EP0473782A1 - Magnetkern - Google Patents
Magnetkern Download PDFInfo
- Publication number
- EP0473782A1 EP0473782A1 EP90904934A EP90904934A EP0473782A1 EP 0473782 A1 EP0473782 A1 EP 0473782A1 EP 90904934 A EP90904934 A EP 90904934A EP 90904934 A EP90904934 A EP 90904934A EP 0473782 A1 EP0473782 A1 EP 0473782A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy ribbon
- magnetic core
- alloy
- ribbon
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15316—Amorphous metallic alloys, e.g. glassy metals based on Co
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/04—Cores, Yokes, or armatures made from strips or ribbons
Definitions
- This invention relates to a magnetic core suitable for magnetic components such as saturable reactors and reactors for semiconductor circuits used in high frequency switching power sources wherein the magnetic core has excellent squareness ratio characteristic and magnetic saturation characteristic particularly at a high frequency (specifically, at least 50 kHz) and has a low core loss, and to an alloy ribbon used in the production of such a magnetic core.
- the main part constituting the magnetic amplifier is a saturable reactor, and magnetic materials having excellent squareness and magnetization characteristics are required.
- Sendelta (tradename) composed of an Fe-Ni crystalline alloy has been used as such a magnetic material.
- Sendelta While Sendelta has excellent squareness magnetization characteristics, its coercive force is increased at a high frequency of 20 kHz or higher and its eddy-current loss is increased to generate heat, whereby Sendelta becomes unusable. Therefore, the switching frequency of the switching power source having a magnetic amplifier incorporated therein is restricted to no more than 20 kHz.
- Japanese Patent Laid-Open Publication No. 225804/1986 discloses an amorphous alloy suitable for use as a magnetic material having a small coercive force at a high frequency and excellent squareness characteristic and heat stability.
- the present invention has been made with consideration of the above described problems.
- An object of the present invention is to provide a magnetic core obtained by using an alloy ribbon having a large squareness ratio particularly at a high frequency and a small saturation inductance.
- the magnetic core of the present invention is a magnetic core formed by winding or laminating at least one alloy ribbon and having excellent squareness characteristic in a high frequency region wherein the squareness ratio of the magnetic core is improved by setting the percent area occupation of concavities formed on the surface of the roll side of said alloy ribbon to no more than 30%.
- a magnetic core having a squareness ratio of at least 98%, preferably at least 98.5% and more preferably at least 99% at a frequency of 100 kHz. Further, according to the present invention, there is provided a magnetic core having a saturation magnetic characteristic of no more than 550 G, preferably no more than 500 G.
- the saturation magnetic characteristic ordinarily varies depending upon the shape of the magnetic core, the number of turns and measurement conditions.
- the saturation characteristic is expressed by the difference between a magnetic flux density obtained by applying a magnetic field of 16 Oe to the following magnetic core under the following conditions and residual magnetic flux density: (i) magnetic core having an outer diameter of 15 mm, an inner diameter of 10 mm and a height of 4.5 mm; (ii) number of turns of 10; and (iii) measurement conditions: frequency of 100 kHz.
- the present magnetic core according to a first embodiment of the invention is formed from an alloy ribbon produced by ejecting an alloy melt onto the surface of a cooling roll by means of a nozzle and quenching alloy melt wherein the alloy ribbon is such that the percent area occupation of the concavities formed in the alloy ribbon surface contacting said cooling roll is no more than 30%.
- the surface state of the resulting alloy ribbon primarily depends upon the surface state of the cooling roll and wettability between the molten alloy and the roll. This wettability is also affected by the composition of the alloy.
- the concavities formed in the surface of the alloy ribbon is formed by bubbles trapped between the cooling roll and the molten metal.
- the squareness ratio of the magnetic core can be remarkably improved by restricting the percent area occupation of the concavities formed in the alloy ribbon surface contacting the cooling roll to no more than 30%.
- the improvement in the squareness ratio as described above is particularly remarkable in the case of an amorphous alloy having a Curie temperature of no more than 300°C. This is believed to be due to the proportion of the induced magnetic anisotropy generated by heat treatment and the proportion of magnetic shape anisotropy attributable to the surface roughness. That is, a remarkable effect is obtained in the case of an alloy having a Curie temperature of no more than 300°C and a relatively small induced magnetic anisotropy.
- the methods of restricting the percent area occupation of the concavities formed in the surface of the ribbon to no more than 30% as described above include a method of improving the wettability between the cooling roll and the alloy melt and a method of realizing the optimum cooling rate.
- Examples of such methods include a method of using Fe-base rolls (e.g., S45C, high-speed steel), a method of controlling the temperature of water cooling from the interior of a cooling roll to 30 to 60°C in the case of Cu-base alloys (CuBe, CuTi or the like) and a method of controlling the ejection temperature of the alloy melt to at least 1350°C.
- a further preferred method is a method wherein the pressure of the production atmosphere is reduced to a value less than atmospheric pressure.
- the generation of the concavities can be reduced (e.g., to no more than 10%).
- a photomicrograph of the roll-contacting surface is taken by means of a scanning electron microscope at a magnification of 200.
- the concavities having a field major axis (diameter of a minimum circle including said concavities and contacting therewith) of at least 10 micrometers are all picked up, and the area ratio occupied by the concavities per unit area is determined by an image treatment apparatus (e.g., LUZEX500 manufactured by Nippon Regulator K.K., Japan). This process is repeated at least 10 times. The average value is determined, and this average value is referred to as "percent area occupation".
- the value of Rf is preferably no more than 0.25, more preferably no more than 0.22.
- the surface state of the resulting alloy ribbon is affected by the conditions such as the surface state of the cooling roll and the stability of melt reservoir occurring between the nozzle and the roll.
- the concavities and convexities periodically appearing in the longitudinal direction of the ribbon on the free surface i.e., the ribbon surface which does not come into contact with the cooling roll
- fish scale adversely affect the high frequency magnetic characteristics, particularly the squareness ratio of the alloy ribbon.
- the saturation inductance can be reduced by restricting the longitudinal surface roughness of the alloy ribbon to a specific value, Rf ⁇ 0.3, more preferably Rf ⁇ 0.27 according to the stipulation described above.
- Such an effect is particularly remarkable when an amorphous alloy having a Curie temperature of no more than 300°C is used as a material. It is believed that the shape anisotropy attributable to the surface roughness participates as described in the case of the roll-contacting surface of the ribbon.
- Co-base amorphous alloys and Fe-base magnetic alloys can be used in the present invention.
- the preferred composition of the Co-base amorphous alloys is represented by the following general formulae: (i) (Co 1-a Fe a ) 100-x (Si 1-l B l ) x wherein 0.02 ⁇ a ⁇ 0.08 0.3 ⁇ l ⁇ 0.8 26 ⁇ x ⁇ 32 (at.%) (ii) (Co 1-b-c Fe b M c ) 100-y (Si 1-m B m ) y wherein M is selected from the group consisting of Ni, Mn and combinations thereof, b ⁇ 0.10 0.01 ⁇ c ⁇ 0.10 0.3 ⁇ m ⁇ 0.8 26 ⁇ y ⁇ 32 (at.%) (iii) (Co 1-d-e Fe d M' e ) 100-z (Si 1-n B n ) z wherein M' is selected from the group consisting of Ti, V, Cr, Cu, Zr, Nb, Mo, Hf, Ta, W and combinations thereof, 0.03 ⁇ d
- Co-base amorphous alloys used in the magnetic core of the present invention are represented by the four general formulae described above, the most important requirement resides in the composition for setting the Curie temperature to no more than 300°C.
- the atomic ratio of metal element to metalloid element is important.
- x, y and z are from 26 to 32 at.%.
- w is from 24 to 30 at.%. If x, y and z are less than 26 at.% or if w is less than 24 at.%, the coercive force will be large; the value of the core loss will be large; and the heat stability will be poor. If x, y and z are more than 32 at.%, or if w is more than 30 at.%, the Curie temperature will be reduced and thus the magnetic core will become impractical.
- Fe is an element for adjusting the magnetostriction to within the range of -1 x 10 ⁇ 6 to +1 x 10 ⁇ 6.
- the amount of the non-magnetic transition metal element added and the value of Si and B are stipulated to from 0.02 to 0.08, no more than 0.10, from 0.03 to 0.10 and no more than 0.10, respectively, the desired magnetostriction can be realized.
- M selected from the group consisting of Ni, Mn and combinations thereof
- M' selected from the group consisting of Ti, V, Cr, Cu, Zr, Nb, Mo, Hf, Ta, W and combinations thereof
- Their amounts c and h are no more than 0.10 and no more than 0.08, respectively. If c and h are more than 0.10 and more than 0.08, respectively, the Curie temperature will be excessively reduced, whereby such amounts will be undesirable.
- Si and B are essential components for obtaining amorphous alloys.
- l, m, n or p showing the amounts of Si and B are stipulated at from 0.3 to 0.5 and that the alloy is rich in Si. If l, m, n and p are less than 0.3 or more than 0.5, it will be difficult to obtain a high squareness ratio, and the heat stability of magnetic characteristic will be slightly reduced.
- the alloys (i) to (iv) described above are the most preferred from the standpoints of the reduction of the concavities due to the trapping of the bubbles (first embodiment of the present invention). More preferably, Cr, Nb or Mo is selected as M'. It is believed that such an element contributes to the improvement of wettability and the reduction in viscosity.
- the magnetic shape anisotropy effect is obtained in the case of low induced magnetic anisotropy. Accordingly, the present invention is particularly effective for materials having an induced magnetic anisotropy of no more than 104 ergs/cc. As described above, the present invention exhibits a remarkable effect in the case of amorphous alloys having a Curie temperature of no more than 300°C. If the Curie temperature is less than 160°C, the squareness ratio and saturation inductance will not reach a good level. Accordingly, in the present invention, the Curie temperature is within the range of 160 to 300°C, preferably within the range of 180 to 280°C, and more preferably from 190 to 270°C.
- the Curie temperature of no more than 300°C is necessary for improving heat stability.
- amorphous alloys can be obtained by quenching an alloy stock having a specific composition from the molten state at a cooling rate of at least 104 °C/s (liquid quenching method).
- the amorphous alloy of the present invention can be readily produced in the conventional manner described above.
- This amorphous alloy is used, for example, as a plate-shaped ribbon produced by a single roll method. In this case, if the thickness is more than 25 micrometers, the core loss at a high frequency will be increased. Accordingly, it is preferable that the thickness of the ribbon be set within the range of 5 to 25 micrometers.
- the magnetic core of the present invention is produced by winding the amorphous alloy produced by the production method described above in a specific shape and heat treating to remove strains.
- the cooling rate is desirably of the order of 0.5 to 50 °C/minute, preferably within the range of 1 to 20 °C/minute.
- the heat treatment may be carried out in a magnetic field at a temperature less than the Curie temperature.
- an Fe-base ultramicrocrystalline alloy can be used in the present invention.
- This alloy is obtained by adding Cu and one of Nb, W, Ta, Zr, Hf, Ti and Mo to alloys such as an Fe-Si-B alloy, forming the mixture into a ribbon as with the amorphous alloy, and heat treating at a temperature above its crystallization temperature to deposit fine grains.
- the present invention can be applied to the Fe-base ultramicrocrystalline alloy as described above.
- the composition of the alloy used in producing an Fe-base soft magnetic alloy ribbon as described above includes the following composition represented by the following formula: Fe 100-e-f-g-h-i-j E e G f J g Si h B i Z j (II) wherein: E represents an element selected from the group consisting of Cu, Au and combinations thereof; G represents an element selected from the group consisting of an element of the group IVa, an element of the group Va, an element of the group VI'a, rare earth elements, and combinations thereof; J represents an element selected from the group consisting of Mn, Al, Ga, Ge, In, Sn, platinum group metals, and combinations thereof; Z represents an element selected from the group consisting of C, N, P and combinations thereof; and e, f, g, h, i and j are numbers satisfying the following equations: 0.1 ⁇ e ⁇ 8 0.1 ⁇ f ⁇ 10 0 ⁇ g ⁇ 10 12 ⁇ h ⁇ 25 3 ⁇ i ⁇ 12 0
- E in the formula (II) given above (Cu or Au) is an element effective for enhancing the corrosion resistance, for preventing the coarsening of grains and for improving soft magnetic characteristics such as core loss and permeability.
- Such an element is particularly effective for depositing a bcc phase at a low temperature. If the amount of such an element is too small, the effect as described above cannot be obtained. If the amount is too large, the magnetic characteristics will deteriorate, and therefore such an amount is undesirable. Therefore, the content of E is suitably within the range of 0.1 to 8 atomic %. The preferred range is from 0.1 to 5 atomic %.
- G is an element which is effective for homogenization of grain size, which is effective for reducing magnetostriction and magnetic anisotropy and which is effective for the improvement of soft magnetic characteristic and the improvement of magnetic characteristic with respect to the temperature change.
- E e.g., Cu
- the bcc phase can be stabilized within the wider ranges. If the amount of G is too small, the effect described above cannot be obtained. If the amount is too large, non-crystallization cannot be achieved in the production process, and the saturation magnetic flux density will be reduced. Therefore, the content of G is suitably within the range of 0.1 to 10 atomic %. The more preferred range is from 1 to 8 atomic %.
- each element in E is effective for improving respective properties.
- the group IVa element is effective for enlarging the heat treatment conditions for obtaining optimum magnetic characteristic.
- the group Va element is effective for improving embrittlement resistance and workability such as cutting.
- the group VIa element is effective for improving the corrosion resistance and surface properties.
- Ta, Nb, W, Mo and V are particularly preferred.
- Ta, Nb, W and Mo are effective for improving soft magnetic characteristic.
- V is effective for improving embrittlement resistance and surface properties.
- J an element selected from the group consisting of Mn, Al, Ga, In, Sn, platinum group metals, and combinations thereof
- Mn an element selected from the group consisting of Mn, Al, Ga, In, Sn, platinum group metals, and combinations thereof
- the amount of J is no more than 10 atomic %.
- Al is an element effective for improving refinement of grains and magnetic characteristic and for stabilizing the bcc phase.
- Ge is an element effective for stabilizing the bcc phase.
- the platinum group metals are elements effective for improving the corrosion resistance.
- Si and B are elements aiding in the amorphrization of an alloy during the production process. These can improve the crystallization temperature and are elements effective for heat treatment for improving magnetic characteristic.
- Si forms a solid solution together with Fe which is a principal component of fine grains, and contributes to reduction in magnetostriction and magnetic anisotropy. If the amount of Si is less than 12 atomic %, the improvement of soft magnetic characteristic will be insufficient. If the amount of Si is more than 25 atomic %, the ultraquenching effect will be small, relatively coarse grains of micrometer size will deposit, and good soft magnetic characteristic cannot be obtained. It is particularly preferable that Si be from 12 to 22 atomic % from the standpoint of the development of super lattice.
- the amount of B is less than 3 atomic %, relatively coarse grains will deposit and thus good characteristics cannot be obtained. If the amount of B is more than 12 atomic %, a B compound will be liable to deposit by the heat treatment and soft magnetic characteristic will deteriorate.
- Z (C, N, P) are included in an amount of no more than 10 atomic % as other amorphrization elements.
- the total amount of Si, B and other non-crystallizable elements is preferably within the range of 15 to 30 atomic %.
- Si/B ⁇ 1 is preferred for obtaining excellent soft magnetic characteristic.
- the use of the amount of Si of 13 to 21 atomic % provides the magnetostriction ⁇ s ⁇ 0, and the deterioration of magnetic characteristic due to a resin mold is prevented.
- the desired excellent soft magnetic characteristic can be effectively obtained.
- Continuous ribbon samples a and b having a plate thickness of 16 micrometers and a width of 10 mm and having different surface properties of the roll-contacting surface were prepared from an amorphous alloy represented by the formula: (Co 0.900 Fe 0.05 Nb 0.05 Cr 0.02 )75(Si 0.56 B 0.44 )25 by a single roll method.
- the measurement of the percent area of concavities was carried out as follows. First, a scanning electron microscope was used to take a photomicrograph of the roll-contacting surface of a ribbon at a magnification of 200. In this photograph, a concavity having a major axis of at least 10 micrometers was extracted within a field of 0.45 mm x 0.55 mm, and image treatment was carried out to determine the area. This was compared with the total field area to determine the percent area of concavities.
- the resulting alloy ribbon was wound to form a toroidal core having an outer diameter of 18 mm and an inner diameter of 12 mm. This was then heat treated at a suitable temperature above the Curie temperature and below the crystallization temperature, and thereafter cooled at a rate of 4 °C/minute.
- the magnetic core of the present Example obtained by using the ribbon shown in FIG. 1 exhibited a smaller output uncontrollable range (dead angle) as compared with a comparative magnetic core obtained by using the ribbon shown in FIG. 2.
- the efficiency was also improved by about 2%.
- Ribbon samples having various surface properties were prepared from an amorphous alloy having the composition represented by the formula: (Co 0.90 Fe 0.05 Mn 0.02 Nb 0.03 )75Si13B12 by a single roll method.
- Example A1 These materials were formed into magnetic cores as in Example A1, and the relationship between the percent area occupation and squareness ratios at a high frequency was examined. The results are summarized in FIG. 3. It turned out that when the area occupation is more than 30%, the squareness ratio rapidly deteriorates.
- Continuous ribbon samples a and b having a plate thickness of 16 micrometers and a width of 10 mm and having different surface properties of the roll-contacting surface were prepared from an amorphous alloy represented by the following formula: (Co 0.94 Fe 0.05 Nb 0.01 )71(Si 0.6 B 0.4 )29 by a single roll method.
- the longitudinal surface roughness of Samples a and b was measured by means of a surface roughness meter. When the surface roughness is expressed by Rf, the Rf of Samples a and b are 0.15 and 0.38, respectively.
- the resulting alloy ribbon was wound to form a toroidal core having an outer diameter of 18 mm and an inner diameter of 12 mm. This was then heat treated at a suitable temperature above the Curie temperature and below crystallization temperature, and thereafter cooled at a rate of 4 °C/minute.
- the value at 50 kHz was 99.4% for a magnetic core obtained by using a material having an Rf of 0.15 and 94.8% for the material having an Rf of 0.38. The difference therebetween was about 5%.
- the magnetic core of the present Example obtained by using the ribbon having an Rf of 0.15 exhibited a smaller output uncontrollable range (dead angle) as compared with a comparative magnetic core obtained by using the ribbon having an Rf of 0.38.
- the efficiency was also improved by about 2%.
- Ribbon samples having various surface properties were prepared from an amorphous alloy having the composition represented by the formula: (Co 0.90 Fe 0.05 Mn 0.02 Nb 0.03 )71Si15B14 by a single roll method.
- Example B1 These materials were formed into magnetic cores as in Example B1 and the relationship between the surface roughness and squareness ratios at a frequency of 100 kHz was examined. The results are summarized in FIG. 4. It was found that when the Rf is 0.3 or more, the squareness ratio rapidly deteriorates.
- Ribbons having a surface property such that the percent concavity occupation of the roll-contacting surface was 22% and 40% were prepared from an amorphous alloy represented by the formula: Fe74Cu1Nb3Si13B9 by a single roll method.
- Each ribbon was formed into a 18 mm x 12 mm x 4.5 mm toroidal core and heat treated for one hour at 560°C in a N2 atmosphere. Thereafter, heat treatment was carried out for 2 hours at 400°C in a magnetic field having 5 Oe.
- the squareness ratios at 100 kHz of the cores were measured as in Example A1.
- the squareness ratio of the magnetic core of the present invention was 98.7% and the squareness ratio of the magnetic core of the Comparative Example was 94.5%.
- the magnetic core of the present Example exhibited a smaller output uncontrollable range (dead angle) as compared with a magnetic core of the Comparative Example.
- the power source efficiency was also improved by about 2%.
- the cores having a surface roughness Rf of 0.2 and 0.38 and having various thicknesses were tested for core loss at 100 kHz. As shown in FIG. 5, the core loss gradually increases with increasing the plate thickness in spite of the surface property.
- Rf t ( ⁇ m) Br/Bl (%) P 2KG /100 kHz 0.22 21.0 99.5 350 0.34 18.5 96.4 340 0.24 28.4 99.0 560 0.36 28.0 97.0 520
- Two ribbons were prepared from an amorphous alloy represented by the formula: (Co 0.90 Fe 0.05 Cr 0.1 Nb 0.02 )73(Si 0.55 B 0.45 )27 by a single roll method.
- the plate thickness was 19 micrometers and the width was 5 mm.
- the material from which the roll used was produced and the temperature of the roll cooling water were changed to produce ribbons wherein the percent area occupied by concavities of the roll-contacting surface was 22% and 35% and the surface roughness of the free surface was 0.25 and 0.35.
- These ribbons were subjected to photoetching to form ring-shaped cores having an outer diameter of 8 mm and an inner diameter of 6 mm, heat treated for 40 minutes at 430°C to remove strains, thereafter, heat treated for one hour at 200°C in a magnetic field of 2 Oe, and laminated so that the height was 5 mm to form magnetic cores for evaluation.
- the squareness ratios at 100 kHz of the cores were measured as in Example A1.
- the squareness ratio of the magnetic core of the present invention was 99.1% and the squareness ratio of the magnetic core of the Comparative Example was 95.2%.
- the magnetic core of the present invention exhibited a superior output control characteristic as compared with a magnetic core of the Comparative Example.
- the power source efficiency was also improved by about 2.5%.
- Ribbons having a width of 5 mm were prepared under production conditions shown in Table 2 by a single roll method using the composition shown in Table 2.
- their Curie temperatures were also measured.
- Each ribbon was wound into a toroidal magnetic core having an outer diameter of 15 mm and an inner diameter of 10 mm.
- the resulting Co-base amorphous magnetic core was heat treated for 30 minutes at an optimum temperature to remove strains and thereafter a magnetic field of 1 Oe was applied in the longitudinal direction of the ribbon for 2 hours at a temperature which was 30°C below the Curie temperature to carry out heat treatment in a magnetic field.
- Fe-base alloys exhibited an amorphous state during the quenching process, and therefore the Fe-base alloys were heat treated for one hour at a temperature which was 50°C above their respective crystallization temperatures (the value obtained by measuring by means of a differential scanning calorimeter at a heating rate of 10 °C/minute).
- a magnetic field of 5 Oe was applied in the longitudinal direction of the ribbon for one hour at 450°C to carry out heat treatment in a magnetic field.
- the heat treatment was carried out in a nitrogen atmosphere.
- the resulting magnetic cores were tested for their squareness ratios at 100 kHz and core loss at 100 kHz and 2 kHz as in Example A1. The results are shown in Table 2. As can be seen from Table 2, excellent squareness ratio is obtained in the magnetic core of the present invention. Further, in these Examples, the magnetic flux density was determined as a value corresponding to saturation inductance. This magnetic flux density was determined by the difference between the magnetic flux density obtained by applying a magnetic field of 16 Oe at a frequency of 100 kHz under conditions such that the number of turns of the magnetic core was 10 and the remanent magnetic flux density.
- a wound magnetic core having a high squareness and extremely excellent output control characteristic can be provided and can be widely used as a magnetic component such as a magnetic amplifier, reactor for semiconductor circuit, particularly for switching power supplies.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Soft Magnetic Materials (AREA)
- Coils Or Transformers For Communication (AREA)
- Continuous Casting (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1990/000407 WO1991015020A1 (en) | 1990-03-27 | 1990-03-27 | Magnetic core |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0473782A1 true EP0473782A1 (de) | 1992-03-11 |
EP0473782A4 EP0473782A4 (en) | 1992-11-04 |
EP0473782B1 EP0473782B1 (de) | 1997-08-27 |
Family
ID=13986446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90904934A Expired - Lifetime EP0473782B1 (de) | 1990-03-27 | 1990-03-27 | Magnetkern |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0473782B1 (de) |
KR (1) | KR0134508B1 (de) |
DE (1) | DE69031338T2 (de) |
WO (1) | WO1991015020A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999059168A1 (en) * | 1998-05-13 | 1999-11-18 | Alliedsignal Inc. | High stack factor amorphous metal ribbon and transformer cores |
EP1045402A3 (de) * | 1999-04-15 | 2001-03-14 | Hitachi Metals, Ltd. | Weichmagnetischer Streifen aus einer Legierung,Herstellungsverfahren und Verwendung |
GB2374084A (en) * | 2001-04-03 | 2002-10-09 | Fourwinds Group Inc | Alloys having bistable magnetic behaviour |
EP3157021A4 (de) * | 2014-06-10 | 2018-05-23 | Hitachi Metals, Ltd. | Fe-basierter nanokristalliner legierungskern und verfahren zur herstellung des fe-basierten nanokristallinen legierungskerns |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60121706A (ja) * | 1983-11-29 | 1985-06-29 | Hitachi Metals Ltd | 巻磁心 |
JPS6124208A (ja) * | 1984-07-12 | 1986-02-01 | Nippon Steel Corp | 良好な磁気特性を有する非晶質磁性材料 |
DE3705893A1 (de) * | 1986-02-24 | 1987-08-27 | Toshiba Kawasaki Kk | Verfahren zur herstellung von magnetkernen mit hoher permeabilitaet |
JPS63302504A (ja) * | 1987-06-02 | 1988-12-09 | Hitachi Metals Ltd | 磁心およびその製造方法 |
JPS64249A (en) * | 1988-06-03 | 1989-01-05 | Toshiba Corp | Extra thin amorphous alloy combining high magnetic permeability with low iron loss |
JPH01247556A (ja) * | 1988-03-30 | 1989-10-03 | Hitachi Metals Ltd | 恒透磁率性に優れたFe基磁性合金 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62179704A (ja) * | 1986-02-04 | 1987-08-06 | Hitachi Metals Ltd | 制御磁化特性に優れたFe基アモルフアス磁心 |
JP2693453B2 (ja) * | 1987-09-28 | 1997-12-24 | 株式会社東芝 | 巻磁心 |
-
1990
- 1990-03-27 DE DE69031338T patent/DE69031338T2/de not_active Expired - Lifetime
- 1990-03-27 WO PCT/JP1990/000407 patent/WO1991015020A1/ja active IP Right Grant
- 1990-03-27 EP EP90904934A patent/EP0473782B1/de not_active Expired - Lifetime
- 1990-03-27 KR KR1019910701674A patent/KR0134508B1/ko not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60121706A (ja) * | 1983-11-29 | 1985-06-29 | Hitachi Metals Ltd | 巻磁心 |
JPS6124208A (ja) * | 1984-07-12 | 1986-02-01 | Nippon Steel Corp | 良好な磁気特性を有する非晶質磁性材料 |
DE3705893A1 (de) * | 1986-02-24 | 1987-08-27 | Toshiba Kawasaki Kk | Verfahren zur herstellung von magnetkernen mit hoher permeabilitaet |
JPS63302504A (ja) * | 1987-06-02 | 1988-12-09 | Hitachi Metals Ltd | 磁心およびその製造方法 |
JPH01247556A (ja) * | 1988-03-30 | 1989-10-03 | Hitachi Metals Ltd | 恒透磁率性に優れたFe基磁性合金 |
JPS64249A (en) * | 1988-06-03 | 1989-01-05 | Toshiba Corp | Extra thin amorphous alloy combining high magnetic permeability with low iron loss |
Non-Patent Citations (20)
Title |
---|
DE-A- 3 705 893 * |
DE-A- 3 835 986 * |
Denki Gakkai Kenyukai Shiryo, Jiki Oyo Kenkyukai AM 79-58, 21 December 1979 * |
EP-A- 0 342 921 * |
EP-A- 0 342 922 * |
EP-A- 0 342 923 * |
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 19, no. 9, September 1980, pages 1781-1787, Tokyo , JP; M. MATSUURA et al.: "Effects of ambient gases on surface profile and related properties of amorphous alloy ribbons fabricated by melt-spinning" * |
Japanese Journal of applied physics, vol.19, no.9, september 1980 pages 1781-1787, Tokio JP; M.Matsuura et al: " Effects of ambient gases on surface profile and related properties of amorphous alloy ribbons fabricated by melt-spinning " * |
JOURNAL OF APPLIED PHYSICS, vol. 55, no. 6, Part IIA, March 1984, pages 1787- 1789; New York, US; H.H. LIEBERMANN et al.: "Dependence of some properties on thickness of smooth amorphous alloy ribbon" * |
JP-A- 6 484 602 * |
JP-A-62 179 704 * |
MATERIALS LETTERS, vol. 7, nos. 7-8, December 1988, pages 263-267, Amsterdam, NL; D.X. PANG et al.: "Influence of quenching rate on the curie temperature, resistivity, internal friction and structure of Fe-based amorphous alloys" * |
NL; D.X. PANG et al.: "Influence of quenching rate on the curie temperature, resistivity, internal friction and structure of Fe-based amorphous alloys" * |
Patent Abstract of Japan, vol.13, no. 589, December 25, 1989; * |
PATENT ABSTRACTS OF JAPAN, vol. 10, no. 175 (E-413)[2231], 20th June 1986; & JP-A-61 24 208 (SHIN NIPPON SEITETSU K.K.) 01-02-1986 * |
PATENT ABSTRACTS OF JAPAN, vol. 13, no. 139 (E-738)(3487), April 6, 1989; & JP- A-63 302 504 (HITACHI METALS LTD.) 09-12-1988 * |
PATENT ABSTRACTS OF JAPAN, vol. 13, no. 171 (C-588)(3519), April 24, 1989; & JP-A-64 249 (TOSHIBA CORP.) 05-01-1989 * |
PATENT ABSTRACTS OF JAPAN, vol. 13, no. 589 (C-670)(3937), December 25, 1989; & JP-A-1 247 556 (HITACHI METALS LTD.) 03-10-1989 * |
PATENT ABSTRACTS OF JAPAN, vol. 9, no. 277 (E-355)[2000], 6th November 1985; & JP-A-60 121 706 (HITACHI KINZOKU K.K.) 29-06-1985 * |
See also references of WO9115020A1 † |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999059168A1 (en) * | 1998-05-13 | 1999-11-18 | Alliedsignal Inc. | High stack factor amorphous metal ribbon and transformer cores |
US6299989B1 (en) | 1998-05-13 | 2001-10-09 | Alliedsignal Inc. | High stack factor amorphous metal ribbon and transformer cores |
EP1045402A3 (de) * | 1999-04-15 | 2001-03-14 | Hitachi Metals, Ltd. | Weichmagnetischer Streifen aus einer Legierung,Herstellungsverfahren und Verwendung |
US6425960B1 (en) | 1999-04-15 | 2002-07-30 | Hitachi Metals, Ltd. | Soft magnetic alloy strip, magnetic member using the same, and manufacturing method thereof |
GB2374084A (en) * | 2001-04-03 | 2002-10-09 | Fourwinds Group Inc | Alloys having bistable magnetic behaviour |
EP3157021A4 (de) * | 2014-06-10 | 2018-05-23 | Hitachi Metals, Ltd. | Fe-basierter nanokristalliner legierungskern und verfahren zur herstellung des fe-basierten nanokristallinen legierungskerns |
EP3693980A1 (de) * | 2014-06-10 | 2020-08-12 | Hitachi Metals, Ltd. | Magnetkern aus fe-basierter nanokristalliner legierung |
Also Published As
Publication number | Publication date |
---|---|
EP0473782A4 (en) | 1992-11-04 |
WO1991015020A1 (en) | 1991-10-03 |
KR920702001A (ko) | 1992-08-12 |
KR0134508B1 (ko) | 1998-04-27 |
DE69031338T2 (de) | 1998-04-02 |
EP0473782B1 (de) | 1997-08-27 |
DE69031338D1 (de) | 1997-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0612082B1 (de) | Verfahren zur Herstellung eines Legierungsbandes auf Eisenbasis nicht dicker als 10 mikrometer | |
EP2614509B1 (de) | Ferromagnetisches amorphes legierungsband mit reduzierten oberflächenvorsprüngen sowie giessverfahren dafür und anwendung davon | |
EP2130936A1 (de) | Weichmagnetisches band, magnetkern, magnetisches teil und verfahren zur herstellung eines weichmagnetischen bands | |
US5622768A (en) | Magnetic core | |
JP2001001113A (ja) | 合金薄帯並びにそれを用いた部材、及びその製造方法 | |
JP3357386B2 (ja) | 軟磁性合金およびその製造方法ならびに磁心 | |
JP3068156B2 (ja) | 軟磁性合金 | |
JPH05140703A (ja) | 磁束密度の大きなトランス鉄心用非晶質合金薄帯 | |
EP0473782B1 (de) | Magnetkern | |
JP2848667B2 (ja) | 極薄軟磁性合金薄帯の製造方法 | |
JP3434844B2 (ja) | 低鉄損・高磁束密度非晶質合金 | |
EP0342921B1 (de) | Weichmagnetische Legierung auf Eisenbasis | |
EP0351051B1 (de) | Weichmagnetische, auf Eisen basierende Legierung | |
EP3842555B1 (de) | Weichmagnetische legierung und magnetkern | |
JPH0917623A (ja) | ナノ結晶合金磁心およびその製造方法 | |
JP2791173B2 (ja) | 磁 心 | |
KR0148230B1 (ko) | 스위칭전원 | |
EP4040453B1 (de) | Weichmagnetische legierung, band aus weichmagnetischer legierung, verfahren zur herstellung eines bandes aus weichmagnetischer legierung, magnetkern und komponente | |
KR920001967B1 (ko) | 얇은 연자성 합금 띠의 제조방법 및 장치, 이를 이용한 합금 띠와 자성코어, 그 자성코어를 내장한 전자장치 | |
JP2719978B2 (ja) | 高周波磁心用非晶質合金 | |
JPH055164A (ja) | Fe基軟磁性合金 | |
JP3378261B2 (ja) | 積層磁心及びそれを用いたスイッチング電源 | |
JP3638291B2 (ja) | 低損失磁心 | |
JP3121641B2 (ja) | スイッチング電源 | |
JP2815926B2 (ja) | 磁性コア |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19911126 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19920914 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 19931027 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 69031338 Country of ref document: DE Date of ref document: 19971002 |
|
ET | Fr: translation filed | ||
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: VACUUMSCHMELZE GMBH, HANAU Effective date: 19980527 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: VACUUMSCHMELZE GMBH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 19981008 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D6 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: VACUUMSCHMELZE GMBH, HANAU Effective date: 19980527 |
|
R26 | Opposition filed (corrected) |
Opponent name: VACUUMSCHMELZE GMBH, HANAU Effective date: 19980527 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: VACUUMSCHMELZE GMBH, HANAU |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030310 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030326 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030327 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040327 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
R26 | Opposition filed (corrected) |
Opponent name: VACUUMSCHMELZE GMBH & CO. KGWESTPHAL, MUSSGNUG Effective date: 19980527 |
|
27O | Opposition rejected |
Effective date: 20040507 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: VACUUMSCHMELZE GMBH & CO. KG |
|
NLR2 | Nl: decision of opposition |
Effective date: 20040507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20041001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090319 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100327 |