EP0464366A1 - Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen Legierung auf der Basis Titanaluminid - Google Patents
Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen Legierung auf der Basis Titanaluminid Download PDFInfo
- Publication number
- EP0464366A1 EP0464366A1 EP91108605A EP91108605A EP0464366A1 EP 0464366 A1 EP0464366 A1 EP 0464366A1 EP 91108605 A EP91108605 A EP 91108605A EP 91108605 A EP91108605 A EP 91108605A EP 0464366 A1 EP0464366 A1 EP 0464366A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- workpiece
- temperature
- cast body
- cooling
- casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 24
- 239000000956 alloy Substances 0.000 title claims abstract description 24
- 229910021324 titanium aluminide Inorganic materials 0.000 title claims abstract description 11
- OQPDWFJSZHWILH-UHFFFAOYSA-N [Al].[Al].[Al].[Ti] Chemical compound [Al].[Al].[Al].[Ti] OQPDWFJSZHWILH-UHFFFAOYSA-N 0.000 title claims abstract description 8
- 239000000463 material Substances 0.000 title abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 238000001513 hot isostatic pressing Methods 0.000 claims abstract description 7
- 239000000155 melt Substances 0.000 claims abstract description 6
- 238000002844 melting Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 239000002019 doping agent Substances 0.000 claims abstract description 5
- 239000010936 titanium Substances 0.000 claims description 35
- 230000006835 compression Effects 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 238000010275 isothermal forging Methods 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 239000002775 capsule Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- 238000005098 hot rolling Methods 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 238000005496 tempering Methods 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000005266 casting Methods 0.000 abstract description 13
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 abstract description 2
- 238000007493 shaping process Methods 0.000 abstract description 2
- 238000005242 forging Methods 0.000 description 13
- 239000012300 argon atmosphere Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910000765 intermetallic Inorganic materials 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910000601 superalloy Inorganic materials 0.000 description 3
- 206010016334 Feeling hot Diseases 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000004035 construction material Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 239000001995 intermetallic alloy Substances 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910000951 Aluminide Inorganic materials 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000907 nickel aluminide Inorganic materials 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Definitions
- the invention is based on a method for producing a workpiece from a dopant-containing alloy based on titanium aluminide.
- High-temperature alloys for thermal machines based on the intermetallic compound TiAI which are suitable for the production of cast and forged components and which can supplement and partially replace the conventional nickel-based superalloys.
- the invention relates to the melting and casting of alloys doped on the intermetallic compound TiAI with further additives and to the thermal and thermomechanical further processing to usable workpieces with good mechanical properties.
- Intermetallic compounds of titanium with aluminum have some interesting properties which make them appear attractive as construction materials in the medium and higher temperature range. Among other things, this includes their low density compared to superalloys, which only reaches about 1/2 of the value for Ni superalloys. Their technical usability in the present form, however, stands in the way of their brittleness. The former can be improved by additives, whereby higher strength values are also achieved. As possible and in part already introduced intermetallic compounds, nickel aluminides, nickel silicides and titanium aluminides are known as construction materials.
- the shape of the intermetallic phases based on titanium aluminides presents a certain problem. Because of the high affinity of the elements involved for oxygen, in particular that of titanium, the production of molded parts by casting is difficult. Poor mold filling capacity, porosity and cavities are the consequences. In addition, the properties of the cast structure cannot be improved to the desired extent by subsequent heat treatments. On the other hand, classic hot forming is opposed by the comparatively poor ductility in the lower temperature range.
- the invention is based on the object of specifying a method for producing a workpiece from a dopant-containing alloy based on titanium aluminide, which leads to a material having high oxidation and corrosion resistance, high heat resistance and sufficient ductility.
- the yield point of the material to be forged was around 260 MPa at 1100 ° C.
- the linear rate of deformation (punch speed of the forging press) v was 0.1 mm / s at the start of the forging process.
- the pressing forces required for the upsetting were of medium size. In the present case, they were approximately 750 kN, which corresponded to an initial pressure of approximately 300 MPa.
- the forging die consisted of the Mo alloy containing small amounts of Ti and Zr.
- the flow limit of the workpiece was approx. 200 MPa at 1150 ° C.
- the workpiece had a Vickers hardness HV of an average of 336 kg / mm 2 .
- the melt was poured into ingots approximately 55 mm in diameter and 65 mm high.
- the ingots were then annealed in an argon atmosphere for 10 hours at a temperature of 1100 ° C., cooled and mechanically processed to remove the casting skin.
- the alloy was homogenized by the annealing. Depending on the alloy composition, a suitable homogenization was achieved at temperatures between 1000 and 1150 ° C and annealing times between one and thirty hours. Then the cylindrical workpieces were encapsulated, hot isostatically pressed and forged at a temperature of 1150 ° C.
- the deformation ⁇ was 0.69 (height decrease 50%), the observed yield point was approx. 380 MPa.
- the rate of deformation (punch speed) was 0.1 mm / s.
- the forging process was carried out essentially isothermally at a temperature of 1120 ° C., a flow limit of 250 MPa being observed on average.
- the rate of deformation (punch speed) at the start of each forging operation was approximately 0.1 to 0.2 mm / s.
- the base part was compressed by a further 20% decrease in height in the longitudinal axis of the airfoil.
- the workpiece was then cooled to below 500 ° C. at a rate of 300 ° C./h and, after cooling, tempered at 800 ° C. for 1 hour. With this, the almost final shape of the turbine blade was achieved, apart from milling the grooves on the fir tree base.
- a prismatic ingot with a rectangular cross-section was cast with a thickness of approx. 40 mm, 90 mm in width and 250 mm in length.
- the cast skin was removed by planing and the ingot was encapsulated in soft steel and hot-isostatically pressed at 1260 ° C. for 3 h under a pressure of 120 MPa.
- the first forming was a compression (isothermal forging) in the longer transverse direction (upright) of approx. 33%, so that the ingot assumed an approximately square cross-section with a side length of approx. 60 mm.
- This operation was carried out at a temperature of 1150 ° C under an argon atmosphere. Then the ingot was hot rolled in the other transverse direction at the same temperature, taking approximately the original rectangular cross-sectional shape but with reduced dimensions. After intermediate annealing at 1200 ° C for 1 h under an argon atmosphere, the ingot was deformed by hot rolling (40% reduction in cross-section) at 1050 ° C into a rod with a rectangular profile. During the operations, a hot stretch limit of approximately 240 MPa was observed at 1150 ° C. The structure of the finished rod was fine-grained and homogeneous. The Vickers hardness HV was increased by approx. 25% compared to the as-cast state.
- a body was cast as a stepped cylinder.
- the total height was 220 mm, the height of the smaller diameter 120 mm, that of the larger 100 mm, the diameters 60 mm and 100 mm.
- the cast blank was annealed at 1050 ° C, overturned (removal of the cast skin) and encapsulated in an all-round sleeve made of soft steel and hot isostatically pressed according to the previous examples. Then the block was first compressed in the longitudinal direction with a 30% decrease in height at 1150 ° C. and pressed several times in the transverse directions in such a way that an oval cross section was produced in the leaf section. Intermediate annealing was carried out at 1200 ° C.
- the pre-forged blank with an oval cross-section in the sheet section was placed in the die of a forging press and in several stages up to Deformed reaching the above leaf profile.
- the forging process was carried out essentially isothermally at a temperature of 1150 ° C. A flow limit of 200 MPa on average was observed at this temperature.
- the rate of deformation (punch speed) at the start of the drop forging operations was approximately 0.2 mm / s.
- the remaining process steps were analogous to Example 4.
- the tempering was carried out at a temperature of 750 ° C. for 2 hours.
- the structure of the finished turbine blade was fine-grained and homogeneous.
- the Vickers hardness HV was 15% higher than the as-cast state.
- B generally has a strong toughness-increasing effect in combination with other strength-increasing elements.
- the loss of ductility caused by alloying W could be practically compensated for by adding only 0.5 at.% B. Additions higher than 1 at.% B are not necessary.
- the area of application of the modified titanium aluminides advantageously extends to temperatures between 600 and 1000 C.
- the invention is not restricted to the exemplary embodiments.
- the workpiece is essentially forged isothermally, and after the isothermal forging it has the shape of a gas turbine blade.
- the workpiece is essentially forged isothermally and, after the isothermal forging, is subjected to a further hot-forming process with up to 40% reduction in cross-section, the latter advantageously consisting of hot rolling.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Press Drives And Press Lines (AREA)
Abstract
Description
- Technisches Gebiet
- Bei der Erfindung wird ausgegangen von einem Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen Legierung auf der Basis Titanaluminid.
- Hochtemperaturlegierungen für thermische Maschinen auf der Basis der intermetallischen Verbindung TiAI, welche sich für die Herstellung von gegossenen und geschmiedeten Bauteilen eignen und die konventionellen Nickelbasis-Superlegierungen ergänzen und zum Teil ersetzen können.
- Die Erfindung bezieht sich auf das Erschmelzen und Abgiessen von auf der intermetallischen Verbindung TiAI mit weiteren Zusätzen dotierten Legierungen und auf das thermische und thermomechanische Weiterverarbeiten zu brauchbaren Werkstücken mit guten mechanischen Eigenschaften.
- Intermetallische Verbindungen des Titans mit dem Aluminium haben einige interessante Eigenschaften, welche sie als Konstruktionswerkstoffe im mittleren und höheren Temperaturbereich als attraktiv erscheinen lassen. Dazu gehört unter anderem ihre gegenüber Superlegierungen niedrige Dichte, die nur ca. 1/2 des Wertes für Ni-Superlegierungen erreicht. Ihrer technischen Verwendbarkeit in der vorliegenden Form steht allerdings ihre Sprödigkeit entgegen. Erstere kann durch Zusätze verbessert werden, wobei auch höhere Festigkeitswerte erreicht werden. Als mögliche und zum Teil bereits eingeführte intermetallische Verbindungen sind unter anderem Nickelaluminide, Nickelsilizide und Titanaluminide als Konstruktionsstoffe bekannt.
- Es wurde schon versucht, die Eigenschaften des reinen TiAI durch leichte Veränderungen des Ti/AI-Atomverhältnisses sowie durch Zulegieren von anderen Elementen zu verbessern. Als weitere Elemente wurden beispielsweise alternativ Cr, B, V, Si, Ta sowie (Ni + Si) und (Ni + Si + B) vorgeschlagen, ferner Mn, W, Mo, Nb, Hf. Die Absicht bestand darin, einerseits die Sprödigkeit herabzusetzen, d.h. die Dehnbarkeit und Zähigkeit des Werkstoffs zu erhöhen, andererseits eine möglichst hohe Festigkeit im interessierenden Temperaturbereich zwischen Raumtemperatur und Betriebstemperatur zu erreichen. Ausserdem wurde eine genügend hohe Oxydationsbeständigkeit angestrebt. Diese Ziele wurden jedoch nur teilweise erreicht.
- Die Warmfestigkeit der bekannten Aluminide lässt indessen noch zu wünschen übrig. Entsprechend dem vergleichsweise niedrigen Schmelzpunkt dieser Werkstoffe ist die Festigkeit, insbesondere die Kriechfestigkeit im oberen Temperaturbereich ungenügend, wie auch aus diesbezüglichen Veröffentlichungen hervorgeht.
- Des weiteren stellt die Formgebung der auf Titanaluminiden basierenden intermetallischen Phasen eine gewisse Problematik dar. Wegen der hohen Affinität der beteiligten Elemente zum Sauerstoff, insbesondere derjenigen des Titans ist die Herstellung von Formteilen durch Giessen erschwert. Schlechtes Formfüllungsvermögen, Porosität und Lunker sind die Folgen. Ausserdem können die Eigenschaften des Gussgefüges durch nachfolgende Wärmebehandlungen nicht im gewünschten Masse verbessert werden. Der klassischen Warmumformung steht andererseits die vergleichsweise mangelhafte Duktilität im unteren Tempeaturbereich entgegen.
- Zum Stand der Technik werden die nachfolgenden Dokumente angegeben:
- - N.S. Stoloff, "Ordered alloys-physical metallurgy and structural applications", International metals review, Vol. 29, No. 3, 1984, pp. 123-135.
- - G. Sauthoff, "Intermetallische Phasen", Werkstofe zwischen Metall und Keramik, Magazin neue Werkstoffe 1/89, S. 15-19.
- - Young-Won Kim, "Intermetallic Alloys based on Gamma Titanium Aluminide", JOM, July 1989.
- - US-A-4 842 817 US-A-4 842 819 US-A-4 842 820
- - US-A-4 857 268 US-A-4 836 983 EP-A-0 275 391
- Die Eigenschaften der bekannten modifizierten intermetallischen Verbindungen sowie ihre herkömmlichen Verarbeitungsmethoden genügen den technischen Anforderungen im allgemeinen noch nicht, um daraus brauchbare Werkstücke herzustellen. Dies gilt insbesondere bezüglich Warmfestigkeit und Zähigkeit (Duktilität). Es besteht daher ein Bedürfnis nach Weiterentwicklung und Verbesserung derartiger Werkstoffe und deren Formgebung sowie der günstigen Beeinflussung der mechanischen Eigenschaften der daraus hergestellten Werkstücke.
- Die Erfindung, wie sie in Patentanspruchl angegeben ist, liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen Legierung auf der Basis von Titanaluminid anzugeben, welcher zu einem Werkstoff hoher Oxydations- und Korrosionsbeständigkeit, hoher Warmfestigkeit und genügender Duktilität führt.
- Die Erfindung wird anhand der durch Figuren erläuterten Ausführungsbeispiele beschrieben.
- Dabei zeigt:
- Fig. 1 ein Fliessbild (Blockdiagramm) des Verfahrens,
- Fig. 2 ein Fliessbild (Blockdiagramm) einer Variante des Verfahrens.
- In Fig. 1 ist ein Fliessbild (Blockdiagramm) des Verfahrens dargestellt. Die Figur bedarf keiner weiteren Erklärungen. Der Schwerpunkt der Verfahrensschritte liegt hier auf dem wurden die zylindrischen Blöcke in passende Kapseln aus weichem Kohlenstoffstahl eingeschoben und letztere dicht verschweisst. Die eingekapselten Werkstücke wurden nun bei einer Temperatur von 1260 C während 3 h unter einem Druck von 120 MPa heiss- isostatisch gepresst, abgekühlt, mit 10 bis 50° C/min auf 1100°C erwärmt, gehalten und bei 1100 C isotherm geschmiedet. Das verwendete Werkzeug bestand aus einer Molybdänlegierung mit folgender Zusammensetzung:
- Ti = 0,5 Gew.-%
- Zr = 0,1 Gew.-%
- C = 0,2 Gew.-%
- Mo = Rest
- Es wurde eine Fliessgrenze des zu schmiedenden Werkstoffs von ca. 260 MPa bei 1100°C festgestellt. Die Umformung bestand in einem Stauchen bis zu einer Verformung ∈ = 1,3, wobei
mit
ho = ursprüngliche Höhe des Werkstücks h = Höhe des Werkstücks nach Umformung bedeuten. Die lineare Verformungsgeschwindigkeit (Stempelgeschwindigkeit der Schmiedepresse) v betrug bei Beginn des Schmiedeprozesses 0,1 mm/s. Die für das Stauchen benötigten Presskräfte waren von mittlerer Grösse. Im vorliegenden Fall betrugen sie ca. 750 kN, was einem Anfangsdruck von ca. 300 MPa entsprach. - Durch dieses Beispiel wurde die ausgezeichnete Umformbarkeit des vorbehandelten Werkstoffs demonstriert, betrug doch die bei Rissfreiheit erreichte Höhenabnahme beim Stauchen über 70 %.
- Nach der unter Beispiel 1 angegebenen Weise wurde eine Legierung der nachfolgenden Zusammensetzung erschmolzen:
- AI = 48 At.-%
- V = 3 At.-%
- Si = 0,5 At.-%
- Ti = Rest
- Die Schmelze wurde zu prismatischen Walzbarren von 100 mm x 80 mm x 20 mm abgegossen. Diese wurden zunächst durch Glühen bei ca. 1100° C homogenisiert und deren Gusshaut mechanisch entfernt. Nach Einkapselung und heiss-isostatischem Pressen gemäss Beispiel 1 wurden die Barren bei 1150°C warmgewalzt. Die Höhenabnahme (= Querschnittsabnahme) betrug ca. 40 %. Am gewalzten Halbzeug konnten keinerlei Risse wahrgenommen werden, was für die ausgezeichnete Duktilität des Materials bei dieser Temperatur spricht. Vom gewalzten Stab wurden Abschnitte mit einer Stempelgeschwindigkeit von ca. 0,1 mm/s um einen Betrag, der einem ∈ von 1,2 entsprach, bei 1150°C gestaucht (Höhenabnahme ca. 70 %). Das Schmiedegesenk bestand aus der geringe Ti- und Zr-Mengen enthaltenden Mo-Legierung. Die Fliessgrenze des Werkstücks betrug bei 1150°C ca. 200 MPa. Nach dem Schmieden wies das Werkstück eine Vickershärte HV von durchschnittlich 336 kg/mm2 auf.
- Gemäss Beispiel 1 wurde eine Legierung der nachfolgenden Zusammensetzung erschmolzen:
- AI = 48 At.-%
- Ge = 3 At.-%
- Ti = Rest
- Die Schmelze wurde zu Gussblöcken von ca. 55 mm Durchmesser und 65 mm Höhe abgegossen. Hierauf wurden die Gussblöcke unter Argonatmosphäre während 10 h bei einer Temperatur von 1100°C geglüht, abgekühlt und mechanisch bearbeitet zwecks Entfernung der Gusshaut. Durch das Glühen wurde die Legierung homogenisiert. Je nach Legierungszusammensetzung wurde eine geeignete Homogenisierung bei Temperaturen zwischen 1000 und 1150°C und Glühzeiten zwischen einer und dreissig Stunden erreicht. Dann wurden die zylindrischen Werkstücke eingekapselt, heiss- isostatisch gepresst und bei einer Temperatur von 1150°C geschmiedet. Die Verformung ∈ betrug 0,69 (Höhenabnahme 50%), die beobachtete Fliessgrenze ca. 380 MPa. Die Verformungsgeschwindigkeit (Stempelgeschwindigkeit) betrug 0,1 mm/s.
- Es wurde eine Turbinenschaufel aus der nachfolgenden Legierung hergestellt:
- AI = 48 At.-%
- Zr = 3 At.-%
- B = 0,5 At.-%
- Ti = 48,5 At.-%
- Zu diesem Zweck wurde zunächst die obige Legierung aus den Elementen erschmolzen und zu einem Block von ca. 90 mm Durchmesser und ca. 250 mm Höhe vergossen. Nach einer Glühoperationen bei 1050° C, Entfernung der Gusshaut, Einkapseln, heiss-isostatisch Pressen etc. wurde der Block zunächst bei 1150°C in der Längsrichtung derart gestaucht, dass er eine Höhenabnahme von ca. 50 % erlitt (E = 0,69). Dabei vergrösserte sich der Durchmesser auf ca. 120 mm. In einem nächsten Schritt wurde der zylindrische Körper in einer ersten Querrichtung derart gestaucht, dass ein ovaler Querschnitt entstand (ca. 30 % Querschnittsabnahme). Dann wurde der ovale Körper in der zweiten, darauf senkrechten Querrichtung um den gleichen Betrag gestaucht. Diese beiden Operationen wurden nach einer Zwischenglühung bei 1200 C während 1 nochmals wiederholt. Nun wurde der derart warmgeknetete Schmiederohling in das Gesenk einer Schmiedepresse eingesetzt, dergestalt, dass die den Fuss bildende Hälfte nur geringen Verformungen ausgesetzt wurde, während die andere, das Schaufelblatt bildende Hälfte in mehreren Operationen mit Zwischenglühen sukzessive über einen ovalen Querschnitt zu einem Tragflügelprofil verformt wurde. Das Schaufelblatt hatte folgende Abmessungen:
- Breite = 80 mm
- Dicke = 25 mm
- Profilhöhe = 30 mm
- Länge = 200 mm
- Der Schmiedevorgang wurde im wesentlichen isotherm bei einer Temperatur von 1120°C durchgeführt, wobei eine Fliessgrenze von durchschnittlich 250 MPa beobachtet wurde. Die Verformungsgeschwindigkeit (Stempelgeschwindigkeit) zu Beginn jeder Schmiedeoperation betrug ca. 0,1 bis 0,2 mm/s. Nach dem Fertigschmieden des Schaufelblattes wurde der Fussteil noch um ca. 20 % Höhenabnahme in der Längsachse der Schaufel gestaucht. Dann wurde das Werkstück mit einer Geschwindigkeit von 300° C/h auf unter 500° C abgekühlt und nach dem Erkalten während 1 bei einer Temperatur von 800 C angelassen. Damit war die bis auf das Fräsen der Nuten am Tannenbaumfuss Nahezu-Endform der Turbinenschaufel erreicht.
- Unter Argonatmosphäre wurde in einem Induktionsofen die nachfolgende Legierung erschmolzen:
- AI = 48 At.-%
- Cr = 3 At.-%
- Ti = 45 At.-%
- Zunächst wurde ein prismatischer Barren von rechteckigem Querschnitt mit ca. 40 mm Dicke, 90 mm Breite und 250 mm Länge abgegossen. Nach der Wärmebehandlung unter Argonatmosphäre bei einer Temperatur von 1100° C während 10 h wurde die Gusshaut durch Hobeln entfernt und der Barren in weichen Stahl eingekapselt und während 3 h bei 1260°C unter einem Druck von 120 MPa heiss- isostatisch gepresst. Die erste Umformung bestand in einem Stauchen (isotherm Schmieden) in der längeren Querrichtung (hochkant) von ca. 33 %, so dass der Barren einen annähernd quadratischen Querschnitt von ca. 60 mm Seitenlänge annahm. Diese Operation wurde bei einer Temperatur von 1150°C unter Argonatmosphäre durchgeführt. Dann wurde der Barren in der anderen Querrichtung bei der gleichen Temperatur warmgewalzt, wobei er annähernd die ursprüngliche rechteckige Querschnittsform, jedoch mit verminderten Dimensionen annahm. Nach einem Zwischenglühen bei 1200° C während 1 h unter Argonatmosphäre wurde der Barren durch Warmwalzen (40 % Querschnittsabnahme) bei 1050°C zu einem Stab mit Rechteckprofil verformt. Während der Operationen konnte bei 1150° C eine Warmstreckgrenze von ca. 240 MPa beobachtet werden. Das Gefüge des fertigen Stabes war feinkörnig und homogen. Die Vickershärte HV war gegenüber dem Gusszustand um ca. 25 % erhöht.
- Es wurde unter Argonatmosphäre im Induktionsofen die nachfolgende Legierung erschmolzen:
- AI = 48 At.-%
- W = 3 At.-%
- Ge = 0,5 At.-%
- Ti = 48,5 At.-%
- Aus der Legierung wurde durch Giessen und Warmumformen eine Turbinenschaufel folgender Abmessungen (Schaufelblatt) hergestellt:
- Breite = 70 mm
- Dicke = 21 mm
- Profilhöhe = 26 mm
- Länge = 160 mm
- Zunächst wurde ein Körper als abgesetzter Zylinder gegossen. Die totale Höhe betrug 220 mm, die Höhe des kleineren Durchmessers 120 mm, diejenige des grösseren 100 mm, die Durchmesser 60 mm bzw. 100 mm. Der Gussrohling wurde bei 1050°C geglüht, überdreht (Entfernung der Gusshaut) und in eine allseitig abschliessende Hülle aus weichem Stahl eingekapselt und gemäss vorangegangenen Beispielen heissisostatisch gepresst. Dann wurde der Block zunächst mit 30 % Höhenabnahme bei 1150°C in Längsrichtung gestaucht und mehrmals in den Querrichtungen gepresst, derart, dass in der Blattpartie ein ovaler Querschnitt erzeugt wurde. Es wurden Zwischenglühungen bei 1200°C durchgeführt. Der auf diese Weise vorgeschmiedete Rohling mit ovalem Querschnitt in der Blattpartie wurde in das Gesenk einer Schmiedepresse eingelegt und in mehreren Stufen bis zum Erreichen des obigen Blattprofils verformt. Der Schmiedeprozess wurde im wesentlichen isotherm bei einer Temperatur von 1150°C durchgeführt. Es wurde eine Fliessgrenze von durchschnittlich 200 MPa bei dieser Temperatur beobachtet. Die Verformugnsgeschwindigkeit (Stempelgeschwindigkeit) zu Beginn der Gesenkschmiedeoperationen betrug ca. 0,2 mm/s. Die übrigen Verfahrensschritte waren analog zu Beispiel 4. Das Anlassen wurde bei einer Temperatur von 750 C während 2h durchgeführt. Das Gefüge der fertigen Turbinenschaufel war feinkörnig und homogen. Die Vickershärte HV war gegenüber dem Gusszustand um 15 % höher.
- Es wurden noch zahlreiche andere Schmelzen mit den Legierungselementen Co, Pd, Mo, Mn, Ta, Nb, Hf untersucht und deren Umformbarkeit geprüft. Die Umformbedingungen waren im wesentlichen die gleichen wie in den Ausführungsbeispielen angegeben. Die günstigsten Umformungstemperaturen lagen im Bereich von 1100 bis 1150°C. Die dabei beobachteten Warmfliessgrenzen bewegten sich zwischen den Werten 180 MPa und 260 MPa. Die optimalen Verformungsgeschwindigkeiten (Stempelgeschwindigkeiten) der Schmiedepresse lagen zwischen ca. 0,05 mm/s und 0,2 mm/s, entsprechend Werten für ∈ zwischen 10-4s-1und 10-2 S-1.
- Durch Zulegieren der Elemente W, Cr, Mn und Nb einzeln oder in Kombination zu einer Ti/AI-Grundlegierung wird in allen Fällen eine Härte- und Festigkeitssteigerung erzielt. Dabei ist die Wirkung von Kombinationen (z.B. Mn + Nb) am stärksten. Im allgemeinen ist die Härtesteigerung mit einer mehr oder weniger starken Einbusse an Dehnbarkeit verbunden, die aber durch Zulegieren von weiteren Elementen, die zähigkeitserhöhend wirken, wenigstens zum Teil wieder wettgemacht werden können.
- Eine Zugabe von weniger als 0,5 At.-% eines Elements ist meist kaum wirksam. Andererseits zeigt sich bei ca. 3 - 4 At.-% eine gewisse Sättigungserscheinung, so dass weitere Zugaben sinnlos sind oder die Eigenschaften des Werkstoffs insgesamt wieder verschlechtern.
- B wirkt im allgemeinen stark zähigkeitserhöhend im Verein mit anderen, die Festigkeit erhöhenden Elementen. Hier konnte der durch Zulegieren von W verursachte Verlust an Dehnbarkeit durch eine Zugabe von nur 0,5 At.-% B praktisch wettgemacht werden. Höhere Zugaben als 1 At.-% B sind nicht notwendig.
- Zur weiteren Optimierung der Eigenschaften bieten sich polynäre Systeme an, bei denen versucht wird, die negativen Eigenschaften von Einzelzugaben durch gleichzeitiges Zulegieren anderer Elemente wieder wettzumachen.
- Der Einsatzbereich der modifizierten Titanaluminide erstreckt sich vorteilhafterweise auf Temperaturen zwischen 600 und 1000 C.
- Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt.
- Ganz allgemein ist das Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen intermetallischen Verbindung des Typs Titanaluminid TiAI durch Wärmebehandeln und Warmumformen dadurch gekennzeichnet, dass folgende Verfahrensschritten durchgeführt werden:
- - Erschmelzen der Legierung,
- - Vergiessen der Schmelze zu einem Gusskörper,
- - Abkühlen des Gusskörpers auf Raumtemperatur und Entfernen seiner Gusshaut und seiner Zunderschicht,
- - Heiss-isostatisches Pressen des entzunderten Gusskörpers bei einer Temperatur zwischen 1200 und 1300 C und einem Druck zwischen 100 und 150 MPa,
- - Abkühlen des heiss-isostatisch gepressten Gusskörpers,
- - Erwärmen des abgekühlten Gusskörpers auf Temperaturen von 1050 bis 1200 C,
- - Ein- bis mehrmaliges Verformen bei dieser Temperatur zwecks Formgebung und Gefügeverbesserung,
- - Abkühlen des verformten Gusskörpers auf Raumtemperatur und
- - Materialabhebendes Bearbeiten des verformten Gusskörpers zum Werkstück.
- In vorteilhafter Weise wird die Warmverformung wie folgt durchgeführt:
- - Isothermes Verformen des Ganzen im Temperaturbereich zwischen 1050 und 1150 C mit einer Verformungsgeschwindigkeit ∈ = 5
- · 10-5s-1 bis 10-2s-1 bis zu einer Verformung ∈ = 1,6, wobei
ho = ursprüngliche Höhe des Werkstücks, h = Höhe des Werkstücks nach Umformung bedeuten. - Vorzugsweise geschieht diese Verformung wie folgt:
- - Stauchen in Längsrichtung um 50% Höhenabnahme,
- - Stauchen in erster Querrichtung um 30% Querschnittsabnahme,
- - Stauchen in zweiter Querrichtung um 30% Querschnittsabnahme,
- - Stauchen in Längsrichtung um 20% Höhenabnahme
- - Abkühlen mit 300 C/h auf unter 500 C,
- - Anlassen auf 800 C während 1 h,
- - Abkühlen auf Raumtemperatur.
- In einer speziellen Ausführungsform wird das Werkstück im wesentlichen isotherm geschmiedet, wobei es nach dem isothermen Schmieden die Form einer Gasturbinenschaufel aufweist. Zur Herstellung von Halbzeug wird das Werkstück im wesentlichen isotherm geschmiedet und nach dem isothermen Schmieden einem weiteren Warmverformungsprozess mit bis 40% Querschnittsabnahme unterworfen, wobei letzterer vorteilhafterweise in einem Warmwalzen besteht.
- Das Verfahren wird durchgeführt an Legierungen, welche die nachstehende Zusammensetzung haben:
- a). AI = 48 At.-%
- Zr = 3 At.-%
- B = 0,5 At.-%
- Ti = 48,5 At.-%
- b). AI = 48 At.-%
- V = 3 At.-%
- Si = 0,5 At.-%
- Ti = 48,5 At.-%
- c). AI = 48 At.-%
- Cr = 3 At.-%
- Ti = 49 At.-%
- d). AI = 48 At.-%
- Y = 3 At.-%
- B = 0,5 At.-%
- Ti = 48,5 At.-%
- e). AI = 48 At.-%
- Ge = 3 At.-%
- Ti = 49 At.-%
- f). AI = 48 At.-%
- W = 3 At.-%
- Ge = 0,5 At.-%
- Ti = 48,5 At.-%
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP90112734 | 1990-07-04 | ||
EP90112734 | 1990-07-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0464366A1 true EP0464366A1 (de) | 1992-01-08 |
EP0464366B1 EP0464366B1 (de) | 1994-11-30 |
Family
ID=8204173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91108605A Expired - Lifetime EP0464366B1 (de) | 1990-07-04 | 1991-05-27 | Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen Legierung auf der Basis Titanaluminid |
Country Status (4)
Country | Link |
---|---|
US (1) | US5190603A (de) |
EP (1) | EP0464366B1 (de) |
JP (1) | JPH04232234A (de) |
DE (1) | DE59103639D1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0549181A1 (de) * | 1991-12-23 | 1993-06-30 | General Electric Company | Titanaluminid des Gammatyps |
EP0924308A1 (de) * | 1997-12-18 | 1999-06-23 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Intermetallische Legierungen auf Titan-Basis vom Ti2AlNb-Typ mit hoher Streckgrenze und guter Kriechbeständigkeit |
AT509768B1 (de) * | 2010-05-12 | 2012-04-15 | Boehler Schmiedetechnik Gmbh & Co Kg | Verfahren zur herstellung eines bauteiles und bauteile aus einer titan-aluminium-basislegierung |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5284620A (en) * | 1990-12-11 | 1994-02-08 | Howmet Corporation | Investment casting a titanium aluminide article having net or near-net shape |
JP2546551B2 (ja) * | 1991-01-31 | 1996-10-23 | 新日本製鐵株式会社 | γ及びβ二相TiAl基金属間化合物合金及びその製造方法 |
EP0513407B1 (de) * | 1991-05-13 | 1995-07-19 | Asea Brown Boveri Ag | Verfahren zur Herstellung einer Turbinenschaufel |
US5370839A (en) * | 1991-07-05 | 1994-12-06 | Nippon Steel Corporation | Tial-based intermetallic compound alloys having superplasticity |
DE4219470A1 (de) * | 1992-06-13 | 1993-12-16 | Asea Brown Boveri | Bauteil für hohe Temperaturen, insbesondere Turbinenschaufel, und Verfahren zur Herstellung dieses Bauteils |
DE4219469A1 (de) * | 1992-06-13 | 1993-12-16 | Asea Brown Boveri | Hohen Temperaturen aussetzbares Bauteil, insbesondere Turbinenschaufel, und Verfahren zur Herstellung dieses Bauteils |
JPH06116692A (ja) * | 1992-10-05 | 1994-04-26 | Honda Motor Co Ltd | 高温強度の優れたTiAl系金属間化合物およびその製造方法 |
DE4318424C2 (de) * | 1993-06-03 | 1997-04-24 | Max Planck Inst Eisenforschung | Verfahren zur Herstellung von Formkörpern aus Legierungen auf Titan-Aluminium-Basis |
US5424027A (en) * | 1993-12-06 | 1995-06-13 | The United States Of America As Represented By The Secretary Of The Air Force | Method to produce hot-worked gamma titanium aluminide articles |
US5906692A (en) * | 1993-12-28 | 1999-05-25 | Alliedsignal Inc. | Process for producing forged α-2 based titanium aluminides having fine grained and orthorhombic transformed microstructure and articles made therefrom |
US5417781A (en) * | 1994-06-14 | 1995-05-23 | The United States Of America As Represented By The Secretary Of The Air Force | Method to produce gamma titanium aluminide articles having improved properties |
US5609698A (en) * | 1995-01-23 | 1997-03-11 | General Electric Company | Processing of gamma titanium-aluminide alloy using a heat treatment prior to deformation processing |
DE10062310C2 (de) * | 2000-12-14 | 2002-11-07 | Geesthacht Gkss Forschung | Verfahren zur Behandlung metallischer Werkstoffe |
US6758925B1 (en) * | 2002-12-20 | 2004-07-06 | Kimberly-Clark Worldwide, Inc. | Acoustical energy transfer component |
US6767420B2 (en) * | 2002-12-20 | 2004-07-27 | Kimberly-Clark Worldwide, Inc. | Ultrasonic horn with isotropic breathing characteristics |
US6910859B2 (en) * | 2003-03-12 | 2005-06-28 | Pcc Structurals, Inc. | Double-walled annular articles and apparatus and method for sizing the same |
ES2305593T3 (es) * | 2004-02-26 | 2008-11-01 | Gkss-Forschungszentrum Geesthacht Gmbh | Procedimiento para fabricar componentes y productos semielaborados que contienen aleaciones intermetalicas de aluminuro de titanio, asi como componentes que pueden fabricarse con este procedimiento. |
US7059289B2 (en) * | 2004-08-06 | 2006-06-13 | Lanxess Corporation | Air intake manifold with composite flange and method |
CN1954937B (zh) * | 2005-10-25 | 2010-05-26 | 上海重型机器厂有限公司 | 一种超临界机组用含钒汽轮机缸体的铸造方法 |
GB0719873D0 (en) * | 2007-10-12 | 2007-11-21 | Rolls Royce Plc | Shape correcting components |
AT508323B1 (de) * | 2009-06-05 | 2012-04-15 | Boehler Schmiedetechnik Gmbh & Co Kg | Verfahren zur herstellung eines schmiedestückes aus einer gamma-titan-aluminium-basislegierung |
DE102010026084A1 (de) * | 2010-07-05 | 2012-01-05 | Mtu Aero Engines Gmbh | Verfahren und Vorrichtung zum Auftragen von Materialschichten auf einem Werkstück aus TiAI |
US8876992B2 (en) * | 2010-08-30 | 2014-11-04 | United Technologies Corporation | Process and system for fabricating gamma TiAl turbine engine components |
US8858697B2 (en) | 2011-10-28 | 2014-10-14 | General Electric Company | Mold compositions |
US9011205B2 (en) | 2012-02-15 | 2015-04-21 | General Electric Company | Titanium aluminide article with improved surface finish |
US8932518B2 (en) | 2012-02-29 | 2015-01-13 | General Electric Company | Mold and facecoat compositions |
US8906292B2 (en) | 2012-07-27 | 2014-12-09 | General Electric Company | Crucible and facecoat compositions |
US8708033B2 (en) | 2012-08-29 | 2014-04-29 | General Electric Company | Calcium titanate containing mold compositions and methods for casting titanium and titanium aluminide alloys |
US8992824B2 (en) | 2012-12-04 | 2015-03-31 | General Electric Company | Crucible and extrinsic facecoat compositions |
US9592548B2 (en) | 2013-01-29 | 2017-03-14 | General Electric Company | Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys |
WO2014149292A1 (en) * | 2013-03-15 | 2014-09-25 | United Technologies Corporation | Titanium aluminide turbine exhaust structure |
US9192983B2 (en) | 2013-11-26 | 2015-11-24 | General Electric Company | Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys |
US9511417B2 (en) | 2013-11-26 | 2016-12-06 | General Electric Company | Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys |
JP6344034B2 (ja) * | 2014-04-22 | 2018-06-20 | 株式会社Ihi | TiAl合金の鋳造方法 |
US10391547B2 (en) | 2014-06-04 | 2019-08-27 | General Electric Company | Casting mold of grading with silicon carbide |
CN104148562B (zh) * | 2014-06-30 | 2017-01-11 | 贵州安大航空锻造有限责任公司 | Ti2AlNb基合金铸锭的开坯方法 |
US11306595B2 (en) | 2018-09-14 | 2022-04-19 | Raytheon Technologies Corporation | Wrought root blade manufacture methods |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0275391A1 (de) * | 1986-11-12 | 1988-07-27 | Kawasaki Jukogyo Kabushiki Kaisha | Titan-Aluminium-Legierung |
US4842819A (en) * | 1987-12-28 | 1989-06-27 | General Electric Company | Chromium-modified titanium aluminum alloys and method of preparation |
EP0349734A1 (de) * | 1988-05-13 | 1990-01-10 | Nippon Steel Corporation | Intermetallische Titan-Aluminium-Verbindung und Verfahren zu ihrer Herstellung |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2586023B2 (ja) * | 1987-01-08 | 1997-02-26 | 日本鋼管株式会社 | TiA1基耐熱合金の製造方法 |
US4842817A (en) * | 1987-12-28 | 1989-06-27 | General Electric Company | Tantalum-modified titanium aluminum alloys and method of preparation |
US4857268A (en) * | 1987-12-28 | 1989-08-15 | General Electric Company | Method of making vanadium-modified titanium aluminum alloys |
US4842820A (en) * | 1987-12-28 | 1989-06-27 | General Electric Company | Boron-modified titanium aluminum alloys and method of preparation |
US4836983A (en) * | 1987-12-28 | 1989-06-06 | General Electric Company | Silicon-modified titanium aluminum alloys and method of preparation |
JP2865690B2 (ja) * | 1989-02-17 | 1999-03-08 | 株式会社日立製作所 | 嵌合挿入装置 |
US5076858A (en) * | 1989-05-22 | 1991-12-31 | General Electric Company | Method of processing titanium aluminum alloys modified by chromium and niobium |
US5028491A (en) * | 1989-07-03 | 1991-07-02 | General Electric Company | Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation |
EP0460234B1 (de) * | 1989-12-25 | 1997-05-02 | Nippon Steel Corporation | Blech aus einer intermetallischen titan-aluminiumverbimdung und verfahren zu ihrer herstellung |
US5082506A (en) * | 1990-09-26 | 1992-01-21 | General Electric Company | Process of forming niobium and boron containing titanium aluminide |
-
1991
- 1991-05-27 DE DE59103639T patent/DE59103639D1/de not_active Expired - Fee Related
- 1991-05-27 EP EP91108605A patent/EP0464366B1/de not_active Expired - Lifetime
- 1991-06-26 US US07/721,407 patent/US5190603A/en not_active Expired - Fee Related
- 1991-07-04 JP JP91164686A patent/JPH04232234A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0275391A1 (de) * | 1986-11-12 | 1988-07-27 | Kawasaki Jukogyo Kabushiki Kaisha | Titan-Aluminium-Legierung |
US4842819A (en) * | 1987-12-28 | 1989-06-27 | General Electric Company | Chromium-modified titanium aluminum alloys and method of preparation |
EP0349734A1 (de) * | 1988-05-13 | 1990-01-10 | Nippon Steel Corporation | Intermetallische Titan-Aluminium-Verbindung und Verfahren zu ihrer Herstellung |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0549181A1 (de) * | 1991-12-23 | 1993-06-30 | General Electric Company | Titanaluminid des Gammatyps |
EP0924308A1 (de) * | 1997-12-18 | 1999-06-23 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Intermetallische Legierungen auf Titan-Basis vom Ti2AlNb-Typ mit hoher Streckgrenze und guter Kriechbeständigkeit |
FR2772790A1 (fr) * | 1997-12-18 | 1999-06-25 | Snecma | ALLIAGES INTERMETALLIQUES A BASE DE TITANE DU TYPE Ti2AlNb A HAUTE LIMITE D'ELASTICITE ET FORTE RESISTANCE AU FLUAGE |
AT509768B1 (de) * | 2010-05-12 | 2012-04-15 | Boehler Schmiedetechnik Gmbh & Co Kg | Verfahren zur herstellung eines bauteiles und bauteile aus einer titan-aluminium-basislegierung |
US8864918B2 (en) | 2010-05-12 | 2014-10-21 | Boehler Schmiedetechnik Gmbh & Co. Kg | Method for producing a component and components of a titanium-aluminum base alloy |
Also Published As
Publication number | Publication date |
---|---|
JPH04232234A (ja) | 1992-08-20 |
DE59103639D1 (de) | 1995-01-12 |
EP0464366B1 (de) | 1994-11-30 |
US5190603A (en) | 1993-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0464366B1 (de) | Verfahren zur Herstellung eines Werkstücks aus einer dotierstoffhaltigen Legierung auf der Basis Titanaluminid | |
EP0513407B1 (de) | Verfahren zur Herstellung einer Turbinenschaufel | |
DE69508841T2 (de) | Kornfeinungs- und Optimisierungsverfahren der mechanischen Eigenschaften für thermomechanische Behandlung von gegossenen Titanaluminiden unterhalb des Gamma-Bereiches | |
EP2386663B1 (de) | Verfahren zur Herstellung eines Bauteiles und Bauteile aus einer Titan-Aluminium-Basislegierung | |
EP0455005B1 (de) | Hochtemperaturlegierung für Maschinenbauteile auf der Basis von dotiertem Titanaluminid | |
DE3445767C2 (de) | ||
DE2303802C3 (de) | Verfahren zum Erhöhen der Festigkeit und Zähigkeit von dispersionsverfestigten Knetlegierungen | |
EP0035601B1 (de) | Verfahren zur Herstellung einer Gedächtnislegierung | |
EP3372700B1 (de) | Verfahren zur herstellung geschmiedeter tial-bauteile | |
DE60003802T2 (de) | Titanbasislegierung | |
DE112013007406B4 (de) | Verfahren zum Herstellen von Bauteilen aus einer Aluminiumlegierung | |
DE19756354B4 (de) | Schaufel und Verfahren zur Herstellung der Schaufel | |
EP0035602B1 (de) | Verfahren zur pulvermetallurgischen Herstellung einer Gedächtnislegierung auf der Basis von Kupfer, Zink und Aluminium | |
DE2543893C2 (de) | Verfahren zur Herstellung eines warmverformten Produktes aus Titan bzw. einer Titanlegierung | |
EP1851350A1 (de) | Verfahren zum giessen einer titanlegierung | |
EP0396185B1 (de) | Verfahren zur Herstellung von warmkriechfesten Halbfabrikaten oder Formteilen aus hochschmelzendem Metall | |
AT5199U1 (de) | Formteil aus einem intermetallischen gamma-ti-al-werkstoff | |
DE3113733C2 (de) | Verfahren zur Rückgewinnung von hochwertigen Werkstoffen | |
EP0545145B1 (de) | Herstellung eines Poren enthaltenden Kupferwerkstoffes als Halbzeug das einer Zerspanungsbehandlung unterworfen wird | |
EP0356718A2 (de) | Verfahren zur Formgebung und Verbesserung der mechanischen Eigenschaften von pulvermetallurgisch hergestellten Rohlingen aus einer Legierung mit erhöhter Warmfestigkeit durch Strangpressen | |
EP0035070A1 (de) | Gedächtnislegierung auf der Basis eines kupferreichen oder nickelreichen Mischkristalls | |
DE4201065A1 (de) | Verfahren zur verbesserung der biegewechselfestigkeit von halbzeug aus kupferlegierungen | |
EP1129803B1 (de) | Pulvermetallurgisch hergestelltes Material mit verbesserter Isotropie der mechanischen Eigenschaften | |
DE3727360A1 (de) | Verfahren zur herstellung eines werkstuecks aus einer korrosions- und oxydationsbestaendigen ni/al/si/b-legierung | |
DE69013192T2 (de) | Verfahren zur plastischen Verformung von Blöcken aus hitzebeständiger borhaltiger Legierung. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19920706 |
|
17Q | First examination report despatched |
Effective date: 19940223 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 59103639 Country of ref document: DE Date of ref document: 19950112 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950206 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970423 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970526 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 91108605.6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990413 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990419 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990420 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000527 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050527 |