EP0472991B1 - Elektroviskose Flüssigkeiten auf der Basis von Polymerdispersionen mit elektrolythaltiger disperser Phase - Google Patents

Elektroviskose Flüssigkeiten auf der Basis von Polymerdispersionen mit elektrolythaltiger disperser Phase Download PDF

Info

Publication number
EP0472991B1
EP0472991B1 EP91113465A EP91113465A EP0472991B1 EP 0472991 B1 EP0472991 B1 EP 0472991B1 EP 91113465 A EP91113465 A EP 91113465A EP 91113465 A EP91113465 A EP 91113465A EP 0472991 B1 EP0472991 B1 EP 0472991B1
Authority
EP
European Patent Office
Prior art keywords
electroviscous
component
liquid
liquids
evf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91113465A
Other languages
English (en)
French (fr)
Other versions
EP0472991A1 (de
Inventor
Robert Dr. Bloodworth
Günther Dr. Penners
Günter Dr. Oppermann
Roland Dr. Flindt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials GmbH
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT91113465T priority Critical patent/ATE99356T1/de
Publication of EP0472991A1 publication Critical patent/EP0472991A1/de
Application granted granted Critical
Publication of EP0472991B1 publication Critical patent/EP0472991B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/001Electrorheological fluids; smart fluids

Definitions

  • the invention relates to an electroviscous liquid, the viscosity of which is increased when a voltage is applied.
  • Electroviscous liquids are dispersions of finely divided solids in hydrophobic and electrically non-conductive oils, the viscosity of which changes very quickly and reversibly from the liquid to the plastic or solid state under the influence of a sufficiently strong electric field.
  • the viscosity reacts to both DC electrical fields and AC fields, whereby the current flow through the EVF should be very low.
  • EVF can be used wherever the transmission of large forces with the help of low electrical power is required, e.g. in couplings, hydraulic valves, shock absorbers, vibrators or devices for positioning and fixing workpieces.
  • the abrasiveness and settling stability of the disperse phase play an important role in practical use.
  • the disperse phase should not sediment as far as possible, but in any case it should be easy to redisperse and should not cause any abrasion even under extreme mechanical stress.
  • the increase in viscosity in an EVF when an electric field is applied can be explained qualitatively as follows:
  • the colloidally chemically stable disperse particles polarize in the electric field and agglomerate through dipole interaction in the field direction, which leads to an increase in viscosity.
  • the agglomeration is reversible: if the electric field is switched off, the particles redisperse and the viscosity is reduced to the original value.
  • the polarizability of the disperse phase is therefore an important prerequisite for the development of the electroviscous effect. For this reason, ionically or electronically conductive materials are often used as the disperse phase.
  • the disperse phase consists of organic solids, such as Saccharides (DE 2 530 694), starch (EP 284 268 A2, US 3 970 573), polymers (EP 150994, A1, DE 3 310 959 A1, GB 1 570 234, US 4 129 513, ion exchange resins (JP 92 278 / 975, JP 31 221/1985, US 3 047 507) or silicone resins (DE 3 912 888 A1), but inorganic materials such as Li hydrazine sulfate (US 4 772 407 A), zeolites (EP 265 252 A2 ), Silica gel (DE 3 517 281 A1, DE 3 427 499 A1) and aluminum silicates (DE 3 536 934 A1).
  • Saccharides DE 2 530 694
  • starch EP 284 268 A2, US 3 970 573
  • polymers EP 150994, A1, DE 3 310 959 A1, GB 1 570 234, US 4 129 513
  • the electroviscous effect of the substances mentioned is due to the loading of the solids with water. Small amounts of water increase the ionic conductivity, and thus the polarizability of the disperse particles, which is essential for the formation of the effect. However, hydrated systems have poor chemical stability. In addition, the temperature range in which these liquids can be used is limited.
  • the optimal properties of the disperse phase can be easily adjusted by varying the water content or by modifying the solid matrix.
  • patent specification DE 2 802 494 C2 describes an improvement in the electroviscous effect by introducing free or neutralized acid groups into a water-containing polymer phase.
  • the high conductivity of the feedstocks often requires post-treatment of the dispersion particles.
  • the passivation of carbon black-filled bead polymers by the subsequent coating of the polymer particles with polyvinylidene fluoride was described in the patent specification JP 016 093. Such post-treatments, however, greatly increase the manufacturing effort.
  • EVF corresponding to the prior art are generally obtained by dispersing a solid in a dispersion medium, such as e.g. halogen-free or halogenated hydrocarbons, aromatics or silicone oil.
  • a dispersion medium such as e.g. halogen-free or halogenated hydrocarbons, aromatics or silicone oil.
  • the viscosity of the resulting suspension depends on the shape and size, or the size distribution of the dispersed particles, and on the solids concentration and the dispersing action of any dispersing agents used. High volume-related solids contents with low viscosity are difficult to achieve when using non-spherical particles.
  • the object of the invention was to provide a water-free, non-abrasive, sedimentation-stable EVF with good electroviscous properties, which despite a high volume fraction of disperse phase is characterized by a low basic viscosity.
  • electroviscous liquids can be produced on the basis of anhydrous polymers which contain the dissolved electrolyte.
  • the electroviscous properties of these liquids can be adjusted over a wide range by the type and concentration of the electrolyte.
  • the electroviscous dispersions according to the invention are anhydrous and have a high dielectric strength.
  • the EVFs described are settling-stable and not abrasive and have low basic viscosities despite high volume fractions of the disperse phase.
  • the dispersion polymerization of electrolyte-containing monomers is particularly suitable as a process for producing the EVF according to the invention.
  • the polymerization should preferably be carried out in the dispersion medium which also represents the continuous phase of the EVF, since this eliminates the need for subsequent redispersion.
  • the water-free EVF according to the invention essentially contains the following substances (I) in the disperse phase: a liquid polymer or polymer mixture: (II) an electrolyte dissolved in (I) and optionally (III): one with the solution of (I) and (II ) miscible additive.
  • the mixture of substances and their starting products are also referred to as templates.
  • the template that is dispersed into the non-conductive liquid during the EVF manufacturing process should preferably be in liquid form. If necessary, the template can be chemically modified by adding suitable reagents (IV) before, during or after the dispersing step. This modification influences the consistency of the disperse phase in the finished EVF through the partial or complete implementation of the functional groups in the template.
  • a suitable dispersant (V) is used for the dispersion.
  • the size of the dispersed particles in the EVF according to the invention is between 0.1 and 200 ⁇ m.
  • the viscosity of the EVF is between 3 and 5000 cp at room temperature, depending on the composition of the liquid and the basic viscosity of the dispersion medium.
  • linear or cross-linked polyethers or their copolymers polyethylene adipate, polyethylene succinate and polyphosphazene.
  • polyethers or polymers which can be prepared by crosslinking di- or trifunctional polyether oligomers are particularly preferred.
  • linear polyether oligomers are polyethylene glycols, polypropylene glycols, statistical ethylene glycol-propylene glycol copolymers or else ethylene glycol-propylene glycol block copolymers, such as those e.g. are sold by GAF under the trade name "Pluronic".
  • Branched polyether oligomers are, for example, tris (polypropylene oxide) ⁇ -ol) glycidyl ether or other substances which are obtained by ethoxylation or propoxylation of higher-functionality hydroxy compounds, e.g. Pentaerythritol or 1,1,1-trimethylolpropane can be obtained.
  • the molecular weight of the glycols is between 62 and 1,000,000, but preferably between 100 and 10,000.
  • the oligomers can optionally contain functional end groups. Amines, allyl or vinyl groups, or also carboxyl groups are examples of such functional end groups.
  • Polyethylene or polypropylene mono- or diamines can be purchased under the trade name "Jeffamin" from TEXACO. Examples of products containing vinyl groups are the esters of glycols with corresponding acids, e.g. Acrylic acid.
  • Other preferred polymers are e.g. the polyesters among others by the company BAYER AG under the trade name "De
  • electrolytes (II) are substances which are soluble in the polymer (I) in molecular or ionic form.
  • electrolytes are, for example, free acids or their salts with alkali or alkaline earth metals or organic cations.
  • the electrolytes thus include salts such as KCl, LiNO3, CH3COONa, LiClO4, Mg (ClO4) 2, KSCN, LiBr, LiI, LiBF4, LiPF6, NaB (C6H5) 4, LiCF3SO3, N (C2H4) 4Cl etc.
  • Additives (III) in the sense of the invention are those compounds which, when mixed with (I) and (II), give a homogeneous, solid or liquid solution.
  • capped low molecular weight polyethers e.g. bismethylated trimethylolpropane or the esters of phthalic acid, suitable as an additive.
  • an additive (IV) for example crosslinking agent
  • a crosslinking agent for example crosslinking agent
  • a crosslinking agent for example crosslinking agent
  • viscous or solid particles are formed, the spherical geometry of which is retained during and after the reaction.
  • di- or multifunctional isocyanates are preferably used as crosslinking agents (IV).
  • Isocyanates of different structures are sold under the trade name "Desmodur” by the company BAYER AG.
  • the use of tolylene diisocyanate as crosslinking agent is particularly suitable.
  • the acetate, amine, benzamide, oxime and alkoxy crosslinkers customary in silicone chemistry can also be used for crosslinking. Radical crosslinking systems are suitable for the conversion of allyl or vinyl (acrylic or methacrylic) group-modified polymer templates.
  • the EVF according to the invention contains the disperse phase (the product from the initial charge and (IV)) in an amount of 10-95% by weight, but preferably in an amount of 40-70% by weight.
  • Dispersants (V) for the disperse phase which can be used are surfactants which are soluble in the dispersion medium and are derived, for example, from amines, imidazolines, oxazolines, alcohols, glycol or sorbitol. Polymers soluble in the dispersion medium can also be used. Suitable are, for example, polymers which contain 0.1 to 10% by weight of N and / or OH, and 25 to 83% by weight Contain C4-C24 alkyl groups and have a molecular weight in the range of 5000 to 1,000,000.
  • the N and OH-containing compounds in these polymers can be, for example, amine, amide, imide, nitrile, 5- to 6-membered N-containing heterocyclic rings or an alcohol, and the C4-C24-alkyl groups are esters of acrylic or methacrylic acid.
  • Examples of the N- and OH-containing compounds mentioned are N, N-dimethylaminoethyl methacrylate, tert-butyl acrylamide, maleimide, acrylonitrile, N-vinyl pyrrolidone, vinyl pyridine and 2-hydroxyethyl methacrylate.
  • the abovementioned polymeric dispersants generally have the advantage over the low molecular weight surfactants that the dispersions prepared with them are more stable with regard to the settling behavior.
  • polysiloxane-polyether copolymers are preferably used, as are available, for example, under the trade name "Tegopren” from GOLDSCHMIDT AG in Essen (FRG).
  • An example of a particularly preferred dispenser for the production of an EVF are polysiloxane polyethers with an ethylene oxide / propylene oxide weight ratio of 49:51, which are sold by GOLDSCHMIDT under the name "Tegopren 5830".
  • the reaction products of hydroxy-functional polysiloxanes with a wide variety of silanes are dispersants for the preparation of the EVF according to the invention.
  • Particularly preferred dispersants from this class of substances are the reaction products of a hydroxyl-functional polysiloxane with aminosilanes.
  • silicone oils such as polydimethylsiloxanes and liquid methylphenylsiloxanes are preferably used as the dispersion medium (VI) for the disperse phase. These can be used alone or in combination of two or more types.
  • the solidification point of the dispersion media is preferably set below -30 ° C, the boiling point above 150 ° C.
  • the viscosity of the oils is between 3 and 300 mm2 / s at room temperature.
  • the low-viscosity oils with a viscosity of 3 to 20 mm2 / s are preferred because they achieve a lower basic viscosity of the EVF.
  • the oil should also have a density that approximately corresponds to the density of the disperse phase.
  • fluorine-containing siloxanes which are used as pure substance or as a mixture with other silicone oils, to produce EVFs according to the invention which, despite their low basic viscosity, have no sedimentation for weeks.
  • the initial charge is mixed with the reactive additive or the crosslinking agent (IV).
  • the mixture is dispersed in a liquid phase containing the dispersant.
  • the dispersion should be carried out so that the particle size does not exceed 200 microns. If appropriate, after the dispersion has taken place, the product is allowed to react for a relatively long time at a suitable temperature, which is typically in a range of 15-150 ° C., depending on the reactivity of the crosslinking agent.
  • the crosslinking agent is only mixed into the dispersion after the dispersion process.
  • the disperse phase can be separated from the original dispersant after the reaction and transferred to a new dispersion medium.
  • the template is sprayed with or without surfactant or additive (IV) into a fine powder, and the resulting powder is subsequently dispersed into the liquid phase.
  • the electrode area of the inner rotating cylinder with a diameter of 0.50 mm is approx. 78 cm2, the gap between the electrodes is 0.50 mm.
  • the shear load can be set to a maximum of 2640 s ⁇ 1.
  • the measuring range of the shear stress of the viscometer is a maximum of 750 Pa. With this device, both static and dynamic measurements are possible.
  • the EVF can be excited with both DC voltage and AC voltage.
  • a constant shear rate 0 ⁇ D ⁇ 2640s ⁇ 1 is set and the dependence of the shear stress ⁇ on the electric field strength E is measured.
  • alternating fields up to a maximum effective field strength of 2370 kV / m at a maximum effective Current of 4 mA and a frequency between 50 and 550 Hz can be generated.
  • measurement is preferably carried out at 50 Hz, because then the total current is the lowest and the electrical power required is the lowest.
  • Flow curves corresponding to Fig. 1 are obtained. It can be seen that the shear stress ⁇ initially increases parabolically with small field strengths and linearly with larger field strengths.
  • the relative increase in viscosity determines the switching behavior of an EVF in practice and is therefore, in addition to the absolute effect S, an important parameter.
  • comparative approaches 1 to 5 correspond to the prior art.
  • the EVF described in Comparative Examples 1 to 3 contain water-containing polymers as the disperse phase bound to it covalently, free or neutralized acid groups. They are based on Examples 1, 2 and 7 of patent specification DE 2 820 494 C2.
  • the liquids described in these examples, which are representative of the patent, show good electroviscous effects, but have a high plastic viscosity, which means that the relative effect is significantly smaller.
  • the EVF described in Comparative Examples 4 and 5 contain anhydrous, differently coated aluminum particles as the disperse phase. They are taken from Japanese Laid-Open Specification 64-6093 (Examples 1 and 4 there). The EVF described have poor sedimentation properties due to the density and size of the disperse particles (> 20 ⁇ m).
  • Examples 1 to 10 are EVFs according to the invention.
  • the mean particle diameter is approximately 2 ⁇ m.
  • the maximum particle diameter is 6 ⁇ m.
  • the samples were measured at a temperature of 60 ° C.
  • Table I lists the electroviscous properties of the EVF according to the invention and their viscosity. Particularly noteworthy is the low basic viscosity of the liquids and the resulting high relative electroviscous effect.
  • Fig. 3 shows the course of the electroviscous effect S, and the viscosity of an EVF, produced according to Example 9, at a shear rate of 1000 s ⁇ 1 depending on the weight concentration of the disperse phase. It can be seen that the liquid according to the invention is characterized by low viscosities despite high solids concentrations.
  • Example 1 of DE 2 820 494 C2 30 vol% dispersion of a polyacrylic acid crosslinked with divinylbenzene in a polychlorinated diphenyl fraction.
  • the electroviscous effect at 30 ° C was between 975-1070 Pa ⁇ mm / kV.
  • Example 2 of DE 2 830 494 C2 30 vol% dispersion of a methacrylic acid crosslinked with divinylbenzene in a polychlorinated diphenyl fraction.
  • the electroviscous effect at 30 ° C. was 690 Pa ⁇ mm / kV.
  • Example 1 of Japanese Patent Application 64-6093 20% by volume dispersion of an aluminum oxide coated aluminum powder in TRIMEX T-08.
  • the electroviscous effect at an alternating voltage of 60 Hz was 327 Pa ⁇ mm / kV.
  • Example 4 of Japanese Laid-Open Publication 64-6093 20 vol.% Dispersion of an aluminum oxide coated aluminum powder in TRIMEX T-08.
  • the electroviscous effect at an alternating voltage of 60 Hz was 371 Pa ⁇ mm / kV.
  • 0.6 g of the dispersant is dissolved in 20 g of the dispersion medium in a beaker with a nominal volume of 100 ml.
  • 17.5 g of the glycol are mixed with 6.79 g of the crosslinker.
  • this amount of crosslinker leads to the stoichiometric conversion of the hydroxyl groups in the glycol and thus corresponds to an OH conversion of 100 mol%.
  • the reactive mixture of glycol and crosslinker is emulsified into the dispersant solution immediately after homogenization using a rotor-stator shear homogenizer (Ultra-Turrax T25 from IKA Labortechnik). The emulsification time at a rotational speed of the rotor of 10,000 rpm is 2 min. The samples were subsequently reacted at 90 ° C. for 15 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

  • Die Erfindung betrifft eine elektroviskose Flüssigkeit, deren Viskosität beim Anlegen einer Spannung erhöht wird.
  • Elektroviskose Flüssigkeiten (EVF) sind Dispersionen feinteiliger Feststoffe in hydrophoben und elektrisch nicht leitenden Ölen, deren Viskosität sich unter dem Einfluß eines hinreichend starken elektrischen Feldes sehr schell und reversibel vom flüssigen bis zum plastischen oder festen Zustand ändert. Die Viskosität reagiert sowohl auf elektrische Gleichfelder als auch auf Wechselfelder, wobei der Stromfluß durch die EVF sehr gering sein sollte. EVF lassen sich überall dort einsetzen, wo es der Übertragung großer Kräfte mit Hilfe geringer elektrischer Leistungen bedarf, wie z.B. in Kupplungen, Hydraulikventilen, Stoßdämpfern, Vibratoren oder Vorrichtungen zum Positionieren und Fixieren von Werkstücken.
  • Neben den allgemeinen an eine EVF gestellen Anforderungen, wie guter elektroviskoser Effekt, hohe Temperaturstabilität und chemische Beständigkeit spielen bei der praktischen Nutzung die Abrasivität und die Absetzstabilität der dispersen Phase eine wichtige Rolle. Die disperse Phase sollte möglichst nicht sedimentieren, sich jedoch in jedem Fall gut redispergieren lassen und auch unter extremer mechanischer Beanspruchung keinen Abrieb verursachen.
  • Der Viskositätsanstieg in einer EVF bei Anlegen eines elektrischen Feldes ist qualitativ folgendermaßen zu erklären: Die kolloidchemisch stabilen dispersen Teilchen polarisieren im elektrischen Feld, und agglomerieren durch Dipolwechselwirkung in der Feldrichtung, was zum Anstieg der Viskosität führt. Die Agglomeration ist reversibel: wird das elektrische Feld abgeschaltet, redispergieren die Teilchen und die Viskosität wird auf den ursprünglichen Wert erniedrigt. Die Polarisierbarkeit der dispersen Phase ist somit eine wichtige Voraussetzung für die Ausbildung des elektroviskosen Effektes. Deshalb werden oft ionisch oder elektronisch leitfähige Materialien als disperse Phase verwendet.
  • Bei einem Teil der EVF, die dem Stand der Technik entsprechen, besteht die disperse Phase aus organischen Feststoffen, wie z.B. Saccharide (DE 2 530 694), Stärke (EP 284 268 A2, US 3 970 573), Polymere (EP 150994, A1, DE 3 310 959 A1, GB 1 570 234, US 4 129 513, Ionenaustauscherharze (JP 92 278/975, JP 31 221/1985, US 3 047 507), oder Siliconharze (DE 3 912 888 A1). Es wurden aber auch anorganische Materialien, wie z.B. Li-Hydrazinsulfat (US 4 772 407 A), Zeolithe (EP 265 252 A2), Silicagel (DE 3 517 281 A1, DE 3 427 499 A1) und Aluminiumsilicate (DE 3 536 934 A1) eingesetzt.
  • Der elektroviskose Effekt ist bei den genannten Substanzen auf die Beladung der Feststoffe mit Wasser zurückzuführen. Geringe Wasseranteile erhöhen die ionische Leitfähigkeit, und somit die für die Ausbildung des Effektes unerläßliche Polarisierbarkeit der dispersen Teilchen. Wasserhaltige Systeme haben jedoch eine geringe chemische Stabilität. Außerdem ist der Temperaturbereich, in dem diese Flüssigkeiten eingesetzt werden können, beschränkt.
  • Bei anderen elektroviskosen Flüssigkeiten wurde versucht, die genannten Nachteile dadurch zu beheben, daß man die wasserhaltige disperse Phase durch eine praktisch wasserfreie, elektronisch leitfahige Phase ersetzt, die aus, zum Teil beschichteten, feindispersen Metallen wie z.B. Aluminium (JP 016 093, JP 0117 2496), oder Dielektrica wie z.B. TiO₂ (SU 715 596), CaTiO₃ oder BaTiO₃ (JP 53/17585), Hydrolysaten von Metall-Alkoxiden (EP 341 737 oder Glashohlkörpern (J 0117 2496) besteht. Die beschriebenen EVF sind jedoch, bedingt durch die Härte der dispergierten Teilchen abrasiv und dadurch für praktische Anwendungen, bei denen hohe Scherbeanspruchungen auftreten, nur bedingt brauchbar. Auch rußgefüllte Perlpolymerisate (JP 016 093), oder leitfähige Polymeren, wie z.B. Polypyrol oder Polyacetylen (JP 0126 0710) wurden als Ersatz für die wasserhaltige Phase diskutiert.
  • Bei den wasserhaltigen Systemen lassen sich die optimalen Eigenschaften der dispersen Phase, durch Variation des Wassergehaltes oder durch Modifikation der Feststoffmatrix, gut einstellen. So wurde in der Patentschrift DE 2 802 494 C2 eine Verbesserung des elektroviskosen Effektes durch das Einbringen von freien oder neutralisierten Säuregruppen in eine wasserhaltige polymere Phase beschrieben. Bei der Herstellung von EVF auf der Basis elektronisch leitfähiger disperser Phasen bedarf es, bedingt durch die hohe Leitfähigkeit der Einsatzstoffe, oft einer Nachbehandlung der Dispersionsteilchen. So wurde in der Patentschrift JP 016 093 die Passivierung von rußgefüllten Perlpolymerisaten durch die nachträgliche Beschichtung der Polymerpartikel mit Polyvinylidenfluorid beschrieben. Durch solche Nachbehandlungen wird der Herstellungsaufwand jedoch stark erhöht.
  • Die obengenannten, dem Stand der Technik entsprechenden EVF werden in der Regel durch eindispergieren eines Feststoffes in ein Dispersionsmedium, wie z.B. halogenfreie bzw. halogenierte Kohlenwasserstoffe, Aromate oder Silikonöl, hergestellt. Die Viskosität der entstehenden Suspension hängt dabei ab von der Form und der Größe, bzw. der Größenverteilung der dispergierten Teilchen, sowie von der Feststoffkonzentration und der Dispergierwirkung eventuell eingesetzter Dispergierhilfsmittel. Hohe volumenbezogene Feststoffgehalte bei geringer Viskosität sind bei der Verwendung nicht sphärischer Teilchen nur schwer zu erreichen.
  • Aufgabe der Erfindung war es, eine wasserfreie, nicht-abrasive, sedimentationsstabile EVF mit guten elektroviskosen Eigenschaften bereitzustellen, die sich trotz hohen Volumenanteils an disperser Phase durch eine geringe Basisviskosität auszeichnet.
  • Es wurde gefunden, daß auf der Basis von wasserfreien Polymeren die gelösten Elektrolyt enthalten, solche elektroviskose Flüssigkeiten hergestellt werden können. Die elektroviskosen Eigenschaften dieser Flüssigkeiten lassen sich durch die Art und die Konzentration des Elektrolyten über weite Bereiche gezielt einstellen. Darüber hinaus sind die erfindungsgemäßen elektroviskosen Dispersionen wasserfrei und haben eine hohe elektrische Durchschlagsfestigkeit. Als weiterer Vorteil ist hervorzuheben, daß die beschriebenen EVF absetzstabil und nicht abrasiv sind und trotz hoher Volumenanteile an disperser Phase geringe Basisviskositäten aufweisen. Als Verfahren zur Herstellung der erfindungsgemäßen EVF ist die Dispersionspolymerisation von elektrolythaltigen Monomeren besonders geeignet. Die Polymerisation sollte vorzugsweise in dem Dispersionsmedium durchgeführt werden, daß auch die kontinuierliche Phase der EVF darstellt, da hierdurch eine nachträgliche Umdispergierung entfällt.
  • Die erfindungsgemäße wasserfreie EVF enthält in der dispersen Phase im Wesentlichen folgende Substanzen (I): ein flüssiges Polymer oder POlymergemisch: (II) ein in (I) gelöstes Elektrolyt und gegebenenfalls (III): ein mit der Lösung aus (I) und (II) mischbares Additiv.
  • Das Substanzgemisch bzw. ihre Ausgangsprodukte werden des Weiteren als Vorlage bezeichnet. Die Vorlage, die während des Herstellungsprozesses der EVF in die nicht leitende Flüssigkeit eindispergiert wird, sollte vorzugsweise in flüssiger Form vorliegen. Gegebenenfalls kann die Vorlage, durch die Zugabe geeigneter Reagenzien (IV) vor, während oder nach dem Dispergierschritt chemisch modifiziert werden. Diese Modifizierung beeinflußt durch die teilweise oder völlige Umsetzung der funktionellen Gruppen in der Vorlage, die Konsistenz der dispersen Phase in der fertigen EVF.
  • Um bei der Verwendung flüssiger Phasen Koaleszenz zu vermeiden, wird bei der Dispergierung ein geeignetes Dispergiermittel (V) verwendet. Die Größe der dispergierten Teilchen in der erfindungsgemäßen EVF beträgt zwischen 0,1 und 200 µm. Die Viskosität der EVF beträgt bei Raumtemperatur, je nach Zusammensetzung der Flüssigkeit und der Basisviskosität des Dispersionsmedium, zwischen 3 und 5000 cp.
  • Als Polymere (I) können im Prinzip alle Substanzen verwendet werden, die eine Elektrolytlöslichkeit aufweisen wie z.B. lineare oder vernetzte Polyether oder deren Copolymerisate, Polyethylenadipat, Polyethylensuccinat und Polyphosphazen. Besonders bevorzugt sind jedoch Polyether oder Polymere, die durch Vernetzung von di- oder trifunktionellen Polyetheroligomeren hergestellt werden können. Beispiele linearer Polyetheroligomere sind Polyethylenglycole, Polypropylenglycole, statistische Ethylenglycol-Propylenglycol-Copolymerisate oder auch Ethylenglycol-Propylenglycol-Blockcopolymerisate, wie sie z.B. unter dem Handelsnamen "Pluronic" von der Firma GAF vertrieben werden. Verzweigte Polyetheroligomere sind beispielsweise Tris(polypropylenoxid)ω-ol)glycidylether oder andere Substanzen, die durch Ethoxylierung oder Propoxylierung von höherfunktionellen Hydroxyverbindungen, wie z.B. Pentaerythrit oder 1,1,1-Trimethylolpropan erhalten werden. Das Molekulargewicht der Glycole liegt zwischen 62 und 1.000.000, vorzugsweise jedoch zwischen 100 und 10.000. Gegebenenfalls können die Oligomere funktionelle Endgruppen enthalten. Amine, Allyl- bzw. Vinylgruppen, oder auch Carboxylgruppen stellen Beispiele solcher funktioneller Endgruppen dar. Polyethylen- bzw. Polypropylen-mono- oder Diamine sind unter dem Handelsnamen "Jeffamin" bei der Firma TEXACO zu erwerben. Beispiele vinylgruppenhaltiger Produkte sind die Ester der Glycole mit entsprechenden Säuren, z.B. Acrylsäure. Weitere bevorzugte Polymere sind z.B. die Polyester die u.A. durch die Firma BAYER AG unter dem Handelsnamen "Desmophen" vertrieben werden.
  • Elektrolyte (II) im Sinne der Erfindung sind solche Substanzen, die in molekularer, bzw. ionischer Form im Polymer (I) löslich sind. Beispiele solcher Elektrolyte sind z.B. freie Säuren, bzw. deren Salze mit Alkali- bzw. Erdalkalimetallen oder organischen Kationen. Zu den Elektrolyten gehören somit Salze wie KCl, LiNO₃, CH₃COONa, LiClO₄, Mg(ClO₄)₂, KSCN, LiBr, LiI, LiBF₄, LiPF₆, NaB(C₆H₅)₄, LiCF₃SO₃, N(C₂H₄)₄Cl usw.
  • Additive (III) im Sinne der Erfindung sind solche Verbindungen die gemischt mit (I) und (II) eine homogene, feste oder flüssige, Lösung ergeben. So sind z.B. bei der Verwendung eines Polyethers als Polymer, verkappte niedermolekulare Polyether, wie z.B. bismethyliertes Trimethylolpropan oder die Ester der Phthalsäure, als Additiv geeignet.
  • Bei der Verwendung flüssiger Vorlagen wird gegebenenfalls vor, bzw. nach der Emulgierung der Vorlage dem System ein Additiv (IV) (z.B. Vernetzer) zugesetzt, das durch Reaktion mit den funktionellen Endgruppen der Verbindungen (I), zum Molekulargewichtsaufbau in den Emulsionströpfchen, oder auch zur Reduzierung der Zahl der funktionellen Endgruppen führt. Je nach Art und Menge der eingesetzten Mischkomponenten und des Additivs bilden sich viskose oder feste Teilchen, deren kugelförmige Geometrie während und nach der Reaktion erhalten bleibt.
  • Enthält die Vorlage ein Glycol als Komponente (I), werden vorzugsweise di- oder multifunktionelle Isocyanate als Vernetzer (IV) eingesetzt. Isocyanate unterschiedlicher Struktur werden unter dem Handelsnamen "Desmodur" durch die Firma BAYER AG vertrieben. Bei der Verwendung von tri- oder höherfunktionellen Glycolen ist der Einsatz von Toluylen-diisocyanat als Vernetzer besonders geeignet. Zur Vernetzung sind jedoch auch die in der Siliconchemie gängigen Acetat-, Amin-, Benzamid-, Oxim- und Alkoxyvernetzer einsetzbar. Für den Umsatz von allyl, bzw. vinyl-(acryl- bzw. methacryl-)gruppenmodifizierte Polymervorlagen sind radikalische Vernetzersysteme geeignet.
  • In den erfindungsgemäßen EVF ist die disperse Phase (das Produkt aus Vorlage und (IV), zu 10-95 Gew.-%, vorzugsweise jedoch zu 40-70 Gew.-% enthalten.
  • Als Dispergiermittel (V) für die disperse Phase können im Dispersionsmedium lösliche Tenside verwendet werden, die z.B. von Aminen, Imidazolinen, Oxazolinen, Alkoholen, Glycol oder Sorbitol abgeleitet sind. Auch können im Dispersionsmedium lösliche Polymere eingesetzt werden. Geeignet sind z.B. Polymere, welche 0,1 bis 10 Gew.-% N und/oder OH, sowie 25 bis 83 Gew.-% C₄-C₂₄-Alkylgruppen enthalten und ein Molekulargewicht im Bereich von 5000 bis 1.000.000 aufweisen. Die N und OH-haltigen Verbindungen in diesen Polymeren können z.B. Amin-, Amid-, Imid-, Nitril-, 5- bis 6-gliedrige N-haltige heterocyclische Ringe, bzw. ein Alkohol sein, und die C₄-C₂₄-Alkylgruppen Ester von Acryl- oder Methacrylsäure. Beispiele für die genannten N- und OH-haltigen Verbindungen sind N,N-Dimethylaminoethylmethacrylat, tert.-Butylacrylamid, Maleinimid, Acrylnitril, N-Vinylpyrrolidon, Vinylpyridin und 2-Hydroxyethylmethacrylat. Die vorgenannten polymeren Dispergiermittel haben gegenüber den niedermolekularen Tensiden im Allgemeinen den Vorteil, daß die hiermit hergestellten Dispersionen bezüglich des Absetzverhaltens stabiler sind.
  • Für die Dispergierung in Siliconöl werden jedoch bevorzugt Polysiloxan-Polyether-Copolymere verwendet, wie sie beispielsweise unter dem Handelsnamen "Tegopren" bei der Firma GOLDSCHMIDT AG in Essen (BRD) verfügbar sind. Ein Beispiel eines besonders bevorzugten Dispermittels für die Herstellung einer EVF sind Polysiloxan Polyether mit einem Ethylenoxid-Propylenoxid-Gewichtsverhältnis von 49:51, die bei der Firma GOLDSCHMIDT unter dem Namen "Tegopren 5830" geführt werden.
  • Neben den Polyether-Polysiloxanen stellen die Reaktionsprodukte von hydroxyfunktionellen Polysiloxanen mit den unterschiedlichsten Silanen Dispergiermittel zur Herstellung der erfindungsgemäßen EVF dar. Besonders bevorzugte Dispergiermittel aus dieser Substanzklasse sind die Umsetzungsprodukte eines hydroxifunktionellen Polysiloxans mit Aminosilanen.
  • Als Dispersionsmedium (VI) für die disperse Phase werden, neben flüssigen Kohlenwasserstoffen, wie z.B. Paraffine, Olefine und aromatische Kohlenwasserstoffe, vorzugsweise Silikonöle wie Polydimethylsiloxane und flüssige Methylphenylsiloxane verwendet. Diese können allein, oder in Kombination aus zwei oder mehreren Arten eingesetzt werden. Der Erstarrungspunkt der Dispersionsmedien wird vorzugsweise niedriger als -30°C eingestellt, der Siedepunkt größer als 150°C.
  • Die Viskosität der Öle liegt bei Raumtemperatur zwischen 3 und 300 mm²/s. Im allgemeinen sind die niedrigviskosen Öle mit einer Viskosität von 3 bis 20 mm²/s zu bevorzugen, weil hiermit eine niedrigere Grundviskosität der EVF erreicht wird.
  • Um Sedimentation zu vermeiden, sollte das Öl außerdem eine Dichte haben, die annähernd der Dichte der dispersen Phase entspricht. So lassen sich, z.B. durch die Verwendung von fluorhaltigen Siloxanen, die als Reinsubstanz oder als Gemisch mit anderen Siliconölen eingesetzt werden, erfindungsgemäße EVF herstellen, die trotz geringer Basisviskosität auch über Wochen hinaus keine Sedimentation aufweisen.
  • Besonders geeignet zur Herstellung sedimentationsstabiler EVF sind fluorhaltige Siloxane der allgemeinen Struktur:
    Figure imgb0001

    n = 1-10
    m = 2-18
    p = 1-5
  • Bei einer typischen Art der Herstellung der erfindungsgemäßen EVF wird die Vorlage mit dem reaktiven Additiv bzw. dem Vernetzer (IV) vermischt. Nach Homogenisierung der Komponenten wird das Gemisch in einer, das Dispergiermittel enthaltenden, flüssigen Phase dispergiert. Hierzu können, um einen entsprechenden Dispergiergrad zu erreichen, Scherhomogenisatoren, Hochdruckhomogenisatoren oder Ultraschall verwendet werden. Die Dispergierung sollte jedoch so durchgeführt werden, daß die Teilchengröße 200 µm nicht überschreiten. Gegebenenfalls läßt man nach erfolgter Dispergierung das Produkt bei einer geeigneter Temperatur, die abhängig von der Reaktivität des Vernetzers typischerweise in einem Bereich von 15-150°C liegt, über längere Zeit ausreagieren.
  • Bei einer alternativen Herstellungsweise wird der Vernetzer erst nach dem Dispergiervorgang in die Dispersion eingemischt.
  • Gegebenenfalls kann man, unabhängig von der Herstellungsweise, die disperse Phase nach der Reaktion von dem ursprünglichen Dispergiermittel trennen und in ein neues Dispersionsmedium überführen.
  • Bei einer anderen Art der Herstellung wird die Vorlage mit oder ohne Tensid, bzw. Additiv (IV) zu einem feinen Pulver versprüht, und das entstandene Pulver nachträglich in die flüssige Phase eindispergiert.
  • Die so hergestellten EVF wurden in einem modifizierten Rotationsviskosimeter, wie es bereits von W.M. Winslow in J. Appl. Phys. 20(1949), Seite 1137-1140 beschrieben wurde, untersucht.
  • Die Elektrodenfläche des inneren rotierenden Zylinders mit einem Durchmesser von 0,50 mm beträgt ca. 78 cm², die Spaltweite zwischen den Elektroden 0,50 mm. Bei den dynamsichen Messungen kann die Scherbelastung mit maximal 2640 s⁻¹ eingestellt werden. Der Meßbereich der Schubspannung des Viskosimeters beträgt maximal 750 Pa. Mit dieser Apparatur sind sowohl statische als auch dynamische Messungen möglich. Die Anregung der EVF kann sowohl mit Gleichspannung als auch mit Wechselspannung erfolgen.
  • Bei Anregung mit Gleichspannung können bei einigen Flüssigkeiten neben der spontanen Erhöhung der Viskosität oder der Fließgrenze beim Einschalten des Feldes auch noch elektrophoretische Abscheidevorgänge der festen Teilchen auf den Elektrodenoberflächen wahrgenommen werden, insbesondere bei kleinen Schergeschwindigkeiten, bzw. bei statischen Messungen. Daher wird die Prüfung der EVF bevorzugt mit Wechselspannung und bei dynamischer Scherbeanspruchung durchgeführt. Man erhält so gut reproduzierbare Fließkurven.
  • Zur Bestimmung der Elektroreaktivität stellt man eine konstante Schergeschwindigkeit 0<D<2640s⁻¹ ein und mißt die Abhängigkeit der Schubspannung τ von der elektrischen Feldstärke E. Mit der Prüfapparatur können Wechselfelder bis zu einer maximalen effektiven Feldstärke von 2370 kV/m bei einem maximalen effektiven Strom von 4 mA und einer Frequenz zwischen 50 und 550 Hz erzeugt werden. Vorzugsweise wird jedoch bei 50 Hz gemessen, weil dann der Gesamtstrom am niedrigsten, und dadurch die benötigte elektrische Leistung am geringsten ist. Man erhält dabei Fließkurven entsprechend der Abb.1. Man erkennt, daß die Schubspannung τ bei kleinen Feldstärken zunächst parabelförmig und bei größeren Feldstärken linear ansteigt. Die Steigung S des linearen Teils der Kurve kann aus der Abbildung entnommen werden und wird in Pa·mm/kV angegeben. Aus dem Schnittpunkt der Geraden S mit der Geraden τ=τo (Schubspannung ohne elektrisches Feld) wird der Schwellwert Eo der elektrischen Feldstärke, in kV/m bestimmt. Für die Erhöhung der Schubspannung τ(E)-τo im elektrischen Feld E> Eo gilt: τ(E)-τ o =S(E-E o ).
    Figure imgb0002
  • Hieraus ergibt sich für die relative Viskositätszunahme, Vr(E), die durch Anlegen eines elektrischen Feldes mit Feldstärke E erreicht wird, folgende Beziehung: V r (E)=τ(E)/τ o =(τ o +S(E-E o ))/τ o .
    Figure imgb0003
  • Die relative Viskositätszunahme bestimmt das Schaltverhalten einer EVF in der Praxis und ist somit, neben dem absolutem Effekt S eine wichtige Kenngröße.
  • Bei den nachfolgend beschriebenen Ausführungsbeispielen entsprechen die Vergleichsansätze 1 bis 5 dem Stand der Technik. Die in den Vergleichsbeispielen 1 bis 3 beschriebenen EVF enthalten als disperse Phase wasserhaltige Polymere, mit daran kovalent gebunden, freie oder neutralisierte Säuregruppen. Ihnen liegen die Beispiele 1, 2 und 7 der Patentschrift DE 2 820 494 C2 zugrunde. Die in diesen Beispielen beschriebenen, für das Patent representativen, Flüssigkeiten zeigen gute elektroviskose Effekte, weisen aber eine hohe plastische Viskosität auf, wodurch der relative Effekt deutlich kleiner ausfällt.
  • Die in den Vergleichsbeispielen 4 und 5 beschriebenen EVF enthalten als disperse Phase wasserfreie, unterschiedlich beschichtete Aluminiumteilchen. Sie sind der japanischen Offenlegunggschrift 64-6093 (dort Beispiele 1 und 4) entnommen. Die beschriebenen EVF haben, bedingt durch die Dichte und Größe der dispersen Teilchen (>20 µm) schlechte Sedimentationseigenschaften.
  • Bei den Beispielen 1 bis 10 handelt es sich um erfindungsgemäße EVF. Bei allen beschriebenen Proben beträgt der mittlere Teilchendurchmesser ungefähr 2 µm. Der maximale Teilchendurchmesser beträgt 6 µm. Die Proben wurden bei einer Temperatur von 60°C vermessen.
  • In Tabelle I sind die elektroviskosen Eigenschaften der erfindungsgemäßen EVF, sowie deren Viskosität aufgeführt. Besonders hervorzuheben ist die niedrige Basisviskosität der Flüssigkeiten, und der dadurch bedingte hohe relative elektroviskose Effekt.
  • In Abb. 2 ist für LiNO₃-haltige, auf der Basis von vernetzen Glycolen hergestellte EVF (Beispiele 1 bis 6), der Zusammenhang zwischen dem elektroviskosen Effekt S, und den auf den Ethylenoxidgehalt bezogenen molaren Li-Anteil grafisch dargestellt.
  • Abb. 3 zeigt den Verlauf des elektroviskosen Effektes S, sowie der Viskosität einer EVF, hergestellt gemäß Beispiel 9, bei einer Schergeschwindigkeit von 1000 s⁻¹ in Abhängigkeit von der Gewichtskonzentration der dispersen Phase. Es zeigt sich, daß sich die erfindungsgemäße Flüssigkeit trotz hoher Feststoffkonzentrationen durch geringe Viskositäten kennzeichnet.
  • Ausführungsbeispiele
  • Dispersionsmedium :
    Polydimethylsiloxan (Siliconöl)
    Viskosität bei 25°C   :   5 mm²/s
    Dichte bei 25°C:   :   0,9 g/cm³
    Dielektrizitätszahl
    εr nach DIN 53483
    bei 0°C und 50 Hz   :   2,8
    Dispergierte Phase :
    Trifunktionelles Polyethylenglykol mit einem Molekulargewicht von 675, hergestellt durch Ethoxylierung von Trimethylolpropan
    Dispergiermittel :
    Rektionsprodukt aus 100 Gew.-Teilen eines OH-endgestoppten Polydimethylsiloxans mit einem Molekulargewicht von 18200 und einem Gew.-Teil Aminopropyltriethoxysilan
    Vernetzer :
    Toluylen-Diisocyanat (TDI)
    Vergleichsbeispiel 1
  • Beispiel 1 der DE 2 820 494 C2: 30 Vol-%ige Dispersion einer mit Divinylbenzol vernetzten Polyacrylsäure in einer polychlorierten Diphenylfraktion. Abhängig von Wassergehalt (1.3-5 Gew.-%) betrug der elektroviskose Effekt bei 30°C zwischen 975-1070 Pa·mm/kV. Die plastische Viskosität betrug 220 mPa.s. Vr (3000) = 10.7-12.6.
  • Vergleichsbeispiel 2
  • Beispiel 2 der DE 2 830 494 C2: 30 Vol-%ige Dispersion einer mit Divinylbenzol vernetzten Methacrylsäuresäure in einer polychlorierten Diphenylfrakion. Bei einem Wassergehalt < 6,2 Gew.-% betrug der elektroviskose Effekt bei 30°C, 690 Pa·mm/kV. Die plastische Viskosität betrug 260 mPa.s Vr (3000) = 8,1.
  • Vergleichsbeispiel 3
  • Beispiel 7 der DE 2 820 494 C2: 30 Vol-%ige Dispersion von Lithium/Chrom-Polymethacrylat in einer polychlorierten Diphenylfraktion. Bei Umgebungsfeuchte betrug der elektroviskose Effekt bei 30°C 1960 Pa·mm/kV. Die plastische Viskosität betrug 236 mPa.s Vr (3000) = 17,9.
  • Vergleichsbeispiel 4
  • Beispiel 1 der japanischen Offenlegungsschrift 64-6093: 20 Vol-%ige Dispersion eines mit Aluminiumoxid beschichteten Aluminiumpulver in TRIMEX T-08. Der elektroviskose Effekt bei einer Wechselspannung von 60 Hz betrug 327 Pa·mm/kV.
  • Vergleichsbeispiel 5
  • Beispiel 4 der japanischen Offenlegunggschrift 64-6093: 20 Vol-%ige Dispersion eines mit Aluminiumoxid beschichteten Aluminiumpulver in TRIMEX T-08. Der elektroviskose Effekt bei einer Wechselspannung von 60 Hz betrug 371 Pa·mm/kV.
  • Vergleichsbeispiel 6
  • In einem Becherglas mit einem Nennvolumen von 100 ml werden 0,6 g des Dispergiermittels in 20 g des Dispersionsmediums gelöst. In einem zweiten Becherglas werden 17,5 g des Glycols mit 6,79 g des Vernetzers vermischt. Diese Vernetzermenge führt bei einer quantitativen Reaktion zum stöchiometrischen Umsatz der Hydroxylgruppen im Glykol und entspricht somit einem OH-Umsatz von 100 Mol-%. Das reative Gemisch aus Glycol und Vernetzer wird sofort nach der Homogenisierung mittels eines Rotor-Stator-Scherhomogenisators (Ultra-Turrax T25 der Firma IKA Labortechnik) in die Dispergiermittel-Lösung emulgiert. Die Emulgierzeit bei einer Umlaufgeschwindigkeit des Rotors von 10.000 U/min beträgt 2 min. Nachträglich wurden die Proben 15 Stunden bei 90°C durchreagiert.
  • Beispiel 1
  • Entsprechend der unter Vergleichsbeispiel 6 angegebenen Arbeitsweise wurden eine EVF hergestellt, in dem Glycol wurde jedoch vor der weiteren Verarbeitung 0,0273 g festes, wasserfreies LiNO₃ gelöst. Dies entspricht, bezogen auf die Zahl der Ethylenoxideinheiten im Glycol, einem Molaren Li:EO-Verhältnis von 1:1000.
  • Beispiel 2
  • Herstellung gemäß Beispiel 1, jedoch mit 0,109 g LiNO₃ (Li:EO-Verhältnis 4:1000).
  • Beispiel 3
  • Herstellung gemäß Beispiel 1, jedoch mit 0,218 g LiNO₃ (Li:EO-Verhältnis 8:1000).
  • Beispiel 4
  • Herstellung gemäß Beispiel 1, jedoch mit 0,328 g LiNO₃ (Li:EO-Verhältnis 12:1000).
  • Beispiel 5
  • Herstellung gemäß Beispiel 1, jedoch mit 0,564 g LiNO₃ (Li:EO-Verhältnis 20:1000).
  • Beispiel 6
  • Herstellung gemäß Beispiel 1, jedoch wurde als Elektrolyt 1,253 g Nonansäure verwendet (H:EO-Verhältnis 2:1000).
  • Beispiel 7
  • Herstellung gemäß Beispiel 1, jedoch wurde als Elektrolyt 1,313 g Tetraethylammoniumchlorid verwendet (N(CH₃-CH₂)₄:EO-Verhältnis 2:1000).
  • Beispiel 8
  • Herstellung gemäß Vergleichsbeispiel 7, jedoch mit 0,0273 g LiNO₃ (Li:EO-Verhältnis 2:1000).
  • Beispiel 9
  • 3,9 g LiNO₃ wurden in 305,46 g Glykol gelöst. Diese Lösung wurde mit 116,4 g Vernetzer gemischt, und gemäß Vergleichsbeispiel 6 in eine Lösung aus 6 g Dispergiermittel in 200 g Siliconöl dispergiert bzw. weiterverarbeitet. Der Feststoffgehalt dieser EVF wurde durch Zugabe von Siliconöl auf Werte zwischen 39 und 64 % eingestellt. Der Verlauf des elektroviskosen Effektes S und der Viskosität der EVF bei einer Schergeschwindigkeit von 1000 s⁻¹ ist in Abb. 3 dargestellt.
    Figure imgb0004

Claims (10)

  1. Wasserfreie elektroviskose Flüssigkeiten, enthaltend im wesentlichen
    A) ein flüssiges Polymer oder Polymergemisch,
    B) ein in A) gelöster Elektrolyt,
    C) gegebenenfalls ein mit der Lösung aus A) und B) mischbares Additiv,
    D) ein Dispergiermittel, sowie
    E) ein nicht-wäßriges Dispersionsmedium.
  2. Elektroviskose Flüssigkeiten gemäß Anspruch 1, dadurch gekennzeichnet, daß A) aus linearen oder verzweigten, gegebenenfalls funktionalisierten Polyethern oder deren Oligomonomeren, oder dem Umsetzungsprodukt solcher Polyethers bzw. der Oligomonomere mit mono- oder oligofunktionellen Verbindungen besteht.
  3. Elektroviskose Flüssigkeiten gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß A), bzw. dessen Monomeren, bzw. oligomeren Ausgangssubstanzen während des Dispergiervorganges in flüssiger Form vorliegen, gegebenenfalls jedoch durch den Zusatz von reaktiven Additiven vor, während oder nach der Dispergierung in eine höherviskose, bzw. feste Form überführt werden.
  4. Elektroviskose Flüssigkeit gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Komponente E) ein Siliconöl enthält.
  5. Elektroviskose Flüssigkeit gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Komponente E) ein fluorhaltiges Siloxan enthält.
  6. Elektrovikose Flüssigkeit gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Komponente E) einen Kohlenwasserstoff enthält.
  7. Elektroviskose Flüssigkeiten gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie als Komponente D) ein Polysiloxan-Polyether-Co-polymerisat enthält.
  8. Elektroviskose Flüssigkeiten gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie als Komponente D) gegebenenfalls ein Aminogruppenhaltiges Alkoxy- bzw. ein Acetoxypolysiloxan enthält.
  9. Elektroviskose Flüssigkeiten gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß Komponente I) gegebenenfalls ein Polyethylenglykol, Polypropylenglykol oder ein Ethylen-Propylen-Copolymerisat und Komponente (IV) ein di- oder multifunktionelles Isocyanat ist .
  10. Verfahren zur Herstellung elektroviskoser Flüssigkeiten durch Dispergieren von elektrisch polymerisierbaren Teilchen in einem nicht wässrigen Dispersionsmedium unter Anwendung eines Dispergiermittels, dadurch gekennzeichnet, daß die elektrisch polymerisierbaren Teilchen durch Dispergieren eines flüssigen Polymers oder Polymergemisches erzeugt werden, das einen Elektrolyt gelöst enthält, wobei ferner ein die Vernetzung des Polymers bzw. Polymergemisches bewirkendes Additiv eingesetzt wird.
EP91113465A 1990-08-25 1991-08-12 Elektroviskose Flüssigkeiten auf der Basis von Polymerdispersionen mit elektrolythaltiger disperser Phase Expired - Lifetime EP0472991B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT91113465T ATE99356T1 (de) 1990-08-25 1991-08-12 Elektroviskose fluessigkeiten auf der basis von polymerdispersionen mit elektrolythaltiger disperser phase.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4026881 1990-08-25
DE4026881A DE4026881A1 (de) 1990-08-25 1990-08-25 Elektroviskose fluessigkeiten auf der basis von polymerdispersionen mit elektrolythaltiger disperser phase

Publications (2)

Publication Number Publication Date
EP0472991A1 EP0472991A1 (de) 1992-03-04
EP0472991B1 true EP0472991B1 (de) 1993-12-29

Family

ID=6412885

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91113465A Expired - Lifetime EP0472991B1 (de) 1990-08-25 1991-08-12 Elektroviskose Flüssigkeiten auf der Basis von Polymerdispersionen mit elektrolythaltiger disperser Phase

Country Status (9)

Country Link
US (1) US5268118A (de)
EP (1) EP0472991B1 (de)
JP (1) JP2660123B2 (de)
AT (1) ATE99356T1 (de)
BR (1) BR9103640A (de)
CA (1) CA2049719A1 (de)
DE (2) DE4026881A1 (de)
ES (1) ES2061137T3 (de)
RU (1) RU2109776C1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011018177A1 (de) 2011-04-19 2012-10-25 Raino Petricevic Paste und deren Verwendung
WO2013131659A1 (de) 2012-03-09 2013-09-12 Fludicon Gmbh Elektrorheologische zusammensetzungen

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496483A (en) * 1989-12-14 1996-03-05 Bayer Ag Electroviscous liquid based on dispersed modified polyethers
DE4119670A1 (de) * 1991-06-14 1992-12-17 Bayer Ag Elektroviskose fluessigkeit auf basis von polyetheracrylaten als disperse phase
EP0529166A1 (de) * 1991-08-29 1993-03-03 Nippon Shokubai Co., Ltd. Elektrorheologische Flüssigkeiten
DE4131142A1 (de) * 1991-09-19 1993-03-25 Bayer Ag Elektroviskose fluessigkeit
JP3352760B2 (ja) * 1993-06-16 2002-12-03 日本メクトロン株式会社 電気粘性流体の製造方法
JP3352759B2 (ja) * 1993-06-16 2002-12-03 日本メクトロン株式会社 電気粘性流体の製造方法
US6065572A (en) * 1995-11-13 2000-05-23 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids
US5843331A (en) * 1995-11-13 1998-12-01 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids
DE19632430C1 (de) * 1996-08-12 1998-02-12 Bayer Ag Verfahren zur Herstellung von nicht-wäßrigen Dispersionen und deren Verwendung
DE19717693A1 (de) 1997-04-26 1998-10-29 Schenck Ag Carl Stell- und Dämpfervorrichtung
DE19735898A1 (de) 1997-08-19 1999-02-25 Schenck Ag Carl Ventil und Stoßdämpfer auf Basis elektrorheologischer Flüssigkeiten
DE19735897A1 (de) * 1997-08-19 1999-02-25 Bayer Ag Kupplung
DE10320973B4 (de) * 2003-05-09 2006-04-27 Siemens Ag Bildgebendes Tomographie-Gerät und Verfahren zur Verminderung einer Unwucht an einem Tomographie-Gerät
DE10320974B4 (de) * 2003-05-09 2005-12-01 Siemens Ag Verfahren zur Verminderung einer Unwucht und Verwendung einer elektro-rheologischen Flüssigkeit zur Verminderung einer Unwucht
DE102006031738A1 (de) * 2006-07-10 2008-01-17 Kastriot Merlaku Brems-System für Fahrzeuge oder Maschinen aller Art
US9954251B2 (en) 2015-02-17 2018-04-24 Wildcat Discovery Technologies, Inc Electrolyte formulations for electrochemical cells containing a silicon electrode
US20180142182A1 (en) * 2015-06-18 2018-05-24 Dow Global Technologies Llc Method for Making Electrorheological Fluids
US10199687B2 (en) 2016-08-30 2019-02-05 Wildcat Discovery Technologies, Inc Electrolyte formulations for electrochemical cells containing a silicon electrode
WO2019035330A1 (ja) * 2017-08-14 2019-02-21 日立オートモティブシステムズ株式会社 電気レオロジー効果を示す非水系懸濁液およびそれを用いるダンパー
JP2021020970A (ja) * 2019-07-24 2021-02-18 日立オートモティブシステムズ株式会社 電気粘性流体組成物およびシリンダ装置
JP2021191811A (ja) * 2020-06-05 2021-12-16 日立Astemo株式会社 電気粘性流体およびシリンダ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970573A (en) * 1975-08-25 1976-07-20 Westhaver James W Electroviscous fluids
DE3536934A1 (de) * 1985-10-17 1987-04-23 Bayer Ag Elektroviskose fluessigkeiten
GB8706928D0 (en) * 1987-03-24 1987-04-29 Er Fluid Dev Electric field responsive fluids
JPH01266191A (ja) * 1988-04-19 1989-10-24 Bridgestone Corp 電気粘性液体
DE68908469T2 (de) * 1988-05-12 1993-12-09 Toa Nenryo Kogyo Kk Elektrorheologische Flüssigkeiten.
JPH02206692A (ja) * 1989-02-03 1990-08-16 Nok Corp Er流体用粒子
JPH0335095A (ja) * 1989-06-30 1991-02-15 Nippon Mektron Ltd 電気粘性流体
DE59010326D1 (de) * 1989-12-14 1996-06-20 Bayer Ag Elektroviskose Flüssigkeiten auf der Basis dispergierter Polyether
JPH0457892A (ja) * 1990-06-27 1992-02-25 Dainippon Ink & Chem Inc 電気粘性流体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011018177A1 (de) 2011-04-19 2012-10-25 Raino Petricevic Paste und deren Verwendung
WO2013131659A1 (de) 2012-03-09 2013-09-12 Fludicon Gmbh Elektrorheologische zusammensetzungen
DE102012004586A1 (de) 2012-03-09 2013-09-12 Fludicon Gmbh Elektrorheologische Zusammensetzung

Also Published As

Publication number Publication date
RU2109776C1 (ru) 1998-04-27
JPH04255795A (ja) 1992-09-10
JP2660123B2 (ja) 1997-10-08
ATE99356T1 (de) 1994-01-15
DE59100777D1 (de) 1994-02-10
EP0472991A1 (de) 1992-03-04
US5268118A (en) 1993-12-07
ES2061137T3 (es) 1994-12-01
DE4026881A1 (de) 1992-02-27
BR9103640A (pt) 1992-05-19
CA2049719A1 (en) 1992-02-26

Similar Documents

Publication Publication Date Title
EP0472991B1 (de) Elektroviskose Flüssigkeiten auf der Basis von Polymerdispersionen mit elektrolythaltiger disperser Phase
EP0219751B1 (de) Elektroviskose Flüssigkeiten
EP0432601B1 (de) Elektroviskose Flüssigkeiten auf der Basis dispergierter Polyether
DE102012004586A1 (de) Elektrorheologische Zusammensetzung
US4772407A (en) Electrorheological fluids
DE68904031T2 (de) Elektroviskose fluessigkeiten.
EP1400581B1 (de) Elektrorheologische Flüssigkeiten
DE69311241T2 (de) Organosiloxane enthaltende verbesserte elektrorheologische Flüssigkeitszubereitungen
EP0824128B1 (de) Verfahren zur Herstellung von nicht-wässrigen Dispersionen und deren Verwendung
DE69214962T2 (de) Elektroviskose flüssigkeit
WO2009138222A1 (de) Elektrotauchlackzusammensetzung
DE69102660T2 (de) Elektrorheologische Flüssigkeiten auf der Basis von Silicon-ionomer-Partikeln.
DE69217223T2 (de) Elektroviskose flüssigkeit auf der basis dispergierter polyether-polyacrylate
EP2016117B1 (de) Sedimentationsstabile dispersion, verfahren zur herstellung sowie deren verwendung
DE3912888C2 (de)
EP2486115B1 (de) Elektrorheologische flüssigkeit mit organischen dotierstoffen sowie verwendung hiervon
DE3941232A1 (de) Elektroviskose fluessigkeiten auf basis von polyglykolen und aminofunktionellen polyethern
DE69819994T2 (de) Polyfluoroalkyl-Siloxane
EP0583763A2 (de) Elektrorheologische Fluide auf der Basis synthetischer Schichtsilikate
JP3710494B2 (ja) 電気粘性流体
JPH02209997A (ja) 電気粘性流体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19920325

17Q First examination report despatched

Effective date: 19920924

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 99356

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59100777

Country of ref document: DE

Date of ref document: 19940210

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940124

ITF It: translation for a ep patent filed
ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2061137

Country of ref document: ES

Kind code of ref document: T3

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 91113465.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990720

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: BAYER AKTIENGESELLSCHAFT TRANSFER- GE BAYER SILICO

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: GE BAYER SILICONES GMBH & CO. KG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010719

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010723

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010803

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010829

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010831

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020807

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020813

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

BERE Be: lapsed

Owner name: *GE BAYER SILICONES G.M.B.H. & CO. K.G.

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030812

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030812

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070830

Year of fee payment: 17

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100623

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101027

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59100777

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59100777

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110813

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201