EP0460392A1 - Verfahren zur Herstellung aufschÀ¤umbarer Metallkörper - Google Patents

Verfahren zur Herstellung aufschÀ¤umbarer Metallkörper Download PDF

Info

Publication number
EP0460392A1
EP0460392A1 EP91106755A EP91106755A EP0460392A1 EP 0460392 A1 EP0460392 A1 EP 0460392A1 EP 91106755 A EP91106755 A EP 91106755A EP 91106755 A EP91106755 A EP 91106755A EP 0460392 A1 EP0460392 A1 EP 0460392A1
Authority
EP
European Patent Office
Prior art keywords
metal
blowing agent
temperature
powder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91106755A
Other languages
English (en)
French (fr)
Other versions
EP0460392B1 (de
Inventor
Hartmut Dr.-Ing. Schrader
Joachim Dipl.-Phys. Baumeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19904018360 external-priority patent/DE4018360C1/de
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0460392A1 publication Critical patent/EP0460392A1/de
Application granted granted Critical
Publication of EP0460392B1 publication Critical patent/EP0460392B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • B22F7/006Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part the porous part being obtained by foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]

Definitions

  • the invention relates to methods for producing foamable metal bodies and their use.
  • porous metal materials can be produced.
  • a simple method for producing these materials is the mixing of gas-releasing substances in molten metals.
  • the blowing agent decomposes with the release of gas due to the effect of temperature. This process leads to the foaming of the molten metal.
  • After completion of the process there is a foamed metal material which has an irregular, random shape.
  • This material can be further processed into bodies of the desired shape by appropriate processes.
  • only separation processes are suitable as processes for further processing, and consequently not every metal body can be formed from such a metal material.
  • Other processes for the production of porous metal materials also have similar disadvantages, such as, for. B. impregnation of an existing plastic foam with a slurry of metal powder and a carrier medium and a subsequent burning out or evaporation of the plastic foam after drying.
  • this method is very complex.
  • the object of the present invention is to provide a process for the production of foamable metal bodies which is inexpensive, simple to use, can be carried out without high forming outlay and at the same time can be used for blowing agents with a low decomposition temperature.
  • Another object of the invention is to propose a use of the foamable bodies produced in this way.
  • metal hydrides such as titanium hydride, carbonates, e.g. calcium carbonate, potassium carbonate, sodium carbonate, sodium bicarbonate, hydrates, e.g. B. aluminum sulfate hydrate, alum, aluminum hydroxide or easily evaporating substances, such as mercury compounds or powdered organic substances.
  • This intensely mixed powder mixture is compressed by hot pressing or hot isostatic pressing into a compact, gas-tight body. In the compacting process, it is of crucial importance according to the invention that the temperature is selected so high that the connection between the individual metal powder particles is predominantly made by diffusion.
  • the pressure is chosen so high that the decomposition of the propellant is prevented and a compact body is formed in which the metal particles are in a fixed connection with one another and form a gas-tight seal for the gas particles of the propellant.
  • the blowing agent particles are thus "trapped" between the interconnected metal particles, so that they only release gas in a later step of foaming. So can also be used with blowing agents whose decomposition temperature is below the compacting temperature. By applying the high pressure, these blowing agents do not decompose.
  • This measure according to the invention allows the use of blowing agents, the selection of which can only be chosen on the basis of compatibility with the selected metal powder or on the basis of the efficiency of the method.
  • the suitable choice of the process parameters temperature and pressure ensures that a body is produced which has a gas-tight structure. Furthermore, the fact that the propellant gas remains “trapped” between the metal particles prevents it from escaping prematurely from the compacted body. Accordingly, the amounts of blowing agent required are small. Blowing agent proportions of the order of a few tenths of a percent by weight are sufficient because the compacted body is completely compressed and the propellant gas cannot escape. Amounts of blowing agent from 0.2 to 1% have proven to be particularly favorable. Only the amount of blowing agent that is necessary to produce a foam structure has to be added. This leads to cost savings. Furthermore, it is advantageous that, due to the selected high temperature and the application of the high pressure, the compacting process takes place in a short time
  • An advantageous feature of the method according to the invention is that after the hot compaction process has ended, both the heat and the pressure are released simultaneously.
  • the still hot metal body keeps its shape even though there is no longer any pressure. This means that the metal particles form such a tight seal for the blowing agent powder particles that there is no expansion of the blowing agent, even at elevated temperature.
  • the metal body produced in this way is dimensionally stable and retains its shape even under elevated temperature and without the action of pressure.
  • the invention provides the addition of reinforcing components in the form of fibers or particles made of suitable materials, such as Ceramics before. These are advantageously added to the starting powders.
  • the starting materials and the foaming parameters in particular should be selected so that a good wetting of the reinforcement components by the metal matrix is guaranteed. It is advantageous if the fibers or particles are coated (e.g. with nickel). This ensures that the forces from the metal matrix are introduced into the particle / fiber.
  • Another method for producing foamable metal bodies is rolling at an elevated temperature of a powder mixture consisting of at least one metal powder and at least one blowing agent powder. This creates a connection between the metal and blowing agent powder particles in the roll gap.
  • the peculiarity of the person skilled in the art applies here that the diffusion between the particles occurs to a sufficient extent even at lower temperatures, in the temperature range around 400 ° C. for aluminum. These processes occur particularly in the surface layers.
  • the temperature range between 350 ° C and 400 ° C has proven to be particularly advantageous with aluminum rollers.
  • the measure of intermediate heating of the pre-rolled material after the individual roll passes is important, since this largely prevents the occurrence of edge cracks.
  • the method according to the invention provides that if the reinforcement is to be aligned along a preferred direction, this can be brought about by reshaping the foamable body. This transformation can e.g. by extrusion or rolling.
  • the invention provides that two or more blowing agents with different decomposition temperatures are mixed into the metal powder. If a foamable body produced from this powder mixture is heated, the blowing agent with the lower temperature first decomposes and causes foaming. If the temperature is increased further, the blowing agent decomposes at the next higher decomposition temperature and causes further foaming. The foaming takes place in two or more stages. Such gradually expanding foamable metal bodies have a particular application, e.g. in fire protection.
  • a particular advantage of the method according to the invention is that it is now possible to produce bodies which have a continuously or discontinuously changing density over their cross section, so-called graded materials.
  • An increase in density toward the edge of the foamable body is preferred since this is where the primary stress occurs.
  • a foamable body with a solid cover layer or a cover layer with a higher density offers advantages in terms of joining and joining with materials of the same or a different type. If the process of hot compacting is carried out in a mold, the powder mixture being wholly or partly surrounded by a metal or metal powder free of blowing agent, the blowing agent-free metal layers form fen.
  • the blowing agent-free metal layers each form a solid, less porous outer layer or bottom layer or cover layer, between which there is a layer which, after a foaming process, is a highly porous one Metal foam layer forms.
  • the foamable metal body produced by the method according to the invention can be used to produce a porous metal body. This is done by heating the foamable body to a temperature above the decomposition temperature of the blowing agent, which releases the same gas, and then cooling the body so foamed. It is advantageous if the heating temperature is in the temperature range of the melting point of the metal used or above or in the solidus-liquidus interval of the alloy used.
  • the heating rates of the semi-finished product during the foaming process are within normal limits, i.e. they are about 1 - 5 ° C per sec. High heating rates are not necessary because the gas cannot escape anyway. These usual heating speeds are a further feature of the invention which leads to cost reduction. It goes without saying that in individual cases, e.g. to achieve small pore size, a high heating rate is advantageous.
  • the inventive method further provides that after the foaming, the cooling rate must be selected so that no further foaming takes place from the inside of the body. With larger parts, the cooling rate must be chosen higher than with smaller ones, it must be adapted to the sample volume.
  • a further advantageous embodiment of the method according to the invention provides that the density of the porous metal body can be varied by suitable selection of the foaming parameters time and temperature. If the foaming process is interrupted after a certain time at constant temperature, a certain density results. If the foaming process is continued for a longer period, this leads to different density values. It is important that certain limit values are observed: A maximum permissible foaming time, after which the already foamed material collapses, should be observed.
  • Foaming of the semi-finished product is free if no final shape is specified.
  • the foaming can also take place in a mold.
  • the finished porous metal body takes on the predetermined shape. It is therefore possible according to the method according to the invention to also produce molded parts from porous metallic material.
  • the metal body produced by foaming the semi-finished product obtained in this way has a predominantly closed porosity; the metal bodies float in the water.
  • the resulting pores are evenly distributed throughout the metal body, they are also approximately uniform in size.
  • the pore size can be adjusted during the foaming process by the time in which the metal foam can expand.
  • the density of the porous metal body can be adapted to the requirements. As already described, this can be done not only by a suitable choice of the foaming parameters, but also by a suitable addition of the blowing agent.
  • the strength and ductility of the porous metal body can be varied by selecting the parameters of temperature and time at which the foaming takes place. The two properties mentioned are influenced anyway by setting the desired pore size. It goes without saying that the properties of the finished metallic body depend above all on the choice of the starting materials.
  • the deformability of the compacted semi-finished product is comparable to that of the solid starting metal.
  • the semifinished product does not differ in appearance from that of the starting metal.
  • the semifinished product can therefore be processed into semifinished products of any geometry by known forming processes. It can be formed into sheets, profiles, etc. It can be used in almost any deformation process that takes the decomposition temperature into account. Only when the semi-finished product is heated to temperatures above the decomposition temperature of the blowing agent used does the foaming take place.
  • a body produced according to the embodiment according to claim 11 is used to produce a porous metal body, after the foaming, a slightly porous outer layer surrounds a core made of highly porous foamed metal.
  • Another use of the foamable body is the production of metal foams with a solid outer layer.
  • the foamable body first becomes a cylindrical one by suitable shaping processes Formed rod, which touches the walls in an initially freely expanding foam, the pores near the surface are flattened by the internal pressure of the material foaming from the inside, thus compressing the initially highly porous outer edge of the molded part.
  • the thickness of this outer edge which has an increased density in relation to the inside of the workpiece, can be controlled via the period of time in which after contact with the walls the material can foam further from the inside before the molded part is finally cooled, as a result of which the foaming is stopped.
  • the surface of the foamable body according to the invention or of the expanding foam is prevented by cooling from foaming as much as in the non-cooled areas.
  • the cooling can be effected by suitable cooling media or by contact with cold materials.
  • the cooling can act on the entire surface or only on partial areas.
  • Integral foam-like metal bodies can be produced by pasting a metal foam with identical or alien materials. In addition to gluing, other joining methods and fastening methods (soldering, welding, screwing) can also be used. Finally, a metal foam can also be cast with metal melts or other materials that are initially liquid and then solidify or harden.
  • a powder mixture of the composition AIMg1 with 0.2% by weight of titanium hydride was placed in a hot pressing device and heated to a temperature of 500 C under a pressure of 60 MPa. After a holding time of 30 minutes, the sample was relieved, removed and cooled. Foaming was carried out by heating the sample in a laboratory oven preheated to 800 ° C. The density of the resulting aluminum foam was approximately 0.55 g / cm 3 .
  • a powder mixture of the composition AIMg2 with 0.2 percent by weight titanium hydride was compacted in the hot pressing device under a pressure of 100 MPa and a temperature of 550 ° C. and relieved and removed after a holding time of 29 minutes.
  • the subsequent foaming of the sample was carried out by heating the sample in a laboratory oven preheated to 800 ° C. and resulted in a foam with a density of 0.6 g / cm 3.
  • a powder mixture of pure aluminum powder and 1.5 percent by weight sodium bicarbonate (NaHCOa) was placed in a hot press and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 20 minutes, the sample was removed and foamed in an oven preheated to 850 C. The density of the resulting aluminum foam was 1.3 g / cm 3 .
  • a powder mixture of pure aluminum powder and 2 percent by weight aluminum hydroxide was filled into the hot press device and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 25 minutes, the sample was removed and foamed in an oven preheated to 850 C. The density of the resulting aluminum foam was 0.8 g / cm3.
  • a bronze powder of the composition 60% Cu and 40% Sn was mixed with 1% by weight of titanium hydride powder and this powder mixture was compacted at a temperature of 500 C and a pressure of 100 MPa for 30 minutes. The compacted sample was then heated in an oven preheated to 800 C and thereby foamed. The resulting bronze foam had a density of about 1.4 g / cm 3 .
  • a mixture of 70 percent by weight copper powder and 30 percent by weight aluminum powder was mixed with 1 percent by weight titanium hydride and this powder mixture was compacted at a temperature of 500 ° C. and a pressure of 100 MPa for 20 minutes.
  • the compacted sample was then heated in an oven preheated to 950 C and thereby foamed.
  • the density of this foamed copper alloy was less than 1 g / c m 3.
  • a powder mixture of pure aluminum powder and 1.5 percent by weight sodium bicarbonate (NaHC0 3 ) was placed in a hot pressing device and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 20 minutes, the sample was removed and foamed in an oven preheated to 850 C. The density of the resulting aluminum foam was 1.3 g / cm 3 .
  • a powder mixture of pure aluminum powder and 2 weight percent aluminum hydroxide was filled in the hot press device and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 25 minutes, the sample was removed and foamed in an oven preheated to 850 C. The density of the resulting aluminum foam was 0.8 g / cm3.
  • a bronze powder of the composition 60% Cu and 40% Sn was mixed with 1% by weight of titanium hydride powder and this powder mixture was compacted at a temperature of 500 C and a pressure of 100 MPa for 30 minutes. The compacted sample was then heated in an oven preheated to 800 ° C. and thereby foamed. The resulting bronze foam had a density of about 1.4 g / cm 3 .
  • a mixture of 70% by weight copper powder and 30% by weight aluminum powder was mixed with 1% by weight titanium hydride and this powder mixture was compacted at a temperature of 500 ° C. and a pressure of 100 MPa for 20 minutes.
  • the compacted sample was then heated in an oven preheated to 950 ° C. and thereby foamed.
  • the density of this foamed copper alloy was less than 1 g / cm 3.
  • a powder mixture of aluminum powder and 0.4 weight percent titanium hydride powder was heated to a temperature of 350 ° C. This heated powder mixture was then fed into the roll gap and shaped into 3 passes. The result was a sheet which was cooled in still air. Sections measuring 100m x 100mm were cut out of this sheet, the edge areas with cracks being removed. The foaming of these sections was carried out freely in an oven preheated to 850 ° C. and led to density values of approximately 0.8 g / cm 3 . In a modification of the method, intermediate heating was carried out at 400 ° C. for 15 minutes after the first stitch. This intermediate heating largely reduced the occurrence of edge cracks.
  • a layer 2 of propellant-free metal powder is filled into a hot-pressing device 1, then a layer of propellant-containing metal powder 3 and finally again a layer 2 'of propellant-free metal powder.
  • a compact 4 is obtained, which can optionally be shaped into a further body 5. This body can then also be foamed into a body 6.
  • the blowing agent-free metal layers each form a firm, slightly porous bottom layer 7 or cover layer 8, between which there is a highly porous metal foam layer 9.
  • FIG. 2 Another method for producing integral foams is shown in FIG. 2.
  • the opening 19 of an extrusion tool 11 is initially covered by a disk made of solid metal piece 12.
  • the pressing chamber of the tool is filled with metal powder 13 containing blowing agent and the powder mixture is pressurized to about 60 MPa.
  • the latter is compacted by heating the tool together with the powder mixture 13.
  • the pressing pressure is increased so that the central area of the solid metal plate 12, which closes the opening 10 of the tool, flows through this opening 10 and thus releases it.
  • the foamable semi-finished product 14 is pressed together with the solid material 12 through the opening 10, the solid material 12 surrounding the foamable body in the form of an outer layer 13 closes.
  • a slightly porous layer surrounds a core made of highly porous foamed metal.
  • a metal powder 15 is mixed intensively with a blowing agent powder 16.
  • the mixture 17 thus obtained is compacted in a press 18 under the influence of pressure and temperature.
  • a semifinished product 19 is produced.
  • the semifinished product 19 can, for example, be formed into a sheet 20.
  • the sheet 20 can then be foamed to a finished porous metal body 21 by the action of temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

Es wird ein Verfahren zur Herstellung aufschäumbarer Metallkörper beschrieben, bei dem eine Mischung (17) aus einem Metallpulver (15) und einem gasabspaltenden Treibmittelpulver (16) zu einem Halbzeug (19) heißkompaktiert wird bei einer Temperatur, bei der die Verbindung der Metallpulverteilchen überwiegend durch Diffusion erfolgt und bei einem Druck, der hoch genug ist, um die Zersetzung des Treibmittels zu verhindern derart, daß die Metallteilchen sich in einer festen Verbindung untereinander befinden und einen gasdichten Abschluß für die Gasteilchen des Treibmittels darstellen. Der aufschäumbare Metallkörper kann auch durch Walzen hergestellt werden. Weiterhin wird eine Verwendung des so hergestellten aufschäumbaren Metallkörpers (19) zur Herstellung eines porösen Metallkörpers (21) vorgeschlagen.

Description

  • Die Erfindung betrifft Verfahren zur Herstellung aufschäumbarer Metallkörper und deren Verwendung.
  • Aus der US-PS 3087807 ist ein Verfahren bekannt, nach dem die Herstellung eines porösen Metallkörpers beliebiger Form möglich ist. Danach wird eine Mischung aus einem Metallpulver und einem Treibmittelpulver mit einem Preßdruck von mindestens 80 MPa im ersten Schritt kalt kompaktiert. Durch anschließendes Strangpressen wird sie um mindestens 87,5% umgeformt. Dieser hohe Umformgrad ist notwendig, damit durch die Reibung der Teilchen aneinander während des Umformprozesses die Oxydhäute zerstört und die Metallteilchen miteinander verbunden werden. Der so hergestellte extrudierte Stab kann durch Erwärmung auf mindestens die Schmelztemperatur des Metalles zu einem porösen Metallkörper aufgeschäumt werden. Die Aufschäumung kann in verschiedenen Formen erfolgen, so daß der fertige poröse Metallkörper die gewünschte Form aufweist. Nachteilig ist, daß dieses Verfahren aufgrund seines zweistufigen Kompaktierungsvorganges sowie des erforderlichen, sehr hohen Umformgrades aufwendig und auf durch Strangpressen herstellbare Halbzeuge beschränkt ist. Bei dem in dieser US-PS offenbarten Verfahren sind nur Treibmittel verwendbar, deren Zersetzungstemperatur oberhalb der Kompaktierungstemperatur liegt, da sonst das Gas während des Aufheizvorganges entweichen würde. Gerade aber sind Treibmittel, deren Zersetzungstemperatur unterhalb der Kompaktierungstemperatur liegt, für viele Metallarten geeignet und preisgünstig. Während des auf den Kompaktierungsvorgang folgenden Aufschäumung entsteht ein poröser Metallkörper mit offener Porösität, wobei die Poren offen oder miteinander verbunden sind. Der Extrusionsvorgang nach dem in der US-PS beschriebenen Verfahren ist notwendig, da die Verbindung der Metallteilchen durch die bei dem Extrusionsvorgang auftretenden hohen Temperaturen und die Reibung der Teilchen aneinander, d.h. durch Verschweißung der Teilchen miteinander entsteht. Da aus obengenannten Gründen die für die Verbindung der Teilchen notwendige Tempemit sehr hohen Umformgraden gearbeitet werden, damit eine möglichst gute und gasdichte Verbindung der Metallteilchen untereinander entsteht.
  • Daneben sind mehrere Verfahren bekannt, nach denen poröse Metallwerkstoffe hergestellt werden können. Eine einfache Methode zur Herstellung dieser Werkstoffe ist die Einmischung von gasabspaltenden Stoffen in Metallschmelzen. Durch die Temperatureinwirkung zersetzt sich das Treibmittel unter Freisetzung von Gas. Dieser Vorgang führt zur Aufschäumung der Metallschmelze. Nach Abschluß des Vorganges liegt ein aufgeschäumter Metallwerkstoff vor, welcher eine unregelmäßige, zufällige Form aufweist. Dieser Werkstoff kann durch entsprechende Verfahren zu Körpern gewünschter Form weiterverarbeitet werden. Es muß dabei jedoch beachtet werden, daß als Verfahren zur Weiterverarbeitung nur Trennverfahren in Frage kommen, und demnach nicht jeder beliebige Metallkörper aus einem solchen Metallwerkstoff geformt werden kann. Dies ist nachteilig. Mit ähnlichen Nachteilen sind auch weitere Verfahren zur Herstellung von porösen Metallwerkstoffen behaftet, wie z. B. Tränkung eines vorhandenen Kunststoffschaumstoffes mit einem Schlicker aus Metallpulver und einem Trägermedium und ein anschließendes Ausbrennen oder Verdampfen des Kunststoffschaumes nach erfolgter Trocknung. Diese Methode ist über die vorerwähnten Nachteile hinaus sehr aufwendig.
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung aufschäumbarer Metallkörper anzugeben, welches preisgünstig, einfach in der Anwendung, ohne hohen umformtechnischen Aufwand durchführbar und gleichzeitig für Treibmittel mit niedriger Zersetzungstemperatur anwendbar ist. Eine weitere Aufgabe der Erfindung ist es, eine Verwendung der so hergestellten aufschäumbaren Körper vorzuschlagen.
  • Diese Aufgabe ist durch die in den Ansprüchen 1 und 6 und in dem Verwendungsanspruch angegebene Erfindung gelöst. Die Unteransprüche stellen vorteilhafte Weiterbildungen dar.
  • Danach wird zunächst eine Mischung aus einem oder mehreren Metallpulvern und einem oder mehreren gasabspaltenden Treibmittelpulvern hergestellt. Als Treibmittel können Metallhydride, wie z.B. Titanhydrid, Karbonate, z.B.Calziumcarbonat, Kaliumcarbonat, Natriumcarbonat, Natriumbicarbonat, Hydrate, z. B. Aluminiumsulfathydrat, Alaun, Aluminiumhydroxid oder leicht verdampfende Stoffe, z.B. Quecksilberverbindungen oder pulverisierte organische Substanzen eingesetzt werden. Diese, intensiv durchmischte, Pulvermischung wird durch Heißpressen oder heißisostatisches Pressen zu einem kompakten, gasdichten Körper verdichtet. Bei dem Kompaktierungsvorgang ist erfindungsgemäß von ausschlaggebender Bedeutung, daß die Temperatur so hoch gewählt wird, daß die Verbindung zwischen den einzelnen Metallpulverteilchen überwiegend durch Diffusion erfolgt. Weiterhin ist es wesentlich, daß der Druck so hoch gewählt wird, daß die Zersetzung des Treibmittels verhindert wird und ein kompaktierter Körper entsteht, bei dem die Metallteilchen sich in einer festen Verbindung untereinander befinden und einen gasdichten Abschluß für die Gasteilchen des Treibmittels bilden. Die Treibmittelteilchen werden also zwischen den miteinander verbundenen Metallteilchen "eingeschlossen", so daß sie erst bei einem späteren Schritt des Aufschäumens Gas freisetzen. Somit können auch Treibmittel eingesetzt werden, deren Zersetzungstempatur unterhalb der Kompaktierungstemperatur liegt. Durch die Anwendung des hohen Druckes, zersetzen sich diese Treibmittel nicht. Diese erfindungsgemäße Maßnahme erlaubt den Einsatz von Treibmitteln, deren Auswahl nur nach den Gesichtspunkten der Verträglichkeit mit dem gewählten Metallpulver bzw. nach den Gesichtspunkten der Wirtschaftlichkeit des Verfahrens gewählt werden können. Durch die geeignete Wahl der Verfahrens-Parameter Temperatur und Druck wird erreicht, daß ein Körper entsteht, welcher eine gasdichte Struktur aufweist. Weiterhin wird dadurch, daß das Treibgas zwischen den Metallteilchen "eingeschlossen" bleibt, verhindert, daß es vorzeitig aus dem kompaktierten Körper entweicht. Demnach sind die erforderlichen Treibmittelmengen gering. So reichen Treibmittelanteile in der Größenordnung von wenigen Zehntel Gewichtsprozent aus, weil der kompaktierte Körper vollständig verdichtet ist und das Treibgas nicht entweichen kann. Als besonders günstig haben sich Treibmittelmengen von 0,2 bis 1% erwiesen.Es muß nur die Menge Treibmittel zugegeben werden, die zur Herstellung einer Schaumstruktur notwendig ist. Das führt zur Kostenersparnis. Weiterhin ist es vorteilhaft, daß , aufgrund der gewählten hohen Temperatur und der Anwendung des hohen Drukkes der Kompaktierungsvorgang in kurzer Zeit erfolgt
  • Ein vorteilhaftes Merkmal des erfindungsgemäßen Verfahrens ist, daß nach Beendigung des Heißkompktierungsvorganges sowohl die Wärmeeinwirkung als auch die Druckeinwirkung gleichzeitig aufgehoben werden. Der noch heiße Metallkörper behält seine Form, obwohl keine Druckeinwirkung mehr stattfindet. Das bedeutet, daß die Metallteilchen einen solchen dichten Abschluß für die Treibmittelpulverteilchen bilden, daß keine Expansion des Treibmittels, auch bei erhöhter Temperatur stattfindet. Der so hergestellte Metallkörper ist formstabil und behält seine Form auch unter erhöhter Temperatur und ohne Druckeinwirkung.
  • Zur Festigkeitssteigerung der Metallkörper sieht die Erfindung die Zugabe von Verstärkungskomponenten in Form von Fasern oder Partikel aus geeigneten Materialien, wie z.B. Keramik vor. Diese werden vorteilhafterweise den Ausgangspulvern beigemischt. Dazu sollten insbesondere die Ausgangsmaterialien und die Aufschäumparameter so gewählt werden, daß eine gute Benetzung der Verstärkungskomponenten durch die Metallmatrix gewährleistet ist. Es ist vorteilhaft, wenn die Fasern bzw. Partikel beschichtet sind (z.B. mit Nickel). Dies gewährleistet, daß die Kräfte aus der Metallmatrix in die Partikel/Faser eingeleitet werden.
  • Ein weiteres Verfahren zur Herstellung aufschäumbarer Metallkörper ist das Walzen bei erhöhter Temperatur einer aus mindestens einem Metallpulver und mindestens einem Treibmittelpulver bestehenden Pulvermischung. Dabei entsteht eine Verbindung der Metall- und Treibmittelpulverteilchen im Walzspalt. Hierbei trifft für den Fachmann überraschend die Sonderheit zu, daß die Diffusion zwischen den Teilchen bereits bei niedrigeren Temperaturen, im Temperaturbereich um etwa 400 °C bei Aluminium in ausreichendem Maße auftritt. Diese Vorgänge treten insbesondere in den Oberflächenschichten auf. Als besonders vorteilhaft bei Aluminiumwalzen hat sich der Temperaturbereich zwischen 350 °C und 400 °C erwiesen. Insbesondere ist die Maßnahme einer Zwischenerwärmung des vorgewalzten Materials nach den einzelnen Walzstichen von Bedeutung, da dadurch das Entstehen von Kantenrissen weitgehend vermieden werden kann.
  • Gemäß einer Ausführungsform sieht das erfindungsgemäße Verfahren vor, daß sofern eine Ausrichtung der Verstärkung entlang einer Vorzugsrichtung vorliegen soll, diese durch Umformung des aufschäumbaren Körpers bewirkt werden kann. Diese Umformung kann z.B. durch Strangpressen oder Walzen erfolgen.
  • In vorteilhafter Ausgestaltung sieht die Erfindung vor, daß zwei oder mehrere Treibmittel mit unterschiedlichen Zersetzungstemperaturen dem Metallpulver zugemischt werden. Wird ein aus dieser Pulvermischung hergestellter aufschäumbarer Körper erhitzt, so zersetzt sich zunächst das Treibmittel mit der niedrigeren Temperatur und bewirkt ein Aufschäumen. Wird die Temperatur weiter erhöht, zersetzt sich das Treibmittel mit der nächsthöherer Zersetzungstemperatur und bewirkt ein weiteres Aufschäumen. Das Aufschäumen erfolgt in zwei oder mehreren Stufen. Solche stufenweise expandierenden aufschäumbaren Metallkörper finden eine besondere Anwendung, z.B. im Brandschutz.
  • Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß es nun möglich ist, Körper herzustellen, welche über ihren Querschnitt eine sich kontinuierlich oder diskontinuierlich verändernde Dichte aufweisen, sogenannte gradierte Werkstoffe. Dabei wird eine Zunahme der Dichte zum Rand des aufschäumbaren Körpers hin bevorzugt, da hier die primäre Beanspruchung erfolgt. Weiterhin bietet ein aufschäumbarer Körper mit einer massiven Deckschicht oder einer Deckschicht höheren Dichte Vorteile hinsichtlich des Fügens und des Verbindens mit artgleichen oder artfremden Werkstoffen. Wird der Vorgang des Heißkompaktierens in einer Form durchgeführt, wobei die Pulvermischung ganz oder teilweise durch ein treibmittelfreies Metall oder Metallpulver umgeben ist, so bilden die treibmittelfreien Metallschichten fen. Wird der Vorgang des Heißkompaktierens in einer Form durchgeführt, wobei die Pulvermischung ganz oder teilweise durch ein treibmittelfreies Metall oder Metallpulver umgeben ist, so bilden die treibmittelfreien Metallschichten jeweils eine feste, wenig poröse Außenschicht bzw. Bodenschicht oder Deckschicht, zwischen denen sich eine Schicht befindet, welche nach einem Aufschäumvorgang eine hochporöse Metallschaumschicht bildet. Durch das Herstellen des aufschäumbaren Metallkörpers derart, daß der Pulvermischung ein treibmittelfreies Metallstück vorgelagert ist und die Pulvermischung stranggepreßt wird, entsteht ein aufschäumbarer Körper, der mit dem Massivmaterial zusammengepreßt ist und das Massivmaterial den aufschäumbaren Körper in Form einer äußeren Schicht umschließt.
  • Der nach dem erfindungsgemäßen Verfahren hergestellte aufschäumbare Metallkörper kann zur Herstellung eines porösen Metallkörpers verwendet werden. Dies geschieht durch Aufheizen des aufschäumbaren Körpers auf eine Temperatur oberhalb der Zersetzungstempratur des Treibmittels, wobei derselbe Gas freisetzt, und anschließendes Abkühlen des so aufgeschäumten Körpers. Vorteilhaft ist, wenn die Aufheiztemperatur im Temperaturbereich des Schmelzpunktes des verwendeten Metalles liegt bzw. oberhalb oder im Solidus-Liquidus Intervall der verwendeten Legierung.
  • Die Aufheizraten des Halbzeuges beim Aufschäumvorgang liegen in üblichen Grenzen, d.h. sie betragen etwa 1 - 5 ° C pro sec. Hohe Aufheizgeschwindigkeiten sind nicht notwendig, da das Gas ohnehin nicht entweichen kann. Diese üblichen Aufheizgeschwindigkeiten sind ein weiteres zur Kostensenkung führendes Merkmal der Erfindung. Selbstverständlich ist, daß in Einzelfällen, z.B. zur Erzielung kleiner Porengröße, eine hohe Aufheizgeschwindigkeit vorteilhaft ist.
  • Das erfindungsgemäße Verfahren sieht weiterhin vor, daß nach dem Aufschäumen die Abkühlgeschwindigkeit so gewählt werden muß, daß kein weiterer Aufschäumvorgang vom Inneren des Körpers aus stattfindet. Bei größeren Teilen muß also die Abkühlgeschwindigkeit höher gewählt werden, als bei kleineren, sie muß dem Probenvolumen angepaßt sein.
  • Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, daß durch die geeignete Wahl der Aufschäumparameter Zeit und Temperatur die Dichte des porösen Metallkörpers variiert werden kann. Wird der Aufschäumvorgang nach einer bestimmten Zeit bei konstanter Temperatur unterbrochen, so ergibt sich eine bestimmte Dichte. Wird der Aufschäumvorgang länger fortgesetzt, so führt dies zu anderen Dichtewerten. Wichtig ist, daß bestimmte Grenzwerte beachtet werden: Eine maximal zulässige Aufschäumzeit, nach deren Überschreitung das bereits aufgeschäumte Material kollabiert, soll beachtet werden.
  • Das Aufschäumen des Halbzeuges erfolgt frei, wenn keine Endform vorgegeben ist. Das Aufschäumen kann auch in einer Form erfolgen. In diesem Fall nimmt der fertige poröse Metallkörper die vorgegebene Gestalt an. Es ist also nach dem erfindungsgemäßen Verfahren möglich, auch Formteile aus porösem metallischen Werkstoff herzustellen.
  • Der durch das Aufschäumen des so beschaffenen Halbzeuges hergestellte Metallkörper weist eine überwiegend geschlossene Porösität auf; die Metallkörper schwimmen im Wasser. Die dabei entstehenden Poren sind gleichmäßig im gesamten Metallkörper verteilt, sie weisen auch eine annähernd einheitliche Größe auf. Die Porengröße kann während des Aufschäumvorganges durch die Zeit, in welcher der Metallschaum expandieren kann, eingestellt werden. Die Dichte des porösen Metallkörpers kann den Erfordernissen entsprechend angepaßt werden. Dies kann nicht nur, wie bereits beschrieben, durch die geeignete Wahl der Aufschäumparameter erfolgen, sondern auch durch eine geeignete Zugabe des Treibmittels. Durch die Wahl der Parameter Temperatur und Zeit, bei welchen das Aufschäumen erfolgt, kann die Festigkeit und die Duktilität des porösen Metallkörpers variiert werden. Die Beeinflussung der beiden genannten Eigenschaften geschieht ohnehin durch die Einstellung der erwünschten Porengröße. Selbstverständlich ist, daß die Eigenschaften des fertigen metallischen Körpers, vor allem von der Wahl der Ausgangsmaterialien abhängig sind.
  • Das Verformungsvermögen des kompaktierten Halbzeuges ist mit dem des massiven Ausgangsmetalles vergleichbar. Auch in seinem äußeren Aussehen unterscheidet sich das Halbzeug nicht von dem des Ausgangsmetalls. Das Halbzeug kann demnach durch bekannte Umformverfahren zu Halbzeugen beliebiger Geometrien verarbeitet werden. Es kann zu Blechen, Profilen etc. umgeformt werden. Es ist nahezu jedem Verformungsverfahren zugänglich, das unter Beachtung der Zersetzungstemperatur stattfindet. Erst beim auf den Umformvorgang stattfindenden Erwärmen des Halbzeuges auf Temperaturen oberhalb der Zersetzungstemperatur des verwendeten Treibmittels erfolgt das Aufschäumen.
  • Wird ein gemäß der Ausführungsform nach dem Anspruch 11 hergestellte Körper zur Herstellung eines porösen Metallkörpers verwendet, so umgibt nach dem Aufschäumen eine wenig poröse äußere Schicht einen Kern aus hochporösem geschäumten Metall. Eine weitere Verwendung des aufschäumbaren Körpers ist die Herstellung von Metallschäumen mit fester Außenschicht. Der aufschäumbare Körper wird dabei zunächst durch geeignete Umformverfahren zu einem zylindrischen Stab umgeformt, dieser in ein eines zunächst frei expandierenden Schaumes die Wandungen berührt, werden die oberflächennahen Poren durch den inneren Druck des von Innen nachschäumenden Materials flachgedrückt und so der zunächst hochporöse äußere Rand des Formteiles wieder verdichtet. Die Dicke dieses äußeren Randes, welche eine gegenüber dem Werkstükkinneren erhöhte Dichte besitzt, kann gesteuert werden über die Zeitdauer in welcher nach dem Kontakt mit den Wandungen das Material von Innen nachschäumen kann, bevor das Formteil schließlich abgekühlt wird, wodurch das Nachschäumen abgebrochen wird. Schließlich sind Verfahren möglich, bei denen die Oberfläche des erfindungsgemäßen aufschäumbaren Körpers oder des expandierenden Schaumes durch Kühlung daran gehindert wird, so stark wie in den nichtgekühlten Bereichen aufzuschäumen. Dabei kann die Kühlung durch geeignete Kühlmedien oder durch Kontakt mit kalten Materialien bewirkt werden. Die Kühlung kann auf die gesamte Oberfläche oder auch nur auf Teilbereiche einwirken.
  • Integralschaumartige Metallkörper lassen sich durch Bekleben eines Metallschaumes mit artgleichen oder artfremden Werkstoffen herstellen. Neben dem Kleben sind auch andere Fügeverfahren und Befestigungsverfahren (Löten, Schweißen, Anschrauben) anwendbar. Schließlich kann ein Metallschaum auch mit Metallschmelzen oder anderen, zunächst flüssigen und dann erstarrenden oder erhärtenden Materialien umgossen werden.
  • In den nachfolgenden Beispielen wird der Verlauf der erfindungsgemäßen Verfahren und einer Verwendung des nach dem erfindungsgemäßen Verfahren hergestellten aufschäumbaren Körper dargestellt:
  • Beispiel 1
  • Eine Pulvermischung der Zusammensetzung AIMg1 mit 0,2 Gewichtsprozent Titanhydrid wurde in eine Heißpreßvorrichtung gefüllt und unter einem Druck von 60 MPa auf eine Temperatur von 500 C erwärmt. Nach einer Haltezeit von 30 Minuten wurde die Probe entlastet, ausgebaut und abgekühlt. Das Aufschäumen erfolgte durch Erwärmung der Probe in einem auf 800°C vorgeheizten Laborofen. Die Dichte des entstandenen Aluminiumschaumes lag bei ca. 0,55 g/cm3.
  • Beispiel 2:
  • Eine Pulvermischung der Zusammensetzung AIMg2 mit 0,2 Gewichtsprozent Titanhydrid wurde in der Heißpreßvorrichtung unter einem Druck von 100 MPa und einer Temperatur von 550 C kompaktiert und nach einer Haltezeit von 29 Minuten entlastet und ausgebaut. Das anschließende Aufschäumen der Probe erfolgte durch Erwärmung der Probe in einem auf 800°C vorgeheizten Laborofen und führte zu einem Schaum der Dichte 0,6 g/cm3.
  • Beispiel 3:
  • Eine Pulvermischung aus Reinaluminiumpulver und 1,5 Gewichtsprozent Natriumbicarbonat (NaHCOa) wurde in eine Heißpreßvorrichtung gefüllt und unter einem Druck von 150 MPa auf eine Temperatur von 500° C erwärmt. Nach einer Haltezeit von 20 Minuten wurde die Probe ausgebaut und in einem auf 850 C vorgeheizten Ofen aufgeschäumt. Die Dichte des entstandenen Aluminiumschaums lag bei 1,3 g/cm3.
  • Beispiel 4:
  • Eine Pulvermischung aus Reinaluminiumpulver und 2 Gewichtsprozent Aluminiumhydroxid wurde in die Heißpreßvorrichtung gefüllt und unter einem Druck von 150 MPa auf eine Temperatur von 500. C erwärmt. Nach einer Haltezeit von 25 Minuten wurde die Probe ausgebaut und in einem auf 850 C vorgeheizten Ofen aufgeschäumt. Die Dichte des entstandenen Aluminiumschaums betrug 0,8 g/cm3.
  • Beispiel 5:
  • Ein Bronzepulver der Zusammensetzung 60% Cu und 40% Sn wurde mit 1 Gewichtsprozent Titanhydridpulver vermischt und diese Pulvermischung bei einer Temperatur von 500 C und einem Druck von 100 MPa 30 Minuten lang kompaktiert. Anschließend wurde die kompaktierte Probe in einem auf 800 C vorgeheizten Ofen erwärmt und dadurch aufgeschäumt. Der resultierende Bronzeschaum hatte eine Dichte von etwa 1,4 g/cm3.
  • Beispiel 6:
  • Eine Mischung aus 70 Gewichtsprozent Kupferpulver und 30 Gewichtsprozent Aluminiumpulver wurde mit 1 Gewichtsprozent Titanhydrid vermischt und diese Pulvermischung bei einer Temperatur von 500°C und einem Druck von 100 MPa 20 Minuten lang kompaktiert. Anschließend wurde die kompaktierte Probe in einem auf 950 C vorgeheizten Ofen erwärmt und dadurch aufgeschäumt. Die Dichte dieser geschäumten Kupferlegierung lag unter 1 g/cm3.
  • Weitere Versuche zur Herstellung von Nickelschaum haben bereits zu ersten brauchbaren Ergebnissen geführt.
  • Beispiel 3:
  • Eine Pulvermischung aus Reinaluminiumpulver und 1,5 Gewichtsprozent Natriumbicarbonat (NaHC03) wurde in eine Heißpreßvorrichtung gefüllt und unter einem Druck von 150 MPa auf eine Temperatur von 500 °C erwärmt. Nach einer Haltezeit von 20 Minuten wurde die Probe ausgebaut und in einem auf 850 C vorgeheizten Ofen aufgeschäumt. Die Dichte des entstandenen Aluminiumschaums lag bei 1,3 g/cm3.
  • Beispiel 4:
  • Eine Pulvermischung aus Reinaluminiumpulver und 2 Gewichtsprozent Aluminiumhydroxid wurde in die Heißpreßvorrichtung gefüllt und unter einem Druck von 150 MPa auf eine Temperatur von 500°C erwärmt. Nach einer Haltezeit von 25 Minuten wurde die Probe ausgebaut und in einem auf 850 C vorgeheizten Ofen aufgeschäumt. Die Dichte des entstandenen Aluminiumschaums betrug 0,8 g/cm3.
  • Beispiels 5:
  • Ein Bronzepulver der Zusammensetzung 60% Cu und 40% Sn wurde mit 1 Gewichtsprozent Titanhydridpulver vermischt und diese Pulvermischung bei einer Temperatur von 500 C und einem Druck von 100 MPa 30 Minuten lang kompaktiert. Anschließend wurde die kompaktierte Probe in einem auf 800° C vorgeheizten Ofen erwärmt und dadurch aufgeschäumt. Der resultierende Bronzeschaum hatte eine Dichte von etwa 1,4 g/cm3.
  • Beispiel 6:
  • Eine Mischung aus 70 Gewichtsprozent Kupferpulver und 30 Gewichtsprozent Aluminiumpulver wurde mit 1 Gewichtsprozent Titanhydrid vermischt und diese Pulvermischung bei einer Temperatur von 500 C und einem Druck von 100 MPa 20 Minuten lang kompaktiert. Anschließend wurde die kompaktierte Probe in einem auf 950 °C vorgeheizten Ofen erwärmt und dadurch aufgeschäumt. Die Dichte dieser geschäumten Kupferlegierung lag unter 1 g/cm3.
  • Weitere Versuche zur Herstellung von Nickelschaum haben bereits zu ersten brauchbaren Ergebnissen geführt.
  • Beispiel 7:
  • Eine Pulvermischung aus Aluminiumpulver und 0,4 Gewichtsprozent Titanhydridpulver wurde auf eine Temperatur von 350°C erwärmt. Anschließend wurde diese erwärmte Pulvermischung dem Walzspalt zugeführt und in 3 Stichen umgeformt. Als Ergebnis lag ein Blech vor, welches an ruhender Luft abgekühlt wurde. Aus diesem Blech wurden Abschnitte der Abmessung 100m x 100mm herausgetrennt, wobei die rißbehafteten Randbereiche entfernt wurden. Das Aufschäumen dieser Abschnitte erfolgte frei in einem auf 850°C vorgewärmten Ofen und führte zu Dichtewerten von ca. 0,8 g/cm3. In einer Abwandlung des Verfahrens wurde nach dem ersten Stich eine Zwischenwärmung für 15 Minuten bei 400° C durchgeführt. Durch diese Zwischenwärmung konnte das Auftreten der Kantenrisse weitgehend reduziert werden.
  • Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens ist in den Figuren 1 und 2 dargestellt. Es zeigen:
    • Fig. 1 das Herstellen eines aufschäumbaren Integralmetallkörpers in einer Form;
    • Fig. 2 das Herstellungsverfahren eines aufschäumbaren Integralmetallkörpers durch Strangpressen;
    • Fig. 3 eine schematische Darstellung des erfindungsgemäßen Verfahrens und dessen Verwendung;
  • Wie aus Fig. 1 ersichtlich, wird in eine Heißpreßvorrichtung 1 eine Schicht 2 aus treibmittelfreiem Metallpulver eingefüllt, anschließend eine Schicht aus treibmittelhaltigem Metallpulver 3 und schließlich wiederum eine Schicht 2' aus treibmittelfreiem Metallpulver. Nach Durchführung des erfindungsgemäßen Kompaktierungsverfahrens wird ein Preßling 4 erhalten, welcher gegebenenfalls zu einem weiteren Körper 5 umgeformt werden kann. Dieser Körper kann anschließend auch zu einem Körper 6 aufgeschäumt werden. Dabei bilden die treibmittelfreien Metallschichten jeweils eine feste, wenig poröse Bodenschicht 7 bzw. Deckschicht 8, zwischen denen sich eine hochporöse Metallschaumschicht 9 befindet.
  • Ein weiteres Verfahren zur Herstellung von Integralschäumen ist in Fig. 2 dargestellt. Hier wird die Öffnung 19 eines Strangpreßwerkzeuges 11 zunächst durch eine Scheibe aus massivem Metallstück 12 abgedeckt. Anschließend wird der Preßraum des Werkzeuges mit treibmittelhaltigem Metallpulver 13 gefüllt und die Pulvermischung unter einen Druck von etwa 60 MPa gesetzt. Durch Aufheizen des Werkzeuges mitsamt der Pulvermischung 13 wird die letztere verdichtet. Danach wird der Preßdruck so weit erhöht, daß der zentrale Bereich der Massivmetallplatte 12, welche die Öffnung 10 des Werkzeuges verschließt, durch diese Öffnung 10 hindurchfließt und diese so freigibt. Im weiteren Verlauf des Preßvorganges wird das aufschäumbare Halbzeug 14 gemeinsam mit dem Massivmaterial 12 durch die Öffnung 10 gepreßt, wobei das Massivmaterial 12 den aufschäumbaren Körper in Form einer äußeren Schicht 13 umschließt. Nach dem Aufschäumen dieses Verbundkörpers umgibt eine wenig poröse Schicht einen Kern aus hochporösem geschäumten Metall.
  • In Fig. 3 ist eine schematische Darstellung des erfindungsgmäßen Verfahrens und eine Anwendung wiedergegeben: Ein Metallpulver 15 wird mit einem Treibmittelpulver 16 intensiv vermischt. Die so erhaltene Mischung 17 wird in einer Presse 18 unter Druck und Temperatureinfluß kompaktiert. Nach dem Kompaktieren entsteht ein Halbzeug 19. Das Halbzeug 19 kann beispielsweise zu einem Blech 20 umgeformt werden. Anschließend kann das Blech 20 durch Temperatureinwirkung zu einem fertigen porösen Metallkörper 21 aufgeschäumt werden.

Claims (16)

1. Verfahren zur Herstellung aufschäumbarer Metallkörper, bei dem eine Mischung aus mindestens einem Metallpulver und mindestens einem gasabspaltenden Treibmittelpulver hergestellt und zu einem Halbzeug heißkompaktiert wird, dadurch gekennzeichnet, daß die Heißkompaktierung bei einer Temperatur stattfindet, bei der die Verbindung der Metallpulverteilchen überwiegend durch Diffusion erfolgt und bei einem Druck, der hoch genug ist, um die Zersetzung des Treibmittels zu verhindern derart, daß die Metallteilchen sich in einer festen Verbindung untereinander befinden und einen gasdichten Abschluß für die Gasteilchen des Treibmittels darstellen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur beim Heißkompaktieren oberhalb der Zersetzungstemperatur des Treibmittels liegt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nach Beendigung des Heißkompaktierungsvorganges die Wärmeeinwirkung und die Druckeinwirkung gleichzeitig aufgehoben werden und daß die vollständige Abkühlung des metallischen Körpers ohne Druckeinwirkung erfolgt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Pulvermischung Verstärkungskomponenten wie hochfeste Fasern, insbesondere auf keramischer Basis oder Keramikpartikel beigemischt sind.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß dem Schritt des Heißkompaktierens sich ein Verfahrensschritt anschließt, bei dem die Verstärkungskomponenten in einer Vorzugsrichtung ausgerichtet werden.
6. Verfahren zur Herstellung aufschäumbarer Metallkörper bei dem eine Mischung aus mindestens einem Metallpulver und mindestens einem gasabspaltenden Treibmittelpulver hergestellt wird, dadurch gekennzeichnet, daß diese Mischung gewalzt wird, bei erhöhter Temperatur und bei einem Druck, der hoch genug ist, um die Zersetzung des Treibmittels zu verhindern derart, daß die Metallteilchen sich in einer festen Verbindung untereinander befinden und einen gasdichten Abschluß für die Gasteilchen des Treibmittels darstellen.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Walztemperatur 3500 c-400 C bei Materialien Aluminium und Titanhydrid beträgt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß nach einzelnen Walzstichen das vorgewalzte Halbzeug zwischenerwärmt wird.
9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Temperatur der Zwischenerwärmung 400 C beträgt und die Zeitdauer 15 Minuten.
10. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß mindestens zwei Treibmittelpulver mit unterschiedlichen Zersetzungstemperaturen verwendet werden.
11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Heißkompaktieren in einer Form erfolgt, wobei die Pulvermischung ganz oder teilweise durch ein treibmittelfreies Metall oder Metallpulver umgeben ist.
12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Heißkompaktieren durch Strangpressen erfolgt, wobei der Pulvermischung ein treibmittelfreies Metallstück vorgelagert ist.
13. Verwendung des im Verfahren nach einem oder mehreren der vorangegangenen Ansprüche hergestellten metallischen Körpers zur Herstellung eines porösen Metallkörpers durch Aufheizen auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels und anschließendes Abkühlen des so aufgeschäumten Körpers.
14. Verwendung des im Verfahren nach einem oder mehreren der vorangegangenen Ansprüche 1 bis 12 hergestellten metallischen Körpers zur Herstellung eines porösen Metallkörpers durch Aufheizen auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels im Temperaturbereich des Schmelzpunktes des verwendeten Metalles bzw. im Solidus-Liquidus Intervall der verwendeten Legierung und anschließendes Abkühlen des so aufgeschäumten Körpers.
15. Verwendung des im Verfahren nach einem oder mehreren der vorangegangenen Ansprüche 1 bis 12 hergestellten metallischen Körpers zur Herstellung eines porösen Metallkörpers durch Aufheizen auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels, wobei beim Aufschäumen des metallischen Körpers unterschiedliche Temperatur- und Zeitwerte in Abhängigkeit von der zu erreichenden Dichte des herzustellenden Metallkörpers eingestellt sind und anschließendes Abkühlen des so aufgeschäumten Körpers.
16. Verwendung des im Verfahren nach einem oder mehreren der vorangegangenen Ansprüche 1 bis 12 hergestellten metallischen Körpers zur Herstellung eines porösen Metallkörpers durch Aufheizen auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels, wobei die Aufheizgeschwindigkeit zwischen 1 und 5°C/sec beträgt und anschließendes Abkühlen des so aufgeschäumten Körpers mit einer Geschwindigkeit, die im Verhältnis zum Volumen des aufgeschäumten Körpers derart hoch ist, daß weiteres Aufschäumen abgebrochen wird.
EP91106755A 1990-06-08 1991-04-26 Verfahren zur Herstellung aufschäumbarer Metallkörper Expired - Lifetime EP0460392B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19904018360 DE4018360C1 (en) 1990-06-08 1990-06-08 Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
DE4018360 1990-06-08
DE4101630A DE4101630A1 (de) 1990-06-08 1991-01-21 Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben
DE4101630 1991-01-21

Publications (2)

Publication Number Publication Date
EP0460392A1 true EP0460392A1 (de) 1991-12-11
EP0460392B1 EP0460392B1 (de) 1996-09-04

Family

ID=25893963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91106755A Expired - Lifetime EP0460392B1 (de) 1990-06-08 1991-04-26 Verfahren zur Herstellung aufschäumbarer Metallkörper

Country Status (6)

Country Link
US (1) US5151246A (de)
EP (1) EP0460392B1 (de)
JP (1) JP2898437B2 (de)
AT (1) ATE142135T1 (de)
CA (1) CA2044120C (de)
DE (2) DE4101630A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025718A1 (de) * 1992-06-09 1993-12-23 Matec Holding Ag Verfahren zur herstellung von formteilen und anwendung desselben
FR2742856A1 (fr) * 1995-12-21 1997-06-27 Renault Echangeur de chaleur pour vehicule automobile comportant une structure maillee tridimensionnelle permeable
EP0804982A2 (de) * 1996-04-19 1997-11-05 Leichtmetallguss-Kokillenbau-Werk Illichmann GmbH Verfahren zur Herstellung von Formteilen aus Metallschaum
EP0868956A1 (de) * 1997-02-28 1998-10-07 Machner & Saurer GmbH Verfahren zur Herstellung von Metallkörpern mit innerer Porosität
EP0927591A2 (de) * 1998-01-02 1999-07-07 Wilhelm Karmann GmbH Verfahren zum Endformen eines Bauteils mit einer Schicht aus metallischem Schaumwerkstoff
WO1999052661A1 (de) * 1998-04-09 1999-10-21 Mepura Metallpulvergesellschaft Mbh Ranshofen Verfahren zur herstellung von formkörpern und schaummetall-formkörper
WO1999064287A1 (de) * 1998-06-09 1999-12-16 M.I.M. Hüttenwerke Duisburg Gmbh Verfahren zur herstellung einer verstärkung in einem hohlraum eines kfz-bauteils
EP1008406A2 (de) * 1998-12-09 2000-06-14 Bayerische Motoren Werke Aktiengesellschaft Herstellverfahren für ein mit einer Leichtmetall-Schaumstruktur ausgefülltes Hohlteil
DE19908867A1 (de) * 1999-03-01 2000-09-07 Arved Huebler Verbundkörper sowie Verfahren zum Herstellen eines Verbundkörpers
NL1016713C2 (nl) * 2000-11-27 2002-05-29 Stork Screens Bv Warmtewisselaar en een dergelijke warmtewisselaar omvattende thermo-akoestische omvorminrichting.
DE19717894B4 (de) * 1996-05-02 2005-06-23 Mepura Metallpulvergesellschaft M.B.H. Verfahren zur Herstellung von porösen Matrixmaterialien, insbesondere Formkörper auf Basis von Metallen, und von Halbzeug dafür
WO2007101799A2 (de) * 2006-03-03 2007-09-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Metall-aerogel-verbundwerkstoff
WO2007128374A1 (de) * 2006-05-04 2007-11-15 Alulight International Gmbh Verfahren zur herstellung von verbundkörpern sowie danach hergestellte verbundkörper
EP2295390A1 (de) 2009-09-04 2011-03-16 Manfred Jaeckel Verfahren zur Herstellung eines zellularen Sinterformkörpers
WO2011151193A1 (de) * 2010-05-31 2011-12-08 Siemens Aktiengesellschaft Verfahren zur erzeugung eines geschlossenporigen metallschaums sowie bauteil, welches einen geschlossenporigen metallschaum aufweist
WO2018130550A1 (de) * 2017-01-12 2018-07-19 Lisa Dräxlmaier GmbH Fahrzeug-bauteil mit geschäumter elektrischer leitstruktur und herstellverfahren für ein solches

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4206303C1 (de) * 1992-02-28 1993-06-17 Mepura Metallpulver Ges.M.B.H., Ranshofen, At
DE4426627C2 (de) * 1993-07-29 1997-09-25 Fraunhofer Ges Forschung Verfahren zur Herstellung eines metallischen Verbundwerkstoffes
DE4424157C2 (de) * 1993-07-29 1996-08-14 Fraunhofer Ges Forschung Verfahren zur Herstellung poröser metallischer Werkstoffe mit anisotropen thermischen und elektrischen Leitfähigkeiten
DE19651197C2 (de) * 1995-12-15 1999-10-28 Susan Dietzschold Werkstoff zum Herstellen poröser Metallkörper
DE19612781C1 (de) * 1996-03-29 1997-08-21 Karmann Gmbh W Bauteil aus metallischem Schaumwerkstoff, Verfahren zum Endformen dieses Bauteils und Vorrichtung zur Ausführung des Verfahrens
DE19734394C2 (de) * 1996-08-13 2003-06-18 Friedrich Wilhelm Bessel Inst Verfahren und Vorrichtung zur Herstellung von Metallschaum
DE19709672C2 (de) * 1997-03-11 1998-12-24 Koenig & Bauer Albert Ag Zylinder für Druckmaschinen
DE19717066C1 (de) * 1997-04-23 1998-02-26 Daimler Benz Ag Verfahren zum Trennen stranggepreßter Hohlprofile und Strangpreßvorrichtung
ES2193439T3 (es) * 1997-06-10 2003-11-01 Goldschmidt Ag Th Cuerpo metalico espumable.
ES2167938T3 (es) 1997-08-30 2002-05-16 Honsel Gmbh & Co Kg Aleacion para la fabricacion de cuerpos de espuma metalica por el empleo de un polvo con aditivos formadores de germenes.
DE19746164B4 (de) * 1997-10-18 2005-09-15 Volkswagen Ag Materialverbund mit einem zumindest abschnittsweise hohlen Profil und Verwendung desselben
DE19813176C2 (de) * 1998-03-25 2000-08-24 Fraunhofer Ges Forschung Verfahren zur Herstellung von Verbundwerkstoffbauteilen
DE19813554A1 (de) * 1998-03-27 1999-09-30 Vaw Ver Aluminium Werke Ag Verbundblech oder -band in Sandwichstruktur sowie Verfahren zu seiner Herstellung
JP3508604B2 (ja) * 1998-04-08 2004-03-22 三菱マテリアル株式会社 高強度スポンジ状焼成金属複合板の製造方法
JP2002522715A (ja) * 1998-08-06 2002-07-23 ザ ビーオーシー グループ ピーエルシー 静水圧保持システム
US6168072B1 (en) * 1998-10-21 2001-01-02 The Boeing Company Expansion agent assisted diffusion bonding
DE19849600C1 (de) * 1998-10-28 2001-02-22 Schunk Sintermetalltechnik Gmb Verfahren zur Herstellung von einem metallischen Verbundwerkstoff
DE19852277C2 (de) * 1998-11-13 2000-12-14 Schunk Sintermetalltechnik Gmb Verfahren zur Herstellung eines metallischen Verbundwerkstoffes sowie Halbzeug für einen solchen
DE19854175C1 (de) * 1998-11-24 2000-03-23 Fritz Michael Streuber Metallschaumfügeverfahren
DE19854173C2 (de) * 1998-11-24 2000-11-23 Fritz Michael Streuber Metallschaumformkörper
GB9903276D0 (en) * 1999-02-12 1999-04-07 Boc Group Plc Reticulated foam structutes
DE19907855C1 (de) * 1999-02-24 2000-09-21 Goldschmidt Ag Th Herstellung von Metallschäumen
DE60007237T2 (de) 1999-03-10 2004-05-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von metallschäumen in panzerungssystemen
US6698331B1 (en) 1999-03-10 2004-03-02 Fraunhofer Usa, Inc. Use of metal foams in armor systems
RU2154548C1 (ru) * 1999-03-18 2000-08-20 Арбузова Лариса Алексеевна Способ получения пористых полуфабрикатов и готовых изделий из порошков алюминиевых сплавов (варианты)
DE19919574A1 (de) * 1999-04-29 2000-11-30 Lucas Ind Plc Kolben und Verfahren zur Herstellung eines solchen
DE10024004C2 (de) 1999-05-19 2002-06-06 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Bauteils aus Verbundwerkstoff
GB9912215D0 (en) * 1999-05-26 1999-07-28 Boc Group Plc Reticulated foam structures
DE19930982C1 (de) * 1999-07-05 2001-03-08 Honsel Ag Verfahren zum Herstellen von Verbundblechen durch Walzen
RU2193948C2 (ru) * 1999-07-06 2002-12-10 Лебедев Виктор Иванович Способ получения пористого металла и изделий из него
DE19933870C1 (de) * 1999-07-23 2001-02-22 Schunk Sintermetalltechnik Gmb Verfahren zur Herstellung eines metallischen Verbundwerkstoffkörpers sowie Verbundwerkstoffkörper
DE19941278A1 (de) * 1999-08-31 2001-03-08 Bernd Fischer Struktur zur Absorption mechanischer Beanspruchungen
DE19942916A1 (de) 1999-09-08 2001-03-15 Linde Gas Ag Herstellen von aufschäumbaren Metallkörpern und Metallschäumen
US6481911B1 (en) 1999-11-24 2002-11-19 Fritz Michael Streuber Jointing method for joining preformed bodies
US6605368B2 (en) 1999-12-21 2003-08-12 Laura Lisa Smith Cookware vessel
NL1014116C2 (nl) 2000-01-19 2001-07-20 Corus Aluminium Walzprod Gmbh Werkwijze en inrichting voor het vormen van een laminaat van gecomprimeerd metaalpoeder met een schuimmiddel tussen twee metaallagen, en daarmee gevormd produkt.
DE10024776C1 (de) 2000-05-19 2001-09-06 Goldschmidt Ag Th Verwendung von Metallhydrid-behandeltem Zink in der metallorganischen Synthese
US6464933B1 (en) 2000-06-29 2002-10-15 Ford Global Technologies, Inc. Forming metal foam structures
DE10045494C2 (de) * 2000-09-13 2002-07-18 Neue Materialien Fuerth Gmbh Verfahren zum Herstellen eines Formkörpers aus Metallschaum
DE10049058B4 (de) * 2000-10-04 2005-07-28 Honsel Gmbh & Co Kg Herstellen von Schweißverbindungen zwischen Metallbändern, -platten, -barren und/oder -profilen
CA2344088A1 (en) * 2001-01-16 2002-07-16 Unknown A method and an apparatus for production of a foam metal
US6852272B2 (en) * 2001-03-07 2005-02-08 Advanced Ceramics Research, Inc. Method for preparation of metallic and ceramic foam products and products made
US6524522B2 (en) 2001-03-07 2003-02-25 Advanced Ceramics Research, Inc. Method for preparation of metallic foam products and products made
DE10127716A1 (de) * 2001-06-07 2002-12-12 Goldschmidt Ag Th Verfahren zur Herstellung von Metall/Metallschaum-Verbundbauteilen
RU2200647C1 (ru) * 2001-07-17 2003-03-20 Литвинцев Александр Иванович Способ производства пористых полуфабрикатов из порошков алюминиевых сплавов
DE10136370B4 (de) * 2001-07-26 2005-03-31 Schwingel, Dirk, Dr. Verbundwerkstoff und daraus hergestelltes Bauteil bestehend aus einem aufgeschäumten Metallkern und massiven Deckblechen, sowie Verfahren zur Herstellung
US6808003B2 (en) * 2001-08-07 2004-10-26 Alcoa Inc. Coextruded products of aluminum foam and skin material
US6660224B2 (en) * 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
US7108828B2 (en) * 2001-08-27 2006-09-19 National Research Council Of Canada Method of making open cell material
US6689509B2 (en) * 2001-09-20 2004-02-10 Daramic, Inc. Laminated multilayer separator for lead-acid batteries
DE10161348A1 (de) * 2001-12-13 2003-06-26 Trw Automotive Safety Sys Gmbh Fahrzeuglenkrad
JP3805694B2 (ja) 2002-02-15 2006-08-02 本田技研工業株式会社 発泡/多孔質金属の製造方法
DE10215086B4 (de) * 2002-02-18 2004-01-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aufschäumbarer Metallkörper, Verfahren zu seiner Herstellung und seine Verwendung
US20040126583A1 (en) * 2002-11-19 2004-07-01 Takashi Nakamura Foaming agent for manufacturing a foamed or porous metal
JP4233018B2 (ja) * 2003-01-17 2009-03-04 本田技研工業株式会社 発泡体を充填した閉断面構造体の製造方法
AT6727U1 (de) * 2003-01-30 2004-03-25 Plansee Ag Verfahren zur herstellung poröser sinterformkörper
EP1468765A1 (de) * 2003-04-16 2004-10-20 Corus Technology BV Vorform für geschäumtes Platteprodukt und daraus hergestellte geschäumter Gegenstand
US7516529B2 (en) * 2003-12-17 2009-04-14 General Motors Corporation Method for producing in situ metallic foam components
DE10359502A1 (de) * 2003-12-18 2005-07-14 Bayerische Motoren Werke Ag Verfahren zur Herstellung eines dreidimensionalen, flächigen Bauteils
US7481968B2 (en) 2004-03-17 2009-01-27 National Institute Of Advanced Industrial Science And Technology Method for preparing a sintered porous body of metal or ceramic
US7597840B2 (en) * 2005-01-21 2009-10-06 California Institute Of Technology Production of amorphous metallic foam by powder consolidation
US20060269434A1 (en) * 2005-05-31 2006-11-30 Ecer Gunes M Process for porous materials and property improvement methods for the same
DE102005037305B4 (de) * 2005-08-02 2007-05-16 Hahn Meitner Inst Berlin Gmbh Verfahren zur pulvermetallurgischen Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff
DE102005037069B4 (de) * 2005-08-05 2010-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Poröse Verbundwerkstoffe auf Basis eines Metalls und Verfahren zu deren Herstellung
US20070154731A1 (en) * 2005-12-29 2007-07-05 Serguei Vatchiants Aluminum-based composite materials and methods of preparation thereof
DE102006018381A1 (de) * 2006-04-20 2007-10-25 Siemens Ag Verfahren zur Erhöhung der Steifigkeit eines einen Hohlraum aufweisenden Bauteils und danach hergestelltes Bauteil
AT504305B1 (de) * 2006-10-05 2009-09-15 H Tte Klein Reichenbach Ges M Mehrschichtiger metallformkírper mit einer metallschaummatrix und dessen verwendung
US20090326657A1 (en) * 2008-06-25 2009-12-31 Alexander Grinberg Pliable Artificial Disc Endplate
KR101111286B1 (ko) * 2008-08-22 2012-03-14 한국생산기술연구원 발포체, 이 발포체의 제조장치, 이 발포체를 이용한 발포금속의 제조방법 및 발포금속 제조장치
DE102008044946B4 (de) * 2008-08-29 2022-06-15 Evonik Superabsorber Gmbh Einsatz von Schaumkörpern in Oxidations-Reaktoren zur Herstellung ungesättigter Carbonsäuren
JP5402380B2 (ja) * 2009-03-30 2014-01-29 三菱マテリアル株式会社 アルミニウム多孔質焼結体の製造方法
EP2416356A1 (de) 2009-03-30 2012-02-08 Tokuyama Corporation Verfahren zur herstellung eines metallisierten substrats und metallisiertes substrat
CN102438778B (zh) * 2009-03-30 2014-10-29 三菱综合材料株式会社 铝多孔烧结体的制造方法和铝多孔烧结体
JP5428546B2 (ja) * 2009-06-04 2014-02-26 三菱マテリアル株式会社 アルミニウム多孔質焼結体を有するアルミニウム複合体の製造方法
JP5402381B2 (ja) * 2009-08-11 2014-01-29 三菱マテリアル株式会社 アルミニウム多孔質焼結体の製造方法
JP5754569B2 (ja) 2009-10-14 2015-07-29 国立大学法人群馬大学 傾斜機能材料前駆体及び傾斜機能材料の製造方法、並びに傾斜機能材料前駆体及び傾斜機能材料
EP2544515A4 (de) * 2010-03-02 2014-07-30 Tokuyama Corp Verfahren zur herstellung eines metallbeschichteten substrats
IT1399822B1 (it) * 2010-03-23 2013-05-03 Matteazzi Metodo per ottenere sistemi porosi
DE102010022599B3 (de) * 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
FR2961894B1 (fr) * 2010-06-24 2013-09-13 Valeo Vision Dispositif a echange de chaleur, notamment pour vehicule automobile
JP5720189B2 (ja) * 2010-11-10 2015-05-20 三菱マテリアル株式会社 多孔質インプラント素材
JP2012100846A (ja) * 2010-11-10 2012-05-31 Mitsubishi Materials Corp 多孔質インプラント素材
UA112633C2 (uk) * 2013-01-28 2016-10-10 Андрій Євгенійович Малашко Спосіб виготовлення робочого органа технологічного устаткування зі зносостійким елементом, що взаємодіє з абразивним середовищем
CA2919385C (en) 2013-07-08 2017-03-14 Rel, Inc. Core structured components and containers
JP5825311B2 (ja) * 2013-09-06 2015-12-02 三菱マテリアル株式会社 アルミニウム多孔質焼結体
KR101967562B1 (ko) * 2014-08-06 2019-04-09 지멘스 악티엔게젤샤프트 발포 금속을 포함하는 전기 안전 장치, 및 상기 안전 장치를 이용하여 전류를 차단하는 방법
DE102015205829B4 (de) * 2015-03-31 2017-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von geschäumten Sandwichelementen
CH711353A2 (fr) * 2015-07-24 2017-01-31 Swatch Group Res & Dev Ltd Assemblage de pièce en matériau fragile.
US10590529B2 (en) * 2015-11-20 2020-03-17 Fourté International, Sdn. Bhd Metal foams and methods of manufacture
US10914563B2 (en) * 2015-12-07 2021-02-09 DynaEnergetics Europe GmbH Shaped charge metal foam package
CN105642898B (zh) * 2016-01-14 2017-07-25 哈尔滨工程大学 一种采用激光3d打印技术制造封闭孔结构材料的方法
CA3044699A1 (en) 2016-12-02 2018-06-07 Polyvalor, Limited Partnership Openly porous acoustic foam, process for manufacture and uses thereof
CN106862572A (zh) * 2017-01-24 2017-06-20 东莞市佳乾新材料科技有限公司 一种建筑用抗爆泡沫铝夹层板及其制备方法
DE102017121513A1 (de) * 2017-09-15 2019-03-21 Pohltec Metalfoam Gmbh Verfahren zum Schäumen von Metall im Flüssigkeitsbad
WO2019152918A1 (en) * 2018-02-02 2019-08-08 Santeri Holdings LLC Identifiable physical form, sales instruments, and information marketplace for commodity trades
DE102021126310A1 (de) 2021-10-11 2023-04-13 HAVEL metal foam GmbH Verfahren und Vorrichtung zum Herstellen einer aufschäumbaren, bandförmigen Presspulver-Metallplatine mittels Kaltwalzen sowie Presspulver-Metallplatine
CN114939674B (zh) * 2022-05-06 2024-04-05 上海汉邦联航激光科技有限公司 多孔隙率泡沫铜的选区激光熔化成型方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087807A (en) * 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
GB939612A (en) * 1960-02-04 1963-10-16 Dow Chemical Co Shaped metal and process for its production

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848666A (en) * 1970-11-19 1974-11-19 Ethyl Corp Foamed metal bodies
US3941182A (en) * 1971-10-29 1976-03-02 Johan Bjorksten Continuous process for preparing unidirectionally reinforced metal foam
US3940262A (en) * 1972-03-16 1976-02-24 Ethyl Corporation Reinforced foamed metal
US3929425A (en) * 1973-02-26 1975-12-30 Ethyl Corp Foamed metal bodies
JPS57185902A (en) * 1981-05-11 1982-11-16 Nippon Seiko Kk Sintering method for porous body
JPS60149739A (ja) * 1984-08-06 1985-08-07 Res Inst Iron Steel Tohoku Univ シリコンカ−バイド繊維強化ニツケル複合材料の製造方法
JPH01298123A (ja) * 1988-05-27 1989-12-01 Sumitomo Electric Ind Ltd 多孔質アルミニウム合金の製造方法
JPH0617524B2 (ja) * 1988-11-08 1994-03-09 勝廣 西山 マグネシウム―チタン系焼結合金およびその製造方法
US4973358A (en) * 1989-09-06 1990-11-27 Alcan International Limited Method of producing lightweight foamed metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087807A (en) * 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
GB939612A (en) * 1960-02-04 1963-10-16 Dow Chemical Co Shaped metal and process for its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WORLD PATENT INDEX, FILE SUPPLIER Zusamenfassung AN=85-163640 Derwent Publications Ltd., London, GB & SU-A-1 129 027 (AS BELORELIABILITY) 15. Dezember 1984 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025718A1 (de) * 1992-06-09 1993-12-23 Matec Holding Ag Verfahren zur herstellung von formteilen und anwendung desselben
FR2742856A1 (fr) * 1995-12-21 1997-06-27 Renault Echangeur de chaleur pour vehicule automobile comportant une structure maillee tridimensionnelle permeable
EP0804982A2 (de) * 1996-04-19 1997-11-05 Leichtmetallguss-Kokillenbau-Werk Illichmann GmbH Verfahren zur Herstellung von Formteilen aus Metallschaum
EP0804982A3 (de) * 1996-04-19 1997-11-12 Leichtmetallguss-Kokillenbau-Werk Illichmann GmbH Verfahren zur Herstellung von Formteilen aus Metallschaum
US5865237A (en) * 1996-04-19 1999-02-02 Leichtmetallguss-Kokillenbau-Werk Illichmann Gmbh Method of producing molded bodies of a metal foam
DE19717894B4 (de) * 1996-05-02 2005-06-23 Mepura Metallpulvergesellschaft M.B.H. Verfahren zur Herstellung von porösen Matrixmaterialien, insbesondere Formkörper auf Basis von Metallen, und von Halbzeug dafür
EP0868956A1 (de) * 1997-02-28 1998-10-07 Machner & Saurer GmbH Verfahren zur Herstellung von Metallkörpern mit innerer Porosität
AT406557B (de) * 1997-02-28 2000-06-26 Machner & Saurer Gmbh Verfahren zur herstellung von metallkörpern mit innerer porosität
EP0927591A2 (de) * 1998-01-02 1999-07-07 Wilhelm Karmann GmbH Verfahren zum Endformen eines Bauteils mit einer Schicht aus metallischem Schaumwerkstoff
EP0927591A3 (de) * 1998-01-02 2002-07-03 Wilhelm Karmann GmbH Verfahren zum Endformen eines Bauteils mit einer Schicht aus metallischem Schaumwerkstoff
WO1999052661A1 (de) * 1998-04-09 1999-10-21 Mepura Metallpulvergesellschaft Mbh Ranshofen Verfahren zur herstellung von formkörpern und schaummetall-formkörper
EP1352696A3 (de) * 1998-04-09 2005-04-27 Alulight International GmbH Verfahren zur Herstellung von Schaummetall-Verbundformkörpern
WO1999064287A1 (de) * 1998-06-09 1999-12-16 M.I.M. Hüttenwerke Duisburg Gmbh Verfahren zur herstellung einer verstärkung in einem hohlraum eines kfz-bauteils
EP1008406A3 (de) * 1998-12-09 2000-09-06 Bayerische Motoren Werke Aktiengesellschaft Herstellverfahren für ein mit einer Leichtmetall-Schaumstruktur ausgefülltes Hohlteil
EP1008406A2 (de) * 1998-12-09 2000-06-14 Bayerische Motoren Werke Aktiengesellschaft Herstellverfahren für ein mit einer Leichtmetall-Schaumstruktur ausgefülltes Hohlteil
DE19908867A1 (de) * 1999-03-01 2000-09-07 Arved Huebler Verbundkörper sowie Verfahren zum Herstellen eines Verbundkörpers
WO2002042707A1 (en) * 2000-11-27 2002-05-30 Stork Prints B.V. Heat exchanger
NL1016713C2 (nl) * 2000-11-27 2002-05-29 Stork Screens Bv Warmtewisselaar en een dergelijke warmtewisselaar omvattende thermo-akoestische omvorminrichting.
US7131288B2 (en) 2000-11-27 2006-11-07 Inco Limited Heat exchanger
WO2007101799A2 (de) * 2006-03-03 2007-09-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Metall-aerogel-verbundwerkstoff
WO2007101799A3 (de) * 2006-03-03 2008-03-13 Deutsch Zentr Luft & Raumfahrt Metall-aerogel-verbundwerkstoff
WO2007128374A1 (de) * 2006-05-04 2007-11-15 Alulight International Gmbh Verfahren zur herstellung von verbundkörpern sowie danach hergestellte verbundkörper
EP2295390A1 (de) 2009-09-04 2011-03-16 Manfred Jaeckel Verfahren zur Herstellung eines zellularen Sinterformkörpers
DE102009040258A1 (de) 2009-09-04 2011-03-24 Jaeckel, Manfred, Dipl.-Ing. Verfahren zur Herstellung eines zellularen Sinterformkörpers
EP2679564A1 (de) 2009-09-04 2014-01-01 Manfred Jaeckel Verfahren zur Herstellung eines zellularen Sinterformkörpers
WO2011151193A1 (de) * 2010-05-31 2011-12-08 Siemens Aktiengesellschaft Verfahren zur erzeugung eines geschlossenporigen metallschaums sowie bauteil, welches einen geschlossenporigen metallschaum aufweist
US8871357B2 (en) 2010-05-31 2014-10-28 Siemens Aktiengesellschaft Method for generating a closed-pore metal foam and component which has a closed-pore metal foam
WO2018130550A1 (de) * 2017-01-12 2018-07-19 Lisa Dräxlmaier GmbH Fahrzeug-bauteil mit geschäumter elektrischer leitstruktur und herstellverfahren für ein solches

Also Published As

Publication number Publication date
CA2044120C (en) 2001-05-01
DE59108133D1 (de) 1996-10-10
US5151246A (en) 1992-09-29
DE4101630C2 (de) 1992-04-16
CA2044120A1 (en) 1991-12-09
DE4101630A1 (de) 1991-12-12
EP0460392B1 (de) 1996-09-04
JPH04231403A (ja) 1992-08-20
ATE142135T1 (de) 1996-09-15
JP2898437B2 (ja) 1999-06-02

Similar Documents

Publication Publication Date Title
EP0460392B1 (de) Verfahren zur Herstellung aufschäumbarer Metallkörper
DE4018360C1 (en) Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
EP0884123B1 (de) Schäumbarer Metallkörper
DE69915797T2 (de) Verfahren zur herstellung dichter teile durch uniaxiales pressen agglomerierter kugelförmiger metallpulver.
WO2003000942A1 (de) Verfahren zur herstellung von metall/metallschaum-verbundbauteilen
EP1915226B1 (de) Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff
EP1017864B1 (de) Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen
AT406649B (de) Verfahren zur herstellung von porösen matrixmaterialien, insbesondere formkörpern, auf basis von metallen, und von halbzeug dafür
DE4424157C2 (de) Verfahren zur Herstellung poröser metallischer Werkstoffe mit anisotropen thermischen und elektrischen Leitfähigkeiten
DE102006020860A1 (de) Verfahren zur Herstellung von Verbundkörpern sowie danach hergestellte Verbundkörper
EP1000690B1 (de) Verfahren zur Herstellung eines aufschäumbaren Halbzeuges sowie Halbzeug
DE102007006156B3 (de) Verfahren zur Herstellung eines Verbundkörpers und Zwischenprodukt zur Herstellung eines Verbundkörpers
EP2427284B1 (de) Pulvermetallurgisches verfahren zur herstellung von metallschaum
WO2019053184A1 (de) Verfahren zum schäumen von metall im flüssigkeitsbad
DE1292797B (de) Verfahren und Vorrichtung zum pulvermetallurgischen Herstellen von Metallkoerpern
DE102017121512A1 (de) Verfahren zum Schäumen von Metall mit Wärmekontakt
DE19810979C2 (de) Aluminiumlegierung zum Herstellen von Aluminiumschaumkörpern unter Verwendung eines Pulvers mit keimbildenden Zusätzen
DE19905124C1 (de) Verfahren und Vorrichtung zur Herstellung eines Profilteils
EP0693564B1 (de) Verfahren zur Herstellung von Körpern aus intermetallischen Phasen aus pulverförmigen, duktilen Komponenten
DE3421858A1 (de) Verfahren zum herstellen eines poroesen koerpers aus rostfreiem stahl
DE3502504A1 (de) Verfahren zur herstellung eines schwammartigen metallformkoerpers
WO2019053181A1 (de) Verfahren zum schäumen von metall mit wärmekontakt
EP4175780A1 (de) Aluminium-werkstoff und verfahren zum herstellen eines aluminium-werkstoffes
EP3661678A1 (de) Verfahren zur herstellung eines halbzeuges für einen verbundwerkstoff
EP2143809A1 (de) Aluminiumlegierung für Metallschäume, ihre Verwendung und Verfahren zur Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920515

17Q First examination report despatched

Effective date: 19921117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19960904

Ref country code: FR

Effective date: 19960904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960904

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960904

Ref country code: DK

Effective date: 19960904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960904

Ref country code: GB

Effective date: 19960904

REF Corresponds to:

Ref document number: 142135

Country of ref document: AT

Date of ref document: 19960915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & WANN PATENTANWALTSBUERO, INHABER KLAUS

REF Corresponds to:

Ref document number: 59108133

Country of ref document: DE

Date of ref document: 19961010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961204

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: BE

Effective date: 19970430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA

Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100422

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100426

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100623

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59108133

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110426