EP2143809A1 - Aluminiumlegierung für Metallschäume, ihre Verwendung und Verfahren zur Herstellung - Google Patents

Aluminiumlegierung für Metallschäume, ihre Verwendung und Verfahren zur Herstellung Download PDF

Info

Publication number
EP2143809A1
EP2143809A1 EP09007574A EP09007574A EP2143809A1 EP 2143809 A1 EP2143809 A1 EP 2143809A1 EP 09007574 A EP09007574 A EP 09007574A EP 09007574 A EP09007574 A EP 09007574A EP 2143809 A1 EP2143809 A1 EP 2143809A1
Authority
EP
European Patent Office
Prior art keywords
alloy
powder mixture
metal powder
weight
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09007574A
Other languages
English (en)
French (fr)
Other versions
EP2143809B1 (de
Inventor
John Banhart
Hans-Martin Helwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Original Assignee
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH filed Critical Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority to PL09007574T priority Critical patent/PL2143809T3/pl
Publication of EP2143809A1 publication Critical patent/EP2143809A1/de
Application granted granted Critical
Publication of EP2143809B1 publication Critical patent/EP2143809B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • B22F7/006Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part the porous part being obtained by foaming

Definitions

  • the invention relates to an aluminum alloy for metal foams, a product thereof and a method for its production.
  • the prior art generally discloses the production of metal foams in a powder-metallurgical manner by first compacting a mixture of metal powder and blowing agent and then partially or completely melting it and cooling it again after pore formation has taken place. In the molten state, the gas released by the blowing agent forms the pores in the melt.
  • Such a method is for example in DE 101 15 230 A1 described.
  • the production of a metal foam of the alloy AA6060 (AlMgSi) is given.
  • metal foam sandwiches in which a metal foam core is arranged between two outer cover layers closing off to the outside.
  • Sandwich structures of this type can be produced by bonding the cover layer to the foam core layer, but also by metallically bonding the unfoamed core material to the cover layers by applying pressure in one method step (see, for example, US Pat EP 0 997 215 A2 ) and only then foamed by means of thermally activated blowing agent.
  • the choice of materials for the metal foam core and for the cover layers is particularly important because the foaming process requires special temperature conditions.
  • DE 101 36 370 A1 The composite blank is formed into a semi-finished product and foamed by heating to a temperature which is simultaneously above the Ausgastemperatur of the blowing agent powder and within the solidus-liquidus region of the metal powder, to form a component. It is stated that in the case where both the core layer and the cover layers have the same material, e.g. As aluminum is used, different melting temperatures can be adjusted by different alloying additives in powder and cover materials.
  • the object of the invention is now to provide an aluminum alloy for metal foams of the type AlMgSi and a use of this alloy, wherein the metal foam should have a fine pore structure with high expansion capacity, good mechanical properties and good corrosion resistance.
  • the object is further to provide a method for producing a product of this aluminum alloy.
  • the aluminum alloy of the AlMgSi type is the alloy AlMg4 ( ⁇ 1) Si8 ( ⁇ 1), stated in% by weight.
  • the improved properties can also be attributed to the particular melting behavior of the alloy according to the invention, which is characterized by the function of the liquid volume fraction as a function of the temperature of the melt.
  • the alloy isothermally produces a proportion of about 50% ternary-eutectic melt at 560 ° C. and has a liquidus temperature of about 600 ° C., which enables precise setting of an optimum toughness of the melt for foam expansion.
  • the claimed alloy is used as a foamed core material in aluminum foam sandwiches.
  • a metal powder mixture for the alloy AlMg4 ( ⁇ 1) Si8 ( ⁇ 1) is first prepared and compacted to form a foamable semifinished product, and then this semifinished product is foamed by known means.
  • a metal powder mixture for the alloy AlMg4 ( ⁇ 1) Si8 ( ⁇ 1) is first produced and compacted into a foamable core layer, after which this core layer is placed between two cover plates of a 6000 alloy and these Assembly is transferred to a solid metallic composite, then this composite is heated to a temperature slightly lower than the solidus temperature of the 6000 alloy and, upon reaching the desired thickness of the foamed core material, the foaming process is stopped by cooling below the solidus temperature of the core material.
  • the metal powder mixtures in the context of the invention mean mixtures of alloy powders, i. Powders of such materials that make up the proposed alloy, and in such proportions by weight of the individual components that lead to this alloy. It is irrelevant whether powder of the three alloying components individually or z. For example, powders already containing two alloy components to which the missing constituents are added can also be used.
  • a mixture of the individual alloy constituents is used as the metal powder mixture for the alloy AlMg4 ( ⁇ 1) Si8 ( ⁇ 1), in particular in the composition 50 wt.% AlMg8, 8 wt.% Si and 41 Wt.% Al or in elemental composition 88 wt% Al, 4 wt% Mg and 8 wt% Si.
  • Another embodiment provides a metal powder mixture of 8% by weight of the two-component alloy powder AlMg50, 8% by weight of Si and 84% by weight of Al.
  • the use of an alloy powder mixture has the advantage that the unwanted burnup of the Mg content in the production and in the foaming process of the alloy according to the invention is prevented.
  • the optionally provided exclusion or removal of foreign gases (for example oxygen) and their compounds with the metal powders during the production of the foamable semifinished product or of the foamable core layer also prevents the unwanted burning off of the Mg fraction.
  • a propellant it is provided that the decomposition temperature of the propellant and the melting temperature of the metal powder mixture are as close as possible to each other, i. a few degrees below the decomposition temperature, so that a high-viscosity large amount of melt is available at the decomposition temperature.
  • the use of a blowing agent has the advantage that the foaming process is easy to control, in particular via the temperature, and thus runs very cleanly.
  • a powder mixture of 1 wt.% TiH 2 , 8 wt.% Si, 4 wt.% Mg and 87 wt.% Al is produced. This is then uniaxially compressed at a temperature of 400 ° C, a pressing pressure of 195 MPa and 300 s pressing time to a tablet-shaped semi-finished product, which is then heated in a cylindrical steel sheet mold until the metal powder mixture is completely melted. During this process, the alloy AlMg4Si8 forms from the individual metal powders.
  • the foaming process takes place in a known manner by the decomposition of the blowing agent TiH 2 , whereby gas bubbles are formed in the semifinished product. Once the foam has filled the cylindrical sheet steel mold, it is removed from the oven. The foaming process stops by cooling the mold below the solidus temperature of the melt.
  • the cylindrical AlMg4Si8 alloy component has a low density and a homogeneous pore structure as well as a good corrosion resistance and high ductility.
  • a metal powder mixture of 50 wt.% Of the aluminum alloy AlMg8, 8 wt.% Si and 41 wt.% Aluminum is produced and then compacted to a core layer.
  • This core situation will be discussed in a next step Cover plates of a 6000 series hardenable alloy converted into a solid, metallic composite. This can be done by way of example by means of roll-plating or another known method.
  • This composite is then heated until a minimum lower temperature, here 590 ° C, than the solidus temperature of the cover plates, which is at about 600 ° C is reached, and thereby the foaming process starts.
  • the aluminum alloy AlMg4Si8 forms in the foam core layer.
  • these aluminum foam sandwiches have a high degree of expansion of the foam core layer as well as good mechanical properties and good corrosion resistance.
  • FIG. 5 is schematically the foam quality, which results from the expansion and the pore size distribution, shown as a function of the concentration of the alloying elements magnesium and silicon.
  • the foam quality shows a maximum. Even slight deviations from the composition of the alloy according to the invention lead to a noticeable loss of foam quality due to a decrease in the expansion and / or coarsening of the pore structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Aluminiumlegierung für Metallschäume, ihre Verwendung und Verfahren zur Herstellung Die vorgeschlagene Legierung für Metallschäume des Typs AlMg4(±1)Si8(±1) - Angabe in Gew.% - ermöglicht die Herstellung eines Metallschaums mit einer feinen Porenstruktur bei hohem Expansionsvermögen, mit guten mechanischen Eigenschaften und guter Korrosionsbeständigkeit. Die Legierung kann ebenfalls eingesetzt werden als geschäumtes Kernmaterial für die Herstellung von Aluminiumschaum-Sandwichs.

Description

  • Die Erfindung betrifft eine Aluminiumlegierung für Metallschäume, ein Produkt daraus und ein Verfahren zu seiner Herstellung.
  • Dem Stand der Technik nach allgemein bekannt ist die Herstellung von Metallschäumen auf pulvermetallurgische Weise, indem eine Mischung aus Metallpulver und Treibmittel zunächst verdichtet und dann teilweise oder vollständig aufgeschmolzen und nach erfolgter Porenbildung wieder abgekühlt wird. Im aufgeschmolzenen Zustand bildet das vom Treibmittel freigesetzte Gas die Poren in der Schmelze.
  • Ein derartiges Verfahren ist beispielsweise in DE 101 15 230 A1 beschrieben. Als Beispiel wird die Herstellung eines Metallschaumes der Legierung AA6060 (AlMgSi) angeführt.
  • Auf der Homepage des Fraunhofer Instituts Werkzeugmaschinen und Umformtechnik (http://www.iwu.fraunhofer.de/schaumzentrum/produkte.htm) sind weitere Aluminiumlegierungen, wie beispielsweise AlSi10 und auch eine 6000er Aluminiumlegierung, nämlich AlMg1Si0,5, angegeben.
  • Die bisher dem Stand der Technik nach bekannten und wissenschaftlich untersuchten 6000er AlMgSi-Legierungen, die in geringen Mengen (bis etwa 2 %) Si und Mg enthalten, lieferten für die Herstellung von Metallschäumen keine befriedigenden Ergebnisse hinsichtlich des Erhalts einer feinen Porenstruktur bei hohem Expansionsvermögen, guten mechanischen Eigenschaften und guter Korrosionsbeständigkeit.
  • Andere derzeit für Metallschäume verwendete technische Aluminiumlegierungen sind die Gusslegierung AlSi7 oder die Legierung AlSi6Cu6 (s. Homepage der Firma alm GmbH am 03.06.08: http://www.alm-gmbh.de/html/produkte.html).
  • Weitere Anstrengungen wurden unternommen zur Erzielung der gewünschten Eigenschaften von Aluminiumschäumen durch Variation des Si- und/oder Cu-Gehaltes.
  • Zwar haben sich die letztgenannten AlSi-(beispielsweise AlSi6) und AlSiCu-Gusslegierungen (teilweise mit modifiziertem Cu-Gehalt) etabliert, jedoch wurden auch mit diesen Legierungen die erwünschten und oben erwähnten Eigenschaften bisher nicht erreicht. Hier wird vermutet, dass die genannten Gusslegierungen viel zu geringe Mg- und Si-Gehalte haben, um eine ausreichend große Schmelzmenge zu Beginn des Schmelzvorganges zu erzielen. Zudem ist das Entstehen kleiner Schmelzmengen zu Anfang des Prozesses mit dem Risiko der Kanalbildung im Halbzeug und dem damit verbundenen Treibgasverlust zu Beginn des Aufschmelzens verbunden.
  • Dem Stand der Technik nach allgemein bekannt sind auch Metallschaum-Sandwichs, bei denen zwischen zwei nach außen abschließenden Decklagen ein Metallschaumkern angeordnet ist.
  • Derartige Sandwich-Strukturen können durch Verkleben der Decklage mit der Schaumkernschicht hergestellt werden, aber auch, indem das unaufgeschäumte Kernmaterial mit den Decklagen durch Druckeinwirkung in einem Verfahrensschritt metallisch verbunden (s. beispielsweise EP 0 997 215 A2 ) und erst anschließend mittels thermisch aktivierbaren Treibmittels aufgeschäumt wird.
  • Für das letztgenannte Verfahren zur Herstellung von Metallschaum-Sandwichs ist die Wahl der Materialien für den Metallschaumkern und für die Decklagen besonders wichtig, da der Aufschäumprozess besondere Temperaturverhältnisse erfordert. In DE 101 36 370 A1 wird der Verbundwerkstoff-Rohling zu einem Halbzeug umgeformt und durch Erhitzen auf eine Temperatur, die gleichzeitig oberhalb der Ausgastemperatur des Treibmittelpulvers und innerhalb des Solidus-Liquidus-Bereiches des Metallpulvers liegt, zu einem Bauteil aufgeschäumt. Es wird ausgeführt, dass für den Fall, wenn sowohl für die Kernschicht als auch für die Deckschichten das gleiche Material, z. B. Aluminium, verwendet wird, unterschiedliche Schmelztemperaturen durch unterschiedliche Legierungszusätze in Pulver- und Deckschichtmaterialien eingestellt werden können.
  • Allgemein ist festzustellen, dass der Beginn des Schmelztemperaturbereiches der dem Stand der Technik nach bekannten Metallschaumlegierungen deutlich oberhalb der Zersetzungstemperatur des üblicherweise verwendeten Treibmittels TiH2 liegt.
  • Aufgabe der Erfindung ist es nun, eine Aluminiumlegierung für Metallschäume vom Typ AlMgSi und eine Verwendung dieser Legierung anzugeben, wobei der Metallschaum eine feine Porenstruktur bei hohem Expansionsvermögen, gute mechanische Eigenschaften und gute Korrosionsbeständigkeit aufweisen soll. Die Aufgabe besteht weiterhin darin, ein Verfahren zur Herstellung eines Produktes aus dieser Aluminiumlegierung anzugeben.
  • Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Aluminiumlegierung vom Typ AlMgSi die Legierung AlMg4(±1)Si8(±1) - Angabe erfolgt in Gew.% - ist.
  • Es hat sich gezeigt, dass die bisher technologisch irrelevante AlMg4Si8-Legierung innerhalb der durch die Pulvermischung technisch realisierbaren Toleranz von ± 1 % hervorragende Schäumeigenschaften und der entstehende Metallschaum eine im Vergleich zum Stand der Technik deutlich feinere Porenstruktur aufweist.
  • Zurückgeführt werden kann dies auf positive Auswirkungen des enthaltenen Mg, wie die Verringerung der Oberflächenspannung der Schmelze und seine starke Oxidationsneigung - da eine schnelle Oxid bildung die Zellwände der entstehenden Poren stabilisiert - und die Erhöhung der Schmelzviskosität, die Drainage verringert wird und ebenfalls zur Stabilität der Porenstruktur im flüssigen Bereich beiträgt.
  • Die verbesserten Eigenschaften können auch auf das besondere Schmelzverhalten der erfindungsgemäßen Legierung zurückgeführt werden, welches charakterisiert wird durch die Funktion des Flüssigvolumentanteils in Abhängigkeit von der Temperatur der Schmelze. Die Legierung erzeugt während des Aufschäumprozesses bei 560 °C isotherm einen Anteil von etwa 50 % ternär-eutektischer Schmelze und hat eine Liquidustemperatur von ca. 600 °C, wodurch die präzise Einstellung einer für die Schaumexpansion optimalen Zähigkeit der Schmelze ermöglicht wird.
  • Gegenüber den oben im Stand der Technik erwähnten Cu-haltigen Legierungen besteht zudem der Vorteil höherer Duktilität und besserer Korrosionsbeständigkeit des fertigen Produkts.
  • Erfindungsgemäß wird die beanspruchte Legierung als geschäumtes Kernmaterial in Aluminiumschaum-Sandwichs verwendet.
  • Bei dem Verfahren zur Herstellung des Metallschaumes aus der beanspruchten Legierung wird zunächst eine Metallpulvermischung für die Legierung AlMg4(±1)Si8(±1) hergestellt und zu einem schäumbaren Halbzeug verdichtet und anschließend dieses Halbzeug mit bekannten Mitteln aufgeschäumt.
  • Bei dem erfindungsgemäßen Verfahren zur Herstellung des Kernmaterials aus der beanspruchten Legierung wird zunächst eine Metallpulvermischung für die Legierung AlMg4(±1)Si8(±1) erzeugt und zu einer schäumbaren Kernlage verdichtet, danach wird diese Kernlage zwischen zwei Deckbleche einer 6000er Legierung angeordnet und diese Anordnung in einen festen metallischen Verbund überführt, anschließend wird dieser Verbund bis auf eine Temperatur, die geringfügig niedriger ist als die Solidustemperatur der 6000er Legierung, erhitzt und bei Erreichen der gewünschten Dicke des geschäumten Kernmaterials der Aufschäumprozess durch Kühlen unter die Solidustemperatur des Kernmaterials gestoppt.
  • Die Metallpulvermischungen bedeuten im Zusammenhang mit der Erfindung Mischungen aus Legierungspulvern, d.h. Pulvern aus solchen Materialien, aus denen die vorgeschlagene Legierung besteht, und in solchen Gewichtsanteilen der einzelnen Komponenten, die zu dieser Legierung führen. Dabei ist es unerheblich, ob Pulver aus den drei Legierungsbestandteilen einzeln oder z. B. auch bereits zwei Legierungskomponenten enthaltende Pulver, denen die fehlenden Bestandteile zugemischt werden, verwendet werden.
  • In Ausführungsformen der Erfindung ist deshalb beispielhaft vorgesehen, dass als Metallpulvermischung für die Legierung AlMg4(±1)Si8(±1) eine Mischung der einzelnen Legierungsbestandteile verwendet wird, insbesondere in der Zusammensetzung 50 Gew.% AlMg8, 8 Gew.% Si und 41 Gew.% Al bzw. in Elementarzusammensetzung 88 Gew% Al, 4 Gew% Mg und 8 Gew% Si. Eine andere Ausführungsform sieht eine Metallpulvermischung aus 8 Gew% des zweikomponentigen Legierungspulvers AlMg50, 8 Gew% Si und 84 Gew% Al vor.
  • Die Verwendung einer Legierungspulvermischung hat den Vorteil, dass der unerwünschte Abbrand des Mg-Anteils im Herstellungs- und im Schäumprozess der erfindungsgemäßen Legierung verhindert wird.
  • Auch das optional vorgesehene Ausschließen bzw. Entfernen von Fremdgasen (z.B. Sauerstoff) und deren Verbindungen mit den Metallpulvern bei der Herstellung des schäumbaren Halbzeuges oder der schäumbaren Kernlage verhindert den unerwünschten Abbrand des Mg-Anteils.
  • Es wurde festgestellt, dass der Aufschäumprozess für die erfindungsgemäße Legierung sowohl mit als auch ohne Treibmittel erfolgreich verläuft.
  • Wird - wie in einer weiteren Ausführungsform - ein Treibmittel verwendet, so ist vorgesehen, die Zersetzungstemperatur des Treibmittels und die Schmelztemperatur der Metallpulvermischung möglichst nahe zueinander, d.h. wenige Grade unterhalb der Zersetzungstemperatur, einzustellen, damit eine hochviskose große Schmelzmenge bei der Zersetzungstemperatur zur Verfügung steht. Der Verwendung eines Treibmittels hat den Vorteil, dass der Schäumprozess insbesondere über die Temperatur gut steuerbar ist und damit sehr sauber abläuft.
  • Die Erfindung wird in folgenden Ausführungsbeispielen veranschaulicht.
  • Die Figuren zeigen:
  • Fig. 1 bis 3:
    die Porengrößenverteilung der bekannten Legierungen AlMg6Si6 und AlSi6 im Vergleich zur erfindungsgemäßen Legierung AlMg4Si8 entsprechend;
    Fig. 4 :
    die gemessene Expansion bei verschiedenen Heizleistungen für die erfindungsgemäße Legierung und die bekannten Legierungen AlMg6Si6 und AlSi6;
    Fig. 5:
    Schaumqualität der Legierung AlMg4Si8 in Abhängigkeit der Konzentration der Legierungselemente Magnesium und Silizium.
    1. Beispiel
  • Für die Herstellung eines zylindrischen Bauteils aus Aluminiumschaum der erfindungsgemäßen Legierung wird zunächst eine Pulvermischung aus 1 Gew.% TiH2, 8 Gew.% Si, 4 Gew.% Mg und 87 Gew.% Al hergestellt. Diese wird dann bei einer Temperatur von 400 °C, einem Pressdruck von 195 MPa und 300 s Presszeit uniaxial zu einem tablettenförmigen Halbzeug verdichtet, was anschließend in einer zylindrischen Stahlblechform so lange erhitzt wird, bis die Metallpulvermischung vollständig aufgeschmolzen ist. Während dieses Prozesses bildet sich aus den einzelnen Metallpulvern die Legierung AlMg4Si8. Der Aufschäumprozess erfolgt in bekannter Weise durch die Zersetzung des Treibmittels TiH2, wodurch Gasblasen im Halbzeug gebildet werden. Hat der Schaum die zylindrische Stahlblechform ausgefüllt, wird sie dem Ofen entnommen. Der Schäumprozess stoppt durch das Abkühlen der Form unter die Solidustemperatur der Schmelze.
  • Das zylindrische Bauteil aus der Legierung AlMg4Si8 weist neben einer geringen Dichte und einer homogenen Porenstruktur ebenso eine gute Korrosionsbeständigkeit und hohe Duktilität auf.
  • 2. Beispiel
  • Für die Herstellung eines Aluminiumschaum-Sandwichs wird zunächst eine Metallpulvermischung aus 50 Gew.% der Aluminiumlegierung AlMg8, 8 Gew.% Si und 41 Gew.% Aluminium hergestellt und anschließend zu einer Kernlage verdichtet. Diese Kernlage wird in einem nächsten Schritt mit Deckblechen einer aushärtbaren Legierung der Serie 6000 in einen festen, metallischen Verbund überführt. Dies kann beilspielsweise mittels Walzplattierens oder eines anderen bekannten Verfahrens erfolgen. Dieser Verbund wird nun so lange erhitzt, bis eine minimal niedrigere Temperatur, hier 590 °C, als die Solidustemperatur der Deckbleche, die bei ca. 600 °C liegt, erreicht ist, und dadurch der Aufschäumprozess startet. Während des Aufschäumens bildet sich die Aluminiumlegierung AlMg4Si8 in der Schaumkernlage.
  • Bei Erreichen der gewünschten Schaumschichtdicke wird der Aufschäumprozess durch Kühlen unter die Solidustemperatur der Schaumkernlegierung, beispielsweise bis auf eine Temperatur zwischen 555 °C und 560 °C gestoppt. Nun kann bei Bedarf direkt im Anschluss oder zu einem späteren Zeitpunkt eine Wärmebehandlung des erzeugten Aluminiumschaum-Sandwichs erfolgen.
  • Auch diese Aluminiumschaum-Sandwichs weisen einen hohen Expansionsgrad der Schaumkernlage sowie gute mechanische Eigenschaften und eine gute Korrosionsbeständigkeit auf.
  • Die gute Qualität des aus der erfindungsgemäßen Legierung erzeugten Metallschaumes soll nun anhand der beiden Parameter Porengrößenverteilung und erreichte Expansionshöhe im Vergleich zu den bekannten Legierungen AlSi6 und AlMg6Si6 gezeigt werden.
  • In den Figur 1 bis 3 sind die Porengrößenverteilungen für die Materialien AlSi6 und AlMg6Si6 sowie die erfindungsgemäße Legierung AlMg4Si8 als Ergebnis einer digitalen Bildanalyse in Balkendiagrammen dargestellt. Im Vergleich zu den Magnesium-haltigen Schaumproben weist die Magnesiumfreie Probe aus der Legierung AlSi6 eine gröbere Porenstruktur auf. Da der Unterschied mit bloßem Auge schwierig zu beurteilen ist, wurden die einzelnen Porenquerschnitte vermessen und in Größenklassen von 2 mm2 Breite sortiert. In den Balkendiagrammen der Figuren 1 bis 3 wird nun der Unterschied zwischen den Porenstrukturen deutlich. Während die Magnesium-haltigen Legierungen bei etwa 20 mm2 eine Obergrenze für die Porengröße mit relativ scharfer Abgrenzung erkennen lassen, läuft die Porengrößenverteilung der Legierung AlSi6 eher flach zu höheren Porengrößen um 60 mm2 aus und es gibt keine scharfe Obergrenze.
  • In den in Fig. 1 bis 3 dargestellten Balkendiagrammen ist für die Porengrößenverteilung festzustellen, dass diese für AlMg6Si6 nur geringfügig schlechter ist als für AlMg4Si8, für AlSi6 jedoch sehr stark abweicht.
  • Die in Fig. 4 dargestellte Expansion für eine mittlere Aufheizrate von 2,6 K/s bzw. von 1,2 K/s ist für AlSi6 und die erfindungsgemäße Legierung sehr ähnlich, jedoch ist für AlMg6Si6 eine niedrigere Expansion gemessen worden.
  • Wie bereits oben erwähnt ist festgestellt worden, dass es für eine gute Qualität - nämlich eine hohe Expansion und eine feinporige Struktur - des Metallschaumes von Vorteil ist, wenn eine zum Einschließen des frei gesetzten Gases ausreichende Schmelzmenge bei konstanter Temperatur erzeugt wird, da die Treibmittelzersetzung ohne gleichzeitigen Temperaturanstieg nur sehr langsam verläuft und somit Gasverluste durch beim Anschmelzen gebildete Kanäle vermieden werden. Diese darf allerdings nicht zu groß sein, da die verbliebenen ungeschmolzenen Bestandteile der Schmelze durch die hohe Viskosität im 2-Phasengebiet der Legierung unerwünschte Effekte (Drainage, Schaumkollaps) vermeiden. In der Praxis hat sich gezeigt, dass bei binären AlSi-Legierungen die Menge der isotherm entstehenden Schmelze ca. 50 % beträgt.
  • Bei der erfindungsgemäßen Legierung AlMg4Si8 ist es nun möglich, diesen Anteil durch das ternäre Eutektikum Schmelze ↔ Al + Mg2Si + Si zu erzeugen, was sowohl zu einer feinen Porenstruktur als auch zu einer hohen Expansion - und damit zu einer besseren Schaumqualität im Vergleich zu den dem Stand der Technik nach bekannten Legierungen - führt.
  • In Figur 5 ist schematisch die Schaumqualität, welche sich aus der Expansion und der Porengrößenverteilung ergibt, in Abhängigkeit der Konzentration der Legierungselemente Magnesium und Silizium dargestellt. Bei Verwendung der Legierung AlMg4Si8 zeigt die Schaumqualität ein Maximum. Bereits geringfügige Abweichungen von der Zusammensetzung der erfindungsgemäßen Legierung führen zu einem merklichen Verlust an Schaumqualität durch Sinken der Expansion und/oder Vergröberung der Porenstruktur.

Claims (11)

  1. Aluminiumlegierung für Metallschäume,
    dadurch gekennzeichnet, dass
    diese Aluminiumlegierung AlMg4(±1)Si8(±1), angegeben in Gew.%, ist.
  2. Verwendung der Legierung gemäß Anspruch 1
    als geschäumtes Kernmaterial für die Herstellung von Aluminiumschaum-Sandwichs.
  3. Verfahren zur Herstellung des Metallschaumes aus einer Legierung gemäß Anspruch 1, wobei
    - zunächst eine Metallpulvermischung für die Legierung AlMg4(±1)Si8(±1) hergestellt und zu einem schäumbaren Halbzeug verdichtet und
    - anschließend mit bekannten Mitteln aufgeschäumt wird.
  4. Verfahren zur Herstellung des Kernmaterials gemäß Anspruch 1 und 2, wobei
    - zunächst eine Metallpulvermischung für die Legierung AlMg4(±1)Si8(±1) hergestellt und zu einer schäumbaren Kernlage verdichtet wird,
    - diese Kernlage zwischen zwei Deckbleche einer 6000er Legierung angeordnet und diese Struktur in einen festen metallischen Verbund überführt wird,
    - danach dieser Verbund bis auf eine Temperatur geringfügig niedriger als die Solidustemperatur der 6000er Legierung für den Aufschäumprozess erhitzt wird und
    - bei Erreichen der gewünschten Dicke des geschäumten Kernmaterials der Aufschäumprozess durch Absenken der Temperatur unter die Solidustemperatur des Kernmaterials gestoppt wird.
  5. Verfahren nach Anspruch 3 oder 4,
    dadurch gekennzeichnet,
    dass als Metallpulvermischung eine Mischung der Legierungsbestandteile verwendet wird.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Metallpulvermischung die folgenden Legierungsbestandteile aufweist: 50 Gew.% AlMg8, 8 Gew.% Si und 41 Gew.% Al.
  7. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Metallpulvermischung die Legierungsbestandteile in der Elementarzusammensetzung 88 Gew% Al, 4 Gew% Mg und 8 Gew% Si aufweist.
  8. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Metallpulvermischung aus 8 Gew% des zweikomponentigen Legierungspulvers AlMg50, 8 Gew% Si und 84 Gew% Al gebildet wird.
  9. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet,
    dass Fremdgase und deren Verbindungen mit den Metallpulvern bei der Herstellung des schäumbaren Halbzeuges oder der schäumbaren Kernlage ausgeschlossen oder entfernt werden.
  10. Verfahren nach Anspruch 3 oder 4,
    dadurch gekennzeichnet,
    dass für den Aufschäumprozess ein Treibmittel verwendet wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass die Schmelztemperatur der Metallpulvermischung wenige Grad unterhalb der Zersetzungstemperatur des Treibmittels eingestellt wird.
EP09007574A 2008-06-11 2009-06-09 Metallschäume aus einer Aluminiumlegierung, ihre Verwendung und Verfahren zur Herstellung Active EP2143809B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09007574T PL2143809T3 (pl) 2008-06-11 2009-06-09 Pianki metalowe ze stopu aluminium, ich zastosowanie i sposób wytwarzania

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008027798A DE102008027798A1 (de) 2008-06-11 2008-06-11 Aluminiumlegierung für Metallschäume, ihre Verwendung und Verfahren zur Herstellung

Publications (2)

Publication Number Publication Date
EP2143809A1 true EP2143809A1 (de) 2010-01-13
EP2143809B1 EP2143809B1 (de) 2011-09-14

Family

ID=41314693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09007574A Active EP2143809B1 (de) 2008-06-11 2009-06-09 Metallschäume aus einer Aluminiumlegierung, ihre Verwendung und Verfahren zur Herstellung

Country Status (5)

Country Link
EP (1) EP2143809B1 (de)
AT (1) ATE524569T1 (de)
DE (1) DE102008027798A1 (de)
ES (1) ES2378840T3 (de)
PL (1) PL2143809T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118787A1 (de) * 2015-11-03 2017-05-04 HAVEL metal foam GmbH Verfahren und Vorrichtung zur Herstellung von Metallschaumverbundkörpern und Metallschaumverbundkörper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884123A2 (de) * 1997-06-10 1998-12-16 Th. Goldschmidt AG Schäumbare Metallkörper
EP0997215A2 (de) 1998-10-28 2000-05-03 Schunk Sintermetalltechnik Gmbh Verfahren zur Herstellung eines metallischen Verbundwerkstoffs mit geschäumtem Kern
DE10115230A1 (de) 2000-03-28 2001-11-08 Fraunhofer Ges Forschung Verfahren zur Herstellung poröser Metallkörper und Verwendung derselben
DE10136370A1 (de) 2001-07-26 2003-03-06 Schwingel Dirk Verbundwerkstoff und daraus hergestelltes Bauteil bestehend aus einem aufgeschäumten Metallkern und massiven Deckblechen, sowie Verfahren zur Herstellung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721912B2 (ja) * 1989-06-09 1998-03-04 東洋アルミニウム株式会社 アルミニウム用粉末ろう材
DE19852277C2 (de) * 1998-11-13 2000-12-14 Schunk Sintermetalltechnik Gmb Verfahren zur Herstellung eines metallischen Verbundwerkstoffes sowie Halbzeug für einen solchen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884123A2 (de) * 1997-06-10 1998-12-16 Th. Goldschmidt AG Schäumbare Metallkörper
EP0997215A2 (de) 1998-10-28 2000-05-03 Schunk Sintermetalltechnik Gmbh Verfahren zur Herstellung eines metallischen Verbundwerkstoffs mit geschäumtem Kern
DE10115230A1 (de) 2000-03-28 2001-11-08 Fraunhofer Ges Forschung Verfahren zur Herstellung poröser Metallkörper und Verwendung derselben
DE10136370A1 (de) 2001-07-26 2003-03-06 Schwingel Dirk Verbundwerkstoff und daraus hergestelltes Bauteil bestehend aus einem aufgeschäumten Metallkern und massiven Deckblechen, sowie Verfahren zur Herstellung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEVOSTIANOV I ET AL: "Elastic and electric properties of closed-cell aluminum foams", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 420, no. 1-2, 25 March 2006 (2006-03-25), pages 87 - 99, XP025098269, ISSN: 0921-5093, [retrieved on 20060325] *
WANG Z ET AL: "Studies on the dynamic compressive properties of open-cell aluminum alloy foams", SCRIPTA MATERIALIA, ELSEVIER, AMSTERDAM, NL, vol. 54, no. 1, 1 January 2006 (2006-01-01), pages 83 - 87, XP025028346, ISSN: 1359-6462, [retrieved on 20060101] *

Also Published As

Publication number Publication date
ES2378840T3 (es) 2012-04-18
DE102008027798A1 (de) 2009-12-24
EP2143809B1 (de) 2011-09-14
PL2143809T3 (pl) 2012-07-31
ATE524569T1 (de) 2011-09-15

Similar Documents

Publication Publication Date Title
EP3181711B1 (de) Scandiumhaltige aluminiumlegierung für pulvermetallurgische technologien
DE102016202885B4 (de) Selektives Lasersinterverfahren
EP0460392B1 (de) Verfahren zur Herstellung aufschäumbarer Metallkörper
DE3854547T2 (de) Verfahren zur Herstellung von Teilen aus pulverförmigem Material.
DE2503165C2 (de) Verfahren zur Herstellung eines Sinterkörpers mit örtlich unterschiedlichen Materialeigenschaften und Anwendung des Verfahrens
DE3336516C2 (de) Auskleidung und Belegung für Hohl-, Flach- und Projektilladungen
DE2644272A1 (de) Verfahren und vorrichtung zum herstellen von mit fasern verstaerkten erzeugnissen
DE102007018123A1 (de) Verfahren zur Herstellung eines Strukturbauteils aus einer Aluminiumbasislegierung
DE1775322A1 (de) Gleitlager mit feinverteiltem Aluminium als Grundmaterial und Verfahren und zu dessen Herstellung
DE102009034566A1 (de) Verfahren zum Herstellen eines Tanks für Treibstoff
DE102011116212A1 (de) Wärmebehandlungen von Metallgemischen, die durch ALM gebildet worden sind, zur Bildung von Superlegierungen.
DE102006031213B3 (de) Verfahren zur Herstellung von Metallschäumen und Metallschaum
DE2828308A1 (de) Verfahren zur herstellung von titancarbid-wolframcarbid-hartstoffen
EP2427284B1 (de) Pulvermetallurgisches verfahren zur herstellung von metallschaum
DE2123381A1 (de) Schweißlegierung, Verfahren zum Verbessern der Standzeit von Formteilen, Schweißkonstruktion, Schweißstab und Verfahren zu dessen Herstellung
DE3518855A1 (de) Abschmelzelektrode zur herstellung von niob-titan legierungen
EP2143809B1 (de) Metallschäume aus einer Aluminiumlegierung, ihre Verwendung und Verfahren zur Herstellung
DE2611337A1 (de) Verfahren zur herstellung von metallen oder legierungen
DE102009056504B4 (de) Verfahren zur Herstellung einer einschlussfreien Nb-Legierung aus pulvermetallurgischem Vormaterial für eine implantierbare medizinische Vorrichtung
WO2019053184A1 (de) Verfahren zum schäumen von metall im flüssigkeitsbad
DE2363264A1 (de) Verfahren zur herstellung von harten und nicht deformierbaren legierungsgegenstaenden
DE3307000C2 (de) Verfahren zur Herstellung eines Verbundmetallkörpers
DE3907022C2 (de)
DE2166949A1 (de) Reibeeinrichtung und verfahren zu ihrer herstellung
DE3234416A1 (de) Verfahren zur erzeugung eines hochfesten pulvermetallmaterials und das erhaltene material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20100713

17Q First examination report despatched

Effective date: 20100805

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BANHART, JOHN

Inventor name: WOLFGANG SEELIGER

Inventor name: HELWIG, HANS-MARTIN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 25/00 20060101ALI20110216BHEP

Ipc: B22F 3/11 20060101ALI20110216BHEP

Ipc: B22F 7/00 20060101ALI20110216BHEP

Ipc: C22C 1/08 20060101AFI20110216BHEP

RTI1 Title (correction)

Free format text: ALUMINIUM ALLOY METAL FOAMS, ITS USE AND METHOD FOR ITS MANUFACTURE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOLFGANG SEELIGER

Inventor name: BANHART, JOHN

Inventor name: HELWIG, HANS-MARTIN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009001351

Country of ref document: DE

Effective date: 20111201

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20110914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2378840

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120116

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SEELIGER, WOLFGANG

Effective date: 20120604

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20120730

26N No opposition filed

Effective date: 20120615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009001351

Country of ref document: DE

Effective date: 20120615

BERE Be: lapsed

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUR MATERIALIEN UND ENER

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090609

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: POHLTEC METALFOAM GMBH, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: POHLTEC METALFOAM GMBH

Effective date: 20170315

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: POHLTEC METALFOAM GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: WOLFGANG SEELIGER

Effective date: 20170324

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20190620

Year of fee payment: 11

Ref country code: PL

Payment date: 20190527

Year of fee payment: 11

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502009001351

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220621

Year of fee payment: 14

Ref country code: GB

Payment date: 20220623

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220617

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220630

Year of fee payment: 14

Ref country code: ES

Payment date: 20220719

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220629

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231129

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 524569

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230609

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230609

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230609

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630