WO1991015020A1 - Magnetic core - Google Patents

Magnetic core Download PDF

Info

Publication number
WO1991015020A1
WO1991015020A1 PCT/JP1990/000407 JP9000407W WO9115020A1 WO 1991015020 A1 WO1991015020 A1 WO 1991015020A1 JP 9000407 W JP9000407 W JP 9000407W WO 9115020 A1 WO9115020 A1 WO 9115020A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
alloy ribbon
magnetic core
ribbon
core according
Prior art date
Application number
PCT/JP1990/000407
Other languages
French (fr)
Japanese (ja)
Inventor
Yumie Watanabe
Yumiko Takahashi
Takao Sawa
Yoshiyuki Yamauchi
Susumu Matsushita
Masami Okamura
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13986446&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1991015020(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to PCT/JP1990/000407 priority Critical patent/WO1991015020A1/en
Priority to KR1019970706039A priority patent/KR0148230B1/en
Priority to KR1019910701674A priority patent/KR0134508B1/en
Priority to EP90904934A priority patent/EP0473782B1/en
Priority to DE69031338T priority patent/DE69031338T2/en
Publication of WO1991015020A1 publication Critical patent/WO1991015020A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons

Definitions

  • the present invention provides a saturable reactor used in a high-frequency switching power supply, which has excellent squareness characteristics and magnetic saturation characteristics particularly at high frequencies (specifically, 50 kHz or more) and also has low iron loss.
  • the present invention relates to a magnetic core suitable for a magnetic component such as a reactor for a semiconductor circuit and an alloy thin film used for manufacturing the magnetic core.
  • magnetic components used as important functional components also need to have higher performance.
  • magnetic materials used for these magnetic components are also required to have excellent high-frequency magnetic characteristics.
  • a material having high magnetic permeability is effective for many magnetic components such as a current sensor such as a zero-phase current transformer and a noise filter.
  • the main part of this magnetic amplifier is a saturable reactor. Therefore, there is a need for a magnetic core material having excellent square magnetization characteristics.
  • Sen Delta B3 ⁇ 4 product name
  • Fe—Ni alloy As such a magnetic core material, Sen Delta (B3 ⁇ 4 product name) made of Fe—Ni alloy has been used.
  • Sen-delta has excellent square magnetizing characteristics, but its coercive force increases at high frequencies of 20 KHz or more, increasing eddy current loss and generating heat, making it unusable. . For this reason, the switching frequency of a switching power supply incorporating a magnetic amplifier was limited to 20 kHz or less.
  • the present invention has been made in consideration of the above problems, In particular, it is an object of the present invention to provide a magnetic core using an alloy ribbon having a large square ratio in a high-frequency region and a small saturation inductance.
  • a magnetic core according to the present invention is a magnetic core formed by winding or laminating an alloy ribbon and having excellent square characteristics in a high-frequency region, and a concave portion on the surface of the thin film on the roll surface side. By reducing the area occupancy of the core to 30% or less, the squareness ratio of the magnetic core is improved.
  • the present inventors sharply improve the squareness ratio in a high frequency range and reduce the saturated inductance. Can be headed. Further, the present inventors have set the area occupancy of the surface recesses on the roll surface side of the alloy ribbon constituting the magnetic core to 30% or less, and at the same time, the surface roughness (R i) on one side of the fly to 0.3% or less. By doing so, it has been found that the square characteristics of the magnetic core, particularly in the high frequency region, can be improved. The present invention has been made based on the above findings.
  • a magnetic core having a squareness ratio of 98% or more, preferably 98.5% or more, and more preferably 99% or more at a frequency of 100 kHz. Further, according to the present invention, it is possible to provide a magnetic core having a saturation magnetic property of 550 (G) or less, and further, 500 (G) or less.
  • the saturation magnetic properties are usually determined by the shape of the magnetic core, the number of turns, and Depends on fixed conditions.
  • the evaluation criteria are as follows: (1) a magnetic core having an outer diameter of 15 mn, an inner diameter of 10 turns, and a height of 4.5 rara; (2) the number of windings is 1 turn; It is expressed as the difference between the magnetic flux density and the residual magnetic flux when a 16 (0e) magnetic field is applied at 100 kHz.
  • FIG. 1 and 2 are scanning electron micrographs showing the surface condition of the alloy ribbon in the present invention
  • FIG. 3 is a graph showing the area occupancy, the squareness ratio, and the ratio of the concave portions formed on the surface of the alloy ribbon.
  • FIG. 4 is a graph showing the relationship between the surface roughness and the squareness ratio
  • FIG. 5 is a graph showing the relationship between the thickness of the alloy ribbon and the iron loss.
  • ⁇ magnetic alloy ribbons used for magnetic core materials used at high frequencies have been increasingly manufactured by the so-called melt quenching method.
  • a ribbon-shaped ribbon is obtained by injecting a molten alloy of a predetermined composition, which is melted in a heat-resistant container such as quartz, from a nozzle onto the rotating surface of a metal cooling roll that rotates at high speed and quenching it. Things.
  • fine irregularities are formed on the surface of the alloy ribbon produced in this way (the rim surface, that is, the surface in contact with the cooling roll) inevitably. I have.
  • the area occupation ratio of the concave portion existing on the roll-side surface of the alloy ribbon be 30% or less. Strictly to 25% or less, and more preferably to 20% or less, it is possible to sharply improve the squareness ratio in the high frequency range and to reduce the saturation inductance. I found what I could do.
  • the alloy melt is ejected from the nozzle to the surface of the cooling roll and rapidly cooled to produce an alloy ribbon, thereby producing an alloy ribbon.
  • the present invention is characterized in that the concave portion formed on the surface of the alloy ribbon on the side in contact with the cooling roll is formed of an alloy ribbon having an area occupancy of 3 °% or less.
  • the surface condition of the obtained alloy ribbon mainly depends on the surface condition of the cooling roll and the wettability between the molten alloy and the roll. Depend on. The wettability in this case is also affected by the composition of the alloy.
  • the recess formed on the surface of the alloy ribbon is formed by air bubbles that are caught between the cooling roll and the molten metal.
  • the area occupancy of the concave portion formed on the alloy ribbon surface on the side in contact with the cooling roll is limited to 30% or less. This can significantly improve the squareness ratio of the magnetic core.
  • the effect of improving the squareness as described above is especially the Curie temperature This is remarkable in amorphous alloys with a temperature of less than 300 ° C.
  • the reason is presumed to be the ratio of the magnitude of the shape magnetic anisotropy caused by the induced magnetic anisotropy generated by the heat treatment and the surface roughness. In other words, it is remarkable in alloys having a relatively low induced magnetic anisotropy with a temperature of 300 ° C or lower.
  • the method of limiting the area occupancy of the concave portion formed on the ribbon surface to 30% or less is to improve the wettability between the cooling roll and the molten alloy and to optimize the cooling rate. No.
  • the definition and measurement method of “the area occupancy of the concave portion formed on the surface of the thin layer” in the present invention are as follows.
  • the second aspect of the present invention is to produce an alloy ribbon by injecting a molten alloy from a nozzle to the surface of a cooling hole and quenching the molten alloy.
  • the surface roughness of the alloy ribbon surface is such that, in the longitudinal direction of the alloy ribbon,
  • R f is the average plate thickness obtained from the ten-point average roughness at the standard length of 2.5 ram specified in JIS B 0601 and the weight of the alloy ribbon. Then, the following formula:
  • the magnetic core is formed by an alloy ribbon having a certain value.
  • This value of R f is preferably 0.25 or less, more preferably 0.22 or less.
  • the high-frequency region can be obtained. It is possible to remarkably improve the squareness ratio and to reduce the saturation inductance.
  • the surface roughness As described above, it is necessary to appropriately control production parameters such as the material of the cooling roll, the surface temperature of the roll, and the temperature of the molten metal at the time of injection. For that purpose, it is necessary to adjust and adjust the cooling speed and roll peripheral speed, for example. Specifically, it is effective to use a Cu-based alloy roll and set the water temperature inside the roll to 30 to 80, or to set the roll peripheral speed to 25 mZs or more. . Next, the alloy material used for the magnetic core of the present invention will be described.
  • a Co-based amorphous alloy or a Fe-based magnetic alloy can be used.
  • the preferred composition of the C0-based amorphous alloy is represented by the general formula
  • M is at least one of N i and M n
  • One is either represented by both saturation magnetostriction constant ⁇ lambda s one 1 1 0 _6 ⁇ scan s ⁇ lxi O within the scope of -6 C o group Amorufu ⁇ scan alloy favored arbitrariness of.
  • Amorufu ⁇ scan alloy used in the magnetic core of the present invention is represented by the above SL four general formula, where the the most important, the set for setting the Curie temperature to below 3 0 0 e C This is the setting, and the atomic ratio between the metal element and the metalloid element is mainly used.
  • general formulas 1 to X, X, y, z are 26 to 32,
  • F e is the magnetostriction - an element for adjusting the 1 X 1 0 _ 6 ⁇ ten 1 X 1 0 _ 6, N i, the addition amount of the additive amount or the non-magnetic transition metal element M n, and S i According to the value of the B ratio A, b, d, and f, which represent the mixing ratio with Co, respectively
  • M at least one selected from Ni or Mn
  • M '( ⁇ ' are from Ti, V, Cr, Cu, Zr, Nb, Mo, Hf, Ta, W (At least one selected) is an element that is effective for further improving the thermal stability, but the added amounts c and h are 0.10 or less and ⁇ .0'8 or less, respectively. If h is 0.10 or more and 0.08 or more, the curing temperature is too low, which is not preferable.
  • S i and B are essential components for making the alloy amorphous, but in order to obtain a magnetic core with low iron loss, high squareness ratio and high thermal stability, the combination of S i and B It is necessary to define 1, m, n or p, which indicates the compounding ratio, in the range of 0.3 to 0.5, and to obtain a Si rich. This is because, when the force is 1, m, n or p, which is less than 0.3 or more than 0.5, it is particularly difficult to obtain a high squareness ratio, and the thermal stability of the magnetic properties is slightly increased. is there.
  • the alloys (3) and (4) are the most preferred from the viewpoint of reducing the depth of the recess by the inclusion of air bubbles (the first embodiment of the present invention). It is. More preferably, it is a case where Cr, Nb or Mo is selected as M '. This is due to improved wettability and It is probable that the viscosity was decreasing.
  • the effect of shape magnetic anisotropy is expressed by the relationship between the magnitude of induced magnetic anisotropy.
  • the present invention is particularly effective.
  • the present invention has a remarkable effect particularly in an amorphous alloy having a Curie temperature of 300 ° C. or lower.
  • the Curie temperature range is preferably from 160 to 300 ° C, more preferably from 180 to 280 ° C, still more preferably from 190 to 270 ° C. It is.
  • reducing the Curie temperature to 300 ° C. or less also means improving the thermal stability.
  • amorphous alloys are known to be obtained by quenching with 1 0 4 ° CZ seconds or more cooling rate of the alloy material having a predetermined composition ratio from a molten state (liquid quenching method).
  • the amorphous alloy of the present invention can also be easily produced by the above-mentioned ordinary method.
  • This amorphous alloy is used, for example, as a plate-shaped ribbon manufactured by a single roll method. In this case, if the thickness exceeds 25 i / m, iron loss at high frequencies increases, so it is preferable to set the thickness of the ribbon to a range of 5 to 25 m.
  • the magnetic core of the present invention comprises an amorph formed by the above manufacturing method.
  • the force to wind the gas alloy into a predetermined shape and perform the heat treatment for strain relief (the cooling rate at that time is 5-50).
  • CZmin. May be sufficient, preferably in the range of 1-20 / 111111.
  • heat treatment may be further performed in a magnetic field at a temperature equal to or lower than the temperature of the capacitor.
  • an Fe-based ultrafine crystal alloy can be used.
  • This alloy is? Add Cu and one of Nb, W, Ta, Zr, Hf, Ti, Mo, etc. to 6-5-8 alloy, etc., and then temporarily use the same ribbon as the amorphous alloy. And then heat-treated in a temperature range equal to or higher than the crystallization temperature to precipitate fine crystal grains.
  • the present invention can be similarly applied to the above-described Fe-based ultra-microcrystalline alloy.
  • the alloy composition used for producing the above-described Fe-based magnetic alloy ribbon is as follows.
  • E is at least one element selected from Cu and Au
  • G is a group consisting of Wa group elements, Va group elements, Wa group elements and rare earth elements
  • J is at least one element selected from the group consisting of Mn, Al, G a, G e, In, Sn and a platinum group element. 4 one
  • And Z represents at least one elemental rope selected from the group consisting of C, N, and P, and e, f, g, h, i, and j satisfy the following equation: It is the number to do. However, all numbers in the following formula represent at%.
  • E (Cu or Au) in the above formula ( ⁇ ) is effective for improving corrosion resistance, preventing crystal grain coarsening, and improving magnetic properties such as iron loss and magnetic permeability. Element. In particular, it is effective for low-temperature precipitation of the bcc phase. If the amount is too small, the above-described effects cannot be obtained, while if it is too large, the magnetic properties deteriorate, which is not preferable. Therefore, the content of E is preferably in the range of 1 to 8 atomic%. The preferred range is 0.1 to 5 atomic% G
  • G (at least one element selected from Group IVa, Group Va, Group VIa, and rare earth elements) is effective for uniform crystal grain size,
  • E e.g., Cu
  • the content of G is preferably in the range of 0.1 to: 0 atomic%. A more preferable range is 1 to 8 atomic%.
  • each element in E is the same as that for group IVa elements, such as expansion of heat treatment conditions for obtaining optimum magnetic properties, and group Va elements, such as improvement of brittleness resistance and cutting.
  • group VIa elements are effective in improving workability and corrosion resistance and surface properties.
  • Ta, Nb, W, and Mo are particularly preferable in that the magnetic properties are improved, and V has a remarkable effect of improving the surface properties as well as the embrittlement resistance.
  • J (at least L elements selected from Mn, Al, Ga, In, Sn and platinum group elements) is an element effective in improving magnetic properties or improving corrosion resistance. However, if the amount is too large, the saturation magnetic flux density decreases, so the content is set to 10 atomic% or less. Among them, A 1 is particularly effective in reducing crystal grain size, improving magnetic properties and stabilizing the bcc phase, Ge is effective in stabilizing the bcc phase, and platinum group elements are effective in improving corrosion resistance. Element.
  • Si and B are elements that help the alloy to be non-crystallized during manufacturing, can improve the crystallization temperature, and are effective elements for heat treatment for improving magnetic properties.
  • Si is dissolved in Fe, which is a main component of fine crystal grains, and contributes to reduction of magnetostriction and magnetic anisotropy. If the amount is less than 12 atomic%, the improvement of the magnetic properties is not remarkable, and if it exceeds 25 atomic%, the super-quenching effect is small, and relatively large crystal grains at the m level are precipitated, and the good results are obtained. Soft magnetic properties cannot be obtained.
  • S i is particularly preferably 12 to 22 at% due to the appearance of a superlattice. If B is less than 3 atomic%, relatively coarse crystal grains precipitate and good characteristics cannot be obtained. If it exceeds 12 atomic%, B compound is easily precipitated by heat treatment, and ⁇ magnetic properties are deteriorated. Is not preferred.
  • Z (C, N, P) may be contained as another amorphousizing element in a range of 10 atomic% or less.
  • the total amount of S i and B and the other amorphizing elements is preferably in the range of 15 to 30 atomic%, and when S i / B ⁇ 1, excellent magnetic properties can be obtained. I like it.
  • Example A 1 and Comparative Example A 1 (0.900 1 e 0.05 N b 0.05 ⁇ r 0.02 y 75
  • the measurement of the area occupancy of the recess was performed as follows. First, a photograph was taken at a magnification of 200 times using a scanning electron microscope on the roll surface of the ribbon. Field of view in this photo
  • the core of the present example using the ribbon of FIG. 1 was compared with the comparative core using the ribbon of FIG. In comparison, the output uncontrollable range (dead andal) was smaller, and the efficiency was improved by about 2%.
  • Example B 1 and Comparative Example B 2 the area occupancy of the concave portion on the roll surface was measured in the same manner as in Example A1.
  • Example B 1 and Comparative Example B 2 the area occupancy of the concave portion on the roll surface was measured in the same manner as in Example A1.
  • An amorphous alloy having an alloy composition of S lg B g was prepared by the il roll method as a thin ribbon having a surface property of 22% and 40% of the concave portion of the roll surface. This, 1 8 stroke X 1 2 transliteration X 4. 5 mm bets, after forming a toroidal shaped core, 1 hour at 560, were heat-treated in an N 2 atmosphere. 400 after this. Magnetic field heat treatment was performed at 5 (0 e) for 2 hours at C.
  • Example A1 In the same manner as in Example A1, the squareness ratio in ⁇ was measured.
  • the magnetic core of the present invention had a squareness ratio of 98.7%, and the comparative example had a ratio of 94.5%.
  • the core of the embodiment has a lower output control than the core of the comparative example. Power (dead angle) is small, and power supply efficiency has been improved by about 2%.
  • Amorufu ⁇ scan alloy represented by B 0 4) 25 by changing the manufacturing conditions by a single roll method to produce a thin strip having various thickness and surface properties. These ribbons were wound on a toroidal core with an outer diameter of 18 mm and an inner diameter of 12 rara, and were subjected to strain relief heat treatment at 440 ° C for 30 minutes, and then at 20 CTC for 2 hours at 5 (0e). Magnetic field heat treatment was performed under the conditions. The resulting core was evaluated in the same manner as in Example A1, and the squareness ratio at 100 KHz and the iron loss at 100 KHz and 2 KG were evaluated. The sheet thickness t was determined as an average sheet thickness by a gravimetric method. The average plate thickness t in this case can be obtained by the following equation when length 1, width w, weight A, and density p are set.
  • the thickness is 19 / m and the width is 5 mm.
  • the concave portion on the roll surface was 22%.
  • the magnetic core was subjected to a magnetic field heat treatment under the condition of 2 (0 e) and laminated so that the height became 5 ⁇ .
  • the core of the present invention was 99.1%, and the core of the comparative example was 95.2%.
  • the cores are connected to a switching frequency of 200 kHz.
  • the core of the present invention had better output control characteristics and improved power supply efficiency by 2.5% compared to the comparative example.
  • a 5 mm-wide ribbon was produced by the single roll method according to the composition and production conditions shown in Table 2.
  • the Curie temperature of the Co-based amorphous alloy was also measured.
  • Each ribbon was wound around an outer diameter of 15 leaks and an inner diameter of 10 ram toroidal core.
  • Each of the obtained C 0 -based amorphous cores was subjected to a strain-relieving heat treatment at the optimum temperature for 30 minutes, and then a magnetic field of 1 (O e) was reduced for 2 hours at a temperature not higher than the Curie temperature of 3 CTC.
  • a magnetic field heat treatment was performed by applying a voltage in the band longitudinal direction.
  • each of the crystallization temperature. 50 (value measured at a Atsushi Nobori condition 1 0 e CZ min using a differential scanning calorimeter) After heat treatment at a temperature on C for 1 hour, a magnetic field heat treatment was performed by applying a magnetic field of 5 (O e) in the longitudinal direction of the ribbon at 450 for 1 hour. All heat treatments were performed in a nitrogen atmosphere.
  • the obtained magnetic core was evaluated for squareness at 100 kHz and iron loss at 100 kHz and 2 kHz in the same manner as in Example A1.
  • the results are shown in Table 2, which shows that the magnetic core of the present invention has an excellent squareness ratio.
  • the value corresponding to the saturation inductance is - twenty four - - ⁇ .-,
  • the magnetic flux density was determined from the difference between the magnetic flux density and the residual magnetic flux density under the condition that a magnetic field of 16 (0 e) was applied at a frequency of 100 kHz and the number of turns of the core was 1 °.
  • ADVANTAGE OF THE INVENTION it is possible to provide a winding core having an excellent output control characteristic having high squareness, and is widely applied particularly to magnetic components of a switching power supply, such as a magnetic amplifier and a semiconductor circuit reactor. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A magnetic core obtained by winding a long sheet of thin alloy or by laminating short sheets thereof. The surface roughness of the thin alloy sheet or sheets is limited to lie within a predetermined range in order to improve the squareness ratio of the magnetic core. The magnetic core exhibits excellent squareness ratio characteristic and magnetic saturation characteristic in high-frequency regions.

Description

明 細 書 磁 心 技 術 分 野  Magnetic core technology field
本発明は、 特に高周波 (具体的には、 5 0 k H z以上) における角形特性および磁気飽和特性に優れると同時に 低鉄損をも有し、 高周波スィ ッチング電源に用いられる 可飽和リアク トル、 半導体回路用リアク トルなどの磁性 部品に好適な磁心およびこの磁心の製造に用いる合金薄 带に関する。  The present invention provides a saturable reactor used in a high-frequency switching power supply, which has excellent squareness characteristics and magnetic saturation characteristics particularly at high frequencies (specifically, 50 kHz or more) and also has low iron loss. The present invention relates to a magnetic core suitable for a magnetic component such as a reactor for a semiconductor circuit and an alloy thin film used for manufacturing the magnetic core.
背 景 技 術  Background technology
近年、 電子櫸器の小型軽量化、 高性能化の要求に伴い、 重要な機能部品と して用いられている磁性部品にも高性 能化が必要となってきている。 特に O A機器、 通信機器 の電源として用いられるスィ ッチング電源においては、 小型軽量化の要請から高周波化が検討されている。 した がって、 これら磁性部品に用いられる磁性材料にも優れ た高周波磁気特性が要求されている。 特に、 零相変流器 等の電流センサ、 ノイズフィ ルタ一等、 多く の磁性部品 に対しては、 透磁率の高い材料が有効である。  In recent years, with the demand for smaller and lighter electronic devices and higher performance, magnetic components used as important functional components also need to have higher performance. In particular, for switching power supplies used as power supplies for office automation equipment and communication equipment, higher frequencies are being studied due to the demand for smaller and lighter units. Therefore, magnetic materials used for these magnetic components are also required to have excellent high-frequency magnetic characteristics. In particular, a material having high magnetic permeability is effective for many magnetic components such as a current sensor such as a zero-phase current transformer and a noise filter.
近年、 磁気増幅器を組込んだスィ ツチング電源が、 高 信頼性、 高効率の観点から広く用いられている。  In recent years, switching power supplies incorporating magnetic amplifiers have been widely used from the viewpoint of high reliability and high efficiency.
この磁気増幅器を構成する主要部は可飽和リアク トル であり、 角形磁化特性に優れた磁心材料が必要とされて いる。 従来、 このような磁心材料としては F e— N i結 品質合金からなるセンデルタ (B¾品名) が使用されてき た。 The main part of this magnetic amplifier is a saturable reactor. Therefore, there is a need for a magnetic core material having excellent square magnetization characteristics. Conventionally, as such a magnetic core material, Sen Delta (B¾ product name) made of Fe—Ni alloy has been used.
し力、しな力《ら、 センデルタは角形磁化特性には優れて いるものの、 2 0 K H z以上の高周波においては保磁力 が大きく なり、 うず電流損が増大して発熱し、 使用不能 となる。 このため、 磁気増幅器を組込んだスィ ッチング 電源のスィ ツチング周波数は 2 0 K H z以下に限られて いた。  Sen-delta has excellent square magnetizing characteristics, but its coercive force increases at high frequencies of 20 KHz or more, increasing eddy current loss and generating heat, making it unusable. . For this reason, the switching frequency of a switching power supply incorporating a magnetic amplifier was limited to 20 kHz or less.
近年、 スイ ッチング電源の小形化 ·軽量化に対する要 望とあいまって、 スイ ッチング周波数をより ¾周波化す ることが求められており、 高周波における保磁力が小さ く、 かつ角形特性及び熱安定性に優れた磁心材料として アモルフ ァス合金が、 検討され (特開昭 6 1—  In recent years, along with the demand for downsizing and weight reduction of switching power supplies, it has been demanded that the switching frequency be increased to a lower frequency, and that the coercive force at high frequencies be small, and that the rectangular characteristics and thermal stability be reduced. Amorphous alloy has been studied as an excellent core material (see
2 2 5 8 0 4号) ている。  No. 2 258 04).
しかしながら、 スィ ッチング電源の高効率化の要求に 対しては、 さらなるァモルファス合金磁心の高性能化が 必須であり、 特に 5 0 k H z以上の周波数で用いられる 磁気増幅器における角形比ならいびに磁気飽和特性 (た とえば飽和イ ンダク夕ンスの低減) の一層の改善が望ま れていた。  However, in order to increase the efficiency of the switching power supply, it is essential to further improve the performance of the amorphous alloy core, especially the squareness ratio and the magnetic field in magnetic amplifiers used at frequencies above 50 kHz. Further improvement in saturation characteristics (for example, reduction of saturation inductance) was desired.
発明の開示  Disclosure of the invention
本発明は、 上記問題点を考慮してなされたものであり、 特に高周波域における ¾形比が大き く 、 飽和イ ンダクタ ンスの小さい合金薄帯を用いた磁心を提供することを目 的とする。 The present invention has been made in consideration of the above problems, In particular, it is an object of the present invention to provide a magnetic core using an alloy ribbon having a large square ratio in a high-frequency region and a small saturation inductance.
本発明による磁心は、 合金薄帯を卷回もしく は積層す ることによって形成された高周波領域における角形特性 に俊れた磁心であつて、 前記 佥薄带のロール面側の表 面の凹部の面積占有率を 30 %以下にすることによって、 磁心の角形比を向上させたことを特徴とするもので.ある。  A magnetic core according to the present invention is a magnetic core formed by winding or laminating an alloy ribbon and having excellent square characteristics in a high-frequency region, and a concave portion on the surface of the thin film on the roll surface side. By reducing the area occupancy of the core to 30% or less, the squareness ratio of the magnetic core is improved.
本発明者らは、 合金薄蒂のロール面側の表面の凹部の 面積占有率を 30 %以下にすることにより、 高周波域に おける角形比が急激に向上すると共に飽和イ ンダクタ ン スを低減させることができる見出した。 さらに本発明者 は、 磁心を構成する合金薄帯のロール面側の表面凹部の 面積占有率を 30 %以下にすると同時にフ リ一面側の表 面粗さ (R i ) を 0. 3 %以下にすることによって、 磁 心の特に高周波領域における角形特性を向上させること ができることを見出した。 本発明は上記知見に基づいて なされたものである。  By making the area occupancy of the concave portion on the roll-side surface of the alloy thin film 30% or less, the present inventors sharply improve the squareness ratio in a high frequency range and reduce the saturated inductance. Can be headed. Further, the present inventors have set the area occupancy of the surface recesses on the roll surface side of the alloy ribbon constituting the magnetic core to 30% or less, and at the same time, the surface roughness (R i) on one side of the fly to 0.3% or less. By doing so, it has been found that the square characteristics of the magnetic core, particularly in the high frequency region, can be improved. The present invention has been made based on the above findings.
本発明によれば、 周波数 1 00 k H zで 98%以上、 好ま しく は 98. 5 %以上、 さらに好ま しく は 99 %以 上の角形比を有する磁心が提供される。 さ らに本発明に よれば、 飽和磁気特性が 550 (G) 以下、 さ らには、 500 (G) 以下の磁心を提供するこ とができ る。 こ こ で、 飽和磁気特性は、 通常、 磁心形状、 巻線数および測 定条件で異なる。 本発明においては、 評価基準と して、 ①磁心形状を外径 1 5 mn、 内径 1 0 翻、 高さ 4 . 5 raraの 磁心において、 ②巻線数 1 ◦ターン、 ③測定条件として、 周波数 1 0 0 k H zで 1 6 ( 0 e ) 磁場を印加した際の 磁束密度と残留磁束の差の値で表したものである。 According to the present invention, there is provided a magnetic core having a squareness ratio of 98% or more, preferably 98.5% or more, and more preferably 99% or more at a frequency of 100 kHz. Further, according to the present invention, it is possible to provide a magnetic core having a saturation magnetic property of 550 (G) or less, and further, 500 (G) or less. Here, the saturation magnetic properties are usually determined by the shape of the magnetic core, the number of turns, and Depends on fixed conditions. In the present invention, the evaluation criteria are as follows: (1) a magnetic core having an outer diameter of 15 mn, an inner diameter of 10 turns, and a height of 4.5 rara; (2) the number of windings is 1 turn; It is expressed as the difference between the magnetic flux density and the residual magnetic flux when a 16 (0e) magnetic field is applied at 100 kHz.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図および第 2図は本発明における合金薄帯の表面 状態を示す走査型電子顕微鏡写真であり、 第 3図は、 合 金薄帯表面に形成された凹部の面積占有率と角形比との 関係を示すグラフであり、 第 4図は表面粗さと角形比と の関係を示すグラフであり、 第 5図は、 合金薄帯の板厚 と鉄損との関係を示すグラフである。  1 and 2 are scanning electron micrographs showing the surface condition of the alloy ribbon in the present invention, and FIG. 3 is a graph showing the area occupancy, the squareness ratio, and the ratio of the concave portions formed on the surface of the alloy ribbon. FIG. 4 is a graph showing the relationship between the surface roughness and the squareness ratio, and FIG. 5 is a graph showing the relationship between the thickness of the alloy ribbon and the iron loss.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
最近、 高周波で用いる磁心材料に使用される钦磁性合 金薄帯は、 いわゆる溶湯急冷法によって製造される場合 が増えてきている。 この方法は、 石英などの耐熱容器中 で溶融させた所定組成の溶融合金を、 ノズルから高速回 転する金属製の冷却ロールの回転面に射出して急冷する ことによってリボン状の薄帯を得るものである。 しかし ながら、 このようにして製造される合金薄帯の表面 (口 ール面、 すなわち冷却ロールが接する面側) には、 不可 避的に、 薄帯の表面に微钿な凹凸が形成されている。 本発明者らの研究によれば、 合金薄帯のロール面側表 面に存在する凹部の面積占有率を 3 0 %以下に、 好ま し く は 2 5 %以下に、 さ らに好ま しく は 2 0 %以下に厳格 に制限することにより、 高周波域における角形比が急激 に向上するとともに飽和ィ ンダク夕ンスを低'减させるこ とができることを見出した。 In recent years, 钦 magnetic alloy ribbons used for magnetic core materials used at high frequencies have been increasingly manufactured by the so-called melt quenching method. In this method, a ribbon-shaped ribbon is obtained by injecting a molten alloy of a predetermined composition, which is melted in a heat-resistant container such as quartz, from a nozzle onto the rotating surface of a metal cooling roll that rotates at high speed and quenching it. Things. However, fine irregularities are formed on the surface of the alloy ribbon produced in this way (the rim surface, that is, the surface in contact with the cooling roll) inevitably. I have. According to the study of the present inventors, it is preferable that the area occupation ratio of the concave portion existing on the roll-side surface of the alloy ribbon be 30% or less. Strictly to 25% or less, and more preferably to 20% or less, it is possible to sharply improve the squareness ratio in the high frequency range and to reduce the saturation inductance. I found what I could do.
すなわち、 笫 1の態様に係る本発明の磁心は、 合金溶 湯をノズルより冷却ロールの表面に射出し、 急冷するこ とによつて合金薄帯が製造合金薄带が製造されるもので あって、 前記冷却ロールと接触する側の合金薄帯表面に 形成された凹部の面積占有率が 3 ◦ %以下であるような 合金薄帯によって形成されていることを特徴とするもの である。  That is, in the magnetic core of the present invention according to the first aspect, the alloy melt is ejected from the nozzle to the surface of the cooling roll and rapidly cooled to produce an alloy ribbon, thereby producing an alloy ribbon. Further, the present invention is characterized in that the concave portion formed on the surface of the alloy ribbon on the side in contact with the cooling roll is formed of an alloy ribbon having an area occupancy of 3 °% or less.
通常、 上記のような溶湯急冷法によって合金薄帯を製 造する場合においては、 得られる合金薄帯の表面状態は、 冷却ロールの表面状態や溶融合金とロールとの間の濡れ 性に主と して依存する。 この場合の濡れ性は、 また合金 の組成によっても影響を受ける。 そして、 合金薄帯の表 面に形成される凹部は、 冷却ロールと溶融金属との間に 巻き込まれる気泡によつて形成される。  Normally, when an alloy ribbon is manufactured by the above-described molten metal quenching method, the surface condition of the obtained alloy ribbon mainly depends on the surface condition of the cooling roll and the wettability between the molten alloy and the roll. Depend on. The wettability in this case is also affected by the composition of the alloy. The recess formed on the surface of the alloy ribbon is formed by air bubbles that are caught between the cooling roll and the molten metal.
後述する突施例の結果からも明らかなように、 本発明 によれば、 この冷却ロールと接触する側の合金薄帯表面 に形成された凹部の面積占有率を 3 0 %以下に制限する ことによって、 磁心の角形比を著しく 向上させること力《 できる。  As will be apparent from the results of the projecting examples described below, according to the present invention, the area occupancy of the concave portion formed on the alloy ribbon surface on the side in contact with the cooling roll is limited to 30% or less. This can significantly improve the squareness ratio of the magnetic core.
上記のような角形比の向上効果は、 特に、 キュリー温 度が 3 0 0 °C以下のアモルフ ァス合金において顕著であ る。 その理由は熱処理により発生する誘導磁気異方性と 表面粗さに起因する形状磁気 方性の大きさの割合によ ると推定される。 すなわち、 キユ リ一温度が 3 0 0 °C以 下の比較的誘導磁気 5¾方性の小さい合金で顕著である。 上記のように、 薄帯表面に形成される凹部の面積占有 率を 3 0 %以下に制限する方法と しては、 冷却ロールと 合金溶湯の濡れ性をよくすること、 冷却速度の適正化が 挙げられる。 そのための具体的な方法としては 鉄基口 ール (たとえば、 S 4 5 C、 ハイ ス網) の使用、 C u基 合金 ( C u B e、 C u T i など) の場合においては、 冷 却ロール内部から冷却する水の温度を 3 0〜 6 0 °Cにコ ン トロールする方法、 あるいは合金溶湯の射出温度を 1 3 5 0で以上にする方法がある。 The effect of improving the squareness as described above is especially the Curie temperature This is remarkable in amorphous alloys with a temperature of less than 300 ° C. The reason is presumed to be the ratio of the magnitude of the shape magnetic anisotropy caused by the induced magnetic anisotropy generated by the heat treatment and the surface roughness. In other words, it is remarkable in alloys having a relatively low induced magnetic anisotropy with a temperature of 300 ° C or lower. As described above, the method of limiting the area occupancy of the concave portion formed on the ribbon surface to 30% or less is to improve the wettability between the cooling roll and the molten alloy and to optimize the cooling rate. No. Specific methods for this include the use of iron-based steel (for example, S45C, high-speed steel), and the use of cold for Cu-based alloys (CuBe, CuTi, etc.). There is a method of controlling the temperature of the water to be cooled from the inside of the cooling roll to 30 to 60 ° C, or a method of increasing the injection temperature of the molten alloy to 135 ° C or higher.
さらに好ま しい方法としては、 製造雰囲気を大気圧未 満の減圧下にすることによって、 凹部発生を低減するこ と (たとえば 1 0 %以下) が可能である。  As a more preferable method, it is possible to reduce the generation of recesses (for example, 10% or less) by reducing the manufacturing atmosphere to a pressure lower than the atmospheric pressure.
また、 本発明における 「薄蒂表面に形成される凹部の 面積占有率」 の定義ならびに測定方法は以下の通りであ る。  The definition and measurement method of “the area occupancy of the concave portion formed on the surface of the thin layer” in the present invention are as follows.
走査型電子顕微鏡を fflいて 2 0 0倍の倍率でロール面 の写真をとる。 この写真から視野長径 (当該凹部を包み かつ接する最小の円の直径) が 1 0 m以上の凹部を全 てピッ クアップし画像処理装置 (たとえば日本レグレー タ K. Κ. 製 L U Z E X 500) によって、 卑位面積あ たりの凹部が占める面積比を求める。 この過程を少なく とも :! 0回行ない、 平均値を求め、 この平均値を 「面積 占有率」 とする。 Take a photograph of the roll surface at a magnification of 200 times with a scanning electron microscope at ffl. From this photograph, all the concave parts with a major field of view (the diameter of the smallest circle that wraps around and touches the concave part) are picked up and image processing equipment (for example, Japan Legray) The ratio of the area occupied by the recessed portion per basement area is calculated using the LUZEX 500 manufactured by K. I. At least: Perform 0 times, find the average value, and use this average value as “area occupancy”.
次に、 合金薄帯の表面粗さを制御する第 2の態様につ いて説明する。  Next, a second mode for controlling the surface roughness of the alloy ribbon will be described.
すなわち、 本発明の第 2の態様は、 合金溶湯をノズル より冷却口一ルの表面に射出し、 急冷することによって 合金薄帯が製造される ものであって、 前記冷却ロールと 接触しない方の合金薄帯表面の表面粗さが、 当該合金薄 帯の長手方向において、  That is, the second aspect of the present invention is to produce an alloy ribbon by injecting a molten alloy from a nozzle to the surface of a cooling hole and quenching the molten alloy. The surface roughness of the alloy ribbon surface is such that, in the longitudinal direction of the alloy ribbon,
R f ≤ 0. 3  R f ≤ 0.3
(ただし、 R f は、 J I S— B— 060 1に規定され た基準長さ 2. 5ramにおける十点平均粗さ、 および合金 薄帯の重量より求めた平均板厚を、 それぞれ R z、 丁と したときに、 下記の式 .  (However, R f is the average plate thickness obtained from the ten-point average roughness at the standard length of 2.5 ram specified in JIS B 0601 and the weight of the alloy ribbon. Then, the following formula:
R f = R z / T  R f = R z / T
によって求めた粗さを特徴付けるパラメ一夕である。 ) なる値を有する合金薄帯によって磁心を形成することを 特徴とするものである。 この R f の値は、 好ま しく は、 0. 25以下、 さ らに好ま しく は 0. 22以下である。 通常、 溶湯急冷法によって合金薄帯を製造する場合に おいては、 冷却ロールの表面状態、 ノズルとロールとの 間に生じる溶湯だま り安定性などの条件によって、 得ら れる合金薄帯の表面状態が影響を受ける。 本発明者らの 研究によれば、 特にフリー面 (すなわち、 冷却ロールと 接触しない側の薄蒂表面) に生じやすい、 薄帯長手方向 に周期性をもって現れる凹凸 (いわゆるフィ ッ シュスケ ール) が、 合金薄帯の高周波磁気特性、 特に角形比に悪 影響を与えることを見出している。 This is a param which characterizes the roughness obtained by the above. The magnetic core is formed by an alloy ribbon having a certain value. This value of R f is preferably 0.25 or less, more preferably 0.22 or less. Normally, when manufacturing alloy ribbons by the molten metal quenching method, the yield is determined by conditions such as the surface condition of the cooling roll, and the stability of the molten steel pool formed between the nozzle and the roll. The surface condition of the alloy strip is affected. According to the study of the present inventors, irregularities (so-called fish scales) appearing periodically in the longitudinal direction of the ribbon, which are likely to occur particularly on the free surface (that is, the surface on the side not in contact with the cooling roll). However, it has been found that the high frequency magnetic properties of the alloy ribbon, particularly the squareness ratio, are adversely affected.
すなわち、 合金薄帯の長手方向の表面粗さを、 上述し た規定にしたがって、 R f ^ 0 . 3、 さ らに好ま しく は、 R f ≤ 0 . 2 7に制限することによって、 高周波領域に おける角形比を著しく改善することができるとともに、 飽和イ ンダクタンスを低減することができるう。  That is, by limiting the surface roughness in the longitudinal direction of the alloy ribbon to R f ^ 0.3, and more preferably to R f ≤0.27, in accordance with the above-mentioned rules, the high-frequency region can be obtained. It is possible to remarkably improve the squareness ratio and to reduce the saturation inductance.
このような効果は、 特にキユ リ一温度が 3 0 0 °C以下 のアモルファス合金を材料として用いた場合に、 顕著で ある。 その理由は薄带口―ル面について述べたのと同様 に、 表面粗さに起因する形状異方性が関与している もの と推定される。  Such an effect is remarkable especially when an amorphous alloy having a temperature of 300 ° C. or less is used as a material. The reason is presumed to be that the shape anisotropy caused by the surface roughness is involved, as described for the thin hole surface.
上記のように表面粗さを制御するためには、 冷却ロー ルの材質、 ロール表面温度、 射出時の溶湯の温度などの 製造パラメータを適宜コン トロールする必要がある。 そ のためには、 たとえば冷却速度やロール周速の調整、 適 正化が必要である。 具体的には、 C u基合金ロールを使 用し、 ロール内部の水温を 3 0〜8 0でに設定する方法、 あるいはロール周速を 2 5 m Z s以上に設定する方法が 有効である。 次に、 本発明の磁心に用いる合金材料について説明す る In order to control the surface roughness as described above, it is necessary to appropriately control production parameters such as the material of the cooling roll, the surface temperature of the roll, and the temperature of the molten metal at the time of injection. For that purpose, it is necessary to adjust and adjust the cooling speed and roll peripheral speed, for example. Specifically, it is effective to use a Cu-based alloy roll and set the water temperature inside the roll to 30 to 80, or to set the roll peripheral speed to 25 mZs or more. . Next, the alloy material used for the magnetic core of the present invention will be described.
本発明においては、 C o基アモルフ ァ ス合金や F e基 磁性合金が用いられ得る。  In the present invention, a Co-based amorphous alloy or a Fe-based magnetic alloy can be used.
ここで C 0基アモルファス合金の好ま しい組成と して は、 一般式  Here, the preferred composition of the C0-based amorphous alloy is represented by the general formula
① (C ol-a F e a) 100-X (S -1 B l ) x ① (C o l- a F e a) 100-X (S -1 B l) x
ただし 0. 0 2 ≤ a ≤ 0. 0 8  Where 0.02 ≤ a ≤ 0.08
0. 3 ≤ I ≤ 0. 8  0.3 ≤ I ≤ 0.8
2 6 ≤ X ≤ 3 2  2 6 ≤ X ≤ 3 2
② ( 扇 - (S② (Ogi-(S
C oH)-C F e bMc) y 1-m Bm) y ただし Mは N i, N nのうち少なく とも 1種 b ≤ 0. 1 0 C o H) -C F e b M c) y 1-m B m ) y where M is at least one of N i and N n b ≤ 0.10
〇 . 0 1 ≤ e ≤ 0. 1 0  〇. 0 1 ≤ e ≤ 0. 1 0
0. 3 ≤ ≤ 0. 8  0.3 ≤ ≤ 0.8
2 6 ≤ y ≤ 3 2  2 6 ≤ y ≤ 3 2
③ (C0 _e F e dM' e) 100_z (S i ^ B n) z ただし NT は T i、 V、 C r、 C u、 Z r、 N b、 ③ (C0 _ e F e d M 'e) 100 _ z (S i ^ B n) z provided that NT is T i, V, C r, C u, Z r, N b,
N o、 H f 、 T a、 W、 から選ばれる少な く とも 1種  At least one selected from No, Hf, Ta, W,
0. 0 3 ≤ d ≤ 0. 1 0  0.03 ≤ d ≤ 0.10
0. 0 1 ≤ e ≤ Ό . 0 6  0. 0 1 ≤ e ≤ Ό. 0 6
0. 3 ≤ η ≤ 0. 8  0.3 ≤ η ≤ 0.8
24 ≤ ζ ≤ 3 2 〇 24 ≤ ≤ ≤ 3 2 〇
④ (C oW- g-h F e f MgM' h) 100-V ④ ( C o W-gh F e f M g M 'h) 100-V
(S iト P Bp) w (Si to P B p) w
ただし Mは N i、 M nのうち少なく とも、 1種、  Where M is at least one of N i and M n
. f ≤ 0. 1 0  .f ≤ 0. 1 0
0. 0 1 ≤ g≤ 0. 1 0  0.01 ≤ g≤ 0.10
0. 0 1 ≤ h≤ 0. 08  0.0 1 ≤ h≤ 0.08
ϋ . 3≤ p ≤ 0. 5  ϋ. 3≤ p ≤ 0.5
24≤ w≤ 3 0  24≤ w≤ 3 0
のいずれかで表わされるが、 いずれも飽和磁歪定^ λ s は一 1 1 0_6≤ス s ^ l x i O-6の範囲に入る C o基 ァモルフ ァ ス合金が好ま しい。 One is either represented by both saturation magnetostriction constant ^ lambda s one 1 1 0 _6 ≤ scan s ^ lxi O within the scope of -6 C o group Amorufu § scan alloy favored arbitrariness of.
本発明の磁心に用いる C o基アモルフ ァ ス合金は、 上 記 4つの一般式で表わされるが、 ここで最も重要となる のは、 キュリー温度を 3 0 0 eC以下に設定するための組 成設定であり、 金属元素とメ タロイ ド元素の原子比が主 となる。 一般式①〜②において X、 y、 zを 26〜32、C o group Amorufu § scan alloy used in the magnetic core of the present invention is represented by the above SL four general formula, where the the most important, the set for setting the Curie temperature to below 3 0 0 e C This is the setting, and the atomic ratio between the metal element and the metalloid element is mainly used. In general formulas ① to X, X, y, z are 26 to 32,
③および④において wを 24〜 3 0としたのは X、 y、 zが 2 6未満あるいは wが 24未満では保磁力が大きく、 鉄損値が大きく なるとともに、 熱安定性も悪く なり、 一 方 x、 y、 zが 3 2をあるいは Wが 3 ひを超えるとキュ リ一温度が低下して実用的でなく なるためである。 The reason why w was set to 24 to 30 in (3) and (4) is that if X, y, and z are less than 26 or w is less than 24, the coercive force is large, the iron loss value is large, and the thermal stability is poor. On the other hand, if x, y, and z exceed 32 or W exceeds 3, the Curie temperature decreases and becomes impractical.
F eは磁歪を— 1 X 1 0 _6〜十 1 X 1 0 _6に調整する ための元素であり、 N i、 M nの添加量あるいは非磁性 遷移金属元素の添加量、 および S i、 B比の値に応じて C o との配合比を示す a、 b、 d、 f をそれぞれ F e is the magnetostriction - an element for adjusting the 1 X 1 0 _ 6 ~ ten 1 X 1 0 _ 6, N i, the addition amount of the additive amount or the non-magnetic transition metal element M n, and S i According to the value of the B ratio A, b, d, and f, which represent the mixing ratio with Co, respectively
0. 0 2〜0. 08、 0. 1 0以下、 0. 0 3〜  0.02 to 0.08, 0.10 or less, 0.03 to
0. 1 0、 0. 1 0以下の範囲で規定すれば、 これが実 現できる。  This can be achieved by specifying a value within the range of 0.10 and 0.10 or less.
M (N i あるいは M nから選ばれる少なく とも 1種) および M ' (Μ' は T i、 V、 C r、 C u、 Z r、 N b、 M o、 H f 、 T a、 Wから選ばれる少なく とも 1種) は、 熱安定性をより改善させるのに有効な元素であるが、 そ の添加量 c、 hはそれぞれ 0. 1 0以下、 ◦ . 0'8以下 であり、 c、 hが 0. 1 0以上 0. 08以上では、 キュ リ一温度が低下しすぎて好ま しく ない。  M (at least one selected from Ni or Mn) and M '(Μ' are from Ti, V, Cr, Cu, Zr, Nb, Mo, Hf, Ta, W (At least one selected) is an element that is effective for further improving the thermal stability, but the added amounts c and h are 0.10 or less and ◦ .0'8 or less, respectively. If h is 0.10 or more and 0.08 or more, the curing temperature is too low, which is not preferable.
S i及び Bは合金を非晶質化するのに必須の成分であ るが、 特に低鉄損、 高角形比及び高い熱安定性を有する 磁心を得るためには、 S i と Bとの配合比を示す 1、 m、 n又は pを 0. ·3〜 0. 5の範囲に規定し、 S i リ ッチ とすることが必要である。 これは 1、 m、 nまたは p力く 0. 3未満又は 0. 5を超える場合には、 特に高角形比 を得るのが困難となり、 また磁気特性の熱安定性がやや 恧く なるためである。  S i and B are essential components for making the alloy amorphous, but in order to obtain a magnetic core with low iron loss, high squareness ratio and high thermal stability, the combination of S i and B It is necessary to define 1, m, n or p, which indicates the compounding ratio, in the range of 0.3 to 0.5, and to obtain a Si rich. This is because, when the force is 1, m, n or p, which is less than 0.3 or more than 0.5, it is particularly difficult to obtain a high squareness ratio, and the thermal stability of the magnetic properties is slightly increased. is there.
上記の①ないし④の合金組成の内でも、 気泡の巻き込 みによる凹部の低'减化 (本発明の第 1の態様) という観 点からいえば、 ③と④の合金が最も好ま しいものである。 さ らに好ま しく は、 M ' として、 C r、 N bまたは M o を選択した場^である。 これは、 濡れ性の改善ならびに 粘性の低下が寄^している ものと考えられる。 Among the above alloy compositions (1) to (4), the alloys (3) and (4) are the most preferred from the viewpoint of reducing the depth of the recess by the inclusion of air bubbles (the first embodiment of the present invention). It is. More preferably, it is a case where Cr, Nb or Mo is selected as M '. This is due to improved wettability and It is probable that the viscosity was decreasing.
以上の本発明の第 1の態様、 第 2の態様のいずれも、 形状磁気異方性の効果は誘導磁気異方性の大きさの関係 であらわれる。 従って、 特に誘導磁気異方性の大きさが 1 04 erg/ec以下の材料について、 本発明は特に有効と なる。 また、 先に述べたように、 本発明は特にキュ リー 温度 3 0 0 °C以下のァモルファス合金において、 その効 果が顕著であるが、 一方、 キユ リ一温度が 1 6 0て以下 のものにおいては、 角形比、 飽和ィ ンダクタ ンスが十分 良好なレベルに達しない。 したがって、 本発明において は、 キュリー温度範囲を 1 6 0〜 3 0 0 °Cの範囲、 さ ら には 1 80〜 280 の範囲が好ま しく 、 さらに望ま し く は 1 9 0〜 27 0 °Cである。 In both of the first and second aspects of the present invention, the effect of shape magnetic anisotropy is expressed by the relationship between the magnitude of induced magnetic anisotropy. Thus, in particular the 1 0 4 erg / ec following materials magnitude of the induced magnetic anisotropy, the present invention is particularly effective. In addition, as described above, the present invention has a remarkable effect particularly in an amorphous alloy having a Curie temperature of 300 ° C. or lower. In, the squareness ratio and saturation inductance do not reach sufficiently good levels. Therefore, in the present invention, the Curie temperature range is preferably from 160 to 300 ° C, more preferably from 180 to 280 ° C, still more preferably from 190 to 270 ° C. It is.
なお、 キュリー温度を 3 0 0 °C以下にするのは熱安定 性向上の意味もある。 一般にアモルファス合金は、 所定 組成比の合金素材を溶融状態から 1 04 °CZ秒以上の冷 却速度で急冷すること (液体急冷法) によって得られる ことが知られている。 本発明のアモルファス合金も、 上 記した常法によつて容易に製造できる。 このァモルファ ス合金は、 例えば単ロール法によって製造された板状の 薄帯と して使用される。 この場合、 厚みが 2 5 i/ mを超 えると高周波における鉄損が増大するので、 薄帯の厚み を 5〜 2 5 mの範囲に設定するのが好ま しい。 Note that reducing the Curie temperature to 300 ° C. or less also means improving the thermal stability. In general amorphous alloys are known to be obtained by quenching with 1 0 4 ° CZ seconds or more cooling rate of the alloy material having a predetermined composition ratio from a molten state (liquid quenching method). The amorphous alloy of the present invention can also be easily produced by the above-mentioned ordinary method. This amorphous alloy is used, for example, as a plate-shaped ribbon manufactured by a single roll method. In this case, if the thickness exceeds 25 i / m, iron loss at high frequencies increases, so it is preferable to set the thickness of the ribbon to a range of 5 to 25 m.
本発明の磁心は、 上記製造法により作製したァモルフ ァ ス合金を所定形状に巻回し、 歪取り熱処理を行なう力《、 その際の冷却速度は◦ . 5〜50。CZmin.程度で良く 、 好ま しく は 1〜20 /111111.の範囲でぁる。 また、 さら にキユ リ一温度以下での磁場中において熱処理を加えて もよい。 The magnetic core of the present invention comprises an amorph formed by the above manufacturing method. The force to wind the gas alloy into a predetermined shape and perform the heat treatment for strain relief (the cooling rate at that time is 5-50). CZmin. May be sufficient, preferably in the range of 1-20 / 111111. Further, heat treatment may be further performed in a magnetic field at a temperature equal to or lower than the temperature of the capacitor.
—方、 本発明においては、 F e基超微細結晶合金を用 いる こ と もできる。 この合金は、 ? 6— 5 ー 8系合金 等に C uと N b、 W、 T a、 Z r、 H f 、 T i、 M o等 の 1種とを添加し、 一旦アモルフ ァス合金と同様の薄帯 として形成した後、 その結晶化温度以上の温度域で熱処 理するこ とによって、 微細な結晶粒を析出させたもので める 0  — On the other hand, in the present invention, an Fe-based ultrafine crystal alloy can be used. This alloy is? Add Cu and one of Nb, W, Ta, Zr, Hf, Ti, Mo, etc. to 6-5-8 alloy, etc., and then temporarily use the same ribbon as the amorphous alloy. And then heat-treated in a temperature range equal to or higher than the crystallization temperature to precipitate fine crystal grains.
本発明は、 上記の様な F e基超微結晶合金についても 同様に適用することができる。  The present invention can be similarly applied to the above-described Fe-based ultra-microcrystalline alloy.
上記のような F e基钦磁性合金薄帯を作製する際に用 いる合金組成と しては、 .  The alloy composition used for producing the above-described Fe-based magnetic alloy ribbon is as follows.
—般式 :  —General formula:
F e 100-e-f-g-h-i-j Ee^f J gS i hB i Z j F e 100-efghij E e ^ f J g S i h B i Z j
…… (Π) (式中、 Eは C uおよび A uから選ばれた少なく とも 1 種の元素を、 Gは Wa族元素、 V a族元素、 W a族元 素および希土類元素からなる群から選ばれた少なく とも 1種の元素を、 Jは Mn、 A l、 G a , G e、 I n、 S nおよび白金族元素からなる群から選ばれた少なく と 4 一 …… (Π) (where E is at least one element selected from Cu and Au, and G is a group consisting of Wa group elements, Va group elements, Wa group elements and rare earth elements) J is at least one element selected from the group consisting of Mn, Al, G a, G e, In, Sn and a platinum group element. 4 one
も 1種の元索を、 Zは C、 Nおよび Pからなる群から選 ばれた少なく とも 1種の元索を表し、 e、 f 、 g、 h、 i および j は、 下記の式を満足する数である。 ただし、 下記式中の全ての数字は a t %を示す。 , And Z represents at least one elemental rope selected from the group consisting of C, N, and P, and e, f, g, h, i, and j satisfy the following equation: It is the number to do. However, all numbers in the following formula represent at%.
0. 1 ≤ e ≤ 8  0.1 ≤ e ≤ 8
0. 1 ≤ f ≤ 1 0  0.1 ≤ f ≤ 1 0
0 ≤ g ≤ 1 0  0 ≤ g ≤ 1 0
1 2 ≤ h≤ 2 5 0≤ } ≤ 1 0  1 2 ≤ h≤ 2 5 0≤} ≤ 1 0
1 5≤ h + i + j ≤ 3 0 o 以下同じ。 ) で実質的に示されるものが好ま しぐ用いられる。 Same as 1 5 ≤ h + i + j ≤ 30 o . ) Are preferably used.
ここで、 上記 ( Π ) 式の E ( C uまたは A u ) は、 耐 食性を高め、 結晶粒の粗大化を防止するとともに、 鉄損 や透磁率などの软磁気特性を改善するのに有効な元素で ある。 特に b c c相の低温での析出に有効である。 この 量があまり少ないと上記したような効果が得られず、 一 方、 あまりに多いと逆に磁気特性が劣化するので好ま し く ない。 そのため、 Eの含有量は、 ◦ . 1〜8原子%の 範囲が適している。 好ま しい範囲は、 0. 1〜 5原子% ある G  Here, E (Cu or Au) in the above formula (Π) is effective for improving corrosion resistance, preventing crystal grain coarsening, and improving magnetic properties such as iron loss and magnetic permeability. Element. In particular, it is effective for low-temperature precipitation of the bcc phase. If the amount is too small, the above-described effects cannot be obtained, while if it is too large, the magnetic properties deteriorate, which is not preferable. Therefore, the content of E is preferably in the range of 1 to 8 atomic%. The preferred range is 0.1 to 5 atomic% G
G (IV a族元素、 V a族元素、 Vi a族元素および希土 類元素から選ばれた少なく とも 1種の元素) は、 結晶粒 径の均一化に有効であるとともに、 磁歪および磁気異方 性を低減させ、 軟磁気特性の改善および温度変化に対す る磁気特性の改善に有効元素であり、 E (例えば C u) との複合添加によって b c c相をより広い温度範囲で安 定化させることができる。 この量があま りに少ないと上 記効果が得られず、 また、 あまりに多いと製造過程にお いて非結晶化がなされず、 さらに飽和磁束密度が低く な る。 そのため、 Gの含有量は、 0. 1〜: L 0原子%の範 囲が適している。 さ らに好ま しい範囲は、 1 ~8原子% である。 G (at least one element selected from Group IVa, Group Va, Group VIa, and rare earth elements) is effective for uniform crystal grain size, One Is an effective element for improving soft magnetic properties and improving magnetic properties against temperature change, and stabilizing the bcc phase over a wider temperature range by adding it with E (e.g., Cu). Can be. If the amount is too small, the above effect cannot be obtained. If the amount is too large, non-crystallization is not performed in the manufacturing process, and the saturation magnetic flux density further decreases. Therefore, the content of G is preferably in the range of 0.1 to: 0 atomic%. A more preferable range is 1 to 8 atomic%.
なお、 Eにおける各元素の効果は、 上記効果とともに、 それぞれ、 IV a族元素は最適磁気特性を得るための熱処 理条件の拡大、 V a族元素は耐脆化性の向上および切断 などの加工性の向上、 VI a族元素は耐食性の向上および 表面性の向上に有効である。  The effect of each element in E, together with the above effects, is the same as that for group IVa elements, such as expansion of heat treatment conditions for obtaining optimum magnetic properties, and group Va elements, such as improvement of brittleness resistance and cutting. Group VIa elements are effective in improving workability and corrosion resistance and surface properties.
この中で特に、 T a、 N b、 W、 および M oは钦磁気 特性の改善、 Vは耐脆化性とともに表面性の向上効果が 顕著であり、 この点で好ま しいものである。  Among them, Ta, Nb, W, and Mo are particularly preferable in that the magnetic properties are improved, and V has a remarkable effect of improving the surface properties as well as the embrittlement resistance.
J (Mn、 A l、 G a、 I n、 S nおよび白金族元素 から選ばれた少なく とも; L種の元素) は、 软磁気特性の 改菩あるいは耐食性の改善に有効な元素である。 しかし、 その量があまりに多いと飽和磁束密度が低下するため、 1 0原子%以下とする。 この中で、 特に A 1 は結晶粒の 微细化、 磁気特性の改善および b c c相の安定化、 G e は b c c相の安定化、 白金族元素は耐食性の改善に有効 な元素である。 J (at least L elements selected from Mn, Al, Ga, In, Sn and platinum group elements) is an element effective in improving magnetic properties or improving corrosion resistance. However, if the amount is too large, the saturation magnetic flux density decreases, so the content is set to 10 atomic% or less. Among them, A 1 is particularly effective in reducing crystal grain size, improving magnetic properties and stabilizing the bcc phase, Ge is effective in stabilizing the bcc phase, and platinum group elements are effective in improving corrosion resistance. Element.
S i および Bは、 製造時における合金の非結晶化を助 成する元素であり、 結晶化温度の改善ができ、 磁気特性 向上のための熱処理に対して有効な元素である。 特に、 S i は微細結晶粒の主成分である F eに固溶し、 磁歪、 磁気異方性の低減化に寄与する。 その量が 1 2原子%未 満では软磁気特性の改善が顕著ではなく、 2 5原子%を 超えると超急冷効果が小さく、 m レベルの比蛟的粗大 な結晶粒が析出して、 良好な軟磁気特性は得られない。 さ らに S i は規則格子の出現のために 1 2〜 2 2原子% が特に好ま しい。 また Bは、 3原子%未満では比較的粗 大な結晶粒が析出して良好な特性が得られず、 1 2原子 %を超えると熱処理により B化合物が析出しやすく なり、 钦磁気特性を劣化させるので好ま しく ない。  Si and B are elements that help the alloy to be non-crystallized during manufacturing, can improve the crystallization temperature, and are effective elements for heat treatment for improving magnetic properties. In particular, Si is dissolved in Fe, which is a main component of fine crystal grains, and contributes to reduction of magnetostriction and magnetic anisotropy. If the amount is less than 12 atomic%, the improvement of the magnetic properties is not remarkable, and if it exceeds 25 atomic%, the super-quenching effect is small, and relatively large crystal grains at the m level are precipitated, and the good results are obtained. Soft magnetic properties cannot be obtained. Furthermore, S i is particularly preferably 12 to 22 at% due to the appearance of a superlattice. If B is less than 3 atomic%, relatively coarse crystal grains precipitate and good characteristics cannot be obtained. If it exceeds 12 atomic%, B compound is easily precipitated by heat treatment, and 钦 magnetic properties are deteriorated. Is not preferred.
また、 他の非晶質化元素として Z ( C、 N、 P ) を、 1 0原子%以下の範囲で含んでいてもよい。  Further, Z (C, N, P) may be contained as another amorphousizing element in a range of 10 atomic% or less.
なお、 S i と Bおよび他の非晶質化元素との合計量は、 1 5〜 3 0原子%の範囲が好ま しく、 また S i / B≥ 1 がすぐれた钦磁気特性を得るのに好ま しい。  The total amount of S i and B and the other amorphizing elements is preferably in the range of 15 to 30 atomic%, and when S i / B ≥ 1, excellent magnetic properties can be obtained. I like it.
特に、 S i量を 1 3〜 2 1原子%にするこ とにより磁 歪; I s 0が得られ、 樹脂モールドによる磁気特性の劣 化がなく なり、 所期のすぐれた软磁気特性を有効に発揮 させることが可能となる。  In particular, by setting the Si content to 13 to 21 at%, magnetostriction; I s 0 is obtained, and the deterioration of the magnetic characteristics due to the resin mold is eliminated, and the desired magnetic characteristics are effective. It is possible to make the most of it.
なお、 上記 F e基软磁性合金において、 0、 Sなどの 通常の F e系合金にも含まれているような不可避的な不 純物を微量含んでいても、 本発明の効果を損なう もので はない。 以下に本発明の実施例を説明する。 In the above Fe-based magnetic alloy, 0, S, etc. The effect of the present invention is not impaired even if a trace amount of unavoidable impurities such as those contained in ordinary Fe-based alloys is included. Hereinafter, embodiments of the present invention will be described.
実施例 A 1及び比較例 A 1 ( 0.900 1 e 0.05N b 0.05^ r 0.02y 75 Example A 1 and Comparative Example A 1 (0.900 1 e 0.05 N b 0.05 ^ r 0.02 y 75
( S 1 0.56B 0.44) 25 (S 1 0.56 B 0.44) 25
にて表されるァモルフ ァス合金について、 単ロール法に より板厚 1 6 ^ m、 幅 l O ramの薄帯形状でロール面の表 面性の異なる長尺リボン試料 a、 bを作製した。 Using the single-roll method, long ribbon samples a and b of 16 mm in thickness and l O ram in the form of a ribbon with different surface properties were prepared for the amorphous alloy represented by .
試料 a、 bについてロール面の気泡の巻き込みを写真 により観察したところ、 第 1図および第 2図に示すよう な差異がみられた。 割合は、 試料 a は 38 % (第 1図) であり、 試料 bは 2 3 % (第 2図) である。  When the entrapment of air bubbles on the roll surface of the samples a and b was observed by a photograph, differences as shown in FIGS. 1 and 2 were observed. The percentage is 38% for sample a (Fig. 1) and 23% for sample b (Fig. 2).
凹部の面積占有率の測定は次の様にして行なった。 ま ず、 走査型電子顕微鏡を用いて、 薄帯のロール面につき、 倍率 2 0 0倍で写真をとつた。 この写真において視野 The measurement of the area occupancy of the recess was performed as follows. First, a photograph was taken at a magnification of 200 times using a scanning electron microscope on the roll surface of the ribbon. Field of view in this photo
0. 4 5 ram X 0. 5 5 の範囲内で長径が 1 ◦ ^ m以上 の凹部を抽出し、 画像処理を行ない面積を求めた。 これ を全視野面積との比較で凹部の面積占有率を求めた。 得られた合金薄帯を巻回して外径 1 8ram、 内径 1 2腿 の トロイダルコアを成形した。 次にこれをキュ リー温度 以上、 結晶化温度以下の適温温度で熱処理した後、 4。CWithin the range of 0.45 ram X 0.55, a concave part with a major axis of 1 ◦ ^ m or more was extracted, and image processing was performed to determine the area. This was compared with the entire viewing area to determine the area occupancy of the recess. Outside diameter by turning the obtained winding the thin alloy strip 1 8ra m, were molded inner diameter 1 2 thigh toroidal core. Next, this is heat-treated at an appropriate temperature not lower than the Curie temperature and not higher than the crystallization temperature. C
/min.の速度 冷却した。 得られたコアに 1次及び 2次巻線を施し、 1 0 eの外 部磁場を印加して交流磁化測定装置を用いて交流ヒステ リ シス曲線を測定し、 角形比 B r 1 ( B r : 残留磁 束密度、 B 1 : 1 0 eの磁場における磁束密度) を求め た。 1 ◦ 0 K H zでの値は、 第 1図の材料を用いた磁心 では 9 9. 4 %、 第 2図の材料では、 94. 8%であり 約 5 %の差が生じた。 / min. Cooled. Primary and secondary windings are applied to the obtained core, an external magnetic field of 10 e is applied, and an AC hysteresis curve is measured using an AC magnetization measuring device, and the squareness ratio B r 1 (B r : Residual magnetic flux density, B 1 : magnetic flux density in a magnetic field of 10 e). The value at 1 ◦ 0 KHz was 99.4% for the magnetic core using the material shown in Fig. 1, and 94.8% for the material shown in Fig. 2, which was a difference of about 5%.
これらの磁心をスィ ッチング周波数 1 O O K H zの電 源における可飽和リアク トルとして適用したところ、 第 1図の薄帯を用いた本実施例の磁心では第 2図の薄帯を 用いた比較磁心に比べ、 出力制御不能範囲 (デッ ドアン ダル) も小さ く、 効率も約 2 %向上した。  When these cores were applied as a saturable reactor in a power supply with a switching frequency of 1 OOKHz, the core of the present example using the ribbon of FIG. 1 was compared with the comparative core using the ribbon of FIG. In comparison, the output uncontrollable range (dead andal) was smaller, and the efficiency was improved by about 2%.
実施例 A 2 Example A 2
単ロール法により ( C 0 F e M n  By the single roll method (C 0 F e M n
0.90 0.05 0.02 0.90 0.05 0.02
N b 0 03) 75 S i Β 12なる組成のアモルファス合金を 種々の表面性を持つように種々の作製した。 Various amorphous alloys having the composition of N b 0 03 ) 75 S i Β 12 were prepared to have various surface properties.
これらの材料を実施例 A 1 と同様にして磁心と し、 高 周波での角形比との関係を調べた。 結果を第 3図にまと めるが、 面積占有率 3 0 %を境として角形比が急激に劣 化することがわかる。  These materials were used as magnetic cores in the same manner as in Example A1, and the relationship with the squareness ratio at high frequencies was examined. The results are summarized in Fig. 3, and it can be seen that the squareness ratio sharply deteriorates at an area occupancy of 30%.
なお、 以下の実施例、 比較例においては、 ロール面の 凹部の面積占有率は、 上記実施例 A 1 と同様にして測定 した。 実施例 B 1及び比較例 B 2 下記式、 In the following Examples and Comparative Examples, the area occupancy of the concave portion on the roll surface was measured in the same manner as in Example A1. Example B 1 and Comparative Example B 2
(C °0.94F e0.05Nb0.01) 71 (S 0.6B0.4} 29 にて表わされるァモルファス合金について、 単ロール法 により板厚 Ι δ π 、 幅 1 0 mmの薄帯形状で表面性の異 なる長尺リボン試料 a、 bを作製した。 For Amorufasu alloy represented by (C ° 0.94 F e 0.05 Nb 0.01) 71 (S 0.6 B 0.4} 29, the plate thickness iota [delta] [pi, different surface properties in thin strip shape having a width 1 0 mm by a single roll method Long ribbon samples a and b were prepared.
試料 a、 bについて表面粗さ計を用いて薄帯長手方向 に測定した結果を R f で表わすとそれぞれ 0. 1 5、 The results of measurements of samples a and b in the longitudinal direction of the ribbon using a surface roughness meter were expressed as R f, respectively, of 0.15 and
0. 38である。 これを巻回して外径 1 8 ram、 内径 1 2 ramの トロイダルコアを成形した。 次にこれをキュ リー温 度以上、 結晶化温度以下の適温温度で熱処理した後、 4 min.の速度で冷却した。 It is 0.38. This was wound to form a toroidal core having an outer diameter of 18 ram and an inner diameter of 12 ram. Next, this was heat-treated at an appropriate temperature not lower than the Curie temperature and not higher than the crystallization temperature, and then cooled at a rate of 4 min.
得られたコアに 1次及び 2次巻線を施し、 1 0 eの外 部磁場を印加して交流磁化測定装置を用いて交流ヒステ リ シス曲線を測定し、 角形比 B r ZB 1 (B r :残留磁 束密度、 B 1 : 1 0 eの.磁場における磁束密度) を求め ナ"  Primary and secondary windings are applied to the obtained core, an external magnetic field of 10 e is applied, and an AC hysteresis curve is measured using an AC magnetometer, and the squareness ratio Br ZB 1 (B r: Residual flux density, B 1: Obtain 10 e. Magnetic flux density in magnetic field)
50 K H zでの値は、 R f =◦ . 1 5の材料を用いた 磁心では 99. 4%、 R f = 0. 38では、 94. .8 % であり約 5 %の差が生じた。  The value at 50 KHz was 99.4% for a magnetic core made of a material with R f = ◦.15, and 94.8% for a core with R f = 0.38, giving a difference of about 5%. .
これらの磁心をスィ ツチング周波数 1 ◦◦ K H zの電 源における可飽和リアク トルと して適用したところ、 R f 0. 1 5の薄帯を用いた本実施例の磁心では R f =〇. 38の薄帯を用いた比較磁心に比べ、 出力制御不 能範四 (デッ ドアングル) も小さ く 、 効率も約 2 %向上 した。 When these cores were applied as a saturable reactor in a power supply with a switching frequency of 1◦◦ KHz, the core of the present example using a ribbon with R f 0.15 provided R f = 〇. No output control compared to the comparative core using 38 ribbons Noh 4 (dead angle) is small, and efficiency is improved by about 2%.
施例 B 2  Example B 2
単ロール法により (C o 0 90 F e 0.05Mn () 02 N b 0 ) 71S i lcB なる組成のアモルファス合金を 種々の表面性を持つように種々の作製した。 (C o 0 90 F e 0 . 05 M n () 02 N b 0) 71 were different were prepared to have a S i lc various surface properties of amorphous alloy B with a composition by a single roll method.
これらの材料を実施例 B 1と同様にして磁心とし、 周 波数 1 00 k H zでの角形比との関係を調べた。 結果を 笫 4図にまとめるが、 R f = 0. 3から角形比が急激に 劣化することが明らかである。  These materials were used as magnetic cores in the same manner as in Example B1, and the relationship with the squareness ratio at a frequency of 100 kHz was examined. The results are summarized in Fig. 4. It is clear from R f = 0.3 that the squareness ratio deteriorates rapidly.
実施例 C 1および比較例 C 1 Example C 1 and Comparative Example C 1
F e ?4C u 1 N b。 S i lgB g なる合金組成のァモル ファス合金を il ロール法により、 ロール面の凹部占有率 が 22%と 40 %である表面性をもつ薄帯と して作製し た。 これを、 1 8画 X 1 2翻 X 4. 5 mmの ト,ロイダル状 コアに成形した後、 560 で 1時間、 N 2雰囲気中で 熱処理した。 このあと 400。Cで 2時間、 5 (0 e ) の 条件で磁場熱処理を行った。 F e ? 4 C u 1 N b. An amorphous alloy having an alloy composition of S lg B g was prepared by the il roll method as a thin ribbon having a surface property of 22% and 40% of the concave portion of the roll surface. This, 1 8 stroke X 1 2 transliteration X 4. 5 mm bets, after forming a toroidal shaped core, 1 hour at 560, were heat-treated in an N 2 atmosphere. 400 after this. Magnetic field heat treatment was performed at 5 (0 e) for 2 hours at C.
実施例 A 1と同様にして、 Ι Ο Ο ΚΗ ζにおける角形 比を測定した。 本発明の磁心は、 角形比 98. 7%であ り、 比較例は 94, 5%であった。  In the same manner as in Example A1, the squareness ratio in {} was measured. The magnetic core of the present invention had a squareness ratio of 98.7%, and the comparative example had a ratio of 94.5%.
これらの磁心をスイ ツチング周波数 Ι Ο Ο ΚΗ ζの電 源における可飽和リァク トルと して適用した結果、 実施 例の磁心の場合、 比較例の磁心に比べ、 出力制御不能特 性 (デッ ドアングル) が小さ く 、 電源効率も約 2 %向上 した。 As a result of applying these cores as saturable reactors in a power supply with a switching frequency of Ι Ο Ο 、, the core of the embodiment has a lower output control than the core of the comparative example. Power (dead angle) is small, and power supply efficiency has been improved by about 2%.
実施例 A 3および比較例 A 3 - ( C 00.90 x e 0.05M ° 0.03C r 0.02y 75 、 S 1 0.6Example A 3 and Comparative Example A 3-( C 0 0.90 xe 0.05 M ° 0.03 C r 0.02 y 75, S 1 0.6
B 0 4 ) 25で表わされるアモルフ ァス合金について、 単 ロール法により作製条件を変更し、 種々の板厚と表面性 を持つ薄帯を作製した。 これらの薄帯を外径 1 8麵、 内 径 1 2 raraの トロイダル状コアに巻回し、 44 0て、 3 0 分歪取り熱処理した後、 2 0 CTCで 2時間、 5 ( 0 e ) の条件下で磁場熱処理を行った。 得られたコア.にっき、 奕施例 A 1 と同棣にして 1 0 0 K H zでの角形比と、 さ らに 1 0 0 K H z、 2 K Gでの鉄損を評価した。 なお、 板厚 t は、 重量法から平均板厚と して求めた。 この場合 の平均板厚 t は、 長さ 1 、 幅 w、 重量 A、 密度 p とした 場合において下記式のよって求めることができる。 For Amorufu § scan alloy represented by B 0 4) 25, by changing the manufacturing conditions by a single roll method to produce a thin strip having various thickness and surface properties. These ribbons were wound on a toroidal core with an outer diameter of 18 mm and an inner diameter of 12 rara, and were subjected to strain relief heat treatment at 440 ° C for 30 minutes, and then at 20 CTC for 2 hours at 5 (0e). Magnetic field heat treatment was performed under the conditions. The resulting core was evaluated in the same manner as in Example A1, and the squareness ratio at 100 KHz and the iron loss at 100 KHz and 2 KG were evaluated. The sheet thickness t was determined as an average sheet thickness by a gravimetric method. The average plate thickness t in this case can be obtained by the following equation when length 1, width w, weight A, and density p are set.
t = A / ( I + w + p ) 結果を表 1に示すが、 本発明の表面性をもった材料を 用いたコアは角形比にすぐれ、 また鉄損も低いことがわ かる。  t = A / (I + w + p) The results are shown in Table 1. It is found that the core using the material having the surface property of the present invention has excellent squareness ratio and low iron loss.
なお、 表面粗さ R f が 0. 2のものと 0. 3 8のもの を種々の板厚について 1 0 0 K H zの鉄損を測定したが、 第 5図に示すように、 鉄損に関しては表面性にかかわら ず板厚の増加と共に単調に増加している。 R f t m) Br/Bl(%) P2KG /lOOKHz The iron loss of 100 KHz was measured for various plate thicknesses with a surface roughness R f of 0.2 and 0.38. The value increases monotonically with increasing plate thickness regardless of the surface properties. R ftm) Br / Bl (%) P 2KG / lOOKHz
0. 22 21. 0 99. 5 350  0.22 21.0 99.5 350
0. 34 18. 5 96. 4 340  0.34 18.5 96.4 340
0. 24 28. 4 99. 0 560  0.24 28.4 99.0 560
0. 36 28. 0 97. 0 520 施例 A 4および比較例 A 4  0.36 28.0 97.0 520 Example A 4 and Comparative Example A 4
単ロール法により、 (Co0 90Fe0 05Cr0> ) ?3 By the single roll method, (Co 0 90 Fe 0 05 Cr 0> ) ? 3
( S i Λ 5cB 0>45) 27で表わされるアモルフ ァ ス合金を 2種類作製した。 板厚は、 1 9 / mであり、 幅は 5麵で ある。 用いたロールの材質およびロール冷却水の水温を 変化させて、 1種についてはロール面の凹部を 22%とThe (S i Λ 5 cB 0> 45) Amorufu § scan alloy represented by 27 and two produced. The thickness is 19 / m and the width is 5 mm. By changing the material of the roll used and the temperature of the roll cooling water, for one type, the concave portion on the roll surface was 22%.
35%、 フ リー面側の表面粗さを 0. 25および 35%, surface roughness on the free side 0.25 and
0. 35とした。 これらの薄帯をフ ォ トエッチングによ り外径 8rom、 内径 6 mmのリ ング状コアに抜き、 430。C - It was 0.35. These strips were punched out into a ring-shaped core with an outer diameter of 8 rom and an inner diameter of 6 mm by photoetching, 430. C-
40分歪取り熱処理し、 その後、 200 °0で1時間、Heat treatment for strain relief for 40 minutes, then at 200 ° 0 for 1 hour,
2 (0 e ) の条件で磁場熱処理し、 高さが 5ιηιηになるよ うに積層して評価用磁心とした。 The magnetic core was subjected to a magnetic field heat treatment under the condition of 2 (0 e) and laminated so that the height became 5ιηιη.
実施例 A 1 と同様にして、 1 00 k H zでの角形比を 測定したところ、 本発明の磁心は、 99. 1 %であり、 比較例の磁心においては 95. 2%であった。  When the squareness ratio at 100 kHz was measured in the same manner as in Example A1, the core of the present invention was 99.1%, and the core of the comparative example was 95.2%.
これらの磁心をスィ ツチング周波数 200 k H zの電 源の可飽和リアク トルコアと して使用したところ、 本発 明の磁心は比較例に比べて、 出力制御特性にすぐれ、 電 源効率も 2. 5%向上した。 These cores are connected to a switching frequency of 200 kHz. When used as a saturable reactor, the core of the present invention had better output control characteristics and improved power supply efficiency by 2.5% compared to the comparative example.
実施例 A 5ない し A 2 0、 C 2ないし C 1 5、 比較例Example A5 or A20, C2 to C15, Comparative Example
5、 八 6、 7、 じ 2ぉょびじ 3  5, 8, 6, 7, 2 3
単ロール法により、 表 2に記載した組成ならびに作製 条件によって、 幅 5mmの薄帯を作製した。 なお、 C o基 ' アモルフ ァス合金については、 キュ リ ー温度も測定した。 各々の薄帯を外径 1 5漏、 内径 1 0 ramトロイダル状磁 心に巻回した。 得られた C 0基ァモルフ ァス磁心を、 夫 々最適温度で 30分歪取り熱処理したのち、 各々、 キュ リー温度の 3 CTC以下の温度で、 2時間、 1 (O e ) の 磁場を薄帯長手方向に印加して、 磁場熱処理を行った。 また、 F e基合金については急冷状態でァモルファス状 態になっているため、 それぞれの結晶化温度.(示差走査 熱量計を用いて 1 0 eCZ分の昇温条件で測定した値) の 50 C上の温度 1時間熱処理した後、 450 で 1時間、 5 (O e ) の磁場を薄帯長手方向に印加して磁場熱処理 を行った。 熱処理はすべて窒素雰囲気中で行った。 A 5 mm-wide ribbon was produced by the single roll method according to the composition and production conditions shown in Table 2. The Curie temperature of the Co-based amorphous alloy was also measured. Each ribbon was wound around an outer diameter of 15 leaks and an inner diameter of 10 ram toroidal core. Each of the obtained C 0 -based amorphous cores was subjected to a strain-relieving heat treatment at the optimum temperature for 30 minutes, and then a magnetic field of 1 (O e) was reduced for 2 hours at a temperature not higher than the Curie temperature of 3 CTC. A magnetic field heat treatment was performed by applying a voltage in the band longitudinal direction. Also, since that is a Amorufasu state in a quench condition for F e based alloy, each of the crystallization temperature. 50 (value measured at a Atsushi Nobori condition 1 0 e CZ min using a differential scanning calorimeter) After heat treatment at a temperature on C for 1 hour, a magnetic field heat treatment was performed by applying a magnetic field of 5 (O e) in the longitudinal direction of the ribbon at 450 for 1 hour. All heat treatments were performed in a nitrogen atmosphere.
得られた磁心を実施例 A 1と同様にして、 l O O k H zでの角形比と、 1 00 k H z、 2 k H zでの鉄損を評 価した。 結果を表 2に示すが、 本発明の磁心においては、 すぐれた角形比が得られていることが分かる。 また、 こ れらの例においては、 飽和ィ ンダクタ ンスに対応する値 — 24 — -·.-, The obtained magnetic core was evaluated for squareness at 100 kHz and iron loss at 100 kHz and 2 kHz in the same manner as in Example A1. The results are shown in Table 2, which shows that the magnetic core of the present invention has an excellent squareness ratio. In these examples, the value corresponding to the saturation inductance is - twenty four - -·.-,
として磁束密度を求めた。 この磁束密度は、 磁心の巻線 数を 1 ◦ターンとして、 周波数 1 00 k H zにおいて 1 6 (0 e ) の磁場を印加した条件での磁束密度と残留 磁束密度の差から求めた。 And the magnetic flux density was determined. The magnetic flux density was determined from the difference between the magnetic flux density and the residual magnetic flux density under the condition that a magnetic field of 16 (0 e) was applied at a frequency of 100 kHz and the number of turns of the core was 1 °.
/ soedf/JDd 16 OM / soedf / JDd 16 OM
in in
Figure imgf000027_0001
Figure imgf000027_0001
Z 拏 Z Halla
産業上の利用可能性 Industrial applicability
本発明によれば、 高角形性を有した出力制御特性に極 めて優れた巻磁心を提供することが出来、 磁気増幅器、 半導体回路用リァク トルなど特にスィ ッチング電源の磁 性部品として広く適用することができる。  ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a winding core having an excellent output control characteristic having high squareness, and is widely applied particularly to magnetic components of a switching power supply, such as a magnetic amplifier and a semiconductor circuit reactor. can do.

Claims

求 の 範 囲 Range of request
1 . 合金薄帯を卷回もしく は積層してなる磁心であ つて、 前記合金薄帯表面に形成された凹部の面積占有率 が 3 0 %以下であるような表面粗さを有する合金薄帯に よって形成されてなることを特徴とする磁心。 1. A magnetic core formed by winding or laminating an alloy ribbon, and having a surface roughness such that an area occupancy of a concave portion formed on the surface of the alloy ribbon is 30% or less. A magnetic core characterized by being formed by a band.
2 . 前記合金薄帯が、 C o基アモルフ ァス合金薄帯 である、 請求項 1 に記載の磁心。  2. The magnetic core according to claim 1, wherein the alloy ribbon is a Co-based amorphous alloy ribbon.
3 . 前記合金薄帯が、 キユリ—温度 1 6 ◦〜: 3 ◦ 0 °Cの C 0基アモルフ ァス合金からなる、 誥求项 .2に記載 の磁心。  3. The magnetic core according to claim 2, wherein the alloy ribbon is made of a C0-based amorphous alloy having a temperature of 16 ° C: 3 ° C.
4 . 角形比が、 周波数 5 0 K H zで 9 8 %以上であ る、 請求項 1 に記載の磁心。  4. The magnetic core according to claim 1, wherein the squareness ratio is 98% or more at a frequency of 50 KHz.
5 . 合金溶湯をノズルより冷却ロールの表面に射出 し、 急冷することによって合金薄帯が製造されるもので あって、 前記冷却ロールと接触しない方の合金薄帯表面 の表面粗さが、 当該合金薄帯の長手方向において、  5. The alloy ribbon is manufactured by injecting the molten alloy from the nozzle onto the surface of the cooling roll and quenching it, and the surface roughness of the alloy ribbon that does not come into contact with the cooling roll has the following value. In the longitudinal direction of the alloy ribbon,
R f ^ 0 . 3  R f ^ 0. 3
(ただし、 R f は、 J I $ — B — 0 6 0 1 に規定された •S準長さ 2 . 5 删における十点平均粗さ、 および合金薄 帯の重量より求めた平均板厚を、 それぞれ R z 、 Tと し たときに、 下記の式  (However, R f is defined by JI $ — B — 0601. • The average plate thickness obtained from the ten-point average roughness at the S semi-length of 2.5 mm and the weight of the alloy ribbon is When R z and T respectively,
R f = R z / T  R f = R z / T
によって求めた粗さを特徴付けるパラメータである。 ) なる値を有する合金薄帯によって磁心を形成することを 特徴とする、 請求項 1に記載の磁心。 Is a parameter characterizing the roughness obtained by the above. ) The magnetic core according to claim 1, wherein the magnetic core is formed by an alloy ribbon having a value.
6. 前記合金薄帯が、 C o基アモルフ ァス合金薄帯 である、 請求 ¾ 5に記載の磁心。  6. The magnetic core according to claim 5, wherein the alloy ribbon is a Co-based amorphous alloy ribbon.
7. 前記合金薄帯が、 キュリー温度 1 6ひ〜 30 0 での C o基アモルファス合金からなる、 請求項 5に記載 の磁心。  7. The magnetic core according to claim 5, wherein the alloy ribbon is made of a Co-based amorphous alloy having a Curie temperature of 16 to 300.
8. 角形比が、 周波数 5 0 K H zで 9 8 %以上であ る、 請求項 5に記載の磁心。  8. The magnetic core according to claim 5, wherein the squareness ratio is 98% or more at a frequency of 50 KHz.
9. 前記合金薄帯が、 下記一般式で表わされる合金 組成を有する C o基ァモルファス合金薄帯からなる、 請 求項 1または 5に記載の磁心。  9. The magnetic core according to claim 1, wherein the alloy ribbon is made of a Co-based amorphous alloy ribbon having an alloy composition represented by the following general formula.
( C ° 1-a F e a ) 100-X ( S i 1-1 B 1 ) x (C ° 1-a F e a) 100-X (S i 1-1 B 1) x
(ただし、 0. 0 2 ≤ a ≤ 0. 0 8  (However, 0.02 ≤ a ≤ 0.08
0. 3 ≤ I ≤ 0. S  0.3 ≤ I ≤ 0. S
26≤ X≤ 32 o )  26≤ X≤ 32 o)
1 0. 前記合金薄帯が、 下記一般式で表される合金 組成を有する C o基アモルファス合金薄帯からなる、 請 求项 1または 5に記載の磁心。 C ° 1-b-c F e b M c 100-y ( S 1 B m) y (ただし、 Mは N i , N nのうちの少なく とも 1種であ り、 10. The magnetic core according to claim 1, wherein the alloy ribbon is a Co-based amorphous alloy ribbon having an alloy composition represented by the following general formula. C ° 1-bc F e b M c 100-y ( S 1 B m) y (where M is at least one of N i and N n
b ≤ 0. 1 0  b ≤ 0.10
0. 0 1 ≤ e ≤ 0. 1 0 0.01 ≤ e ≤ 0.10
0. 3≤ m≤ ϋ . 8 0.3 ≤ m≤ ϋ. 8
26≤ y≤ 32。 )  26≤ y≤32. )
1 1. 前記合金薄帯が、 下記一般式で表される合金 組成を有する C 0基アモルフ ァ ス合金薄帯からなる、 請 求項 1または 5に記載の磁心。  1 1. The magnetic core according to claim 1, wherein the alloy ribbon is a C0-based amorphous alloy ribbon having an alloy composition represented by the following general formula.
(Co 1,-」d-一e Fe d ^M' e 100--z, (s 1-n n z  (Co 1,-) d-one e Fe d ^ M 'e 100--z, (s 1-n n z
(ただし、 M ' は T i、 V、 C C u、 Z r、 N b、 N o、 H f 、 T a、 W、 からなる群から選ばれる少なく とも 1種であり、  (Where M ′ is at least one selected from the group consisting of Ti, V, CCu, Zr, Nb, No, Hf, Ta, W,
0. 03≤ d≤ 0. 1 0  0.03≤ d≤ 0.10
0. 0 1≤ e≤ 0. 06  0.0 1≤ e≤ 0.06
0. 3≤ n ^ 0. 8  0.3 ≤ n ^ 0.8
24≤ z≤ 32。 )  24≤ z≤32. )
1 2. 前記合金薄帯が、 下記一般式で表される合金 組成を有する C o基アモルフ ァ ス合金薄帯からなる、 請 求項 1または 5に記載の磁心。  12. The magnetic core according to claim 1, wherein the alloy ribbon is a Co-based amorphous alloy ribbon having an alloy composition represented by the following general formula.
(C ol-f-g-h Fe fMgM' h) i00_w (Sin Bp) w (ただし、 Mは N i、 M nのうちの少なく とも 1種であり f ≤ 0. 1 0 (C o lfgh Fe f MgM ' h ) i00 _ w (Sin B p) w (where M is at least one of Ni and M n and f ≤ 0.10
0. 0 1≤ g≤ 0. 1 0  0.0 1 ≤ g ≤ 0.1 0
0. 0 1≤ h≤ 0. 08  0.0 1 ≤ h≤ 0.08
〇 . 3≤ p≤ 0. 5  〇. 3≤ p≤ 0.5
24≤ w≤ 3〇。 )  24≤ w≤ 3〇. )
1 前記合金薄帯が、 下記一般式で表される合金 20 1 The alloy ribbon is an alloy represented by the following general formula 20
- 30 - -30-
組成を有する F e基软磁性合金薄帯からなる、 請求項 1 または 5に記載の磁心。 The magnetic core according to claim 1, comprising a Fe-based magnetic alloy ribbon having a composition.
F e 100-e-f-g-h-i-j E e ^ f J g ° hB i Zj F e 100-efghij E e ^ f J g ° h B i Z j
(式中、 Eは C uおよび A uから選ばれた少なく とも 1 種の元素を、 Gは IVa族元素、 V a族元素、 W a族元 素および希土類元素からなる群から選ばれた少なく とも 1種の元素を、 J は Mn、 A l、 G a , G e、 I n、 S nおよび白金族元素からなる群から選ばれた少なく と も 1種の元素を、 Zは C、 Nおよび Pからなる^から選 ばれた少なく とも 1種の元素を表し、 e、 f 、 g、 h、 iおよび j は、 下記の式を満足する数である。 ただし、 下記式中の全ての数字は a t %を示す。  (Where E is at least one element selected from Cu and Au, and G is at least one element selected from the group consisting of group IVa elements, group Va elements, group Wa elements and rare earth elements. J is at least one element selected from the group consisting of Mn, Al, G a, G e, In, Sn, and platinum group elements, and Z is C, N And at least one element selected from ^ consisting of P and e, f, g, h, i, and j are numbers that satisfy the following formula, provided that all numbers in the following formula Indicates at%.
0. 1≤ e≤ 8 0≤ g≤ 1 0  0. 1≤ e≤ 8 0≤ g≤ 1 0
1 2≤ h≤ 25  1 2≤ h≤ 25
3≤ i ≤ 12  3≤ i ≤ 12
0≤ j ≤ 1 0  0≤j≤1 0
1 5≤ h + i + j ≤ 30。 )  1 5 ≤ h + i + j ≤ 30. )
14. 冷却ロールと接触する側の合金薄帯表面に形 成された凹部の面積占有率が 30 %以下であるような表 面粗さを有することを特徴とする、 合金薄帯。  14. An alloy ribbon having a surface roughness such that an area occupation ratio of a concave portion formed on the surface of the alloy ribbon on the side in contact with the cooling roll is 30% or less.
1 5. 冷却ロールと接触しない方の合金薄蒂表面の 表面粗さが、 当該合金薄帯の長手方向において、 R f ≤ 0. 3 1 5. The surface roughness of the alloy thin surface that does not contact the chill roll is in the longitudinal direction of the alloy thin strip. R f ≤ 0.3
(ただし、 R f は、 J I S— B— 060 1に規定された 基準長さ 2. 5mmにおける十点平均粗さ、 および合金薄 帯の重量より求めた平均板厚を、 それぞれ R z、 Tとし たときに、 下記の式  (However, R f is the average plate thickness obtained from the ten-point average roughness at a reference length of 2.5 mm specified in JIS B 0601 and the weight of the alloy ribbon, Rz and T, respectively. When the following formula
R f = R z / T  R f = R z / T
によって求めた粗さを特徴付けるパラメ一夕である。 ) なる値を有することを特徴とする、 請求項 14に記載の 合金傅 ¾r o It is a param night that characterizes the roughness obtained by. The alloy according to claim 14, characterized in that it has the following values:
1 6. 角形比が、 周波数 1 00 k H zで 96 %以上で あることを特徴とする、 請求項 1 3に記載の磁心。  16. The magnetic core according to claim 13, wherein the squareness ratio is 96% or more at a frequency of 100 kHz.
PCT/JP1990/000407 1990-03-27 1990-03-27 Magnetic core WO1991015020A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP1990/000407 WO1991015020A1 (en) 1990-03-27 1990-03-27 Magnetic core
KR1019970706039A KR0148230B1 (en) 1990-03-27 1990-03-27 Switching power
KR1019910701674A KR0134508B1 (en) 1990-03-27 1990-03-27 Magnetic core
EP90904934A EP0473782B1 (en) 1990-03-27 1990-03-27 Magnetic core
DE69031338T DE69031338T2 (en) 1990-03-27 1990-03-27 MAGNETIC CORE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1990/000407 WO1991015020A1 (en) 1990-03-27 1990-03-27 Magnetic core

Publications (1)

Publication Number Publication Date
WO1991015020A1 true WO1991015020A1 (en) 1991-10-03

Family

ID=13986446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000407 WO1991015020A1 (en) 1990-03-27 1990-03-27 Magnetic core

Country Status (4)

Country Link
EP (1) EP0473782B1 (en)
KR (1) KR0134508B1 (en)
DE (1) DE69031338T2 (en)
WO (1) WO1991015020A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3902999A (en) 1998-05-13 1999-11-29 Allied-Signal Inc. High stack factor amorphous metal ribbon and transformer cores
EP1045402B1 (en) 1999-04-15 2011-08-31 Hitachi Metals, Ltd. Soft magnetic alloy strip, manufacturing method and use thereof
GB2374084A (en) * 2001-04-03 2002-10-09 Fourwinds Group Inc Alloys having bistable magnetic behaviour
EP3157021B1 (en) * 2014-06-10 2020-03-25 Hitachi Metals, Ltd. Method for producing fe-based nanocrystalline alloy core

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179704A (en) * 1986-02-04 1987-08-06 Hitachi Metals Ltd Fe-based amorphous core excellent in controlling magnetization characteristics
JPS6484602A (en) * 1987-09-28 1989-03-29 Toshiba Corp Wound magnetic core

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121706A (en) * 1983-11-29 1985-06-29 Hitachi Metals Ltd Winding magnetic core
JPS6124208A (en) * 1984-07-12 1986-02-01 Nippon Steel Corp Amorphous magnetic material having excellent magnetic characteristics
US4859256A (en) * 1986-02-24 1989-08-22 Kabushiki Kaisha Toshiba High permeability amorphous magnetic material
JP2573606B2 (en) * 1987-06-02 1997-01-22 日立金属 株式会社 Magnetic core and manufacturing method thereof
JPH01247556A (en) * 1988-03-30 1989-10-03 Hitachi Metals Ltd Fe-base magnetic alloy excellent in iso-permeability characteristic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179704A (en) * 1986-02-04 1987-08-06 Hitachi Metals Ltd Fe-based amorphous core excellent in controlling magnetization characteristics
JPS6484602A (en) * 1987-09-28 1989-03-29 Toshiba Corp Wound magnetic core

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Denki Gakkai Kenkyukai Shiryo, Jiki Oyo Kenkyukai AM79-58, 21 December 1979 (21. 12. 79) (Tokyo), DENKI GAKKAI, YAGI MASAAKI et al (Shushu no Gas Fuinkichu de sakuseishita Amorphous ribbon no tokusei) p. 1-7. *
See also references of EP0473782A4 *

Also Published As

Publication number Publication date
KR920702001A (en) 1992-08-12
DE69031338T2 (en) 1998-04-02
EP0473782A1 (en) 1992-03-11
EP0473782B1 (en) 1997-08-27
DE69031338D1 (en) 1997-10-02
EP0473782A4 (en) 1992-11-04
KR0134508B1 (en) 1998-04-27

Similar Documents

Publication Publication Date Title
EP2614509B1 (en) Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
JP5632608B2 (en) Soft magnetic alloy, magnetic component using the same, and manufacturing method thereof
EP0612082B1 (en) Method for making an Fe-based alloy ribbon with a thickness of not more than 10 micrometer
WO2011122589A1 (en) Initial ultrafine crystal alloy, nanocrystal soft magnetic alloy and method for producing same, and magnetic component formed from nanocrystal soft magnetic alloy
JP5912239B2 (en) Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JPH044393B2 (en)
JP6080094B2 (en) Winding core and magnetic component using the same
KR101837502B1 (en) Ferromagnetic amorphous alloy ribbon reduced surface defects and application thereof
US5622768A (en) Magnetic core
JPH1171659A (en) Amorphous magnetic material and magnetic core using the same
JPH0617204A (en) Soft magnetic alloy and its manufacture and magnetic core
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JP2823203B2 (en) Fe-based soft magnetic alloy
WO1991015020A1 (en) Magnetic core
JPH08153614A (en) Magnetic core
JP2791173B2 (en) Magnetic core
KR0148230B1 (en) Switching power
JP2693453B2 (en) Winding core
JP2004002949A (en) Soft magnetic alloy
JP2004176167A (en) Thin amorphous alloy strip and magnetic core using it
JPH01290746A (en) Soft-magnetic alloy
JP2815926B2 (en) Magnetic core
JP3121641B2 (en) Switching power supply
JPH07335419A (en) Method of adjusting square ratio of fe radical soft magnetic alloy and fe radical soft magnetic alloy
JP2693453C (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1019910701674

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1990904934

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990904934

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990904934

Country of ref document: EP