EP0402749B1 - Appareil pour le chronométrage de courses - Google Patents

Appareil pour le chronométrage de courses Download PDF

Info

Publication number
EP0402749B1
EP0402749B1 EP90110672A EP90110672A EP0402749B1 EP 0402749 B1 EP0402749 B1 EP 0402749B1 EP 90110672 A EP90110672 A EP 90110672A EP 90110672 A EP90110672 A EP 90110672A EP 0402749 B1 EP0402749 B1 EP 0402749B1
Authority
EP
European Patent Office
Prior art keywords
image
memory
time
bar
image memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90110672A
Other languages
German (de)
English (en)
Other versions
EP0402749A1 (fr
Inventor
Erwin Nobs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Electronics SA
Original Assignee
Omega Electronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Electronics SA filed Critical Omega Electronics SA
Publication of EP0402749A1 publication Critical patent/EP0402749A1/fr
Application granted granted Critical
Publication of EP0402749B1 publication Critical patent/EP0402749B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C1/00Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people
    • G07C1/22Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people in connection with sports or games
    • G07C1/24Race time-recorders
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F13/00Apparatus for measuring unknown time intervals by means not provided for in groups G04F5/00 - G04F10/00
    • G04F13/02Apparatus for measuring unknown time intervals by means not provided for in groups G04F5/00 - G04F10/00 using optical means

Definitions

  • the invention relates to an apparatus for timing a race comprising an optical device installed at a fixed station and in the extension of a line of passage of a race comprising several competitors for projecting an image of this line on a photosensitive bar comprising a plurality of pixels juxtaposed in a single column.
  • the document CH-A-590 518 already describes a system for determining the times separating the passages of mobiles in line with a reference line substantially perpendicular to their trajectory.
  • This system consists of using a television camera equipped with a cathode ray tube, a camera which is pointed at the reference line, recording the signals supplied by said camera and, simultaneously, signals supplied by a timepiece. and reproducing the signals using a monitor.
  • a camera is used by means of which a unidirectional linear scan coincides with the reference line and a reader carrying out a bidirectional linear scan, so that the successive scans of the reference line by the camera are spread over the screen of the reader in a direction perpendicular to that in which its unidirectional scans are carried out, in this case in the direction of the trajectory of the mobiles.
  • this camera may be of a conventional type, but where however the two scans have been swapped so that the fastest scan is carried out in a vertical direction, the slowest scan having been deleted.
  • a diode camera of the so-called "solid state" type will preferably be used in place of the cathode ray tube to avoid marking of the tube, or even rapid deterioration of the latter.
  • FIG. 2 shows how this device is made up which comprises a row of elementary pixels 6 arranged side by side.
  • the incident light from the reference line to be picked up produces charges on each of the sensors, charges which represent the intensity profile of an image line at a given time. These charges are transferred periodically in the direction of the arrows 9 to a shift register 7 carrying as many elements 8 as there are pixels 6.
  • a clock signal 12 at TV frequency discharges the content of the line in the form of of a video signal 11.
  • These video signals are then memorized and then displayed so as to represent, in the form of an image, the temporal evolution of the line under observation (finish line for example).
  • the second drawback concerns the distortion of the images that we collect. It will indeed be understood that in order to obtain an undistorted image, it will be necessary for the refresh rate of the photosensitive device, given by the clock signal 12 (see FIGS. 1 and 2), to correspond to the speed Vi of the scrolling image said device. The collected image will be compressed if the speed Vi is greater than the refresh rate or, on the contrary, dilated if this speed Vi is lower than said refresh rate. An example drawn from practical situations will explain the problem.
  • the CCD bar mentioned above comprises a multiplicity of pixels with a substantially square surface, the side of which measures approximately 13 ⁇ m. With the 625-line TV standard, these 13 ⁇ m are traversed as we have already said in 64 ⁇ s, which corresponds to the image of a mobile which would move at the speed Vi of:
  • the scanning frequency is adapted to the speed of the race and the reproduced images appear without distortion.
  • this value corresponds to the speed Vi of a car race passing in front of the CCD bar. If we now wish, with the same equipment, to capture images of an athletics race whose image speed Vi can be estimated at 26 mm / s, the image collected will be greatly expanded in width, deforming the forms of athletes to the point of making them unrecognizable.
  • the scanning frequency of the bar which in parallel will increase the time during which the pixels of the bar will be exposed.
  • the exposure time and the scanning frequency would be 3.25 ms and 307 lines per second, respectively, if we consider a boating test where the speed of the image Vi scrolling past the bar is 4 mm / s.
  • Document EP-A-0 223 119 however proposes a camera for sports races comprising a pulse generator for controlling the transfer of charges from one sensor to another, in such a way that the speed of this transfer at the speed of the image of the race moving in front of the device.
  • a pulse generator for controlling the transfer of charges from one sensor to another, in such a way that the speed of this transfer at the speed of the image of the race moving in front of the device.
  • No detail is however indicated on the way in which the image is reconstructed, the text being content to explain that this reconstruction is carried out according to techniques specific to television, the line frequency being synchronized with the frequency of charge transfer, which implies an oversized monitor and video recorder.
  • the document EP-A-0 207 675 also proposes a video recording apparatus for sports races comprising a one-dimensional sensor in the form of a bar.
  • the signal collected at the sensor output is converted by an A / D converter into a series of picture elements which are stored in a video memory to form a plurality of images arranged end to end.
  • This system is however limited to the memory capacity, typically 16 TV images, as the description indicates. This is due to the fact that there are not, in this system, two buffer memories working alternately one in reading and the other in writing, as is the case in the invention which will be described later. .
  • the present invention uses some of the characteristics described in the three documents which have just been discussed, it is for a very different purpose than that pursued by said documents.
  • the problem to be solved here results from the fact that, since the image acquisition frequency by the bar is not synchronous with the viewing frequency, image portions are generated using buffer memories, these portions image being then stored in an image memory, then read discontinuously by jumping of image portions in synchronism with a standard TV scan. Thanks to this, the images are recorded and viewed by means of a commercial recorder and monitor with fixed and standardized scanning frequency.
  • the main object of the present invention is to offer an apparatus for timing races, equipped with a one-dimensional CCD bar, which is adapted to several racing speeds without image distortion, and this by using a simple reader. standard TV image, commonly available on the market.
  • the monitor and the video recorder will be inexpensive and will then help to reduce the price of the whole apparatus.
  • FIG. 3 shows a simplified embodiment of the invention.
  • runners 2 each evolving on a lane 4 at a speed Vm, take turns passing a crossing line 90 which can be the finish line of the race.
  • a crossing line 90 which can be the finish line of the race.
  • an optical device or objective 1 forming part of a camera 15.
  • the image of line 90 is formed on a photosensitive bar 5 located behind the objective 1.
  • the bar 5 is as shown in Figure 2 and composed of a plurality of pixels juxtaposed in a single column. The image of the runner scrolls at speed Vi in front of the bar.
  • a time base or timer 25, connected to the camera by the connection 35 makes it possible to read the content of the bar at a determined frequency, each reading being followed by a refreshment of the bar.
  • the reading frequency is chosen to correspond to the speed Vi of the race image. It is therefore understood that at a given instant the content of the bar, being in the form of an electrical signal, is found to be equal to the intensity profile of the image of line 90.
  • the reading frequency of the bar is chosen by the operator of the device according to the speed of the race of which he must retain the images.
  • the operator has a keyboard 27 on which he can manually enter the value of this speed.
  • a microcontroller 26 serves as an interface between the keyboard 27 and the time base 25, which makes it possible to derive from the time base - generally delivering the time of day - the reading frequency chosen by the operator.
  • the operator can signal to the person responsible for giving the start of the race that the device is ready to receive the images of the race. This signal comes from time base 25 through the line R (ready).
  • the time base 25 of the device can be zeroed and then triggered by the start signal of the race, and this by the line S (start).
  • the time base 25 and the microcontroller are commercially obtainable circuits, for example under the name Intel 80186 which combines blocks 25 and 26 into a single integrated component.
  • the electrical signals from successive readings from the bar are first stored in a first buffer memory 19 by via a switch 28 located according to the position drawn in FIG. 3.
  • a switch 28 located according to the position drawn in FIG. 3.
  • the timer 25 switches the output of the bar on the input of a second buffer memory 20 which in turn stores 128 new columns picked up by the bar.
  • image portions each comprising 128 columns.
  • FIG. 3 shows that the content of the buffer memories 19 and 20 can be routed alternately, via another switch 29, to an image or video memory RAM 21.
  • This switch is controlled by the timer 25.
  • the buffer memory 19 stores the electrical signals coming from the bar 5
  • the content of the buffer memory 20 is transferred to the image memory 21 and vice versa.
  • the switches 28 and 29 are actuated in synchronism and controlled by the timer 25.
  • the buffer memories are capable of storing 128 columns each comprising 512 distinct signals. It can be memories of the Hitachi HM 62536 type.
  • the image memory 21 has sufficient capacity to store n image portions from the buffer memories 19 and 20. When the device is operating and at each instant of its operation, it will therefore be understood that the image memory has an image portion being transferred or in writing and n-1 image portions already transferred or already written.
  • a memory can be of the Intel 514256 type.
  • a video controller 24 - which can be of the Intel 82786 type - the n-1 image portions already written in the video RAM 21 of such that the first portion of image read corresponds to the freshest temporally portion written in said video RAM and so on in chronological order.
  • the images read in the order indicated above are displayed on a standard TV standard monitor 23 and at the same time recorded on a standard TV standard recorder 22 so that, after each writing of a new image portion in the process image 21, the coolest portion displayed on the screen of the monitor 23 takes the place of the portion previously displayed, the latter undergoing a displacement by leap to come to be placed next to the freshest portion.
  • FIG. 4 will show the image reconstruction mechanism mentioned above.
  • Reference 21 designates the image memory and reference 23 indicates the monitor screen.
  • the image memory can contain five image portions represented by five compartments numbered from 1 to 5.
  • the contents of the buffer memory 20 (see FIG. 3) are first transferred to the image memory 21.
  • the runner 70 is then written in bin 1.
  • bins 2 to 5 are read from the image memory and displayed on the monitor.
  • the monitor will not display any information (fig. 4A).
  • the buffer memory 19 is completely filled by the acquired image portion of the bar 5
  • the switches 28 and 29 change position and the content of the buffer 1 is transferred to the locker 2 of the image memory: the runner 71 is written in this locker 2.
  • FIG. 5 presents a more improved embodiment of the invention which takes up all the elements discussed in connection with FIG. 3 by adding to them elements allowing the creation of a time scale and other elements bringing certain advantages which will appear on reading the following lines.
  • the camera 15 roughly shown diagrammatically in FIG. 5 comprises a bar 5 of at least 512 pixels arranged in a column.
  • the signals from the bar are amplified by an amplifier 16, the gain of which can be varied, for example as a function of automatic illumination of the object to be picked up.
  • the first six bits include information relating to 64 gray levels of the pixel, the last two of which can be used for example at transmit information about the pixel color.
  • the camera is controlled by a controller 18 from which, for example, the scanning frequency of the bar (line 49), the gain control of the amplifier (line 50) and the control of the converter (line 51) originate.
  • the controller 18 receives signals from the time base 25 (line 35) and is linked to the microcontroller 26 by a bi-directional line 61. It was said above that this camera can be purchased ready-made from the company i2S (Bordeaux, France). The signals from the camera 15 via the line 91 are routed on the switch 28 to supply alternately the buffer memories 19 and 20 as has already been explained above. Similarly, as soon as a buffer is filled, its content is written to the image memory 21 via the switch 29 and the line 55.
  • the signals collected at the output of the image memory are sent via the line 54 to a second converter 43 which converts the digital signal coming from the image memory into an analog signal which attacks by lines R, G, B an encoder intended to attach the system to the traditional players (monitor and video recorder) according to standard color TV standard.
  • the Booktree BT 478 circuit can be used for the second converter 43 and the Motorola MC 1377 circuit in PAL or NTSC standard for the encoder.
  • a Philips TDA 2506 circuit would adapt to the SECAM standard.
  • the other elements buffers, image memory, timer, microcontroller) are of the same type as those already mentioned above.
  • the diagram in FIG. 5 is remarkable in that it makes it possible to create a graphical time scale with numerical marks allowing an easy reading of the race time.
  • the graphic generator is represented at 39. It forms, with the video controller 24 already mentioned with reference to FIG. 3 and a video address generator 40, a single component 60 which is of the Intel 82786 type already named.
  • the construction of the image is done in the same way as that discussed in connection with FIGS. 3 and 4 with an additional time scale.
  • Figure 6 shows a particular situation taken at the same time as that shown in Figure 4C.
  • the image memory 21 comprises an image zone 81 comprising the runners 70, 71 and 72. This zone comprises five portions, each composed of 128 columns, each column itself comprising 480 bytes.
  • the image memory 21 also includes a time scale zone 82 comprising time subdivisions 92 and a graphic 93 denominated in minutes, seconds and tenths of a second (for example 1′13 ⁇ 20). This area also has five portions, each consisting of 128 columns, each column comprising 32 bytes.
  • the runner 72 is writing in the image memory and the runners 71 and 70 are already written in said memory. It follows that appear on the screen 23 the runners 71 and 70, the most recently acquired runner 71 appearing on the right of the screen. If we draw the lines 105 and 94, which moreover will apply to making a cursor which will be discussed later, vertically from the position of the runners, we find that the runner 70 has crossed the space separating the starting line from the line under control in a time equal to 1′13 ⁇ 15, while the runner 71 has crossed the same space in a time equal to 1′13 ⁇ 213, the runner 70 therefore preceding by 6, 3 hundredths of a second the runner 71.
  • Figure 7 is a time diagram which will show the operation of the diagram of Figure 5.
  • Line A of Figure 7 shows the time scale, 20 milliseconds separating two divisions.
  • Line B indicates, in standard TV standard 625 lines and referenced by 1, 2, 3, etc., the succession of half-images each worth 20 ms.
  • the readers (monitor 23 and recorder 22) obey this standard in the example chosen here. From camera 15, images are acquired at a rate which is chosen at 2,000 columns per second, which corresponds to the athletic race mentioned above.
  • the switches 28 and 29 occupy the position drawn in FIG.
  • the portion of image stored in the image memory can then be viewed on the screen of the monitor.
  • This visualization begins at the start of the scanning of a half-image immediately following the end of the transfer in the image memory (arrow 97), in this case at the beginning of the half-image 6 (line B) and stops at the end of the half-image 8 from which it is the buffer 2, transferred by 98 into the image memory which is viewed on the screen according to the same process as that explained above with regard to buffer 1.
  • the portions 1, 2, 3, etc. displayed on the screen (line G) are then completely synchronized with the standard standard TV images.
  • the figure shows that portions 1, 3, 4 and 5 are 60 ms long and portion 2 is 80 ms long.
  • Figure 7 also shows online H the creation of the timescale.
  • the graphic generator 39 of FIG. 5 linked to the timer 25 by the line 52 generates a time scale synchronous with the columns acquired from the bar.
  • the race time or the time of day is read on a timing counter.
  • the graphical generator has enough information to plot the time scale for the 128 columns of a portion.
  • the generator 39 has at least 64 ms, duration of filling of a buffer memory, duration from which it is necessary to subtract the time of transfer of the graphic data in the video RAM.
  • the pixels thus generated are temporarily deposited in a graphic RAM memory of 128 x 32 pixels forming an integral part of the graphic generator 39. This information will then be transferred to the image memory 21 by line 53 following the image data coming from a of the two buffers 19 or 20.
  • the diagram in FIG. 7 shows that the transfer 96 of an image portion is followed by the transfer 99 (line I) of scale 1 in the image memory (arrow 100). As soon as this transfer has taken place, the graphic generator is again available for creating the next scale, in this case scale 2 (arrow 101). Finally, the first image portion to appear on the screen is complete with, in the upper zone 83, the image of the race and, in the lower zone 85, the time corresponding to the image of the race, this shown in line J in Figure 7.
  • FIG. 5 also shows a switch 37 controlled by the video controller 24 by the line 58. It will be understood that when the image memory 21 is in read mode (data transfer to the display screen) the switch 37 is positioned as shown on Figure, while, when this memory is in write mode, the switch connects lines 34 and 57 of the diagram.
  • the graphical generator 39 can deliver information other than that relating to the time proper.
  • a serial number could appear for each portion of the image, indicating in increasing order acquisition of these portions, which would facilitate location.
  • the graphics area could also carry a text identifying the race we are dealing with.
  • FIG. 5 also shows an address generator 38 which acts directly on the buffers 19 and 20 by line 36.
  • the buffer memory used here stores the pixels one behind the other. others as seen in reference 19 in FIG. 8.
  • the pixel 1 in column 1 is followed by 128 x 512 pixels to end at pixel 65536 in column 128. It follows that this type of memory n 'is not organized to be played according to a horizontal scan specific to the standard TV standard. It is the role of the address generator to carry out a transfer of the pixels in the image memory according to an order which is countable with this standard TV standard.
  • Figure 8 shows at 21 a portion of the memory 21 organized as appropriate.
  • FIG. 5 shows a video recorder 22.
  • the image generation is done discontinuously by jumping 128 columns. This is in fact not a problem since the images are sent to the video recorder 22 and then used in delayed mode in image by image mode.
  • other functions specific to such a recorder will find an interesting use, in particular image digitization, image-to-image zoom, search for the right image sequence, etc.
  • the cursor which we have just mentioned above is created by a cursor generator 41 which appears in FIG. 5.
  • This generator is capable of generating on the image displayed by the monitor a vertical bar of small thickness and crossing the image. from top to bottom. This bar can be moved horizontally so as to assign a time to a point of the image that you choose.
  • This cursor generator can be produced simply by means of a ramp generator and a reference voltage which is compared with one another. We will choose a cursor width of the order of two pixels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Valve Device For Special Equipments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Image Input (AREA)
  • Cephalosporin Compounds (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Noodles (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Television Signal Processing For Recording (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Circuits (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

  • L'invention est relative à un appareil pour le chronométrage de course comportant un dispositif optique installé à poste fixe et dans le prolongement d'une ligne de passage d'une course comprenant plusieurs concurrents pour projeter une image de cette ligne sur un barreau photosensible comportant une pluralité de pixels juxtaposés en une seule colonne.
  • Le document CH-A-590 518 décrit déjà un système pour la détermination des temps séparant les passages de mobiles au droit d'une ligne de référence sensiblement perpendiculaire à leur trajectoire. Ce système consiste à utiliser une caméra de télévision équipée d'un tube à rayon cathodique, caméra que l'on braque sur la ligne de référence, à enregistrer les signaux fournis par ladite caméra et, simultanément, des signaux fournis par un garde-temps et à reproduire les signaux à l'aide d'un moniteur. Pour ce faire on utilise une caméra au moyen de laquelle on effectue un balayage linéaire unidirectionnel coïncidant avec la ligne de référence et un lecteur effectuant un balayage linéaire bidirectionnel, de façon que les balayages successifs de la ligne de référence par la caméra soient étalés sur l'écran du lecteur dans une direction perpendiculaire à celle dans laquelle s'effectuent ses balayages unidirectionnels, en l'occurence dans la direction de la trajectoire des mobiles. Le document mentionne que cette caméra peut être d'un type conventionnel, mais où cependant on a permuté les deux balayages de façon que le balayage le plus rapide s'effectue selon une direction verticale, le balayage le plus lent ayant été supprimé. En variante il est dit qu'on utilisera de préférence une caméra à diodes du type dit "solid state" à la place du tube à rayon cathodique pour éviter le marquage du tube, voire la détérioration rapide de celui-ci.
  • Ce système est illustré aux figures 1 et 2 de la présente description. Le mobile 2 en mouvement se déplace à la vitesse Vm devant l'objectif 1 de la caméra. Derrière l'objectif on trouve un dispositif photosensible 5 unidimensionnel à capteur solid state, appelé encore barreau CCD. L'image du mobile défile à la vitesse Vi devant le dispositif 5. La figure 2 montre comment est constitué ce dispositif qui comporte une rangée de pixels élémentaires 6 disposés côte à côte. La lumière incidente issue de la ligne de référence à capter produit des charges sur chacun des capteurs, charges qui représentent le profil d'intensité d'une ligne d'image à un moment donné. Ces charges sont transférées périodiquement dans le sens des flèches 9 sur un registre à décalage 7 portant autant d'éléments 8 que de pixels 6. Un signal d'horloge 12 à fréquence TV évacue vers l'amplificateur 10 le contenu de la ligne sous forme d'un signal vidéo 11. Ces signaux vidéo sont alors mémorisés puis visualisés de manière à représenter, sous forme d'image, l'évolution temporelle de la ligne en observation (ligne d'arrivée par exemple).
  • Plusieurs dispositifs unidimensionnels sont actuellement disponibles sur le marché. Ils sont tous équipés d'un nombre important de pixels (> 1000) pour assurer une haute résolution. Pour plus de détails à ce sujet, on se référera aux notices techniques des fabricants, par exemple à la notice concernant le dispositif TH 7801 A de Thomson-CSF. Des caméras complètes peuvent même être obtenues auprès de la compagnie Fairchild sous le symbole CCD 1100C a 1500C ou encore auprès de la société i2S (Bordeaux, France) sous la dénomination iDC 133.
  • Dans le système qui vient d'être décrit on a vu que la lumière incidente produit des charges sur la rangée de capteurs 6, charges qui sont transférées périodiquement vers la sortie 10 par l'intermédiaire d'un registre à décalage 7. Ici la fréquence de transfert est fixe puisqu'elle est liée à une norme de télévision standard. En effet, dans le document cité, il est fait état d'une fréquence des images qui est de 25 unités par seconde, chaque demi-image durant 20 millisecondes. De ce fait, le système décrit a pour lui le mérite de mettre en oeuvre du matériel standard tant en ce qui concerne la caméra qu'en ce qui concerne le moniteur et l'enregistreur. Il est donc bon marché.
  • Le système décrit présente malheureusement au moins deux inconvénients de taille qui font qu'il n'a jamais pu être utilisé pratiquement et en est resté au stade de prototype.
  • Le premier inconvénient concerne le temps d'exposition des pixels qui est très faible. En effet, selon la norme européenne une demi-image est explorée en 20 ms (50 Hz) et chaque demi-image comporte 312,5 lignes. Il s'en suit que la durée d'une ligne vaut 20/312,5 = 0,064 ms = 64 µs et que la fréquence de balayage est de 1/64 µs, soit de 15'625 lignes par seconde. Ainsi, en utilisant un dispositif photosensible unidimensionnel avec le balayage normal de TV, chaque pixel ne sera excité que pendant 64 µs par balayage. Ceci représente un temps extrêmement court qui limite le domaine d'application du dispositif à des scènes présentant un éclairement important, car pour des éclairements moyens, le signal recueilli n'émerge pas ou très peu du bruit de fond, du moins avec les moyens dont on dispose actuellement.
  • Le second inconvénient concerne la déformation des images qu'on recueille. On comprendra en effet que pour obtenir une image non déformée, il faudra que la vitesse de rafraîchissement du dispositif photosensible, donnée par le signal d'horloge 12 (voir figures 1 et 2), corresponde à la vitesse Vi de l'image défilant sur ledit dispositif. L'image recueillie sera compressée si la vitesse Vi est plus grande que la vitesse de rafraîchissement ou au contraire dilatée si cette vitesse Vi est plus petite que ladite vitesse de rafraîchissement. Un exemple tiré de situations pratiques fera comprendre le problème qui se pose.
  • Le barreau CCD dont il a été question plus haut comporte une multiplicité de pixels de surface sensiblement carrée dont le côté mesure sensiblement 13 µm. Avec le standard TV à 625 lignes, ces 13 µm sont parcourus comme on l'a déja dit en 64 µs, ce qui correspond à l'image d'un mobile qui se déplacerait à la vitesse Vi de :
    Figure imgb0001

    Dans ce cas, la fréquence de balayage est adaptée à la vitesse de la course et les images reproduites apparaissent sans déformation. Or, cette valeur correspond à la vitesse Vi d'une course automobile défilant devant le barreau CCD. Si l'on désire maintenant, avec le même appareillage, capter des images d'une course d'athlétisme dont la vitesse d'image Vi peut être estimée à 26 mm/s, l'image recueillie sera fortement dilatée en largeur, déformant les formes des athlètes au point de les rendre méconnaissables. Si l'on veut donc obtenir une image sans déformation de la course d'athlétisme, il faudra abaisser la fréquence de balayage du barreau, ce qui parallèlement accroîtra le temps pendant lequel les pixels du barreau seront exposés. En prenant la vitesse de 26 mm/s et un pixel de 13 µm de côté, on peut calculer le temps d'exposition, puis la fréquence de balayage à appliquer au barreau. Le temps d'exposition est de :
    Figure imgb0002

    et la fréquence de balayage est de 1/500 µs = 2'000 lignes par seconde. Pour prendre un autre exemple, le temps d'exposition et la fréquence de balayage seraient respectivement de 3,25 ms et de 307 lignes par seconde si l'on considère une épreuve de canotage où la vitesse de l'image Vi défilant devant le barreau est de 4 mm/s.
  • Il ressort de ce qui vient d'être dit que, pour obtenir une image non déformée de la course à chronométrer, il est indispensable d'adapter la fréquence de balayage du barreau à la vitesse de l'image défilant sur ce barreau de la même façon qu'on adapte la vitesse du film dans un système utilisant un film défilant derrière une fente (procédé du photo-finish décrit dans le document CH-A-399 028). Dans le dispositif exposé au document CH-A-590 518 cité plus haut, cette adaptation n'est réalisée que pour des vitesses de course élevée, en l'occurrence pour des véhicules automobiles. Or, on comprend que pour capter l'image d'une course d'athlétisme, non seulement il faut réduire la fréquence de balayage du barreau aux valeurs indiquées ci-dessus, mais encore il faut pouvoir disposer d'un lecteur (moniteur, enregistreur vidéo) dont la fréquence de balayage soit accordée et synchrone avec celle qui explore le barreau. Cela ne pourra jamais être le cas si l'on désire utiliser un lecteur du commerce conçu pour une fréquence unique (15'625 lignes par seconde) et fixée une fois pour toutes. Pour résoudre ce problème, on peut proposer l'utilisation d'un lecteur à fréquence adaptable. On pourrait aussi proposer que le traitement et le stockage des images soient réalisés dans un PC. Qu'elle que soit la solution choisie, il faudra mettre en oeuvre un appareillage compliqué et donc très onéreux.
  • Le document EP-A-0 223 119 propose cependant un appareil de prise de vue pour courses sportives comportant un générateur d'impulsions pour commander le transfert des charges d'un capteur à l'autre, de telle manière qu'on fait correspondre la vitesse de ce transfert à la vitesse de l'image de la course se déplaçant devant le dispositif. Aucun détail cependant n'est indiqué sur la façon dont est reconstituée l'image, le texte se contentant d'expliquer que cette reconstitution est réalisée selon des techniques propres à la télévision, la fréquence ligne étant synchronisée sur la fréquence de transfert des charges, ce qui implique un moniteur et un enregistreur vidéo hors normes.
  • Le document EP-A-0 207 675 propose également un appareil d'enregistrement vidéo pour courses sportives comportant un capteur unidimensionnel en forme de barreau. Le signal recueilli à la sortie du capteur est converti par un convertisseur A/D en une série d'éléments d'image qui sont emmagasinés dans une mémoire vidéo pour former une pluralité d'images disposées bout à bout. Ce système est cependant limité à la capacité de la mémoire, typiquement à 16 images TV, comme l'indique la description. Cela est dû au fait qu'il n'y a pas, dans ce système, deux mémoires tampons travaillant alternativement l'une en lecture et l'autre en écriture, comme c'est le cas dans l'invention qui sera décrite plus loin.
  • Le document US-A-4 133 009 propose quant à lui deux mémoires tampons travaillant alternativement. Cependant, la capacité de ces mémoires est réglée sur une image TV entière d'où il ne résulte pas de difficulté à reconstruire l'image TV dans un moniteur et dans un enregistreur vidéo normalisés. Ce système ne saurait être appliqué à la prise de vue de courses doublée d'une échelle des temps car on aboutirait à des indéterminations en passant d'une image à l'autre (chevauchement) puisqu'à aucun moment on ne trouve sur l'écran la juxtaposition d'une pluralité de portions d'image en même temps, ce qui amène une continuité temporelle entre une des portions et les portions qui précèdent et suivent ladite portion, comme le propose la présente invention.
  • Si la présente invention utilise quelques unes des caractéristiques décrites dans les trois documents qui viennent d'être discutés, c'est dans un but tout différent que celui poursuivi par lesdits documents. Le problème à résoudre ici résulte du fait que, comme la fréquence d'acquisition d'image par le barreau n'est pas synchrone avec la fréquence de visualisation, on procède à une génération de portions d'image utilisant des mémoires tampons, ces portions d'image étant ensuite stockées dans une mémoire image, puis lues de façon discontinue par saut de portions d'image en synchronisme avec un balayage TV standard. Grâce à cela, les images sont enregistrées et visualisées au moyen d'un enregistreur et d'un moniteur du commerce à fréquence de balayage fixe et normalisée.
  • Ainsi, le but principal de la présente invention est d'offrir un appareillage pour le chronométrage de courses, équipé d'un barreau CCD unidimensionnel, qui soit adapté à plusieurs vitesses de courses sans déformation d'image et cela en utilisant un simple lecteur d'image à norme standard TV, couramment obtenable sur le marché. Ainsi avec ce système, le moniteur et l'enregistreur vidéo seront bon marché et contribueront alors à réduire le prix de l'ensemble de l'appareil.
  • Pour cela, l'appareil de l'invention selon le préambule de la revendication 1 est remarquable par le fait qu'il comporte en outre:
    • des première et seconde mémoires tampons alternativement aptes à mémoriser un nombre déterminé de signaux électriques issus de lectures successives du barreau pour former respectivement des première et seconde portions d'image de la course,
    • des moyens pour transférer alternativement lesdites première et seconde portions d'image dans une mémoire image apte à emmagasiner n portions d'image de capacité sensiblement égale, l'appareil étant arrangé de telle manière que, lorsque la première mémoire tampon emmagasine les signaux issus du barreau, la portion d'image contenue dans la seconde mémoire tampon est écrite dans la mémoire image et vice-versa, ladite mémoire image présentant, lors de chaque écriture, une portion d'image en écriture et n-1 portions d'image déjà écrites,
    • des moyens pour lire selon un ordre déterminé lesdites n-1 portions déja écrites dans la mémoire image de telle manière que la première portion d'image lue corresponde à la portion temporellement la plus fraîche déjà écrite dans la mémoire image et ainsi de suite selon un ordre chronologique, Pedit moniteur étant à norme TV standard pour afficher sur un écran les n-1 portions d'image lues dans la mémoire image de telle manière que, lors de chaque écriture d'une portion d'image nouvelle dans la mémoire image, la portion la plus fraîche apparaissant sur l'écran prend la place de la portion précédente, cette dernière subissant un déplacement par bond pour venir se placer à côté de ladite portion la plus fraîche, et
    • un enregistreur à norme TV standard pour enregistrer les images apparaissant sur le moniteur.
  • L'invention sera décrite maintenant à l'aide de la description qui suit, illustrée à titre d'exemple par le dessin dans lequel :
    • les figures 1 et 2 représentent l'art antérieur discuté plus haut,
    • la figure 3 est un schéma bloc illustrant l'invention selon un mode d'exécution simplifié permettant la seule acquisition d'images et comportant essentiellement deux mémoires tampons et une mémoire image,
    • la figure 4 est un graphisme illustrant comment, à partir de portions d'image emmagasinées dans une mémoire image on construit une image complète visible sur un moniteur,
    • la figure 5 est un schéma bloc illustrant l'invention selon un mode d'exécution évolué permettant, en plus de l'acquisition des images, l'inscription du temps correspondant aux images,
    • la figure 6 est un graphisme qui reprend partiellement le graphisme de la figure 4 dans lequel une échelle des temps est ajoutée,
    • la figure 7 est un diagramme des temps applicable au schéma bloc de la figure 5 indiquant le cheminement de l'acquisition des images, et
    • la figure 8 montre comment sont organisées les mémoires tampons et la mémoire image, ainsi que la manière dont sont transférés les signaux desdites mémoires tampons à ladite mémoire image.
  • Le schéma bloc de la figure 3 montre un mode d'exécution simplifié de l'invention. Ici des coureurs 2, évoluant chacun sur un couloir 4 à une vitesse Vm, passent à tour de rôle une ligne de passage 90 qui peut être la ligne d'arrivée de la course. Dans le prolongement de cette ligne de passage, on trouve un dispositif optique ou objectif 1 faisant partie d'une caméra 15. L'image de la ligne 90 est formée sur un barreau photosensible 5 se trouvant derrière l'objectif 1. Dans un plan perpendiculaire à la figure 3, le barreau 5 se présente comme illustré à la figure 2 et composé d'une pluralité de pixels juxtaposés en une seule colonne. L'image du coureur défile à la vitesse Vi devant le barreau. Une base de temps ou timer 25, reliée à la caméra par la connexion 35 permet de lire à fréquence déterminée le contenu du barreau, chaque lecture étant suivie d'un rafraîchissement du barreau. La fréquence de lecture est choisie pour correspondre à la vitesse Vi de l'image de la course. On comprend donc qu'à un instant donné le contenu du barreau, se présentant sous la forme d'un signal électrique, se trouve être égal au profil d'intensité de l'image de la ligne 90.
  • La fréquence de lecture du barreau est choisie par l'opérateur de l'appareil en fonction de la vitesse de la course dont il doit retenir les images. Pour cela l'opérateur dispose d'un clavier 27 sur lequel il peut introduire manuellement la valeur de cette vitesse. Un micro-contrôleur 26 sert d'interface entre le clavier 27 et la base de temps 25, ce qui permet de dériver de la base de temps - délivrant généralement l'heure du jour - la fréquence de lecture choisie par l'opérateur. Par le clavier également, l'opérateur peut signaler à la personne préposée à donner le signal de départ de la course que l'appareil est prêt à recevoir les images de la course. Ce signal est issu de la base de temps 25 par la ligne R (ready). Inversement, la base de temps 25 de l'appareil peut être mise à zéro puis enclenchée par le signal de départ de la course, et cela par la ligne S (start). On mentionnera que la base de temps 25 et le micro-contrôleur sont des circuits obtenables dans le commerce, par exemple sous la dénomination Intel 80186 qui réunit les blocs 25 et 26 en un seul composant intégré.
  • Les signaux électriques issus de lectures successives du barreau sont mémorisés d'abord dans une première mémoire tampon 19 par l'intermédiaire d'un commutateur 28 se trouvant selon la position dessinée en figure 3. Dans le mode d'exécution pris en exemple, quand 128 colonnes comportant 512 pixels ont été mémorisées dans le tampon 19, le timer 25 commute la sortie du barreau sur l'entrée d'une seconde mémoire tampon 20 qui mémorise à son tour 128 nouvelles colonnes captées par le barreau. On est donc en présence de portions d'image comportant chacune 128 colonnes. Dans l'exemple d'un balayage de 2'000 colonnes par seconde, chaque portion d'image représente donc un temps de course de 128/2'000 = 64 ms.
  • La figure 3 montre que le contenu des mémoires tampons 19 et 20 peut être acheminé alternativement, par l'intermédiaire d'un autre commutateur 29, à une mémoire image ou vidéo RAM 21. Ce commutateur est commandé par le timer 25. On voit que, lorsque la mémoire tampon 19 emmagasine les signaux électriques en provenance du barreau 5, le contenu de la mémoire tampon 20 est transféré dans la mémoire image 21 et vice-versa. Pour cela on comprend que les commutateurs 28 et 29 sont actionnés en synchronisme et commandés par le timer 25. On notera ici que les mémoires tampons sont capables d'emmagasiner 128 colonnes comportant chacune 512 signaux distincts. Ce peut être des mémoires du type Hitachi HM 62536.
  • La mémoire image 21 a une capacité suffisante pour mémoriser n portions d'image en provenance des mémoires tampons 19 et 20. Quand l'appareil fonctionne et à chaque instant de son fonctionnement, on comprendra donc que la mémoire image présente une portion d'image en train d'être transférée ou en écriture et n-1 portions d'image déjà transférées ou déjà écrites. Une telle mémoire peut être du type Intel 514256. Au moyen d'un contrôleur vidéo 24 - qui peut être du type Intel 82786 - on lit ensuite selon un ordre déterminé les n-1 portions d'image déjà écrites dans la vidéo RAM 21 de telle manière que la première portion d'image lue corresponde à la portion temporellement la plus fraîche écrite dans ladite vidéo RAM et ainsi de suite selon un ordre chronologique. Ensuite, les images lues selon l'ordre indiqué ci-dessus sont affichées sur un moniteur 23 à norme TV standard et parallèlement enregistrées sur un enregistreur 22 à norme TV standard de telle façon que, après chaque écriture d'une portion d'image nouvelle dans la mémoire image 21, la portion la plus fraîche affichée sur l'écran du moniteur 23 prend la place de la portion précédemment affichée, cette dernière subissant un déplacement par bond pour venir se placer à côté de la portion la plus fraîche.
  • Si l'on désire un ordre croissant des temps s'étendant de gauche à droite sur l'écran, on s'arrangera pour que la portion d'image la plus fraîche apparaissant sur l'écran se trouve à droite de cet écran, l'affichage d'une portion d'image nouvelle chassant vers la gauche la portion d'image qui s'y trouvait auparavant. Il s'agit là d'une reconstruction d'image à partir de plusieurs images partielles, chacune de ces images partielles comportant, dans le mode d'exécution pris en exemple, 128 colonnes. Comment s'opère la synchronisation avec une norme TV standard sera expliqué plus loin quand sera discuté un mode plus complet d'exécution de l'invention.
  • La figure 4 fera comprendre le mécanisme de reconstruction d'image mentionné ci-dessus. La référence 21 désigne la mémoire image et la référence 23 l'écran du moniteur. La mémoire image peut contenir cinq portions d'image représentées par cinq casiers numérotés de 1 à 5. Il y a d'abord transfert du contenu de la mémoire tampon 20 (voir figure 3) dans la mémoire image 21. Le coureur 70 est alors écrit dans le casier 1. Après ce transfert, on lit les casiers 2 à 5 de la mémoire image et on les affiche sur le moniteur. Dans l'exemple, les casiers 2 à 5 de la mémoire étant vides d'information, le moniteur n'affichera aucune information (fig. 4A). Lorsque la mémoire tampon 19 est entièrement remplie par la portion image acquise du barreau 5, les commutateurs 28 et 29 changent de position et le contenu du tampon 1 est transféré dans le casier 2 de la mémoire image : le coureur 71 est écrit dans ce casier 2. Après cette écriture, on lit, dans l'ordre 3, 4, 5 et 1 les casiers de la mémoire image. Le coureur 70 apparaît à droite de l'écran du moniteur 23 (fig. 4B). Lors de l'étape suivante montrée en figure 4C, il y a nouvelle acquisition au casier 3 de la mémoire image, acquisition figurée par le coureur 72. Après cette acquisition, on lit à nouveau les casiers déjà écrits de la mémoire image de telle manière que la première portion d'image lue corresponde à la portion temporellement la plus fraîche déja écrite dans la mémoire. Il s'agit ici du coureur 71 suivi du coureur 70 et des deux casiers vides 5 et 4. Apparaissent alors sur l'écran du moniteur, de droite à gauche, les coureurs 71 et 70, le coureur 70 s'étant déplacé vers la gauche pour laisser sa place au nouveau venu 71. Lors de l'étape suivante (fig. 4D), c'est le coureur 73 qui est transféré dans la mémoire image 21, provoquant l'affichage, sur l'écran du moniteur 23, des coureurs 72, 71 et 70. Le processus continue ainsi de suite comme montré aux figures 4E et 4F. A remarquer en figure 4F, que le transfert du nouveau coureur 74 dans la mémoire image a chassé du moniteur le premier coureur 70 qui n'apparaît plus sur l'écran. Dans l'exemple figuré ici, on voit que la mémoire image peut contenir cinq portions d'image (n = 5) et que l'écran du moniteur affiche quatre de ces portions (n-1 = 4). On notera que l'invention n'est pas limitée à cette disposition et que n peut être différent de cinq.
  • Ce qui prècède a expliqué le principe général de l'invention à savoir comment on construit une image complète à partir de portions d'image se déplaçant par saut au fur et à mesure de leur acquisition. Il s'agit là cependant d'une version très simplifiée de l'invention qui ne permet que d'apprécier le rang des coureurs. Comme, dans la plupart des cas, en plus de la nécessité de départager les concurrents selon le rang qu'ils occupent, il est indispensable de déterminer le temps mis par chaque concurrent pour parcourir l'espace séparant la ligne de départ de la ligne sous contrôle, il est nécessaire d'adjoindre à l'image de la course une échelle des temps correspondant à ces images.
  • La figure 5 présente un mode de réalisation plus perfectionné de l'invention qui reprend tous les éléments discutés à propos de la figure 3 en leur adjoignant des éléments permettant la création d'une échelle des temps et d'autres éléments apportant certains avantages qui apparaîtront à la lecture des lignes qui suivent.
  • La caméra 15 sommairement schématisée sur la figure 5 comporte un barreau 5 d'au moins 512 pixels disposés en colonne. Les signaux issus du barreau sont amplifiés par un amplificateur 16 dont le gain peut être varié, par exemple en fonction automatique de l'éclairement de l'objet à capter. Un premier convertisseur 17 transforme les signaux analogiques issus de l'amplificateur 16 en signaux numériques, chaque pixel étant représenté par 8 bits (= 1 byte). Les six premiers bits englobent des informations relatives à 64 niveaux de gris du pixel, les deux derniers pouvant être utilisés par exemple à transmettre des informations relatives à la couleur du pixel. La caméra est commandée par un contrôleur 18 d'où sont issues, par exemple, la fréquence de balayage du barreau (ligne 49), la commande de gain de l'amplificateur (ligne 50) et la commande du convertisseur (ligne 51). Le contrôleur 18 reçoit des signaux de la base de temps 25 (ligne 35) et est lié au micro-contrôleur 26 par une ligne bi-directionnelle 61. On a dit plus haut que cette caméra peut être achetée toute faite auprès de la société i2S (Bordeaux, France). Les signaux issus de la caméra 15 par la ligne 91 sont acheminés sur le commutateur 28 pour alimenter alternativement les mémoires tampons 19 et 20 comme cela a déjà été expliqué plus haut. De même, dès qu'un tampon est rempli, son contenu est écrit dans la mémoire image 21 via le commutateur 29 et la ligne 55. Les signaux recueillis à la sortie de la mémoire image sont acheminés via la ligne 54 à un second convertisseur 43 qui convertit le signal numérique en provenance de la mémoire image en un signal analogique qui attaque par les lignes R, G, B un codeur destiné à rattacher le système aux lecteurs (moniteur et enregistreur vidéo) classiques selon norme TV couleur standard. On mentionnera qu'on peut utiliser, pour le second convertisseur 43, le circuit Booktree BT 478 et pour le codeur le circuit Motorola MC 1377 en norme PAL ou NTSC. Un circuit Philips TDA 2506 permettrait de s'adapter à la norme SECAM. Les autres éléments (tampons, mémoire image, timer, micro-contrôleur) sont du même type que ceux déjà cités plus haut.
  • Le schéma de la figure 5 est remarquable en ce sens qu'il permet de créer une échelle de temps graphique avec repères numériques permettant une lecture aisée du temps de course. Le générateur graphique est représenté en 39. Il forme avec le contrôleur vidéo 24 déjà mentionné à propos de la figure 3 et un générateur d'adresse vidéo 40, un composant unique 60 qui est du type Intel 82786 déjà nommé.
  • La construction de l'image se fait de la même façon que celle discutée à propos des figures 3 et 4 avec une échelle des temps en plus. La figure 6 montre une situation particulière prise au même moment que celui représenté à la figure 4C. La mémoire image 21 comporte une zone image 81 comprenant les coureurs 70, 71 et 72. Cette zone comporte cinq portions, chacune composée de 128 colonnes, chaque colonne comprenant elle-même 480 bytes. La mémoire image 21 comporte encore une zone d'échelle de temps 82 comprenant des subdivisions de temps 92 et un graphisme 93 libellé en minutes, secondes et dixième de seconde (par exemple 1′13˝20). Cette zone comporte également cinq portions, chacune composée de 128 colonnes, chaque colonne comportant 32 bytes. Dans la figure 6, le coureur 72 est en écriture dans la mémoire image et les coureurs 71 et 70 sont déjà écrits dans ladite mémoire. Il s'en suit qu'apparaissent sur l'écran 23 les coureurs 71 et 70, le coureur 71 le plus récemment acquis apparaissant à la droite de l'écran. Si l'on trace les droites 105 et 94, ce que d'ailleurs s'appliquera à faire un curseur dont il sera question plus loin, à la verticale de la position des coureurs, on trouve que le coureur 70 a franchi l'espace séparant la ligne de départ de la ligne sous contrôle en un temps égal à 1′13˝15, alors que le coureur 71 a franchi le même espace en un temps égal à 1′13˝213, le coureur 70 précédant donc de 6,3 centièmes de seconde le coureur 71.
  • La figure 7 est un diagramme des temps qui fera comprendre le fonctionnement du schéma de la figure 5. La ligne A de la figure 7 indique l'échelle des temps, 20 millisecondes séparant deux divisions. La ligne B indique, en norme TV standard 625 lignes et référencées par 1, 2, 3, etc., la succession des demi-images valant chacune 20 ms. Les lecteurs (moniteur 23 et enregistreur 22) obéissent à cette norme dans l'exemple choisi ici. A partir de la caméra 15, on acquiert des images à une cadence que l'on choisit à 2'000 colonnes par seconde, ce qui correspond à la course d'athlétisme évoquée plus haut. Le temps de remplissage d'une mémoire tampon 19 ou 20 va donc durer 128/2'000 = 64 ms, ce qui est montré aux lignes C et D du diagramme de la figure 7. Lorsque le tampon 1 est en acquisition, les commutateurs 28 et 29 occupent la position dessinée à la figure 5 et le tampon 2 est en situation de pouvoir transférer son contenu a la mémoire image. Quand le tampon 1 est rempli, le timer 25, via un générateur d'adresse dont le rôle sera expliqué plus loin, fait basculer, par la ligne 30, les commutateurs 28 et 29. Le tampon 1 peut alors être transféré dans la mémoire image (flèche 95). Ce transfert est représenté par la ligne E du graphique de la figure 7. La figure montre que le transfert n'a pas lieu immédiatement mais seulement en synchronisme avec le début du balayage de la demi-image suivant immédiatement la fin du remplissage du tampon 1, en l'occurrence le début de la demi-image 5 de la ligne B. A la fin de cette opération, les 128 x 512 bytes du tampon 1 sont présents dans la mémoire image et le temps de transfert aura duré pendant le temps représenté en 96 sur la ligne E. La portion d'image mémorisée dans la mémoire image peut alors être visualisée sur l'écran du moniteur. Cette visualisation commence dès le début du balayage d'une demi-image suivant immédiatement la fin du transfert dans la mémoire image (flèche 97), en l'occurrence au début de la demi-image 6 (ligne B) et s'arrête à la fin de la demi-image 8 à partir de laquelle c'est le tampon 2, transféré par 98 dans la mémoire-image qui est visualisé sur l'écran selon le même processus que celui expliqué ci-dessus à propos du tampon 1. On remarque alors que les portions 1, 2, 3, etc. visualisés sur l'écran (ligne G) sont alors complètement synchrones avec les images TV à norme standard. La figure montre que les portions 1, 3, 4 et 5 durent 60 ms et la portion 2 dure 80 ms. Si l'on continuait le graphique, on retrouverait de nouvelles portions à 80 ms, par exemple celle qui serait la portion 7 de la ligne G. On trouve donc des portions de visualisation dont la durée d'immobilisation sur l'écran couvre trois, respectivement quatre demi-images, ce qui correspond à au moins une image complète TV dans le premier cas et à deux images complètes dans le second cas.
  • On ajoutera à cela que le transfert de la portion d'image contenue dans le tampon vers la vidéo RAM 21 s'effectuera durant les lignes TV non utilisées, soit dans l'exemple et pour une image, durant 625 - 512 = 113 lignes. Ce transfert doit être synchronisé avec la fréquence image ou fréquence trame, et on disposera pour ce faire d'au plus trois demi-images. Le graphique de la figure 7 montre un transfert fait en une seule fois, mais on comprendra qu'il pourrait se faire en trois fois. Ceci étant, le temps de transfert disponible vaut 113 · 64 µs · 3/2 = 10'848 µs, si 64 µs est la durée d'une ligne en TV 625 lignes. Ce temps permet de calculer le temps de transfert d'un byte qui est de 10'848 / (128 · 512) = 0,165 µs, temps tout à fait compatible avec les mémoires se trouvant actuellement sur le marché.
  • La figure 7 montre encore en ligne H la création de l'échelle des temps. Pendant que le tampon 1 se charge en image acquise du barreau, le générateur graphique 39 de la figure 5, lié au timer 25 par la ligne 52 génère une échelle des temps synchrones avec les colonnes acquises du barreau. Au début de l'acquisition d'une portion d'image, le temps de course ou l'heure du jour est lue sur un compteur de chronométrage. En connaissant le temps d'origine d'une portion et l'incrément de temps pour chaque colonne de cette portion, le générateur graphique dispose de suffisamment d'informations pour tracer l'échelle de temps pour les 128 colonnes d'une portion. Pour faire ce travail, le générateur 39 dispose au minimum de 64 ms, durée de remplissage d'une mémoire tampon, durée de laquelle il faut soustraire le temps de transfert des données graphiques dans la vidéo RAM. Les pixels ainsi générés sont provisoirement déposés dans une mémoire RAM graphique de 128 x 32 pixels faisant partie intégrante du générateur graphique 39. Ces informations seront ensuite transférées à la mémoire image 21 par la ligne 53 à la suite des données images en provenance d'un des deux tampons 19 ou 20. Le diagramme de la figure 7 montre que le transfert 96 d'une portion d'image est suivi du transfert 99 (ligne I) de l'échelle 1 dans la mémoire image (flèche 100). Dès que ce transfert a eu lieu, le générateur graphique est à nouveau disponible pour la création de l'échelle suivante, en l'occurrence l'échelle 2 (flèche 101). Finalement, la première portion d'image à apparaître sur l'écran est complète avec, dans la zone supérieure 83, l'image de la course et, dans la zone inférieure 85, le temps correspondant à l'image de la course, ce que montre la ligne J de la figure 7.
  • La figure 5 montre encore un commutateur 37 commandé par le contrôleur vidéo 24 par la ligne 58. On comprendra que lorsque la mémoire image 21 est en mode lecture (transfert des données vers l'écran de visualisation) le commutateur 37 est positionné comme montré sur la figure, alors que, lorsque cette mémoire est en mode écriture, le commutateur relie les lignes 34 et 57 du schéma.
  • Le générateur graphique 39 peut délivrer d'autres informations que celles relatives au temps proprement dit. C'est ainsi que dans la zone graphique pourrait apparaître, pour chaque portion d'image, un numéro d'ordre indiquant de manière croissante l'ordre d'acquisition de ces portions, ce qui permettrait de faciliter le repérage. La zone graphique pourrait aussi porter un texte identifiant la course à laquelle on a affaire.
  • En plus de ce qui est montré à la figure 3, la figure 5 fait voir encore un générateur d'adresse 38 qui agit directement sur les tampons 19 et 20 par la ligne 36. La mémoire tampon utilisée ici emmagasine les pixels les uns derrière les autres comme on le voit à la référence 19 de la figure 8. Le pixel 1 de la colonne 1 est suivi par 128 x 512 pixels pour se terminer au pixel 65536 de la colonne 128. Il s'en suit que ce type de mémoire n'est pas organisé pour être lue selon un balayage horizontal propre à la norme TV standard. C'est le rôle du générateur d'adresse de procéder à un transfert des pixels dans la mémoire image selon un ordre qui soit comptabile avec cette norme TV standard. La figure 8 montre en 21 une portion de la mémoire 21 organisée comme il convient.
  • Le schéma de la figure 5 montre un enregistreur vidéo 22. On a vu que la génération d'image se fait de façon discontinue par saut de 128 colonnes. Ceci n'est en fait pas gênant car les images sont envoyées à l'enregistreur vidéo 22 puis exploitées en différé en mode image par image. De plus, à part l'utilisation en image par image, d'autres fonctions propres à un tel enregistreur trouveront une utilisation intéressante, notamment la digitalisation d'image, le zoom image dans image, la recherche de la bonne séquence d'image, etc.
  • Le clavier 27 de la figure 5 permet plusieurs fonctions importantes dont on peut citer :
    • Initialisation du système, date, heure du jour, mode de représentation graphique, couleurs, etc.
    • Introduction et mémorisation de plusieurs titres.
    • Introduction des paramètres, par exemple vitesse d'acquisition.
    • Gain, diaphragme pour la caméra.
    • Armage du start pour le compteur de chronométrage.
    • Début et fin acquisition.
    • Ordres spécifiques au VCR tel que positionnement de la bande, recherche de la bonne séquence, image par image, arrêt sur image, enregistrement, lecture, etc., ceci en fonction des possibilitées du VCR.
    • Commande du curseur à l'écran. Celui-ci n'est incrusté qu'en mode lecture.
    • Edition de titres.
  • Le curseur dont on vient de parler ci-dessus est créé par un générateur de curseur 41 qui apparaît à la figure 5. Ce générateur est apte à générer sur l'image affichée par le moniteur une barre verticale de faible épaisseur et traversant l'image du haut en bas. Cette barre peut être déplacée horizontalement de manière à attribuer un temps à un point de l'image qu'on choisit. Ce générateur de curseur peut être réalisé simplement au moyen d'un générateur de rampe et d'une tension de référence qu'on compare entre eux. On choisira une largeur de curseur de l'ordre de deux pixels.
  • Les exemples donnés ci-dessus se basent sur une norme européenne à 625 lignes. On comprendra que l'invention peut s'appliquer par analogie à d'autres normes, par exemple à la norme américaine à 525 lignes.

Claims (5)

  1. Appareil pour le chronométrage de courses comportant un dispositif optique (1) installé à poste fixe et dans le prolongement d'une ligne de passage (90) d'une course comprenant plusieurs concurrents (2) pour projeter une image de cette ligne sur un barreau photosensible (5) comportant une pluralité de pixels (6) juxtaposés en une seule colonne, ledit appareil comprenant des moyens pour lire à fréquence déterminée, choisie en fonction de la vitesse de la course, le contenu du barreau, ledit contenu se présentant sous la forme d'un signal électrique (11) correspondant au profil d'intensité de l'image de la ligne à un instant donné, et un moniteur TV (23), ledit appareil étant caractérisé en ce qu'il comprend en outre :
    - des première (19) et seconde (20) mémoires tampons alternativement aptes à mémoriser un nombre déterminé de signaux électriques issus de lectures successives du barreau pour former respectivement des première et seconde portions d'image de la course,
    - des moyens (28, 29) pour transférer alternativement lesdites première et seconde portions d'image (21) dans une mémoire image apte à emmagasiner n portions d'image de capacité sensiblement égale, l'appareil étant arrangé de telle manière que, lorsque la première mémoire tampon emmagasine les signaux issus du barreau, la portion d'image contenue dans la seconde mémoire tampon est écrite dans la mémoire image et vice-versa, ladite mémoire image présentant, lors de chaque écriture, une portion d'image en écriture et n-1 portions d'image déjà écrites,
    - des moyens (24) pour lire selon un ordre déterminé lesdites n-1 portions déjà écrites dans la mémoire image de telle manière que la première portion d'image lue corresponde à la portion temporellement la plus fraîche déjà écrite dans la mémoire image et ainsi de suite selon un ordre chronologique, ledit moniteur (23) étant à norme TV standard et étant prévu pour afficher sur un écran les n-1 portions d'image lues dans la mémoire image de telle manière que, lors de chaque écriture d'une portion d'image nouvelle dans la mémoire image, la portion la plus fraîche apparaissant sur l'écran prend la place de la portion précédente, cette dernière subissant un déplacement par bond pour venir se placer à côté de ladite portion la plus fraîche, et
    - un enregistreur (22) à norme TV standard pour enregistrer les images apparaissant sur le moniteur.
  2. Appareil selon la revendication 1, caractérisé par le fait qu'il comporte un premier convertisseur (17) situé entre le barreau et lesdites première et seconde mémoires tampons pour convertir le signal électrique en provenance dudit barreau en un signal numérique et un second convertisseur (43) situé entre la mémoire image et le moniteur pour convertir le signal numérique en provenance de la mémoire image en un signal analogique.
  3. Appareil selon la revendication 1, caractérisé par le fait qu'il comporte une base de temps (25) et des moyens de mise à zéro et de démarrage de ladite base de temps, un générateur graphique (39) commandé par ladite base de temps et susceptible de générer une échelle des temps (92, 93) en synchronisme avec ladite fréquence déterminée, et des moyens pour emmagasiner graphiquement dans la mémoire image, en même temps que les portions d'image, ladite échelle des temps pour départager les concurrents prenant part à la course.
  4. Appareil selon la revendication 3, caractérisé par le fait qu'il comporte un générateur (41) apte à générer sur l'image affichée par le moniteur une barre verticale de faible épaisseur traversant l'image et susceptible d'être déplacée horizontalement de manière à attribuer un temps à un point de l'image qu'on choisit.
  5. Appareil selon la revendication 1, caractérisé par le fait qu'il comporte un générateur d'adresses (38) agissant sur la mémoire tampon dont le contenu est transféré dans la mémoire image pour organiser, dans ladite mémoire image, l'emplacement desdits signaux électriques de telle manière qu'ils puissent être lus dans l'ordre par un balayage horizontal propre à la norme TV standard.
EP90110672A 1989-06-15 1990-06-06 Appareil pour le chronométrage de courses Expired - Lifetime EP0402749B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908087 1989-06-15
FR8908087A FR2648594B1 (fr) 1989-06-15 1989-06-15 Appareil pour le chronometrage de courses

Publications (2)

Publication Number Publication Date
EP0402749A1 EP0402749A1 (fr) 1990-12-19
EP0402749B1 true EP0402749B1 (fr) 1994-06-01

Family

ID=9382861

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90110672A Expired - Lifetime EP0402749B1 (fr) 1989-06-15 1990-06-06 Appareil pour le chronométrage de courses

Country Status (12)

Country Link
US (1) US5136283A (fr)
EP (1) EP0402749B1 (fr)
JP (1) JP3182691B2 (fr)
KR (1) KR0149009B1 (fr)
CN (1) CN1024854C (fr)
AT (1) ATE106584T1 (fr)
AU (1) AU624961B2 (fr)
CA (1) CA2018997C (fr)
DE (1) DE69009295T2 (fr)
ES (1) ES2057275T3 (fr)
FI (1) FI98416C (fr)
FR (1) FR2648594B1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU636184B2 (en) * 1989-12-15 1993-04-22 Kazuo Takahashi Method for determining sequence of arrival and racing time of runners at finish line by use of bar codes
US5513103A (en) * 1991-01-10 1996-04-30 Charlson; Cary Method of acquiring and disseminating handicapping information
US5278657A (en) * 1991-05-31 1994-01-11 Sony Corporation Camera apparatus selectively operable as a fully electronic slit camera
US5506623A (en) * 1991-12-19 1996-04-09 Sony Corporation Data compression methods and systems with quantization distortion measurement means
JP3241778B2 (ja) * 1991-12-24 2001-12-25 ソニー株式会社 符号化装置
JPH05173231A (ja) * 1991-12-24 1993-07-13 Purasumitsuku:Kk 移動体撮影装置
AU659274B2 (en) * 1992-01-20 1995-05-11 Peter John Alexandrovics A line monitoring system
NZ246525A (en) * 1992-01-20 1996-03-26 Peter John Alexandrovics Video "photo finish" recording
WO1994017635A1 (fr) * 1993-01-20 1994-08-04 Peter John Alexandrovics Systeme de surveillance
US5657077A (en) * 1993-02-18 1997-08-12 Deangelis; Douglas J. Event recording system with digital line camera
US5552824A (en) * 1993-02-18 1996-09-03 Lynx System Developers, Inc. Line object scene generation apparatus
JPH06276526A (ja) * 1993-03-22 1994-09-30 Hitachi Denshi Ltd カラー着順およびタイム判定装置
JP3183318B2 (ja) * 1994-05-20 2001-07-09 日立電子株式会社 着順およびタイム判定装置
AU718094B2 (en) * 1994-06-28 2000-04-06 Lynx System Developers, Inc. Compression system
US6542183B1 (en) 1995-06-28 2003-04-01 Lynx Systems Developers, Inc. Event recording apparatus
JP2819016B2 (ja) * 1995-08-30 1998-10-30 セイコーインスツルメンツ株式会社 着順判定装置
JPH09281941A (ja) * 1996-04-15 1997-10-31 Fuji Photo Film Co Ltd 画像表示装置
EP0805595B1 (fr) * 1996-04-30 2002-03-20 Plusmic Corporation Appareil de décision d'images animées
CN1110779C (zh) * 1996-10-31 2003-06-04 传感电子公司 视频信息智能管理系统
ATE239277T1 (de) * 1997-08-22 2003-05-15 Omega Electronics Sa System mit einem photosensor, insbesonder zur zeitmessung bei wettkämpfen, und einstellverfahren zum ausrichten eines solchen systems auf eine ziellinie
US6545705B1 (en) * 1998-04-10 2003-04-08 Lynx System Developers, Inc. Camera with object recognition/data output
US6433817B1 (en) * 2000-03-02 2002-08-13 Gavin Guerra Apparatus and method for determining the winner of a race
KR200195606Y1 (ko) * 2000-03-07 2000-09-01 김성일 레이저 빔을 이용한 이동체의 이동 시간 측정 장치
DE10336447A1 (de) * 2003-08-06 2005-03-10 Gerd Hansen Verfahren und Vorrichtung zum Erfassen und Verarbeiten von Daten eines Sportereignisses
US20050088524A1 (en) * 2003-10-23 2005-04-28 Delmar Bleckley Lag meter
CN103508503B (zh) * 2013-09-25 2016-01-20 浙江力聚热水机有限公司 一种换热除氧装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678189A (en) * 1969-12-11 1972-07-18 Robert A Oswald Method of producing time-position records of objects
DE2602420A1 (de) * 1976-01-23 1977-07-28 Basf Ag Farbvideo-aufzeichnungs-/wiedergabesystem
CH629066B (fr) * 1977-12-27 Longines Montres Comp D Installation de chronometrage avec prise de vue de television.
FR2497369B1 (fr) * 1980-12-31 1985-06-07 Ssih Equipment Sa Procede pour chronometrage de courses et dispositif pour la mise en oeuvre de ce procede
EP0207675B1 (fr) * 1985-06-19 1990-05-02 Yamaguchi Cinema Corporation Appareil d'enregistrement et de reproduction de signaux vidéo
US4875105A (en) * 1985-08-07 1989-10-17 Canon Kabushiki Kaisha Video signal processing device
FR2589604B1 (fr) * 1985-11-04 1988-01-22 Longines Francillon Sa Cie Mon Appareil pour le chronometrage de courses sportives

Also Published As

Publication number Publication date
FI98416B (fi) 1997-02-28
JP3182691B2 (ja) 2001-07-03
FI903021A0 (fi) 1990-06-15
FR2648594A1 (fr) 1990-12-21
FI98416C (fi) 1997-06-10
EP0402749A1 (fr) 1990-12-19
ATE106584T1 (de) 1994-06-15
CA2018997A1 (fr) 1990-12-15
CN1024854C (zh) 1994-06-01
CA2018997C (fr) 2000-05-16
AU624961B2 (en) 1992-06-25
ES2057275T3 (es) 1994-10-16
CN1048116A (zh) 1990-12-26
KR910001599A (ko) 1991-01-31
KR0149009B1 (ko) 1998-12-15
JPH0333682A (ja) 1991-02-13
DE69009295D1 (de) 1994-07-07
US5136283A (en) 1992-08-04
FR2648594B1 (fr) 1993-03-05
AU5705090A (en) 1990-12-20
DE69009295T2 (de) 1994-12-08

Similar Documents

Publication Publication Date Title
EP0402749B1 (fr) Appareil pour le chronométrage de courses
US4131919A (en) Electronic still camera
CN102263889A (zh) 摄像装置
US7659926B2 (en) Imaging apparatus and imaging method
KR20140009130A (ko) 정지 사진과 비디오 내용을 캡쳐하고 표시하는 시스템 및 장치
JP2013110562A (ja) 撮像装置
JPS5817792A (ja) 焦電撮像装置の画像処理方法および装置
JP2589477B2 (ja) ビデオカメラ
JPS60105383A (ja) 写真装置
FR2513777A1 (fr) Dispositif de memorisation et de traitement de signaux analogiques en vue de l'affichage d'une image de type oscilloscopique et oscilloscope comprenant un tel dispositif de traitement
JP2010187112A (ja) 画像再生装置
JPS6025390A (ja) 電子カメラ装置における撮像方式
JPH01133475A (ja) 電子シャッタを有するビデオカメラシステム
JPS63146583A (ja) 電子カメラ
FR2637754A1 (fr) Camera permettant le suivi de mouvements rapides en television
EP1225761B1 (fr) Procédé de commande d'un appareil comportant plusieurs sources vidéo
JPH07203273A (ja) ビデオカメラ
JPS60130976A (ja) 電子カメラ
JP2671933B2 (ja) 電子内視鏡装置
JP2012182799A (ja) 撮像装置
KR20000055369A (ko) 액자 및 시계 기능을 가지는 캠코더
FR2868232A1 (fr) Systeme d'affichage d'une sequence d'images animees
JP2001008091A (ja) 撮像装置及びその制御方法
JPH03104483A (ja) テレビカメラ装置
JPH08235673A (ja) 画像録画再生装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK ES GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19910114

17Q First examination report despatched

Effective date: 19930514

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK ES GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940601

Ref country code: DK

Effective date: 19940601

REF Corresponds to:

Ref document number: 106584

Country of ref document: AT

Date of ref document: 19940615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69009295

Country of ref document: DE

Date of ref document: 19940707

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2057275

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940921

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3013108

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19970627

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050524

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050526

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050527

Year of fee payment: 16

Ref country code: DE

Payment date: 20050527

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050609

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060606

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060606

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070606