EP0489225B1 - Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung - Google Patents

Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung Download PDF

Info

Publication number
EP0489225B1
EP0489225B1 EP91110296A EP91110296A EP0489225B1 EP 0489225 B1 EP0489225 B1 EP 0489225B1 EP 91110296 A EP91110296 A EP 91110296A EP 91110296 A EP91110296 A EP 91110296A EP 0489225 B1 EP0489225 B1 EP 0489225B1
Authority
EP
European Patent Office
Prior art keywords
thread
guide surface
guide channel
twisting spindle
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91110296A
Other languages
English (en)
French (fr)
Other versions
EP0489225A1 (de
Inventor
Frank Dipl.-Ing. Butzke
Heinz Dipl.-Ing. Fink
Wolfgang Dipl.-Ing. Leupers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palitex Project Co GmbH
Original Assignee
Palitex Project Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palitex Project Co GmbH filed Critical Palitex Project Co GmbH
Publication of EP0489225A1 publication Critical patent/EP0489225A1/de
Application granted granted Critical
Publication of EP0489225B1 publication Critical patent/EP0489225B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H15/00Piecing arrangements ; Automatic end-finding, e.g. by suction and reverse package rotation; Devices for temporarily storing yarn during piecing
    • D01H15/007Piecing arrangements ; Automatic end-finding, e.g. by suction and reverse package rotation; Devices for temporarily storing yarn during piecing for two-for-one twisting machines
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H7/00Spinning or twisting arrangements
    • D01H7/02Spinning or twisting arrangements for imparting permanent twist
    • D01H7/86Multiple-twist arrangements, e.g. two-for-one twisting devices ; Threading of yarn; Devices in hollow spindles for imparting false twist
    • D01H7/868Yarn guiding means, e.g. guiding tubes

Definitions

  • the invention relates to a double-wire twisting spindle with a compressed air-operated threading device with the features from the preamble of patent claims 1 or 6.
  • Such a double-wire twisting spindle is described in EP 00 26 159 B1.
  • the compressed air stream emerging from the thread guide channel, which carries the thread end is guided against a deflection plate.
  • This baffle is fixed to the turntable of the spindle or optionally adjustable on the spindle, at a point between the circular arc described by the outer opening of the thread guide channel and the outermost edge of the turntable. It is designed and aligned so that its upper end is at least at the level of the central axis of the outer opening of the thread guide channel, and the extension of its front surface is substantially tangent to the second guide surface which is curved convexly upwards.
  • the known device has the disadvantage that the baffle plate must either be arranged around the entire turntable or a positionally accurate shutdown of the outer opening of the thread guide channel relative to the baffle plate or an adjustment possibility of the baffle plate is necessary to enable the threading process. This is complex and particularly unfavorable for automatic threading.
  • the invention has for its object to provide a double wire twisting spindle with the above. To design features so that an automatic threading of the thread is possible without the arrangement of a baffle plate fixed relative to the rotatable parts of the spindle.
  • the invention is based on the knowledge that the use of the Coanda effect on a double-wire twisting spindle for deflecting the thread emerging from the thread guide channel without arranging one fixed baffle is possible and can only be achieved by measures on the spindle rotor.
  • a prerequisite for this is that the expansion of the compressed air jet in a direction perpendicular to the guide surface is kept as small as possible.
  • both the influencing variables for the secure attachment of the air jet to the convexly curved second guide surface and also the features of the spindle rotor of a double-wire twisting spindle specified in terms of textile technology must be taken into account.
  • the design of the double-wire twisting spindle according to the invention has the advantage that it is not necessary to stop the spindle rotor in a precise position and no deflecting plates that tend to become dirty are required.
  • the double-wire twisting spindle consists of the whorl 1, the turntable 2 with thread storage disk 3 and the protective pot 5, in which a delivery spool Sp is inserted.
  • the protective pot sits from the protective pot jacket 6, the protective pot base 4 and the protective pot hollow hub 7 together.
  • the protective pot 5 is placed on the spindle rotor 24 with the interposition of bearings 22, 23.
  • the protective pot base 4 is provided with a radially extending channel 10.
  • the outer mouth of the channel 10 is opposite an opening 13.1 in the balloon limiter 13.
  • a connector 11, which is connected to a compressed air source (not shown), can be inserted through the opening 13.1 in order to pressurize the channel 10 with compressed air.
  • a chamber 9 adjoins the inner end of the channel 10, in which an injector nozzle 25 is arranged in the inlet opening of a thread guide channel 12 guided through the spindle rotor 24.
  • a thread brake 8 is arranged in the protective pot hollow hub 7 above the injector nozzle 25 in the usual way.
  • the connecting piece 11 is connected to the channel 10, so that compressed air passes through the channel 10 and the chamber 9 to the injector nozzle 25.
  • the suction flow generated in this way causes the thread F held at the upper end of the thread inlet tube 26 to be sucked in and, after passing through the thread brake 8 and the injector nozzle 25, to be conveyed by the compressed air jet through the thread guide channel 12 until it emerges from the outer opening 12.2 of the radial one in the thread storage disc 3 extending part 12.1 of the thread guide channel 12 emerges.
  • the turntable 2 On its underside, the turntable 2 has, at least in the area of the outer opening 12.2 of the thread guide channel 12, a first guide surface 14 adjoining this opening 12.2, to which a second guide surface 15 curved convexly upwards is connected.
  • the beam should be guided along these two guide surfaces and deflected upwards in such a way that the angle ⁇ between the vertical and the thread is as small as possible.
  • R is chosen to be as large as possible and h as small as possible.
  • R cannot become arbitrarily large, because on the one hand the thread detaching from the turntable 2 should have a defined run-off point before entering the thread balloon and on the other hand the height of the thread balloon should be as small as possible.
  • the size h cannot be made arbitrarily small be, since a safe passage of the thread in the compressed air flow through the outer opening 12.2 of the thread guide channel and a trouble-free construction of the storage on the circumference of the thread storage disk 3 must be ensured in particular at a storage angle of more than 360 o . For this it is necessary that the thread runs into the first loop at the lowest point of the thread storage disc groove and that the second turn of the storage is placed on the thread storage disc at a sufficient distance above the first thread system. A disturbance of these conditions can lead to a thread break.
  • angles ⁇ 1 and ⁇ 2 should be large in order to achieve a favorable direction of the compressed air jet.
  • An increase in the angle is opposed by economic reasons that are related to the filling volume of the spindle. It would then either have to reduce the diameter of the protective pot 5 while maintaining the height or be designed higher while maintaining the diameter, which should be avoided.
  • the tangent T on the downstream side of the second Guide surface 15 should run as vertically as possible.
  • the curved second guide surface 15 can be connected to the first guide surface 14 in such a way that the first guide surface 14 coincides with the tangential plane to the second guide surface 15 at the connection point of the two guide surfaces. But this is by no means mandatory. It has been found that it can be advantageous if the first guide surface 14 encloses a predetermined angle with this tangential plane.
  • the geometric conditions to be observed here are explained below with reference to FIGS. 2a and 2b. To describe the geometric conditions, in addition to the angle of rise ⁇ 2 of the first guide surface 14 to the horizontal, the angle ⁇ which the tangential plane TE forms with the second guide surface 15 at the connection point A of the first guide surface 14 to the second guide surface 15 with the horizontal. As can be seen from FIGS.
  • the tangential plane TE may rise (FIG. 2a) or decrease with respect to the horizontal (FIG. 2b).
  • FIGs 2a and 2b the relationships are shown with the aid of a coordinate system, the origin of which lies in the connection point A of the first guide surface 14 to the second guide surface 15, the x-axis horizontally to the right in the drawings and the y-axis vertically in the drawings runs upwards.
  • the coordinate system is indicated by dash-dotted lines.
  • the center of curvature of the second guide surface 15 is designated KM.
  • a tangential plane TE increasing with respect to the horizontal x means an angle ⁇ which is positively counted in the coordinate system in the counterclockwise direction. The following applies: 0 ⁇ ⁇ + 90 °.
  • a falling tangent plane means an angle ⁇ negatively counted clockwise in the coordinate system and the following should apply here -90 ° ⁇ ⁇ 0.
  • the compressed air jet moving along the first guide surface 14 is guided along the second guide surface 15 under the effect of the Coanda effect.
  • FIGS. 4 to 8 A number of exemplary embodiments are described below with reference to FIGS. 4 to 8, in each of which the extent h of the compressed air jet is influenced in the vertical direction in different ways.
  • the size h is given by the vertical width of the outer opening 12.2 of the thread guide channel. Since, as already explained above, this opening width cannot be made arbitrarily small, a wedge spoiler will be placed on the lower wall of the end section 12.1 of the thread guide channel in the region of the outer opening 12.2 in this exemplary embodiment in order to reduce the value h. This is shown in Figures 4 to 6.
  • a wedge spoiler 16 is used which extends in the horizontal direction only over a central area of the outer opening 12.2.
  • the wedge spoiler 17 viewed in the flow direction, is arranged in front of the outer opening 12.2.
  • FIG. 6 shows a possible profile of the wedge spoiler 16 in a vertical plane.
  • the wedge spoiler has a profile that initially rises linearly in the outflow direction and then curves upward in a concave manner.
  • the shape of the wedge spoiler reduces the jet height and achieves a smaller effective value of h.
  • a spoiler in the form of a ring segment 18 is arranged immediately after the outer opening 12.2 of the thread guide channel, which is directed upwards and can, for example, have a profile that curves concavely upwards.
  • the ring segment spoilers 18 or 19 can extend over part of the circumference of the storage disc or as a full ring over the entire circumference of the storage disc 3.
  • FIG. 9 A further measure is shown in FIG. 9 in order to achieve a particularly effective beam deflection.
  • a vertically upward baffle plate 20 is arranged in the outer opening 12.2 of the end section 12.1 of the thread guide channel at the lower exit edge and extends over a predetermined part of the width and the height of the outer opening 12.2.
  • the sharp edge of this baffle causes a strong constriction of the compressed air jet directed upwards and thus a reduction in the effective value of size h which exceeds dimension "a".
  • the free course of the thread in the thread storage disc groove over the circumference of the thread storage disc is ensured in this embodiment.

Description

  • Die Erfindung betrifft eine Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung mit den Merkmalen aus dem Oberbegriff der Patentansprüche 1 oder 6.
  • Eine derartige Doppeldraht-Zwirnspindel ist in der EP 00 26 159 B1 beschrieben. Bei dieser bekannten Einrichtung wird der aus dem Fadenleitkanal austretende Druckluftstrom, der das Fadenende mitführt, gegen eine Ablenkplatte geführt. Diese Ablenkplatte ist gegenüber dem Drehteller der Spindel fest oder gegebenenfalls justierbar an der Spindel angeordnet, und zwar an einer Stelle zwischen dem von der äußeren Öffnung des Fadenleitkanals beschriebenen Kreisbogen und dem äußersten Rand des Drehtellers. Sie ist so ausgebildet und ausgerichtet, daß sich ihr oberes Ende mindestens auf der Höhe der Mittelachse der äußeren Öffnung des Fadenleitkanals befindet, und die Verlängerung ihrer Vorderfläche im wesentlichen tangential zur konvex nach oben gekrümmten zweiten Leitfläche verläuft.
  • Es wird in der o.g. Druckschrift bereits darauf hingewiesen, daß bei der beschriebenen Vorrichtung vermutlich der sogenannte Coanda-Effekt ausgenutzt werde, gemäß dem ein entlang einer konvex gekrümmten Oberfläche geführter Luftstrahl umgelenkt wird, indem er die Tendenz hat, der Krümmung dieser Oberfläche zu folgen.
  • Bei dieser bekannten Einrichtung wird aber die Umlenkung des Luftstrahls im wesentlichen durch die Ablenkplatte bewirkt.
  • Die bekannte Einrichtung hat den Nachteil, daß die Ablenkplatte entweder um den ganzen Drehteller herum angeordnet sein muß oder eine positionsgenaue Stillsetzung der äußeren Öffnung des Fadenleitkanals gegenüber der Ablenkplatte oder aber eine Justiermöglichkeit der Ablenkplatte notwendig ist, um den Einfädelvorgang zu ermöglichen. Dies ist aufwendig und insbesondere für das automatische Einfädeln ungünstig.
  • Ein weiterer Nachteil dieser bekannten Einrichtung liegt in der Verschmutzung der während des Zwirnprozesses vom Faden nicht berührten Oberfläche der fest angeordneten Ablenkplatten. Dabei besteht wegen der auftretenden Schwankungen in der Lage des Fadenballons die Gefahr, daß Fadenteile die verschmutzten Flächen berühren, was zur Qualitätsminderung des Zwirns führt.
  • Eine Möglichkeit der Fadenumlenkung ohne eine fest angeordnete Ablenkplatte ist in DE 29 39 593 C2 beschrieben. Hier wird ein zweiter Druckluftstrahl verwendet, der den radial aus dem Fadenleitkanal austretenden Druckluftstrahl einschließlich Faden annähernd rechtwinklig nach oben umleitet. Auch diese Lösung ist relativ aufwendig und benötigt eine positionsgenaue Stillsetzung der äußeren Öffnung des Fadenleitkanals gegenüber dem zweiten Druckluftstrahl.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Doppeldraht-Zwirnspindel mit den o.a. Merkmalen so auszubilden, daß ein automatisches Einfädeln des Fadens möglich ist ohne die Anordnung einer gegenüber den drehbaren Teilen der Spindel festen Ablenkplatte.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäß mit den Merkmalen aus dem kennzeichnenden Teil der unabhängigen Patentansprüche 1 oder 6. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Die Erfindung geht von der Erkenntnis aus, daß die Ausnutzung des Coanda-Effekts an einer Doppeldraht-Zwirnspindel zur Umlenkung des aus dem Fadenleitkanal austretenden Fadens ohne Anordnung einer festen Ablenkplatte möglich ist und allein durch Maßnahmen am Spindelrotor erreicht werden kann. Eine Voraussetzung dafür ist, daß die Ausdehnung des Druckluftstrahls in einer Richtung senkrecht zur Leitfläche möglichst klein gehalten wird.
  • Wie weiter unten anhand von Ausführungsbeispielen beschrieben, müssen dabei sowohl die Einflußgrößen für die sichere Anlage des Luftstrahls an der konvex gekrümmten zweiten Leitfläche als auch textiltechnologisch vorgegebene Merkmale des Spindelrotors einer Doppeldraht-Zwirnspindel berücksichtigt werden. Die erfindungsgemäße Ausführung der Doppeldraht-Zwirnspindel hat den Vorteil, daß keine positionsgenaue Stillsetzung des Spindelrotors erforderlich ist und keine zur Verschmutzung neigenden Ablenkplatten benötigt werden.
  • Im Folgenden werden anhand der beigefügten Zeichnungen Ausführungsbeipiele für eine Doppeldraht-Zwirnspindel nach der Erfindung näher erläutert.
  • In den Zeichnungen zeigen:
    • Figur 1 in teilweise geschnittener perspektivischer Seitenansicht eine Doppeldraht-Zwirnspindel mit automatischer Einfädelvorrichtung;
    • Figur 2 in einem gegenüber Figur 1 detaillierter ausgeführten, teilweise perspektivischen Vertikalschnitt einen Teil des Drehtellers und der Fadenspeicherscheibe der Doppeldraht-Zwirnspindel im Bereich des äußeren Endes des Fadenleitkanals bei einer ersten Ausführungsform der Erfindung;
    • Figuren 2a und 2b in einer stark schematisierten Darstellung die geometrischen Verhältnisse im Bereich der Anschlußstelle der zweiten Leitfläche an die erste Leitfläche im Bezug auf die Ausführungsform nach Figur 2;
    • Figur 3 in einer schematischen, perspektivischen Darstellung Drehteller und Spulenträgerschutztopf der Doppeldraht-Zwirnspindel nach Figuren 1 und 2;
    • Figuren 4 und 5 in Draufsicht den Keilspoiler im Fadenleitkanal bei einer zweiten und dritten Ausführungsform der Erfindung;
    • Figur 6 in einer vergrößerten Seitenansicht in Einzeldarstellung den Keilspoiler nach Figur 4;
    • Figur 7 in einer perspektivischen, teilweise geschnittenen Darstellung Teller und Fadenspeicherscheibe einer Doppeldraht-Zwirnspindel bei einer vierten Ausführungsform der Erfindung;
    • Figur 8 in einem Vertikalschnitt einen Teil des Tellers und der Fadenspeicherscheibe einer Doppeldraht-Zwirnspindel im Bereich des äußeren Endes des Fadenleitkanals bei einer fünften Ausführungsform der Erfindung;
    • Figur 9 in einer perspektivischen, teilweise geschnittenen Darstellung Drehteller und Fadenspeicherscheibe einer Doppeldraht-Zwirnspindel bei einer sechsten Ausführungsform der Erfindung
  • Im folgenden wird anhand von Figur 1 der an sich bekannte Aufbau einer Doppeldraht-Zwirnspindel mit einer druckluftbetätigten Einfädelvorrichtung näher erläutert.
    Die Doppeldraht-Zwirnspindel besteht aus dem Wirtel 1, dem Drehteller 2 mit Fadenspeicherscheibe 3 und dem Schutztopf 5, in den eine Lieferspule Sp eingesetzt ist. Der Schutztopf setzt sich aus dem Schutztopfmantel 6, dem Schutztopfboden 4 und der Schutztopfhohlnabe 7 zusammen. Der Schutztopf 5 ist unter Zwischenschaltung von Lagern 22, 23 auf den Spindelrotor 24 aufgesetzt.
  • Der Schutztopfboden 4 ist mit einem radial verlaufenden Kanal 10 versehen. Der Außenmündung des Kanals 10 liegt eine Öffnung 13.1 im Ballonbegrenzer 13 gegenüber. Durch die Öffnung 13.1 kann ein mit einer nicht dargestellen Druckluftquelle verbundenes Anschlußstück 11 hindurchgesteckt werden, um den Kanal 10 mit Druckluft zu beaufschlagen.
  • An das innere Ende des Kanals 10 schließt sich eine Kammer 9 an, in der eine Injektordüse 25 in der Eintrittsöffnung eines durch den Spindelrotor 24 geführten Fadenleitkanals 12 angeordnet ist. Oberhalb der Injektordüse 25 ist in der Schutztopfhohlnabe 7 in üblicher Weise eine Fadenbremse 8 angeordnet.
  • Wenn ein von der Lieferspule Sp herkommender Faden F eingefädelt werden soll, wird das Anschlußstück 11 mit dem Kanal 10 verbunden, so daß Druckluft durch den Kanal 10 und die Kammer 9 zur Injektordüse 25 gelangt. Durch die hierdurch erzeugte Saugströmung wird der an das obere Ende des Fadeneinlaufrohres 26 gehaltene Faden F angesaugt und nach Passieren der Fadenbremse 8 und der Injektordüse 25 von dem Druckluftstrahl durch den Fadenleitkanal 12 gefördert, bis er aus der äußeren Öffnung 12.2 des radial in der Fadenspeicherscheibe 3 verlaufenden Teils 12.1 des Fadenleitkanals 12 austritt. Wie in Figur 1 dargestellt, soll der aus der äußeren Öffnung 12.2 des Fadenleitkanals 12 austretende Druckluftstrahl so nach oben umgelenkt werden, daß der Faden F in den Zwischenraum zwischen dem Schutztopfmantel 6 und dem Ballonbegrenzer 13 eintritt und in diesem Zwischenraum nach oben geführt wird, so daß er am oberen Rand des Ballonbegrenzers 13 von der Bedienungsperson oder einer automatischen Einrichtung erfaßt werden kann.
  • Im folgenden wird anhand von Figur 2 beschrieben, welche Einflußgrößen zu berücksichtigen sind, um nach dem Austritt des Druckluftstrahls aus dem Fadenleitkanal 12 eine sichere Umlenkung nach oben zu erreichen, ohne daß außerhalb des Drehtellers eine feste Ablenkplatte angeordnet ist.
  • Der Drehteller 2 weist an seiner Unterseite mindestens im Bereich der äußeren Öffnung 12.2 des Fadenleitkanals 12 eine sich an diese Öffnung 12.2 anschließende, erste Leitfläche 14 auf, an die sich eine konvex nach oben gekrümmte zweite Leitfläche 15 anschließt. Der Strahl soll an diesen beiden Leitflächen entlanggeführt und derart nach oben abgelenkt werden, daß der Winkel α zwischen der Vertikalen und dem Faden möglichst klein ist.
  • Es hat sich gezeigt, daß folgende aus Figur 2 ablesbare Größen für eine solche Umlenkung unter Ausnutzung des Coanda-Effekts von Bedeutung sind:
    • der Krümmungsradius R der zweiten Leitfläche 15;
    • die Ausdehnung h des Druckluftstrahls in vertikaler Richtung;
    • der Winkel β1 zwischen der oberen Wand des äußeren Endes 12.1 des Fadenleitkanals und der Horizontalen;
    • der Winkel β2 zwischen der ersten Leitfläche 14 und der Horizontalen.
  • Bei der Untersuchung und Auswahl der Bedingungen für eine einwandfreie Umlenkung des Druckluftstrahls muß beachtet werden, daß beim klassischen Coanda-Effekt Flächen vorausgesetzt werden, die in Richtung quer zum Strahl eben verlaufen und nur in Strahlrichtung gekrümmt sind. Dies ist bei einer Doppeldraht-Zwirnspindel nicht der Fall, weil der Schutztopfmantel 6 und der Drehteller 2 quer zur Strahlrichtung gekrümmt sind. Weiterhin müssen die unterschiedlichen Betriebsbedingungen an einer Doppeldraht-Zwirnspindel während des Einfädelvorgangs einerseits und des Normalbetriebs andererseits beachtet werden. Beim Einfädelvorgang tritt der Faden aus der äußeren Öffnung 12.2 des Fadenleitkanals aus und soll sogleich nach oben umgelenkt werden. Beim Normalbetrieb tritt der Faden aus der äußeren Öffnung 12.2 des Fadenleitkanals aus und legt sich an den Umfang der Fadenspeicherscheibe 3 in eventuell mehreren Umschlingungen an.
  • Es hat sich als günstig erwiesen, wenn R möglichst groß und h möglichst klein gewählt wird. Aus technologischen Gründen kann R aber nicht beliebig groß werden, weil einerseits der sich vom Drehteller 2 ablösende Faden vor dem Eintritt in den Fadenballon einen definierten Ablaufpunkt haben soll und andererseits die Höhe des Fadenballons möglichst klein sein soll.
  • Die Größe h kann nicht beliebig klein gemacht werden, da ein sicherer Durchtritt des Fadens im Druckluftstrom durch die äußere Öffnung 12.2 des Fadenleitkanals und ein störungsfreier Aufbau der Speicherung auf dem Umfang der Fadenspeicherscheibe 3 insbesondere bei einem Speicherwinkel von mehr als 360o gewährleistet sein muß.
    Dazu ist notwendig, daß der Faden in die erste Umschlingung am tiefsten Punkt der Fadenspeicherscheibenrille einläuft und daß die zweite Windung der Speicherung mit genügendem Abstand oberhalb zur ersten Fadenanlage auf der Fadenspeicherscheibe abgelegt wird. Eine Störung dieser Verhältnisse kann zu einem Fadenbruch führen.
  • Es hat sich gezeigt, daß gute Ergebnisse erhalten werden, wenn für das Verhältnis Krümmungsradius zu Strahlausdehnung gilt R/h ≥ 3.
    Besonders gute Ergebnisse werden mit einem Verhältnis R/h ≥ 4 erhalten.
  • Die Winkel β1 und β2 sollten zur Erzielung einer günstigen Richtung des Druckluftstrahls groß sein. Einer Vergrößerung der Winkel stehen aber wirtschaftliche Gründe entgegen, die mit dem Füllvolumen der Spindel zusammenhängen. Es müßte dann entweder bei Beibehaltung der Höhe der Schutztopf 5 im Durchmesser verkleinert oder bei Beibehaltung des Durchmessers höher ausgelegt werden, was vermieden werden soll.
  • Es hat sich herausgestellt, daß besonders günstige Ergebnisse erhalten werden, wenn jedenfalls gilt: β1 > β2, wobei β2 = 0 sein kann.
  • Die Tangente T an der Abströmseite der zweiten Leitfläche 15 soll möglichst vertikal verlaufen.
  • Der Anschluß der gekrümmten zweiten Leitfläche 15 an die erste Leitfläche 14 kann so erfolgen, daß die erste Leitfläche 14 mit der Tangentialebene an die zweite Leitfläche 15 im Anschlußpunkt der beiden Leitflächen zusammenfällt. Dies ist aber keineswegs zwingend. Es hat sich herausgestellt, daß es vorteilhaft sein kann, wenn die erste Leitfläche 14 mit dieser Tangentialebene einen vorgegebenen Winkel einschließt. Die geometrischen Bedingungen, die hierbei zu beachten sind, werden im folgenden anhand der Figuren 2a und 2b erläutert. Zur Beschreibung der geometrischen Bedingungen dienen außer dem Anstiegswinkel β2 der ersten Leitfläche 14 zur Horizontalen der Winkel δ , den die Tangentialebene TE an die zweite Leitfläche 15 im Anschlußpunkt A der ersten Leitfläche 14 an die zweite Leitfläche 15 mit der Horizontalen einschließt. Wie aus den Figuren 2a und 2b abzulesen, kann die Tangentialebene TE gegenüber der Horizontalen ansteigen (Figur 2a) oder abfallen (Figur 2b). In den Figuren 2a und 2b sind die Verhältnisse mit Hilfe eines Koordinatensystems dargestellt, dessen Ursprung im Anschlußpunkt A der ersten Leitfläche 14 an die zweite Leitfläche 15 liegt, dessen x-Achse horizontal in den Zeichnungen nach rechts und dessen y-Achse vertikal in den Zeichnungen nach oben verläuft. Das Koordinatensystem ist mit strichpunktierten Linien angedeutet. Der Krümmungsmittelpunkt der zweiten Leitfläche 15 ist mit KM bezeichnet. Wie aus den Figuren abzulesen, bedeutet eine gegenüber der Horizontalen x ansteigende Tangentialebene TE einen im Koordinatensystem in Richtung gegen den Uhrzeigersinn positiv gezählten Winkel δ . Hierbei soll gelten 0 < δ < +90°. Eine fallende Tangentialebene bedeutet einen im Koordinatensystem im Uhrzeigersinn negativ gezählten Winkel δ und es soll hier gelten -90° < δ ≤ 0.
  • Für den Anstiegswinkel δ der ersten Leitfläche 14 zur Horizontalen gilt im Falle der ansteigenden Tangentialebene TE (Figur 2a) die Beziehung δ ≤ β2 < +90 o. Bei fallender Tangentialebene (Figur 2b) gilt die Beziehung 0 ≤ β2 < +90 o + δ .
  • In Figur 2a ist für die ansteigende Tangentialebene TE der zu dem gezeichneten Winkel δ kleinstmögliche Winkel β2 gestrichelt als β2 min eingetragen. Er verläuft in Richtung der Tangentialebene TE. Eine horizontale Anordnung der ersten Leitfläche 14 ist also nur möglich, wenn die die Tangentialebene TE ebenfalls horizontal verläuft.
  • In Figur 2b ist die obere Grenze, die der Winkel β2 nicht mehr einnehmen darf, gestrichelt eingezeichnet und mit β2 max bezeichnet. In diesem Falle würde die erste Leitfläche 14 senkrecht zur Tangentialebene TE verlaufen. Bei fallender Tangentialebene TE kann allerdings β2 den Wert 0 annehmen, ohne daß gleichzeitig δ den Wert 0 annehmen muß.
  • Bei Einhaltung der oben angegebenen Beziehungen wird der sich an der ersten Leitfläche 14 entlang bewegende Druckluftstrahl unter der Wirkung des Coanda-Effekts an der zweiten Leitfläche 15 entlang geführt.
  • In Figur 3 ist der Verlauf des Druckluftstrahls D entlang der zweiten Leitfläche 15 und des Schutztopfmantels 6 perspektivisch dargestellt, wobei durch den Winkel α angegeben ist, um wieviel der Druckluftstrahl D mit dem mitgeführten Faden von der vertikalen Richtung abweicht. Der Winkel soll möglichst klein gemacht werden.
  • Im Folgenden werden anhand der Figuren 4 bis 8 mehrere Ausführungsbeispiele beschrieben, in denen jeweils in unterschiedlicher Weise die Ausdehnung h das Druckluftstrahls in vertikaler Richtung beeinflußt ist. In der prinzipiellen Darstellung gemäß Figur 2 ist die Größe h durch die vertikale Weite der äußeren Öffnung 12.2 des Fadenleitkanals gegeben. Da, wie oben bereits erläutert, diese Öffnungsweite nicht beliebig klein gemacht werden kann, wird bei diesem Ausführungsbeispielen zur Verkleinerung des Wertes h auf die untere Wand des Endabschnitts 12.1 des Fadenleitkanals im Bereich der äußeren Öffnung 12.2 ein Keilspoiler aufgesetzt sein. Dies ist in den Figuren 4 bis 6 dargestellt.
  • Gemäß Figur 4 ist ein Keilspoiler 16 eingesetzt, der sich in horizontaler Richtung nur über einen mittleren Bereich der äußeren Öffnung 12.2 erstreckt. Bei der Ausführungsform nach Figur 5 ist der Keilspoiler 17 in Strömungsrichtung gesehen noch vor der äußeren Öffnung 12.2 angeordnet.
  • In Figur 6 ist ein mögliches Profil des Keilspoilers 16 in einer vertikalen Ebene dargestellt. Der Keilspoiler besitzt ein in Ausströmrichtung gesehen zunächst linear ansteigendes und dann konkav nach oben gekrümmtes Profil. Durch die Form der Keilpoiler wird die Strahlhöhe reduziert und ein kleinerer Effektivwert von h erzielt.
  • Eine weitere Maßnahme, mit der eine derartige Verkleinerung des Wertes von h erreicht werden kann, ist bei der Ausführungsform gemäß Figur 7 vorgesehen. Hier ist in Strömungsrichtung gesehen unmittelbar nach der äußeren Öffnung 12.2 des Fadenleitkanals ein Spoiler in Form eines Ringsegments 18 angeordnet, der nach oben gerichtet ist und beispielsweise ein sich nach oben konkav krümmendes Profil besitzen kann. Dies ist anhand der Ausführungsform nach Figur 8 mit einem Ringsegmentspoiler 19 gut zu erkennen. Die Ringsegmentspoiler 18 oder 19 können sich über einen Teil des Umfangs der Speicherscheibe oder als Vollring über den gesamten Umfang der Speicherscheibe 3 erstrecken.
  • In Figur 9 ist eine weitere Maßnahme dargestellt, um eine besonders effektvolle Strahlumlenkung zu erzielen. Bei dieser Ausführungsform ist in der äußeren Öffnung 12.2 des Endabschnitts 12.1 des Fadenleitkanals an der unteren Austrittskante ein vertikal nach oben gerichtetes Prallblech 20 angeordnet, das sich über einen vorgegebenen Teil der Breite und der Höhe der äußeren Öffnung 12.2 erstreckt. Die scharfe Kante dieses Prallblechs bewirkt eine starke Einschnürung des nach oben gerichteten Druckluftstrahls und damit eine das Maß"a"übersteigende Reduzierung des Effektivwertes der Größe h. Der freie Fadenverlauf in der Fadenspeicherscheibenrille über den Umfang der Fadenspeicherscheibe ist bei dieser Ausführungsform gewährleistet. Für die sichere Funktion dieser Ausfühungsform soll für das Maß "a" in Fig. 9 gelten: 1 mm < a < 2 mm.

Claims (12)

  1. Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung, durch welche der Faden mittels eines Druckluftstrahls durch den Fadenleitkanal der Fadenspeicherscheibe hindurch gefördert wird, wobei sich an die äußere Öffnung des Fadenleitkanals eine an der Unterseite des oberhalb der Fadenspeicherscheibe liegenden Drehtellers angeordnete, erste Leitfläche anschließt, die in eine konvex nach oben gekrümmte zweite Leitfläche übergeht, dadurch gekennzeichnet, daß der aus der äußeren Öffnung (12.2) des Fadenleitkanals (12) austretende Druckluftstrahl (D) eine solche Ausdehnung h in vertikaler Richtung hat, und der Krümmungsradius R der zweiten Leitfläche (15) so bemessen ist, daß für das Verhältnis von Krümmungsradius R zur Strahlausdehnung h gilt: R/h ≥ 3, und daß für den Anstiegswinkel β 1 der oberen Wand des äußeren Endes (12.1) des Fadenleitkanals (12) zur Horizontalen und den Anstiegswinkel β2 der ersten Leitfläche (14) zur Horizontalen die Beziehung β1 > β2 gilbt und daß die Ausdehnung h des Druckluftstrahls (D) in vertikaler Richtung durch die Wirkung eines auf der unteren Wand des Fadenleitkanals (12) vor dessen äußerem Ende (12.2) angeordneten, nach außen ansteigenden Keilspoilers (16, 17) bestimmt ist.
  2. Doppeldraht-Zwirnspindel nach Anspruch 1, dadurch gekennzeichnet, daß der Keilspoiler (16) in Ausströmrichtung gesehen ein zunächst linear ansteigendes und dann konkav nach oben gekrümmtes Profil aufweist.
  3. Doppeldraht-Zwirnspindel nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Breite des Keilspoilers (16) um einen vorgegebenen Betrag kleiner ist als die Breite des Fadenleitkanals (12.1).
  4. Doppeldraht-Zwirnspindel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das äußere Ende des Keilspoilers (16) im wesentlichen mit der äußeren Öffnung (12.2) des Fadenleitkanals (12) zusammenfällt.
  5. Doppeldraht-Zwirnspindel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das äußere Ende des Keilspoilers (17) in Ausströmrichtung gesehen um eine vorgegebene Strecke vor der äußeren Öffnung (12.2) des Fadenleitkanals (12.1) angeordnet ist.
  6. Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung, durch welche der Faden mittels eines Druckluftstrahls durch den Fadenleitkanal der Fadenspeicherscheibe hindurchgefördert wird, wobei sich an die äußere Öffnung des Fadenleitkanals eine an der Unterseite des oberhalb der Fadenspeicherscheibe liegenden Drehtellers angeordnete, erste Leitfläche anschließt, die in eine konvex nach oben gekrümmte zweite Leitfläche übergeht, dadurch gekennzeichnet, daß der aus der äußeren Öffnung (12.2) des Fadenleitkanals (12) austretende Druckluftstrahl (D) eine solche Ausdehnung h in vertikaler Richtung hat, und der Krümmungsradius R der zweiten Leitfläche (15) so bemessen ist, daß für das Verhältnis von Krümmungsradius R zur Strahlausdehnung h gilt: R/h ≥ 3, und für den Anstiegswinkel β1 der oberen Wand des äußeren Endes (12.1) des Fadenleitkanals (12) zur Horizontalen und den Anstiegswinkel β2 der ersten Leitfläche (14) zur Horizontalen die Beziehung β1 > β2 gilt, und daß die Ausdehnung h des Druckluftstrahls (D) in vertikaler Richtung durch die Wirkung eines im wesentlichen in der äußeren Öffnung (12.2) des Fadenleitkanals (12.1) an der unteren Austrittskante angeordneten, vertikal nach oben gerichteten, sich mindestens über einen vorgegebenen Teil der Breite des Fadenleitkanals und über einen vorgegebenen Teil seiner Höhe erstreckenden Prallblechs (20) bestimmt ist, dessen oberer Konturenverlauf scharfkantig abschließt.
  7. Doppeldraht-Zwirnspindel nach Anspruch 6, dadurch gekennzeichnet, daß für die Höhe a des Prallblechs (20) das Verhältnis gilt: 1 mm < a < 2 mm.
  8. Doppeldraht-Zwirnspindel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß für das Verhältnis von Krümmungsradius R zur Strahlausdehnung h gilt: 3 ≤ R/h ≤ 5.
  9. Doppeldraht-Zwirnspindel nach Anspruch 8, dadurch gekennzeichnet, daß das Verhältnis von Krümmungsradius R zur Strahlausdehnung h mindestens annähernd den Wert R/h=4 besitzt.
  10. Doppeldraht-Zwirnspindel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die zweite Leitfläche (15) an ihrem nach oben weisenden Ende eine vertikale Tangente (T) besitzt.
  11. Doppeldraht-Zwirnspindel nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß für den Anstiegswinkel β2 der ersten Leitfläche (14) zur Horizontalen und den Winkel δ zwischen der Tangentialebene (TE) an die zweite Leitfläche (15) im Anschlußpunkt (A) der ersten Leitfläche (14) an die zweite Leitfläche (15) und der Horizontalen bei in Bezug auf die horizontale ansteigender Tangentialebene (TE) und n < δ < +90° die Beziehung δ ≤ β2 < +90° gilt.
  12. Doppeldraht-Zwirnspindel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß für den Anstiegswinkel β2 der ersten Leitfläche (14) zur Horizontalen und den Winkel δ zwischen der Tangentialebene (TE) an die zweite Leitfläche (15) im Anschlußpunkt (A) der ersten Leitfläche (14) an die zweite Leitfläche (15) und der Horizontalen bei in Bezug auf die Horizontale fallender Tangentialebene (TE) und -90° < δ ≤ 0 die Beziehung 0 < β2 < +90° + gilt.
EP91110296A 1990-11-29 1991-06-22 Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung Expired - Lifetime EP0489225B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4037951 1990-11-29
DE4037951 1990-11-29

Publications (2)

Publication Number Publication Date
EP0489225A1 EP0489225A1 (de) 1992-06-10
EP0489225B1 true EP0489225B1 (de) 1996-09-11

Family

ID=6419136

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91110296A Expired - Lifetime EP0489225B1 (de) 1990-11-29 1991-06-22 Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung

Country Status (5)

Country Link
US (1) US5347805A (de)
EP (1) EP0489225B1 (de)
JP (1) JP3108164B2 (de)
CZ (1) CZ280626B6 (de)
DE (2) DE4120666A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050180A1 (de) * 2004-10-14 2006-04-20 Saurer Gmbh & Co. Kg Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19500318A1 (de) * 1995-01-07 1996-07-11 Palitex Project Co Gmbh Verfahren zum Einfädeln der Fäden von zwei gleichachsig übereinander in eine Doppeldraht-Zwirnspindel einsetzbaren Vorlagespulen durch die zweigeteilte Spindelhohlachse
US5951006A (en) * 1998-05-22 1999-09-14 Xerox Corporation Modular air jet array with coanda exhausting for module decoupling
AU2006351884B2 (en) 2006-12-14 2011-08-11 Tronox Llc An Improved Jet for Use in a Jet Mill Micronizer
FR2937056A1 (fr) * 2008-10-13 2010-04-16 Ritm Dispositif et procede pour realiser l'enfilage d'un fil dans une broche a motorisation individuelle ou dans une motobroche de retordage et/ou de cablage direct.
WO2010063692A1 (de) * 2008-12-01 2010-06-10 Oerlikon Textile Gmbh & Co. Kg Vorrichtung zum umwinden eines kontinuierlich zulaufenden faserstranges sowie ein verfahren zum anlegen eines kontinuierlich zulaufenden faserstrangs in eine umwindevorrichtung
CN105671708B (zh) * 2016-04-18 2018-08-03 安徽日发纺织机械有限公司 一种电锭气动锭子
DE102019105072A1 (de) * 2019-02-28 2020-09-03 Saurer Technologies GmbH & Co. KG Spulentopflagerung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168605A (en) * 1977-12-28 1979-09-25 Officine Savio, S.P.A. Spindle for double twisting with pneumatic threading
IT1112159B (it) * 1979-02-02 1986-01-13 Ratti Spa Michele Fuso di torcitura a doppia torsione o di cablaggio
DE2923426A1 (de) * 1979-06-09 1980-12-18 Palitex Project Co Gmbh Fadenbremse fuer einen durch ein rohr hindurchlaufenden faden
DE2936649A1 (de) * 1979-09-11 1981-04-02 Saurer-Allma Gmbh, 8960 Kempten Doppeldrahtzwirnspindel mit druckluftbetaetigter einfaedelvorrichtung
IT7960457V0 (it) * 1979-09-24 1979-09-24 Savio Spa Deflettore per fuso per ritorcitoio a doppia torsione.
DE2939593C2 (de) * 1979-09-29 1982-11-04 Palitex Project-Company Gmbh, 4150 Krefeld Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung
DE2939702C2 (de) * 1979-09-29 1982-08-12 Palitex Project-Company Gmbh, 4150 Krefeld Doppeldraht-Zwirnspindel mit einem ortsfest gehaltenen Lieferspulenträger
DE3118873C2 (de) * 1981-05-13 1985-01-03 Palitex Project-Company Gmbh, 4150 Krefeld Doppeldraht-Zwirnspindel
DE3310438C2 (de) * 1983-03-23 1985-04-04 Palitex Project-Company Gmbh, 4150 Krefeld Vorrichtung zur Veränderung des Durchmessers einer Ablaufhilfe für den Überkopfabzug eines auf eine Aufwickelspule aufzuwickelnden Fadens von einer Vorlagespule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050180A1 (de) * 2004-10-14 2006-04-20 Saurer Gmbh & Co. Kg Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung

Also Published As

Publication number Publication date
CZ280626B6 (cs) 1996-03-13
EP0489225A1 (de) 1992-06-10
DE59108176D1 (de) 1996-10-17
US5347805A (en) 1994-09-20
JPH04263629A (ja) 1992-09-18
CS201291A3 (en) 1992-06-17
DE4120666A1 (de) 1992-06-04
JP3108164B2 (ja) 2000-11-13

Similar Documents

Publication Publication Date Title
DE19738382B4 (de) Fadenabzugsdüse
DE2130722B2 (de) Vorrichtung zum offenend-spinnen von textilfasern
EP0990719B1 (de) Spinnvorrichtung
DE4224632B4 (de) Vorrichtung zum Offenend-Spinnen
EP0489225B1 (de) Doppeldraht-Zwirnspindel mit druckluftbetätigter Einfädelvorrichtung
EP0670281A2 (de) Drehteller für Faserbandablageeinrichtungen
DE2810843C2 (de) Vorrichtung zum Offenend-Spinnen
CH657634A5 (de) Luftstrahl-spinnvorrichtung.
CH676559A5 (de)
DE19926492A1 (de) Spinnvorrichtung
DE3639031A1 (de) Vorrichtung zur herstellung eines gesponnenen fadens
EP0716171B1 (de) Schussfadenstreck- und Detektiereinrichtung für Düsenwebmaschinen
EP3371353B1 (de) Fadenabzugsdüse mit radial zur düsenbohrung verlaufenden kerben
DE19618642B4 (de) Vliestrichter
CH640012A5 (de) Verfahren zum ausstossen eines fluid-hilfsstrahls in einem duesenwebstuhl und duesenwebstuhl zur durchfuehrung des verfahrens.
EP0110150A1 (de) Düsenspinn-Vorrichtung
EP1375711B1 (de) Garnabzugsdüse für eine Offenend-Spinnvorrichtung
DD233870A1 (de) Verfahren und vorrichtung zum entfernen von fluessigkeiten aus laufenden endlosen faeden
DD255054A3 (de) Abzugsduese fuer vorspinn- und spinneinrichtungen
EP0455190B1 (de) Faserband-Kondensor an einem Flyer
DE2812297A1 (de) Spinnrotoranordnung fuer offenendspinnmaschinen
DE19733614A1 (de) Absaugeinrichtung am Streckwerk einer Spinnmaschine
DE2710487C3 (de) Vorrichtung zum pneumatischen Spinnen
DE19531987C2 (de) Fadeneinfädeleinrichtung an einer Strecktexturiermaschine
DE1710621C3 (de) Spinndüse, insbesondere zum Schmelzspinnen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19921203

17Q First examination report despatched

Effective date: 19940328

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59108176

Country of ref document: DE

Date of ref document: 19961017

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080619

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080624

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080626

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090622