfilter mit einer mit Durchgangslöchern für die Signalleitungen versehene Abdeckung aus einem nicht-leitenden Kunststoff oder Gummi versehen ist, die ein- oder beidseitig angeordnet ist. Bei dieser Anordnung erfolgt die Kontaktierung über die Kontaktzungen, die in direktem Kontakt mit dem Filtergehäuse stehen, oder über die elektrische leitende Einlage. Das Planarfilter und insbesondere die Kondensatoren sind dabei durch diese, eine Stützung bildende Abdeckung insbesondere gegenüber Stößen geschützt.
  • Eine vorteilhafte Weiterbildung ist dadurch gegeben, daß die auf die Basisplatte aufgebrachte, mit den Durchführungs-Aussparungen und den weiteren Aussparungen versehene Basiselektrode bis an den vorzugsweise metallisierten Rand der Basisplatte durchgehend ausgebildet ist und auf dem Rand den Kontaktstreifen bildet, der als Masseelektrode mit dem Filterträger verbindbar ist, während die auf die dielektrische Schicht aufgebrachte Gegenelektrode für jede Signalleitung im Bereich ihrer Durchführungen etwa napfartig bis auf Höhe der Oberfläche der Basisplatte eingezogen und bis in die Durchführungen als Kontaktstreifen zum Verbinden mit den Signalleitungen geführt ist, wobei die in der Basiselektrode für die Verbindungsbrücken vorgesehene Aussparungen die durchgeführten Signalleitungen etwa gitterartig mit Abstand umgeben. Eine dazu alternative, ebenfalls vorteilhafte Weiterbildung ist dadurch gegeben, daß die auf die Basisplatte aufgebrachte, mit den Durchführungsaussparungen und den weiteren Aussparungen versehene Basiselektrode in Einzelelektroden unterteilt ist und in den Bereichen der Durchführungen bis in diese geführt, die Kontaktstreifen der Signalelektroden zum Verbinden mit den Signalleitungen bildet, während die Gegenelektrode als durchgehende Masseelektrode ausgebildet in den Randbereichen etwa kuchenblechartig bis auf die Höhe der Basisplatte eingezogen und auf deren vorzugsweise metallisierten Rand geführt den Kontaktstreifen bildet und mit dem Filterträger verbindbar ist, wobei die in der Gegenelektrode vorgesehenen Aussparungen die Signalleitungen mit Abstand umgeben.
  • Während bei der ersten Ausführungsform die plan auf den Träger aufgebrachte Elektrode als Masseelektrode ausgebildet ist, die bis an die Ränder der Basisplatte geführt ist, bilden die Signalelektroden einzelne "Inseln", die die Stifte der Signalleitungen umgeben. Bei der zweiten Ausführungsform ist dies genau umgekehrt: die Masseelektrode ist auf das Dielektrikum aufgebracht, während die Signalelektroden, die auch hier um die Stifte der Signalleitungen liegend "Inseln" bilden, auf der Basisplatte aufliegen und die etwa gitterartige Struktur aufweisen. Die einzelnen Abstände sorgen dafür, daß elektrische Schlüsse vermieden werden. Vorteilhaft ist, daß die auf die dielektrische Schicht aufgebrachte Gegenelektrode mit einem isolierenden Überzug abgedeckt ist, wobei vorzugsweise die als Lötstellen ausgeführten Verbindungen mit den Signalleitungen ausgespart sind. Mit dieser Abdeckung wird der Einfluß von Feuchtigkeitsniederschlägen verringert, wobei als Überzug vorteilhaft ein Silikon-Harz Verwendung findet.
  • Eine vorteilhafte Weiterbildung ist dadurch gegeben, daß zumindest für einen Teil der Signalleitungen spannungsspitzenunterdrückende Schaltelemente vorgesehen sind. Vorteilhaft werden nach einer Weiterbildung diese als Zehner- oder Avalanche-Dioden oder als Varistoren ausgebildet sind, die vorzugsweise auf die den Kondensatoren abgewandte Seite der Basisplatte zwischen dem Kontaktstreifen an deren Rand und dem Kontaktstreifen der Durchführung der Signalleitung eingelötet sind. Durch diese Ausbildung wird erreicht, daß das eingesetzte Planarfilter Spannungsspitzen abfängt und so die nachgeschaltete Elektronik schützt. Mittels derartiger Bauelemente lassen sich Spannungsspitzen so begrenzen, daß ein über eine bloße Störung hinausgehender Schaden etwa im Eingang eines korrespondierenden Rechners oder im Drucker-Eingang vermieden wird.
  • Eine andere Weiterbildung ist dadurch gegeben, daß zumindest ein Teil der Signalleitungen zumindest auf einer der Seiten des in der Filteraufnahme angeordneten Planarfilters, vorzugsweise beidseitig mit einem die Längsinduktivität erhöhenden Dämpfungsglied in Form einer Ferritperle o.dgl. zur Bildung einer L- oder T-Filteranordnung versehen sind. Vorteilhaft ist dabei als die Längsinduktivität erhöhendes Dämpfungsglied die aus einem ferromagnetischen Material, vorzugsweise aus ferromagnetischer Keramik bestehende Stiftaufnahme vorgesehen ist. Diese ggf. zusätzlich zu einem ferromagnetischen Keramik-Träger über die Stifte zumindest einiger der Signalleitungen gesetzten Perlen oder Hohlkerne aus einer ferromagnetischen Keramik erhöhen die Längsinduktivität der betreffenden Signalleitung, so daß die Filterwirkung der Querkapazität durch Bildung entsprechender L- oder T-Filteranordnungen erhöht und die Grenzfrequenz bzw. die Grenzfrequenzen in den gewünschten Bereich und ggf. zu niedrigeren Werten hin verlagert wird/werden.
  • Bei einer bevorzugten Ausführungsform ist das Gehäuse von einer ersten und einer zweiten Schale gebildet ist, wobei in eine der Schalen die Steckverbindungen für die Signalleitungen als Steckstifte, in der anderen als Steckbuchsen oder als Steckstifte derart ausgebildet sind, daß der Steckverbinder als Zwischenstecker nutzbar ist. Dabei sind Signalleitungen von den Steckstiften/-buchsen des in die erste Schale des Gehäuses eingesetzten Steckverbinderteils mit denen des zweiten Steckverbinderteil verbunden. Mit der Anwendung eines derartigen Doppel-Schalen-Gehäuses lassen sich Zwischenstecker oder Kupplungen herstellen, die mit Filtern versehen, im Zuge der Leitung eingeschaltet, Störungen zu unterdrücken in der Lage sind und die ein Eindringen von hochfrequenten Störungen z.B. aus einem angeschlossenen Rechner verhindern. Dabei ist es vorteilhaft, wenn die Verbindungen der Stifte der Signalleitungen des in die ersten Gehäuseschale eingesetzten Steckverbinderteils mit den Stiften der Signalleitungen des zweiten Steckverbinderteils so verbunden sind, daß eine Veränderung der Belegung der einzelnen Signalleitungen so erfolgt, daß der Steckverbinder als Adapter nutzbar wird. Die Ausbildung als Adapter läßt nach einer Weiterbildung auch zu, daß zumindest in einigen Verbindungen zwischen den Signalleitungen der ersten Schale des Gehäuses mit den Signalleitungen der zweiten Schale des Gehäuses elektronische Bauelemente als Anpassungsglieder vorgesehen sind. Mit einer derartigen Ausbildung wird erreicht, daß eine Anpassung an unterschiedliche Leitungskonfigurationen hergestellt und darüber hinaus sogar eine Anpassung ggf. auch einzelner Leitungen erfolgen kann.
  • In einer weiteren vorteilhaften Ausbildung ist in beiden der Schalen des Gehäuses je ein Planarfilter angeordnet, und es sind zumindest einige der Signalleitungen zwischen diesen Planarfiltern mit zusätzlichen ferromagnetischen Dämpfungsgliedern versehen, die in Form von Hohlkernen oder Perlen auf die Signalleitungen geschoben sind, die deren Längsinduktivität erhöhen und zwischen den Querkondensatoren angeordnet, ein für die so beschaltete Signalleitung wirksames Pi-Filter bilden. Mit einem derartigen Pi-Filter läßt sich eine wirksame Ausfilterung hoher Frequenzen bei hinreichend abgegrenzter Frequenzgrenze erreichen, ein Vorteil, der die Tiefpaßeigenschaften des mit einem Filter versehenen mehrpoligen Steckverbinders verbessert.
  • Das Wesen der Erfindung wird an Hand der im Folgenden beschriebenen Figuren 1 bis 9 beispielhaft näher erläutert; dabei zeigen
  • Fig. 1:
    Eine (schematische) Explosions-Darstellung des Aufbaues eines mehrpoligen Steckverbinders mit in einen Filterträger eingesetztem Planarfilter;
    Fig. 2:
    Eine (schematische) Darstellung eines mit Steckbuchsen versehenen Steckverbinders mit mit einem metallischen Filterträger eingesetzen Planarfilter zum Auflöten auf eine Steckkarte,
    a:Explosionsdarstellung, b: Ansicht, c: Querschnitt;
    Fig. 3:
    Eine (schematische) Darstellung eines mit Steckstiften versehenen Steckverbinders mit mit einem metallischen Filterträger eingesetztem Planarfilter zum Auflöten auf eine Steckkarte,
    a:Explosionsdarstellung, b: Ansicht, c: Querschnitt;
    Fig. 4:
    Beispiele der Ausführung des Steckverbinders als Zwischenstecker,
    a: Ansicht, b: Schnitt Zwischenstecker Steckbuchse/Steckstifte mit Filter, c: Schnitt Zwischenstecker Steckstifte/ Steckstifte mit Filter;
    Fig. 5:
    Eine (schematische) Darstellung eines als Adapter ausgebildeten Steckverbinders mit Doppel-Filter,
    a: Explosions-Darstellung, b: Ansicht, c: Schnitt;
    Fig. 6:
    Eine (schematische) Explosionsdarstellung eines Steckverbinders mit mittels eines leitfähigen Rahmens eingesetztem Planarfilter,
    a: Steckverbinder zum Auflöten entsprechend Fig. 2,
    b: Steckverbinder mit beidseits Steckstiften entsprechend Fig. 3c,
    c: Steckverbinder als Adapter entsprechend Fig. 4;
    Fig. 7:
    Aufbau des als Planar-Filter ausgebildeten Filters (schematische Explosions-Darstellung),
    Fig. 7a: Einzelheit Basiselektrode;
    Fig. 8:
    Schnitt durch ein Planarfilter mit zwei Stift-Reihen,
    a: Masseelektrode auf keramischem Träger,
    b: Signalelektrode auf keramischem Träger;
    Fig. 9:
    Eine (schematische) Darstellung eines mehrpoligen Steckverbinders mit Spannungsspitzen-Begrenzer
    a: Schnitt (mittig geteilt: Rechte Hälfte: Auf Platine auflötbarer Steckverbinder mit Steckstiften; Linke Hälfte: Zwischenstecker mit Buchsen und Steckstiften;
    b: Einzelheit Filter mit Dämpfung und Spannungspitzen-Begrenzung (schematischer Schnitt).
  • Die Figur 1 zeigt in Art einer Explosions-Darstellung den Aufbau eines mehrpoligen Steckverbinders 1 mit Steckbuchsen 6 und eines mehrpoligen Steckverbinders 2 mit Steckstiften 7. Beide Steckverbinder 1 und 2 sind mit einem metallischen Gehäuse 4 versehen, das zweischalig ausgebildet von beiden Seiten her das Innere des Steckverbinders aufnimmt, und über das die Masseverbindung hergestellt werden kann. Dazu weist das Gehäuse 4 einen überstehenden Kragen 4.1 auf, der die Buchsenleiste 6 mit den Steckbuchsen 6.1 bzw. die Steckstifte 7.1 aufnimmt und deren Abschirmung bildet, die ihre Masseverbindung über den anzuschließenden Steckverbinder erhält. Die Rückseiten der Steckbuchsen 6.1 sind mit den Anschlußstiften 6.2 und die der Steckstifte 7.1 mit den Anschlußstiften 7.2 versehen, die aus dem Gehäuse 4 des zusammengesetzten Steckverbinders herausragen und z.B. als Lötstifte auf eine Steckkarte oder eine Platine aufgelötet werden können. Zwischen beiden Gehäuseschalen 4 ist ein Filterträger 9 eingesetzt, der das Filter 1o aufnimmt, wobei der Filterträger 9 mit Kontaktzungen 9.1 versehen ist, die an der auf mindestens eine der äußeren, metallisierten Kanten 11.1 der Basisplatte 11 des plattenförmigen Planarfilters 10 geführte Metallisierung 14.1 bzw. 16.1 der gemeinsamen Elektrode 14 bzw. 16 (Fig. 8) anliegen, so daß diese eine elektrische Verbindung mit dem Filterträger 9 herstellen. Der Filterträger 9 seinerseits ist, in das metallische Gehäuse 4 eingesetzt, mit diesem leitend verbunden, wobei der Gehäuserand eine entsprechende Ausformung oder entsprechende Kontaktzungen aufweist, die eine sichere Kontaktgabe durch Klemmung erreichen.
  • Die Figur 2 zeigt einen mit Steckbuchsen 6.1 versehenen Steckverbinder 1 im einzelnen. In der Explosions-Darstellung (Fig. 2a) ist der Aufbau mit den beiden Schalen des Gehäuses 4 zu erkennen, wobei deren Kragen 4.1 nach außen weisen. Zwischen diesen beiden Schalen sind zum einen die die Steckbuchsen 6.1 aufnehmende, in ihrer Form der Form der zugeordneten Schale des Gehäuses 4 angepaßten Buchsenleiste 6 und die die Anschlußstifte 6.2 aufnehmende Stift-Aufnahme 8.1. vorgesehen, zwischen denen die Filteraufnahme 9 mit dem (nicht näher dargestellten) Filter so angeordnet ist, daß jede der Verbindungsleitungen von einer der Steckbuchse 6.1 zu dem ihr zugeordneten Anschlußstift 6.2 durch das Filter geführt ist, wofür das Planarfilter 10 für jede dieser Leitungen 12.1 einen Durchbruch 12 (s. Figur 7) aufweist. Diese Stiftaufnahme 8.1 bildet dabei gleichzeitig eine das in den Filterhalter 9 eingesetzte Planarfilter 10 sichernde Unterstützung, die aus einen nicht leitenden Kunststoff oder Gummi einer Shore-Härte von etwa 40° bis 60° hergestellt, das Planarfilter vor Stößen und Erschütterungen bewahrt und ihm ein "Arbeiten" bei infolge Temperaturwechsel auftretenden Ausdehnungen in dem Gehäuse erlaubt. Der Schnitt nach Fig. 2c läßt die zwischen die Schalen des Gehäuses 4 eingesetzte Filteraufnahme 9 erkennen. Die Ansicht nach Figur 2b zeigt die Kompaktheit des so mit einem Filter versehenen mehrpoligen Steckverbinders. Die Figur 3 zeigt die gleichen Verhältnisse für einen mehrpoligen Steckverbinder 2, bei dem anstelle der Steckbuchsen 6.1 (Fig. 2) Steckstifte 7.1 als Steckelemente vorgesehen sind. Zur Entlastung des Filters ist eine Steckerstift-Leiste 7 vorgesehen, die anstelle der Buchsenleiste 6 tritt. Die Schnitt-Darstellung nach Figur 3c zeigt die Anschlußstifte um 90° abgewinkelt, zum Auflöten auf eine Platine. Auch hier läßt die Ansicht nach Figur 3b die Kompaktheit des mehrpoligen Steckverbinders erkennen.
  • Die Figur 4 zeigt eine Ausführungsform des mehrpoligen Steckverbinders als Zwischenstecker 3.1, in dessen zweischaligem Gehäuse 4 der mindestens mit einer Schale des Gehäuses 4 verbundene Filterträger 9 mit dem Planarfilter 10 angeordnet ist. Dabei sind die die Steckbuchsen 6.1 bzw. Steckstifte 7.1 untereinander verbindenden Signalleitungen durch die Stiftaufnahme 8.1 geführt, die, wenn aus einer aluminiumoxidischen Keramik hergestellt, einen vorzüglichen Isolator mit vorgebbarer Dielektrizitätskonstanten bildet. Eine andere Möglichkeit besteht darin, daß diese Stiftaufnahme 8.1 aus einem ferromagneischen Material besteht, das eine Längsinduktivität für die Signaleitungen bildet. Dadurch wird jede der Signalleitungen mit einer dem Kondensator vor- bzw. nachgeschalteten Induktivität versehen, so daß auf diese Weise L-Filteranordnungen gebildet werden. Werden dabei derartige ferromagnetische Stiftaufnahmen 8.1 beidseits des in der Filteraufnahme 9 angeordneten Planarfilters 10 vorgesehen, können T-Filteranordnungen realisiert werden. Es versteht sich dabei von selbst, daß die Längsinduktivitäten auch mit auf einzelne Signalleitungen aufgesetzte ferromagnetische Perlen oder Röhrchen gebildet werden können, wobei nicht notwendig jede der Signalleitungen induktivitätsbehaftet sein muß. Die Ausführung kann -entsprechend der Schnitt-Darstellung nach Figur 4b - als "Steckbuchsen/Steckstift-Zwischenstecker" oder - nach Figur 4c - als "Steckstift/Steckstift-Zwischenstecker" ausgebildet sein, wobei es sich von selbst versteht, daß auch eine Ausführungsform "Steckbuchse/Steckbuchsen-Zwischenstecker" möglich ist. Der Aufbau entspricht dabei im wesentlichen dem Aufbau der mehrpoligen Steckverbinder nach den Figuren 1 bis 3.
  • Die Figur 5 zeigt einen als Adapter 3 ausgebildeten mehrpoligen Steckverbinder, bei dem - im Gegensatz zu den Zwischensteckern 3.1 nach Figur 4 - auch unterschiedliche Steckverbinder-Konfigurationen auf beiden Seiten des Steckverbinders und/oder unterschiedliche Leitungsverbindungen innerhalb des Adapters 3 möglich sind. Den Aufbau zeigt die Explosions-Darstellung nach der Figur 5a. Das Adapter-Zwischenstück 5 verbindet hier die beiden Schalen des Gehäuses 4 und stellt auch die Durchkontaktierung der über die metallischen Gehäuseschalen geführten Masseverbindungen her; dazu ist zumindest seine Außenseite metallisiert. Durch diese Metallisierung wird über die Durchkontaktierung hinaus auch eine Abschirmung erreicht, die eine Einstrahlung von Störsignalen wirksam verhindert. Die internen Verbindungen liegen dabei in diesem Adapter-Zwischenstück 5 und können hier entsprechend den Anforderungen geführt werden; so ist beispielsweise ein Übergang von 2-reihigen Steckverbindern auf 3-reihige ebenso möglich, wie das Verändern des Anschluß-Schemas, etwa für Kabel zum Verbinden inkompatibler Schnittstellen. Das Adapter-Zwischengehäuse 5 gestattet darüber hinaus den Einsatz zweier Filterträger 9 mit ihren ggf. unterschiedlichen Planarfiltern 10, wie die Explosions-Darstellung nach Figur 5a und die Schnitt-Darstellung nach Figur 5c erkennen lassen. Die Ansicht nach Figur 5b zeigt auch hier wieder, daß sich mit den Filtern eine äußerst kompakte Bauweise des mehrpoligen Steckverbinders erreichen läßt.
  • Die Figur 6 zeigt eine Darstellung eines mit einem leitfähigen Rahmen 8.2 in das metallische Gehäuse 4.1 eingesetzten Filterträgers 9 mit dem Planarfilter 10. Dieser leitfähige Rahmen 8.2 übernimmt hier die Kontaktierung zu dem auf Massepotential liegendem Gehäuse 4.1 und sorgt so für eine gute Masseverbindung, die auch bei Maßabweichungen oder bei (kleinen) Verformungen wegen der Elastizität des Kunststoffes bzw. des Gummis mit einer Shore-Härte um 40° bis 60° des Rahmens 8.2 erhalten bleibt. Dargestellt ist zum einen ein Steckverbinder mit Steckbuchsen entsprechend der in der Figur 2 gezeigten Ausführungsform (Fig. 6a), ein Steckverbinder mit Steckstiften entsprechend der in Figur 3 gezeigten Ausführungsform (Fig. 6b) und und ein Steckstift/Steckstift-Adapter entsprechend der in der Figur 4c gezeigten Ausführungform (Fig. 6c). Beim Zusammenbau wird dieser Rahmen 6.2 infolge des Zusammendrückens gequetscht, so daß der nachgiebig elastische Kunststoff oder der Gummi umlaufend flächig anliegt und für eine gute und auch bei Verformungen beim Umgang mit dem Steckverbinder andauernde Kontaktgabe Sorge trägt.
  • Die Figur 7 zeigt eine stark schematisierte Explosions-Darstellung des Aufbaues des Planarfilters. Auf einer Basisplatte 11 aus einer insbesondere auf Aluminiumoxid aufgebauten Keramik ist eine metallische Elektrodenschicht als Basiselektrode 14 aufgebracht, die die Basisplatte 11 mit winkligen Streifen 14.1 umgreift und mit den vorteilhaft ebenfalls metallisierten Außenseiten 11.1 der Basisplatte 11 elektrisch ggf. durch Verlöten in Kontakt stehen. Die nächste Schicht 15 wird von dem Dielektrikum gebildet, das insbesondere auf Titanat-Basis aufgebaut ist. Auf die Oberseite der dielektrischen Schicht 15 sind die für die Bildung der Kondensatoren notwendigen Gegenelektroden 16 vorgesehen, die in die gewählte Darstellung als Einzelelektroden eingezeichnet sind. Dieser im wesentlichen plane Aufbau wird von einem isolierenden Schutzüberzug 17, einem Kunststoff oder einem Lack, abgedeckt, so daß das Planarfilter vor äußeren Einwirkungen, wie z.B. von Luftfeuchte oder korrosiven Gasen, geschützt ist. Alle Schichten weisen fluchtende, lochförmige Ausnehmungen 12 auf für die Durchführung der Signalleitungen 12.1 (Fig. 8); diese (in Fig. 7 nicht näher bezeichneten) Durchführungen sind in 4 Fällen gestrichelt, mit dem Hinweis-Bezugszeichen 12 verdeutlicht, wobei alle Durchführungen durch die metallische Basiselektrode 14, die in dem dargestellten Ausführungsbeispiel die gemein same (Masse-)Elektrode bildet, mit einem Kreuz bezeichnet sind. Diese Durchführungen in der Basiselektrode 14 sind umgeben von weiteren Öffnungen 14.2 (die nicht notwendig kreisförmigen Querschnitt aufweisen müssen), durch die die dielektrische Schicht 15 als Brücke 15.1 (Fig. 7) greift, um die dielektrische Schicht 15 auf der Basisplatte 11 fest zu verankern. Dabei ist um jede der Signalleitungs-Durchführungen 12 eine Anzahl derartiger Öffnungen 14.2 vorgesehen, die vorteilhaft jeweils auf den Mittellinien zwischen den Durchführungsöffnungen 12 angeordnet sind, wodurch sich eine gute Symmetrie ergibt. Die Figur 7a zeigt eine der Darstellung in Figur 7 entsprechende, andere Ausführungsform der Basiselektrode 14, bei der die Querschnittsformen der weiteren Öffnungen 14.2 eine andere ist. Auch hier wird die Keramik der dielektrischen Schicht 15 durch die vorgesehenen Aussparungen der Löcher 14.2 hindurch mit der Keramik der Basisplatte 11 fest verbunden, quasi verankert. Diese Verankerung ist für die Belastbarkeit der Verbindung, insbesondere durch infolge unterschiedlicher thermischer Ausdehnungskoeffizienten bedingten Spannungen von entscheidender Bedeutung.
  • Wie die Figur 8 am Beispiel eines Schnittes durch ein Filter für einen zwei-reihigen Steckverbinder erkennen läßt, sind die einzelnen Durchführungen 12 für die Signalleitungen 12.1 so, daß die Basisplatte 11 (relativ) eng an der Signalleitung 12.1 anliegt. Die Metallisierung der Basiselektroden 14 ist in die Durchführung 12 eingezogen, so daß die elektrische Verbindung zur Basis-Elektrode 14 durch einfaches Verlöten hergestellt werden kann. Dies ist unabhängig davon, ob die Basis-Elektrode 14 als gemeinsame (Masse-)Elektro de ausgebildet ist (wie in Figur 8a dargestellt), oder ob die Basis-Elektrode 14 in Einzelelektroden zerfällt, von denen jede mit der zugeordneten Signalleitung 12.1 verbunden ist (wie in Figur 8b dargestellt). Über der Basiselektrode 14 ist die für den Kondensator wichtige dielektrische Schicht 15 vorgesehen, die mit Brücken 15.1 durch die um die Durchbrüche 12 für die Signalleitungs-Durchführung angeordneten weiteren Durchbrüche oder Ausnehmungen 14.2 durchgreift und direkt mit dem Material der Basisplatte 11 in Verbindung steht und so eine feste Verbindung zwischen der Keramik der Basisplatte 11 und dem Material der dielektrischen Schicht 15 herstellt. Die dielektrische Schicht 15 ist dabei im Bereich der Durchführungen 12 napfartig ausgenommen, so daß sich um die Durchführungen 12 Vertiefungen ergeben, in deren Grund jeweils die Lötstelle 12.2 liegt, die die Verbindung von der entsprechenden Signalleitung 12.1 zu der Einzel-Elektrode schafft. Die freie Oberseite der dielektrischen Schicht 15 trägt die Gegenelektrode 16, die ihrerseits wiederum von dem Schutzüberzug 17 abgedeckt ist. Das so aufgebaute Planarfilter 10 bzw. 10' ist in einen metallischen Filterhalter 10.1 eingesetzt, der mit den Kontaktstreifen 14.1 bzw. 16.1 an den vorzugsweise metallisierten Rändern 11.1 der Basisplatte 11 elektrisch leitend in Verbindung steht und der seinerseits in den Filterträger 9 (Fig. 1 bis 5) eingesetzt wird.
  • In der Figur 8a ist die Basiselektrode 14 als durchgehende, gemeinsame Elektrode dargestellt, die an beiden Längsseiten bis in beide äußere, vorzugsweise mit einer Metallauflage versehenen Ränder 11.1 der Basisplatte 11 hineingeführt die Kontaktstreifen 14.1 ergeben, mit denen die Masseverbindung über den Filterträger 9 und das Gehäuse 4 der Steckverbinder nach den Figuren 1 bis 5 hergestellt wird. Die Gegenelektrode 16 ist hier als Einzelelektrode ausgebildet, die jede der Durchführungen 12 für die Signalleitungen 12.1 inselartig umgibt, so daß für jede der Signalleitungen 12.1 eine Elektrode verfügbar ist, die über den Rand der die Durchführung 12 umgebenden, napfartigen Vertiefung in der dielektrischen Schicht 15 verläuft und so bei jeder der Durchführungen 12 bis in deren Grund gelangt und mittels der Lötstelle 12.2 mit der Signalleitung 12.1 verbunden werden kann. Es versteht sich dabei von selbst, daß die die Durchführung 12 umgebenden Aussparungen in der Basiselektrode einen entsprechend großen Durchmesser aufweisen müssen, so daß ein hinreichender Abstand zu den im Durchführungs-Bereich bis auf die Oberfläche der Basisplatte 11 geführten Gegenelektroden, die als Kontaktstreifen 16.1 in die Löcher der Durchführungen hineingeführt sind, gewahrt bleibt. Die Figur 8b zeigt die Umkehrung: Hier bildet die Gegenelektrode die durchgehende, gemeinsame Elektrode, die an den beiden Längsseiten bis auf die Ränder 11.1 der Basisplatte 11 geführt, die den Massekontakt herstellenden Kontaktstreifen 16.1 bildet. Die Basiselektrode 14 ist in Einzelelektroden aufgelöst, und in jede der Ausnehmungen der Basisplatte als Kontaktstreifen 14.1 zum Verlöten mit der zugeordneten Signalleitung 12.1 hineingeführt, wobei hier die Einzelelektroden der Basiselektrode 14 die Signalleitungs-Durchführungen inselartig umgeben.
  • Die Figur 9 zeigt eine Ausführungsform, bei der einige oder alle der durchgeführten Signalleitungen 12.1, die Steckbuchsen 6.1 und Steckstifte 7.1 (oder Steckbuchsen-Steckbuchsen oder Steckstifte-Steckstifte) eines Zwischensteckers oder Steckstiften 7.1 und Anschlußstifte 7.2 (oder Steckbuchsen-Anschlußstifte) eines auflötbaren Steckverbinders verbinden, mittels einer insbesondere in SMD-Technik aufgelöteten Spannungsspitzen-Unterdrücker 19, z.B. in Form von Zehner- oder Avalanche-Dioden, gegen Spannungsspitzen besonders geschützt sind. Auch diese Bauelemente lassen sich in dem Gehäuse 4 des mehrpoligen Steckverbinders mit unterbringen. Desweiteren läßt sich die Dämpfung einiger oder aller Signalleitungen 12.1 durch eine aufgesetzte Dämpfungsperle 18 z.B. aus einer ferromagnetischen Keramik, so beeinflussen, daß besonders im Zusammenwirken mit dem Kondensator des Filters dessen Grenzfrequenz in gewünschter Weise verschoben werden kann. Dabei wird die Dämpfungsperle vorteilhaft derart gestaltet, daß sie von der napfartigen Vertiefung in der dielektrischen Schicht 15 aufgenommen und in der Schutzlackierung 17 eingebettet wird. Diese Anordnung ist in der Figur 9a vergrößert dargestellt, wobei auf die Signalleitung 12.1 zur zusätzlichen Längsdämpfung eine ferrromagnetischen Perle 18 aufgeschoben ist.

Claims (16)

  1. Mehrpoliger Steckverbinder (1; 2; 3) mit einem mit mindestens einer leitfähigen Schale (4.1) versehenen Gehäuse (4), durch das insbesondere digitalisierte Signale führende Leitungen (12.1) verlaufen und in dem ein auf einer aus aluminiumoxidischer oder ferromagnetischer Keramik aufgebaute Basisplatte (11) aufgebautes Planarfilter (10) angeordnet ist, mit für zumindest einige der Signalleitungen (12.1) vorgesehenen Kondensatoren, die gebildet sind von einer auf die Basisplatte (11) aufgebrachte Basiselektrode (14), auf die eine dielektrische Schicht (15) und auf die wiederum eine Gegenelektrode (16) aufgebracht sind, wobei jeweils die eine der Elektroden (14; 16), durchgehend als Masseelektrode ausgebildet, mit dem Gehäuse (4) und die andere der Elektroden (16; 14) in einzelne Signalelektroden unterteilt, mit den Signalleitungen (12.1) leitend verbunden sind, und wobei Basisplatte (11) und dielektrische Schicht (15) und zumindest eine der Elektroden (14; 16) Aussparungen (12) zum Durchführen der Signalleitungen (12.1) aufweisen, wobei das Planarfilter (10) für jeden der Stifte der Signalleitungen (12.1) einen Kondensator aufweist, dadurch gekennzeichnet, daß die auf die Basisplatte (11) aufgebrachte Basiselektrode (14) im Bereich der Durchführungen (12) für die Signalleitungen (12.1) um diese herum angeordnet weitere Aussparungen (14.2) aufweist, durch die die dielektrische Schicht (15) über Brücken (15.1) mit dem Material der Basisplatte (11) in Verbindung stehend an diesem verankert ist.
  2. Mehrpoliger Steckverbinder nach Anspruch 1, dadurch gekennzeichnet, daß die weiteren Aussparungen (14.2) der Basiselektrode (14) gitterähnlich die Durchführungs-Aussparungen (12) umgeben, die vorzugsweise auf der Mittelline zwei er benachbarter Signalleitungsdurchführungen (12) liegen.
  3. Mehrpoliger Steckverbinder nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Metallisierung, die die gemeinsame Elektrode (14; 16) bildet, zur Bildung eines entsprechenden Kontaktstreifens (14.1; 16.1) bis auf zumindest einen vorzugsweise metallisierten Rand (11.1) der Basisplatte (11) und die Metallisierung, die die mit den Signalleitungen (12.1) verbundenen Einzelelektroden (16; 14) bildet, zur Bildung entsprechender Kontaktstreifen bis in die einzelnen Durchführungs-Aussparungen (12) für die Signalleitungen (12.1) geführt sind.
  4. Mehrpoliger Steckverbinder nach Anspruch 3, dadurch gekennzeichnet, daß die Metallisierung der Kontaktstreifen zur Bildung des metallisierten Randes (11.1a) mittels aufgeschmolzener Lötpaste erfolgt, wobei vorzugsweise die metallisierten Randbereiche und/oder die metallisierten Ränder mit einer Schicht eines elektrisch leitfähigen Lackes abgedeckt sind.
  5. Mehrpoliger Steckverbinder nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß ein mit Kontaktzungen (9.1) versehener, metallischer Filterträger (9) zur Aufnahme des Planarfilters (10) vorgesehen ist, wobei die Kontaktzungen (9.1) auf die vorzugsweise metallisierten Ränder (11.1) der Basisplatte (11) des Planarfilters (10) drückend den elektrischen Kontakt zu der gemeinsamen Elektrode (14; 16) herstellen, der vorzugsweise in zumindest eine Schale des zweihaligen Gehäuses (4) des mehrpoligen Steckverbinders formschlüssig derart einsetzbar ist, daß Filterträger (9) und Gehäusesschale (4) elektrisch leitend verbunden sind.
  6. Mehrpoliger Steckverbinder nach Anspruch 4, dadurch gekennzeichnet, daß elektrisch leitfähige Kunststoff- oder Gummieinlagen (8.2) zwischen Filterträger (9) mit eingesetztem Planarfilter (10) und Außenelektrode des Gehäuses (4.1) eingefügt sind, die vorzugsweise einen umlaufenden, an den Randbereichen des Planarfilters (10) anliegenden Rahmen (8.2) bilden.
  7. Mehrpoliger Steckverbinder nach Anspruch 6, dadurch gekennzeichnet, daß das in den Filterträger (9) eingesetzte Planarfilter (10) mit einer ein- oder beidseitig angeordneten Abdeckung (8.1) aus Kunststoff- oder Gummi versehen ist, die entsprechend dem Stift- oder Buchsenbild des Steckverbinders gelocht ist.
  8. Mehrpoliger Steckverbinder nach einem der vorstehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die auf die Basisplatte (11) aufgebrachte, mit den Durchführungs-Aussparungen (12) und den weiteren Aussparungen (14.2) versehene Basiselektrode (14) bis an den vorzugsweise metallisierten Rand (11.1) der Basisplatte (11) durchgehend ausgebildet ist und auf dem Rand den Kontaktstreifen (14.1) bildet, der als Masseelektrode mit dem Filterträger (9) bzw. der leitfähigen Kunststoff- oder Gummieinlage (8.2) verbindbar ist, während die auf die dielektrische Schicht (15) aufgebrachte Gegenelektrode (16) für jede Signalleitung (12.1) im Bereich ihrer Durchführungen (12) etwa napfartig bis auf Höhe der Oberfläche der Basisplatte (11) eingezogen und bis in die Durchführungen (12) als Kontaktstreifen (16.1) zum Verbinden mit den Signalleitungen geführt ist, wobei die in der Basiselektrode (14) für die Verbindungsbrücken (15.1) vorgesehene Aussparungen (14.2) die durchgeführten Signalleitungen (12.1) etwa gitterartig mit Abstand umgeben.
  9. Mehrpoliger Steckverbinder nach einem der vorstehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, daß auf die Basisplatte (11) aufgebrachte, mit den Durchführungsaussparungen (12) und den weiteren Aussparungen (14.2) versehene Basiselektrode (14) in Einzelelektroden unterteilt ist und in den Bereichen der Durchführungen (12) bis in diese geführt, die Kontaktstreifen (14.1) der Signalelektroden zum Verbinden mit den Signalleitungen (12.1) bilden, während die Gegenelektrode (16) als durchgehende Masseelektrode ausgebildet in den Randbereichen etwa kuchenblechartig bis auf die Höhe der Basisplatte eingezogen und auf deren vorzugsweise metallisierten Rand (11.1) geführt den Kontaktstreifen (16.1) bildet und mit dem Filterträger (9) bzw. der leitfähigen Kunststoff- bzw. Gummieinlage (8.2) verbindbar ist, wobei die in der Gegenelektrode (16) vorgesehenen Aussparungen die Signalleitungen (12.1) mit Abstand umgeben.
  10. Mehrpoliger Steckverbinder nach einen der Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß die auf die dielektrische Schicht (15) aufgebrachte Gegenelektrode (16) mit einem isolierenden Überzug (17) abgedeckt ist, wobei vorzugsweise die als Lötstellen (12.2) ausgeführten Verbindungen mit den Signalleitungen (12.1) ausgespart sind.
  11. Mehrpoliger Steckverbinder nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zumindest für einen Teil der Signalleitungen (12.1) spannungsspitzenunterdrückende Schaltelemente (19) wie Zehner- oder Avalanche-Dioden oder Varistoren vorgesehen sind, die vorzugsweise auf die den Kondensatoren abgewandte Seite der Basisplatte (11) zwischen dem Kontaktstreifen (14.1; 16.1) an deren Rand und dem Kontaktstreifen (16.1; 14.1) der Durchführung (12) der Signalleitung (12.1) eingelötet sind.
  12. Mehrpoliger Steckverbinder nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß zumindest ein Teil der Signalleitungen (12.1) zumindest auf einer der Seiten des in der Filteraufnahme (9) angeordneten Planarfilters (10), vorzugsweise beidseitig mit einem die Längsinduktivität erhöhenden Dämpfungsglied (18) in Form einer Ferritperle o.dgl. zur Bildung einer L- oder T-Filteranordnung versehen sind.
  13. Mehrpoliger Steckverbinder nach Anspruh 12, dadurch gekennzeichnet, daß als die Längsinduktivität erhöhendes Dämpfungsglied die aus einem ferromagnetischen Material, vorzugsweise aus ferromagnetischer Keramik bestehende Stiftaufnahme (8.1) vorgesehen ist.
  14. Mehrpoliger Steckverbinder nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß das Gehäuse (4) des Steckverbinders von einer ersten und einer zweiten Schale gebildet ist, wobei die in den Schalen vorgesehene Steckverbindungen für die Signalleitungen (12.1) als Steckstifte (7.1), und/oder Steckbuchsen (6.1) ausgebildet sind, wobei vorzugsweise die Signalleitungen (12.1) zur Veränderung der Belegung der einzelnen Signalleitungen mit veränderbarem Anschlußbild verbindbar sind, daß der Steckverbinder als Zwischenstecker (3.1) oder Adapter (3) nutzbar ist.
  15. Mehrpoliger Steckverbinder nach Anspruch 14, dadurch gekennzeichnet, daß zumindest in einigen Verbindungen zwischen den Signalleitungen (12.1) der ersten Schale des Gehäuses (4) mit den Signalleitungen (12.1) seiner zweiten Schale elektronische Bauelemente als Anpassungsglieder vorgesehen sind.
  16. Mehrpoliger Steckverbinder nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß in beiden der Schalen des Gehäuses (4) je ein Planarfilter (10) angeordnet ist, und zumindest einige der Signalleitungen (12.1) zwischen diesen Planarfiltern (10) mit zusätzlichen ferromagnetischen Dämpfungsgliedern (18) Form von Hohlkernen oder Perlen versehen sind, die deren Längsinduktivität erhöhen und zwischen den Querkondensatoren angeordnet, ein für die so beschaltete Signalleitung (12.1) wirksames Pi-Filter bilden.
EP91119122A 1991-06-14 1991-11-11 Mehrpoliger Steckverbinder für elektronische Signalleitungen Expired - Lifetime EP0517952B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002071122A CA2071122C (en) 1991-06-14 1992-06-12 Multipole connector for electronic signal lines
JP15526892A JPH06181080A (ja) 1991-06-14 1992-06-15 電気信号線路のための多極プラグコネクタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE9107385U DE9107385U1 (de) 1991-06-14 1991-06-14 Mehrpoliger Steckverbinder für elektronische Signalleitungen
DE9107385U 1991-06-14

Publications (3)

Publication Number Publication Date
EP0517952A2 EP0517952A2 (de) 1992-12-16
EP0517952A3 EP0517952A3 (en) 1993-08-11
EP0517952B1 true EP0517952B1 (de) 1995-06-14

Family

ID=6868343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91119122A Expired - Lifetime EP0517952B1 (de) 1991-06-14 1991-11-11 Mehrpoliger Steckverbinder für elektronische Signalleitungen

Country Status (4)

Country Link
US (1) US5242318A (de)
EP (1) EP0517952B1 (de)
DE (2) DE9107385U1 (de)
ES (1) ES2075305T3 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4327850C2 (de) * 1993-08-19 1997-04-03 Filtec Gmbh Planarfilter insbesondere für mehrpolige Steckverbinder mit Stecker und Gegenstecker
DE4342326C2 (de) * 1993-12-11 1996-12-12 Filtec Gmbh Planarfilter für einen vielpoligen Steckverbinder
US5704810A (en) * 1994-02-03 1998-01-06 Nippon Carbide Kogyo Kabushiki Kaisha Electrical connector with filter
EP0692848A4 (de) * 1994-02-03 1997-07-23 Nippon Carbide Kogyo Kk Filterverbinder
US5456616A (en) * 1994-02-04 1995-10-10 Molex Incorporated Electrical device employing a flat flexible circuit
US5562498A (en) * 1994-12-21 1996-10-08 Delco Electronics Corp. Flexible capacitor filter
DE29512383U1 (de) * 1995-08-01 1997-01-09 Theis, Rüdiger, 42489 Wülfrath Adapter für Anschlußelemente elektrischer Kabel oder Leitungen
FR2743458B1 (fr) * 1995-11-30 1998-03-27 Sgs Thomson Microelectronics Circuit de transmission de signaux
US5739737A (en) * 1996-04-29 1998-04-14 Hatton; Ken W. Blown fuse indicator
US6086384A (en) * 1997-08-22 2000-07-11 Molex Incorporated Method of fabricating electronic device employing a flat flexible circuit and including the device itself
US6723928B1 (en) 1997-09-29 2004-04-20 Molex Incorporated Terminal pins mounted in flexible substrates
US6030234A (en) * 1998-01-23 2000-02-29 Molex Incorporated Terminal pins mounted in flexible substrates
DE19815488C1 (de) * 1998-04-07 2000-03-09 Itt Mfg Enterprises Inc Elektrischer Steckverbinder
DE29902505U1 (de) * 1999-02-02 2000-03-23 Filtec Filtertechnologie für die Elektronikindustrie GmbH, 59557 Lippstadt Planarfilter
US6776661B2 (en) * 1999-02-02 2004-08-17 Filtec Filtertechnologie Fuer Die Elektronikindustrie Gmbh Planar filter and multi-pole angle-connecting device with a planar filter
DE29911342U1 (de) * 1999-07-02 2000-08-24 Filtec Filtertechnologie für die Elektronikindustrie GmbH, 59557 Lippstadt Vielpolige Winkelsteckvorrichtung
DE29914584U1 (de) * 1999-08-19 2000-09-28 Filtec Filtertechnologie für die Elektronikindustrie GmbH, 59557 Lippstadt Kondensator
AU4833701A (en) 2000-04-20 2001-11-07 Siemens Ag Interference suppressor
DE10041286A1 (de) * 2000-04-20 2001-10-31 Mannesmann Vdo Ag Entstöreinrichtung
WO2002030164A2 (en) 2000-10-06 2002-04-11 Amphenol Corporation Terminal block with shoulder contact and formed ground plate retained by plastic insert
US6794578B2 (en) * 2001-03-14 2004-09-21 Sabritec, Inc. Quadrax to twinax conversion apparatus and method
DE20118263U1 (de) 2001-11-09 2002-12-19 Filtec Filtertechnologie für die Elektronikindustrie GmbH, 59557 Lippstadt Kondensator-Körper
US7211734B2 (en) * 2002-03-11 2007-05-01 Sabritec, Inc. Quadrax to twinax conversion apparatus and method
DE10233318C1 (de) * 2002-07-22 2003-09-25 Siemens Ag Entstöreinrichtung
US20070015404A1 (en) * 2005-07-14 2007-01-18 Radiall Filtered electrical connector
US20070103828A1 (en) * 2005-11-08 2007-05-10 Symcom, Inc. Methods and systems for detecting a protection device operation
US8167625B2 (en) * 2010-09-23 2012-05-01 Apple Inc. Integrated noise reduction connector
US8838868B2 (en) * 2010-12-17 2014-09-16 Qualcomm Incorporated Communication port and connector
DE102017107137B4 (de) * 2017-04-03 2022-06-23 VACUTEC Hochvakuum- & Präzisionstechnik GmbH Vorrichtung mit einem Multipol und einer Haltevorrichtung zum Halten des Multipols, Haltevorrichtung, Massenspektrometer mit einer derartigen Vorrichtung, Montageeinheit zur Positionierung des Multipols sowie Verfahren zum Positionieren einer Haltevorrichtung gegenüber einem Multipol

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA567939A (en) * 1955-05-27 1958-12-23 R. Roup Rolland Electrical circuit elements
US3200355A (en) * 1961-11-24 1965-08-10 Itt Electrical connector having rf filter
US3538464A (en) * 1963-08-20 1970-11-03 Erie Technological Prod Inc Multiple pin connector having ferrite core stacked capacitor filter
US3447104A (en) * 1966-06-06 1969-05-27 Itt Electrical connector filter comprising at least one electrically conductive coated dielectric disc and a ferromagnetic disc
JPS5353906Y2 (de) * 1974-03-28 1978-12-23
FR2422268A1 (fr) * 1978-04-06 1979-11-02 Eurofarad Element de connecteur electrique comprenant des capacites de filtrage integrees
BR8401386A (pt) * 1983-03-30 1984-11-06 Du Pont Conector de filtro
BR8401396A (pt) * 1983-03-30 1984-11-06 Du Pont Conector eletrico para filtrar ampla faixa de frequencias
US4791391A (en) * 1983-03-30 1988-12-13 E. I. Du Pont De Nemours And Company Planar filter connector having thick film capacitors
CH667960A5 (de) * 1985-02-08 1988-11-15 Bbc Brown Boveri & Cie Vorrichtung zum schutz elektrischer schaltungen.
US4729752A (en) * 1985-07-26 1988-03-08 Amp Incorporated Transient suppression device
JPS62206776A (ja) * 1986-03-05 1987-09-11 株式会社村田製作所 フイルタコネクタ
NL8701661A (nl) * 1987-07-14 1989-02-01 Du Pont Nederland Filtereenheid voor connectoren.
NL8800609A (nl) * 1988-03-11 1989-10-02 Du Pont Nederland Connector.
DE8805669U1 (de) * 1988-04-29 1988-08-25 Jermyn GmbH, 6250 Limburg Vorrichtung zur Herstellung von elektrischen Verbindungen zwischen zu programmierenden elektronischen Bauteilen und dem elektronischen Programmiergerät
GB8907141D0 (en) * 1989-03-30 1989-05-10 Oxley Dev Co Ltd Electrical connectors
US4950185A (en) * 1989-05-18 1990-08-21 Amphenol Corporation Stress isolated planar filter design

Also Published As

Publication number Publication date
DE59105732D1 (de) 1995-07-20
EP0517952A2 (de) 1992-12-16
DE9107385U1 (de) 1992-07-16
US5242318A (en) 1993-09-07
ES2075305T3 (es) 1995-10-01
EP0517952A3 (en) 1993-08-11

Similar Documents

Publication Publication Date Title
EP0517952B1 (de) Mehrpoliger Steckverbinder für elektronische Signalleitungen
DE3885805T2 (de) Filtereinheit für Verbinder.
DE69424228T2 (de) Dielektrisches Filter
DE69206046T2 (de) Scheibenförmige Anordnung für Steckverbinder mit Filter.
DE69020061T2 (de) Elektrischer Verbinder mit Filter.
EP2201585B1 (de) Elektrisches vielschichtbauelement
DE3408216C2 (de)
DE10019839B4 (de) Mehrschichtkondensator, Vewendung des Mehrschichtkondensators, Schaltungsanordnung und Verdrahtunssubstrat damit
DE3017911C2 (de) Entstörstecker
DE29519701U1 (de) Elektrischer Verbinder mit programmierbarem Schaltungsplatten-Filter
DE2810514A1 (de) Steckverbinder mit stoerschutz
DE69937677T2 (de) Bauelementeträger
DE3809237A1 (de) Entkopplungskondensator fuer schaltungspackungen mit oberflaechenmontierten kontaktstiftlosen chiptraegern, oberflaechenmontierten chiptraegern mit kontaktstiften und fuer schaltungspackungen mit kontaktstiftraster
DE3724703A1 (de) Entkopplungskondensator fuer schaltkreisbausteine mit rasterfoermigen kontaktstiftanordnungen und daraus bestehende entkopplungsanordnungen
DE3706953A1 (de) Filtersteckverbinder
EP1148602B1 (de) Überspannungsschutzeinrichtung
EP3170229A1 (de) Steckverbinder und bauelement
EP1880399B1 (de) Elektrisches durchführungsbauelement
EP1535372B1 (de) Elektrische steckbuchse
DE20014791U1 (de) Mehrpoliger Steckverbinder für elektronische Signalleitungen
DE3048170C2 (de)
DE102019135716A1 (de) Elektronische vorrichtung
EP1077514A2 (de) Mehrfachfilter
EP1523791A1 (de) Entstöreinrichtung
EP2037541A2 (de) Steckverbinder mit Platine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19930930

17Q First examination report despatched

Effective date: 19940822

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 59105732

Country of ref document: DE

Date of ref document: 19950720

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075305

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950906

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010927

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011105

Year of fee payment: 11

Ref country code: ES

Payment date: 20011105

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011130

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101007

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59105732

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59105732

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111112