EP0391366B1 - Brennstoffeinspritzvorrichtung - Google Patents

Brennstoffeinspritzvorrichtung Download PDF

Info

Publication number
EP0391366B1
EP0391366B1 EP90106394A EP90106394A EP0391366B1 EP 0391366 B1 EP0391366 B1 EP 0391366B1 EP 90106394 A EP90106394 A EP 90106394A EP 90106394 A EP90106394 A EP 90106394A EP 0391366 B1 EP0391366 B1 EP 0391366B1
Authority
EP
European Patent Office
Prior art keywords
bore
fuel
valve
control valve
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90106394A
Other languages
English (en)
French (fr)
Other versions
EP0391366A2 (de
EP0391366A3 (de
Inventor
Wolfgang Dr.-Ing. Köhler
Reda Rizk
Hans-Gottfried Michels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner Humboldt Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Priority to AT90106394T priority Critical patent/ATE99386T1/de
Publication of EP0391366A2 publication Critical patent/EP0391366A2/de
Publication of EP0391366A3 publication Critical patent/EP0391366A3/de
Application granted granted Critical
Publication of EP0391366B1 publication Critical patent/EP0391366B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/04Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means

Definitions

  • the invention relates to a fuel injection device for diesel engines according to the preamble of claim 1.
  • Fuel injection pumps of this type can draw in the fuel via a suction hole in the plunger bushing and / or via a suction valve, which is located in the region of the delivery chamber.
  • the fuel is drawn in via a seat valve which is arranged in the region of the high-pressure chamber and can be actuated by means of an electromagnetic adjusting device.
  • the fuel is pumped from the pump plunger into the injection line via a pressure or relief valve.
  • the function of the pressure or relief valve is to lower the pressure in the injection line to a certain level after the injection process has ended and to prevent the injection line from being sucked empty when the fuel is subsequently drawn in. This is intended to achieve both a rapid, spatter-free closing of the injection valve and cavitation-free operation of the injection system.
  • EP-A-0 174 261 describes an injection system for diesel internal combustion engines which is controlled by electromagnetic control valves.
  • the advantage of this solution is that no relief valve is provided and each control valve has only one electromagnet.
  • the position of the electromagnetic control valve in the vicinity of the fuel injection valve is disadvantageous. As a result, when the electromagnetic control valve is opened, the inertia of the fuel column in the injection line partially empties it, which can lead to cavitation.
  • EP-A-0 114 375 describes a fuel injection device for diesel engines with a control by an electromagnetic control valve, each having two actuating magnets.
  • relief valves are provided in this fuel injection device.
  • the invention has for its object to improve fuel injection and thus the combustion in diesel engines.
  • the simple construction of the fuel injector means that the maintenance effort is low and the dimensions and costs are kept small.
  • the elimination of the pressure valve means that the injection element is simplified and less expensive.
  • the overall height and maintenance requirements of the injection device are reduced by eliminating a wearing part.
  • the harmful space is also kept small, since the flow connection between the high-pressure chamber and the injection valve has a practically constant flow cross section despite the electromagnetically operated seat valve installed in this flow connection. This is possible because a high-pressure annulus is also provided as a bypass line with a constant flow cross-section in the area of the electromagnetically actuated seat valve.
  • the harmful space is minimized by cutting the stepped bore and the high-pressure bore at right angles.
  • the high pressure area is acted upon by the admission pressure prevailing in the low pressure chamber during the suction.
  • This so-called stand pressure the level of which is ensured according to the invention by a pressure-maintaining valve in the suction chamber, advantageously ensures the stability of the start of delivery and the delivery rate of the injection pump and reduces the risk of cavitation in the system.
  • the solution according to the invention offers the advantage that the arrangement of the injection elements can be optimally adapted to the respective structural conditions of the engine housing.
  • An advantageous development of the invention prevents the fuel injection pump from running dry when the engine is not running, since according to the invention a tightly closing inlet valve closes off the low-pressure chamber from the fuel inlet.
  • the solution according to the invention offers the advantage that the arrangement of the injection pump elements can be optimally adapted to the respective structural conditions of the engine housing.
  • the injection line is particularly short and thus the harmful space is particularly small, so that the injection pressure can be particularly high.
  • An advantageous embodiment of the invention ensures that separate manufacture and testing and individual replacement of the injection pump element and control valve or electromagnetic actuating device is possible.
  • An advantageous development of the invention reduces the dead space of the fuel injection device.
  • This installation clearance is advantageously bridged by two sealing elements which, in addition to their function as a high-pressure seal, also take over the bearing of the control valve in the stepped bore of the plunger bush.
  • the high-pressure fuel when it is driven off by the control valve body, is returned to the low-pressure chamber through a hole in the plunger sleeve. This avoids expensive external connection lines with their risk of leakage.
  • a further advantageous development of the invention is the arrangement of the elements parallel to the axis of the control valve body, with which the control valve is fastened to the plunger sleeve. This arrangement prevents the bracing and thus jamming of the control valve body in the control valve sleeve.
  • An advantageous design of the pump plunger with a diverter groove ensures that the delivery of the injection pump is interrupted regardless of the serviceability of the control valve before the delivery runs into the tip radius of the injection pump cam.
  • the arrangement of the anchor plate according to the invention in a vented and fuel-filled space with appropriate adjustment of the gap between the attracted anchor and the electromagnetic actuating device to the various design parameters of the control valve, enables a rebound-free closing and thus an exact control of the start of delivery and the delivery rate of the fuel .
  • the inventive design of the outer contour of the injection pump element makes it possible to replace a normal element with the injection pump element with a control valve without any reworking.
  • the position of the high-pressure chamber and the suction or discharge borehole according to the invention enables a minimal harmful space in the high-pressure region, which is comparable to the harmful space of a normal element.
  • the fuel injection device consists of an injection pump element 1 and a control valve 2, the injection pump element 1 also being the carrier of the control valve 2.
  • the injection pump element is composed of a pump plunger 4, a plunger sleeve 5, the control valve 2 consists of a seat valve 3 and an electromagnetic actuator 7.
  • the plunger 4 which is sealingly guided in a plunger sleeve 5, forms a high-pressure chamber 11 together with the plunger sleeve.
  • the high-pressure chamber 11 is connected to the low-pressure chamber 13 via a suction or discharge bore 14.
  • the low-pressure chamber 13 is acted upon by a fuel feed pump, not shown, via an inlet valve 51.
  • the pressure in the low pressure chamber 13 is kept constant by a pressure maintaining valve 52.
  • the plunger 1 is moved axially via a roller tappet 54 by a cam 55 against the force of a compression spring 53.
  • the fuel is conveyed into a high-pressure bore 12 after completion of the suction or discharge bore 14.
  • the seat valve 3 is open, the delivered fuel flows back into the low-pressure chamber 13 via the high-pressure annulus 26, the control valve seat 25, the low-pressure annulus 27 and the return bore 15.
  • the high-pressure delivery is ended by opening the seat valve 3.
  • the connection thus created to the low-pressure chamber 13 relieves the high-pressure region 50, which is under the pressure of the low-pressure chamber 13 until the seat valve 3 is closed again. This prevents the formation of cavities during the downward movement of the pump plunger and ensures constant pressure conditions at the beginning of the next injection, which lead to a stable start of delivery and quantity characteristics.
  • the inlet valve 51 and the pressure holding valve 52 which are designed as particularly tightly closing valves, prevent the low-pressure chamber 13 and the high-pressure region 50 from running dry when the engine is at a standstill, thereby avoiding difficulties when starting the engine.
  • the high-pressure chamber 11 is pulled up to just below a stepped bore 19, which is used to hold the control valve 2. As a result, the harmful volume in the high-pressure chamber 11 is minimized, which proves to be particularly advantageous with high injection pressures.
  • the high-pressure chamber 11 has no end cover, since the injection pump element 1 is designed as a so-called "mono element".
  • the design as a mono element advantageously increases the high-pressure capability of the fuel injection device by minimizing the expansion of the pressure space.
  • a suction or discharge bore 14 which connects the high-pressure chamber 11 to a low-pressure chamber 13, which in turn is connected to the suction chamber of the injection pump housing, not shown.
  • the suction or discharge bore 14 is drilled obliquely from the low pressure chamber 13 in the direction of the high pressure chamber 11 in order to take into account the position of the high pressure chamber 11.
  • the low-pressure chamber 13 is also connected via a return bore 15 to an annular space 16 of a control valve sleeve 17 of the seat valve 3. This avoids an external return line, which means construction costs and leakage risk.
  • the seat valve 3 sits with a clearance fit in the stepped bore 19 of the plunger sleeve 5 and is mounted in two high-pressure sealing elements 20. It is connected by screws, not shown, which are inserted through bores in an end cover 21 and the plunger sleeve 5 and screwed into the control valve sleeve 17, to form a firm bond with the plunger sleeve 5 without the seat valve 3 being tensioned. Due to the installation clearance between the control valve sleeve 17 and the stepped bore 19, tensioning and consequently jamming of the seat valve 3, caused by the tightening of the injection line 48, is also avoided.
  • a particular advantage of this arrangement is that an independent exchange of control valve 2 and injection pump element 1 as well as the electromagnetic actuating device 7 is ensured.
  • This modular structure enables cost-effective production and repair of the fuel injection device.
  • the seat valve 3 has a control valve sleeve 17 and a control valve body 22, which is guided so that it can move axially in the control valve sleeve 17, specifically in a high-pressure guide 23 and a low-pressure guide 24.
  • the control valve body 22 separates a high-pressure annulus 26 from a low-pressure annulus 27 with a control valve seat 25.
  • the high-pressure annulus 26 is via a high-pressure control bore 28 and the high pressure bore 12 connected to the high pressure chamber 11.
  • the low-pressure annular space 27 is connected to the low-pressure space 13 via the control bore 29, the annular space 16 and the return bore 15.
  • the control valve body 22 has a leak oil longitudinal bore 42 and a leak oil transverse bore 43, which create a connection between a leak oil chamber 44 and a spring chamber 34.
  • an anchor plate 30 is fastened, which is moved by the electromagnetic actuating device 7.
  • the anchor plate 30 is fastened by means of a countersunk screw 31 screwed into the control valve body 22, which axially clamps the anchor plate 30 and a stop ring 32 against the control valve body 22.
  • the anchor plate 30 is located in a fuel-filled damping space 33 which is delimited by an intermediate piece 41 and the electromagnetic actuating device 7.
  • the volume of the damping space 33 is dimensioned such that no significant flow resistances occur between the anchor plate 30 and the walls of the intermediate piece 41 during the axial movement of the anchor plate 30.
  • the damping chamber 33 is connected to a spring chamber 34, which is also fuel-filled.
  • a spring 36 In the spring chamber 34 there is a spring 36, the force of which acts on the stop ring 32 in the direction of the stop 35.
  • the stop 35 serves to limit the stroke of the control valve body 22.
  • the damping chamber 33 and the spring chamber 34 are connected to the control bore 29 via a throttle bore 37.
  • a threaded bore 38 is provided, to which a ventilation or fuel return line 39 is connected, which leads to the fuel tank (not shown).
  • a pressure holding valve 40 is arranged, the cut-off pressure of which is lower than the delivery pressure of the fuel delivery pump, not shown.
  • the electromagnetic adjusting device 7 is clamped against the control valve sleeve 17 by screws (not shown), acting parallel to the axis of the control valve body 22, with the intermediate piece 41, without bracing the latter.
  • the entire low-pressure area of the control valve 2 is sealed by O-rings 45.
  • the fuel injector works as follows:
  • the pump plunger 4 is moved from its bottom dead center position in the direction of the control valve 2. After passing through a preliminary stroke, it first closes the suction and discharge bore 14. The plunger 4 then delivers fuel into the high-pressure bore 12 and into the high-pressure control bore 28.
  • the spring 36 When the anchor plate 30 is tightened, the spring 36 is also preloaded. As soon as the electromagnetic adjusting device 7 is de-energized, the spring 36 lifts the control valve body 22 from its seat 25. As a result, the fuel flows back into the low-pressure chambers and the fuel injection is ended.
  • a prerequisite for the precise function of the seat valve 3 and thus for reproducible delivery start and fluctuation-free delivery quantity is a rebound-free placement of the control valve body 22 on the control valve seat 25.
  • This is achieved according to the invention by a finely tuned damping of the movement of the control valve body 22.
  • the displacement flow is between Anchor plate 30 and the electromagnetic actuator 7 used.
  • the armature plate 30 is designed without open, axial bores in order to effect the most effective squeezing flow at the stroke end between the armature plate 30 and the electromagnetic actuating device 7.
  • the amount of damping required depends, among other things, on the moving mass, i. H. from the mass of the control valve body 22 + anchor plate 30 + countersunk screw 31 + stop ring 32 + proportion of the mass of the spring 36. Another factor relevant to damping is the spring stiffness of the control valve seat 25.
  • the damping itself depends, among other things, on the fuel viscosity, the geometry of the anchor plate 30 and the minimum distance 46 between the anchor plate 30 and the electromagnetic actuating device 7 and the pressure in the damping space 33. These influencing factors have to be coordinated. The optimal adjustment is achieved when the control valve body 22 is placed on the control valve seat 25 without kickback and the damping-related slowdown in the movement of the control valve body 22 is minimized.
  • the supply of the damping chamber 33 with damping liquid, for. B. damping oil can be done via a separate damping oil circuit.
  • fuel is taken from the low-pressure area, specifically from the control bore 29 of the seat valve 3, specifically via the throttle bore 37. The latter prevents the pressure surges in the control bore 29 from reaching the damping chamber 33.
  • damping space 33 For proper functioning of the damping, it is important that there is no air in the damping space 33, since this affects the viscosity and compressibility of the damping medium. It is also important that the damping fluid is renewed continuously as it warms up and ages.
  • the venting of the damping space 33 is accomplished via the threaded bore 38, which is provided in such a way that it is in the installed position of the control valve 2 in the region of the highest point of the damping space 33.
  • the vent or fuel return line 39 is connected to the threaded bore 38, through which the fuel does not return to the pressure holding valve 40 shown fuel tank flows.
  • the pressure holding valve 40 ensures a certain liquid pressure in the damping chamber 33, which is lower than the maximum delivery pressure of the low-pressure pump, not shown, and lower than the pressure in the low-pressure chambers of the fuel injector. This ensures a flow through the damping chamber 33 and thus renewal of the damping medium fuel and cooling of the control valve 2.
  • the pressure control valve 40 has the effect that the damping chamber 33 cannot run empty when the engine is at a standstill, which leads to undamped lifting movement and thus to bouncing of the control valve 3. Among other things, this would result in an incorrect start of delivery when the engine is restarted.
  • the leak oil from the leak oil chamber 44 is guided via the leak oil longitudinal bore 42 and the leak oil cross bore 43 in the control valve body 22 to the spring chamber 34 and thus into the damping oil circuit.
  • This solution according to the invention saves a separate leakage oil return line.
  • control groove 8 of the pump plunger 4 ensures that the fuel is directed into the suction or control bore 14 at the end of the delivery stroke.
  • the fuel injection is ended in any case before the delivery into the tip area of the injection pump cam arrives and overloaded it.
  • the pump plunger 4 of the injection pump element 1 is considerably easier to manufacture than that of the normal element 1a, since the rotating device and the precise control edges are eliminated.
  • the fuel injection device allows an exact determination of the start of delivery and metering of the fuel injection quantity by the rebound-free placement of the control valve body 22 on the control valve seat 25.
  • it is easy to manufacture and service since the main components of injection pump element 1, control valve 2 and electromagnetic actuating device 7 are to be manufactured, checked and exchanged individually and independently of one another are.

Description

  • Die Erfindung betriffl eine Brennstoffeinspritzvorrichtung für Dieselbrennkraftmaschinen nach dem Oberbegriff des Anspruchs 1.
  • Brennstoffeinspritzpumpen dieser Bauart können den Brennstoff über eine Saugbohrung in der Plungerbüchse und/oder über ein Saugventil, das sich im Bereich des Förderraumes befindet, ansaugen.
  • Bei einer anderen Bauart der Brennstoff-Einspritzpumpen wird der Brennstoff über ein im Bereich des Hochdruckraumes angeordnetes, mittels elektromagnetischer Stellvorrichtung betätigbares Sitzventil angesaugt.
  • Bei beiden Bauarten wird der Brennstoff nach dem Ansaugen von dem Pumpenplunger über ein Druck- bzw. Entlastungsventil in die Einspritzleitung gefördert.
  • Das Druck- bzw. Entlastungsventil hat die Aufgabe, den Druck in der Einspritzleitung nach Abschluß des Einspritzvorganges auf ein bestimmtes Maß abzusenken und beim anschließenden Ansaugen des Brennstoffes ein Leersaugen der Einspritzleitung zu verhindern. Dadurch sollen sowohl ein rasches, nachspritzerfreies Schließen des Einspritzventils als auch ein kavitationsfreies Arbeiten des Einspritzsystems verwirklicht werden.
  • Die EP-A-0 174 261 beschreibt eine Einspritzanlage für Dieselbrennkraftmaschinen, die durch elektromagnetische Steuerventile gesteuert wird. Vorteilhaft an dieser Lösung ist, daß kein Entlastungsventil vorgesehen ist und jedes Steuerventil nur einen Elektromagneten aufweist. Von Nachteil ist die Lage des elektromagnetischen Steuerventils in der Nähe des Kraftstoffeinspritzventils. Dadurch wird beim Öffnen des elektromagnetischen Steuerventils durch die Trägheit der Kraftstoffsäule in der Einspritzleitung diese zum Teil entleert, was zu Kavitation führen kann.
  • Die EP-A-0 114 375 beschreibt eine Kraftstoffeinspritzvorrichtung für Dieselbrennkraftmaschinen mit einer Steuerung durch ein elektromagnetisches Steuerventil, das jeweils zwei Betätigungsmagnete aufweist. Außerdem sind bei dieser Kraftstoffeinspritzvorrichtung Entlastungsventile vorgesehen.
  • Der Erfindung liegt die Aufgabe zugrunde, die Brennstoff-Einspritzung und damit die Verbrennung in Dieselbrennkraftmaschinen zu verbessern. Außerdem sollen durch einfachen Aufbau der Brennstoff-Einspritzvorrichtung der Wartungsaufwand gering und die Abmessungen und Kosten klein gehalten werden.
  • Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Es hat sich nämlich in überraschender Weise gezeigt, daß auf ein Druck- bzw. Entlastungsventil verzichtet werden kann, wenn in dem Zeitintervall zwischen Förderende und Förderbeginn eine dauernde Strömungsverbindung zwischen Hochdruckraum und Niederdruckraum besteht. Dadurch wird der Hochdruckbereich in den Niederdruckraum hinein entlastet, ohne ein Druck- bzw. Entlastungsventil zu benötigen. Da andererseits der Hochdruckbereich in dem Zeitintervall zwischen Förderende und Förderbeginn unter dem Druck des Niederdruckraumes steht, wird im Hochdruckbereich eine Hohlraumbildung durch die Abwärtsbewegung des Pumpenplungers sicher vermieden. Durch das Fehlen des Druck- bzw. Entlastungsventils vermindert sich der schädliche Raum erheblich, da sich nun ein konstanter oder in etwa konstanter Strömungsquerschnitt zwischen dem Förderraum und dem Einspritzventil realisieren läßt. Auf diese Weise wird die Steifheit des Hochdrucksystems vergrößert, so daß bei gleichen Förderraten der Einspritzpumpe höhere Einspritzdrücke erreicht werden können. Höhere Einspritzdrücke führen aber zu verbesserter Verbrennung mit geringem Brennstoffverbrauch und niedriger Schadstoffemission.
  • Weiterhin bedeutet der Fortfall des Druckventils eine Vereinfachung und Verbilligung des Einspritzelementes. Außerdem vermindern sich Bauhöhe und Wartungsaufwand der Einspritzvorrichtung durch Wegfall eines Verschleißteils.
  • Durch die erfindungsgemäße Verwendung eines Sitzventils mit elektromagnetischer Stellvorrichtung als Steuerelement wird aufgrund von dessen kurzer Schaltzeit eine schnellere Entlastung des Hochdruckbereichs erreicht als bei dem üblichen mechanischen Steuerkantensystem, zumal das Entlastungsvolumen durch den Wegfall des Entlastungsventils erheblich vermindert ist. Dieser Vorteil wirkt sich aufgrund der zeitkonstanten und drehzahlunabhängigen Schaltzeit der elektromagnetischen Stellvorrichtung insbesondere bei niedrigen Motordrehzahlen aus.
  • Durch die erfindungsgemäße Lage und Anordnung des Sitzventils wird der schädliche Raum ebenfalls gering gehalten, da die Strömungsverbindung zwischen dem Hochdruckraum und dem Einspritzventil trotz des in dieser Strömungsverbindung eingebauten elektromagnetisch betätigten Sitzventils einen praktisch konstanten Strömungsquerschnitt aufweist. Das ist ermöglicht, da auch im Bereich des elektromagnetisch betätigten Sitzventils ein Hochdruckringraum als Umgehungsleitung mit konstantem Strömungsquerschnitt vorgesehen ist. Außerdem ist der schädliche Raum erfindungsgemäß durch das rechtwinklige Schneiden der Stufenbohrung und der Hochdruckbohrung minimiert.
  • Bei der erfindungsgemäßen Lösung wird der Hochdruckbereich während des Ansaugens mit dem im Niederdruckraum herrschenden Vordruck beaufschlagt. Dieser sogenannte Standdruck, dessen Höhe erfindungsgemäß durch ein Druckhalteventil im Saugraum gewährleistet ist, sichert in vorteilhafter Weise die Stabilität von Förderbeginn und Fördermenge der Einspritzpumpe und verringert die Kavitationsgefährdung des Systems.
  • Die erfindungsgemäße Lösung bietet in einer weiteren Ausbildung den Vorteil, daß sich die Anordnung der Einspritzelemente den jeweiligen konstruktiven Gegebenheiten des Motorgehäuses optimal anpassen läßt.
  • Durch eine vorteilhafte Weiterbildung der Erfindung wird ein Leerlaufen der Brennstoffeinspritzpumpe bei stillstehendem Motor verhindert, da erfindungsgemäß ein dicht schließendes Zulaufventil den Niederdruckraum gegenüber dem Brennstoffzulauf abschließt.
  • Die erfindungsgemäße Lösung bietet in einer weiteren Ausbildung den Vorteil, daß sich die Anordnung der Einspritzpumpenelemente den jeweiligen konstruktiven Gegebenheiten des Motorgehäuses optimal anpassen läßt.
  • Durch eine vorteilhafte Ausbildung der Erfindung wird die Einspritzleitung besonders kurz und damit der schädliche Raum besonders klein, so daß der Einspritzdruck besonders hoch werden kann.
  • Durch eine vorteilhafte Ausbildung der Erfindung wird erreicht, daß getrennte Fertigung und Prüfung und Einzelaustausch von Einspritzpumpenelement und Steuerventil bzw. elektromagnetischer Stellvorichtung möglich ist.
  • Durch eine vorteilhafte Weiterbildung der Erfindung wird eine Verringerung des Totraumes der Brennstoffeinspritzvorrichtung erreicht.
  • Für eine uneingeschränkte Austauschbarkeit des Steuerventils ist es wichtig, ein gewisses Spiel zwischen der Stufenbohrung im Einspritzpumpenelement und dem Steuerventil vorzusehen.
  • In vorteilhafter Weise wird dieses Einbauspiel durch zwei Dichtelemente überbrückt, die neben ihrer Funktion als Hochdruckdichtung gleichsam eine Lagerung des Steuerventils in der Stufenbohrung der Plungerbüchse übernehmen.
  • Durch eine vorteilhafte Weiterbildung der Erfindung wird der Hochdruckbrennstoff, wenn er vom Steuerventilkörper abgesteuert wird, durch eine Bohrung in der Plungerbüchse zum Niederdruckraum zurückgeführt. Damit werden aufwendige äußere Verbindungsleitungen mit ihrer Leckagegefahr vermieden.
  • Eine weitere vorteilhafte Weiterbildung der Erfindung ist die zur Achse des Steuerventilkörpers parallele Anordnung der Elemente, mit denen das Steuerventil an der Plungerbüchse befestigt ist. Diese Anordnung verhindert die Verspannung und damit ein Klemmen des Steuerventilkörpers in der Steuerventilbüchse.
  • Durch eine vorteilhafte Ausbildung des Pumpenplungers mit einer Absteuernut wird erreicht, daß unabhängig von der Betriebstüchtigkeit des Steuerventils die Förderung der Einspritzpumpe unterbrochen wird, bevor die Förderung in den Kuppenradius des Einspritzpumpennockens läuft.
  • Durch die erfindungsgemäße Anordnung der Ankerplatte in einem entlüfteten und mit Brennstoff gefüllten Raum ist bei entsprechender Abstimmung des Spaltes zwischen dem angezogenen Anker und der elektromagnetischen Stellvorrichtung auf die verschiedenen Auslegungsparameter des Steuerventils ist ein rückprallfreies Schließen und damit ein exaktes Steuern von Förderbeginn und Fördermenge des Brennstoffes ermöglicht.
  • Eine vorteilhafte Weiterbildung der Erfindung mit einer Lecköllängs- und Querbohrung des Steuerventilkörpers erübrigt eine gesonderte Leckölrückführleitung und den damit verbundenen Aufwand und die Leckagegefahr.
  • Durch die erfindungsgemäße Ausbildung der äußeren Kontur des Einspritzpumpenelementes, ist ein Austausch eines Normalelementes gegen das Einspritzpumpenelement mit Steuerventil ohne jede Nacharbeit möglich.
  • Die erfindungsgemäße Lage von Hochdruckraum und Saug- bzw. Absteuerbohrung ermöglicht einen minimalen schädlichen Raum im Hochdruckbereich, der mit dem schädlichen Raum eines Normalelementes vergleichbar ist.
  • Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung und der Zeichnung, in der Ausführungsbeispiele der Erfindung schematisch dargestellt sind.
  • Es zeigen:
  • Fig.1:
    einen Querschnitt durch eine schematisch dargestellte Einspritzpumpe mit elektromagnetisch betätigtem Steuerventil.
    Fig.2:
    einen Querschnitt durch die Brennstoffeinspritzvorrichtung,
    Fig.3:
    Detailschnitt durch die Brennstoffeinspritzvorrichtung.
  • Die Brennstoffeinspritzvorrichtung besteht aus einem Einspritzpumpenelement 1 und einem Steuerventil 2, wobei das Einspritzpumpenelement 1 zugleich Träger des Steuerventils 2 ist. Das Einspritzpumpenelement setzt sich zusammen aus einem Pumpenplunger 4, einer Plungerbüchse 5, das Steuerventil 2 aus einem Sitzventil 3 und einer elektromagnetischen Stellvorrichtung 7.
  • Der Plunger 4, der in einer Plungerbüchse 5 dichtend geführt ist, bildet mit dieser zusammen einen Hochdruckraum 11. Der Pumpenplunger 4 besitzt eine Absteuernut 8, die über eine Absteuerlängsbohrung 9 und eine Absteuerquerbohrung 10 mit einem Hochdruckraum 11 in Verbindung steht. Der Hochdruckaum 11 steht bei Stellung des Plungers 4 im unteren Totpunkt über eine Saug- bzw. Absteuerbohrung 14 mit dem Niederdruckraum 13 in Verbindung. Der Niederdruckraum 13 wird über ein Zulaufventil 51 von einer nicht dargestellten Brennstofförderpumpe beaufschlagt. Der Druck im Niederdruckraum 13 wird durch ein Druckhalteventil 52 konstant gehalten.
  • Der Plunger 1 wird über einen Rollenstößel 54 von einem Nocken 55 entgegen der Kraft einer Druckfeder 53 axial bewegt. Dadurch wird der Brennstoff nach Abschluß der Saug- bzw. Absteuerbohrung 14 in eine Hochdruckbohrung 12 gefördert. Solange das Sitzventil 3 offen steht, fließt der geförderte Brennstoff über den Hochdruckringraum 26, den Steuerventilsitz 25, den Niederdruckringraum 27 und die Rücklaufbohrung 15 zurück in den Niederdruckraum 13.
  • Sobald das Sitzventil 3 durch Erregen der elektromagnetischen Stellvorrichtung 7 geschlossen wird, setzt die Hochdruckförderung ein, wobei Brennstoff durch die Hochdruckbohrung 12, den Hochdruckringraum 26 und die Einspritzleitung 48 zum Einspritzventil 49 gefördert wird.
  • Der Hochdruckraum 11, die Hochdruckbohrung 12 mit dem Hochdruckringraum 26, die Einspritzleitung 48 und das Einspritzventil 49 bilden zusammen einen Hochdruckbereich 50.
  • Die Hochdruckförderung wird durch Öffnen des Sitzventils 3 beendet. Die dadurch geschaffene Verbindung zum Niederdruckraum 13 bewirkt eine Entlastung des Hochdruckbereichs 50, der bis zum erneuten Schließen des Sitzventils 3 unter dem Druck des Niederdruckraumes 13 steht. Dadurch werden Hohlraumbildung währen der Abwärtsbewegung des Pumpenplungers verhindert und konstante Druckverhältnisse zu Beginn der nächsten Einspritzung sichergestellt, die zu einer stabilen Förderbeginn- und Mengencharakteristik führen.
  • Das Zulaufventil 51 und das Druckhalteventil 52, die als besonders dicht schließende Ventile ausgebildet sind, verhindern bei Motorstillstand ein Leerlaufen des Niederdruckraumes 13 und des Hochdruckbereichs 50, wodurch Schwierigkeiten beim Start des Motors vermieden werden.
  • Der Hochdruckraum 11 ist bis kurz unterhalb einer Stufenbohrung 19, die zur Aufnahme des Steuerventils 2 dient, hochgezogen. Dadurch wird das schädliche Volumen im Hochdruckraum 11 minimiert, was sich bei hohen Einspritzdrükken besonders vorteilhaft erweist.
  • Der Hochdruckraum 11 besitzt keinen Abschlußdeckel, da das Einspritzpumpenelement 1 als sogenanntes "Monoelement" ausgebildet ist. Die Ausbildung als Monoelement steigert in vorteilhafter Weise die Hochdruckfähigkeit der Brennstoffeinspritzvorrichtung durch Minimierung der Druckraumausweitung.
  • In der Plungerbüchse 5 befindet sich eine Saug- bzw. Absteuerbohrung 14, die den Hochdruckraum 11 mit einem Niederdruckraum 13 verbindet, der wiederum mit dem nicht dargestellten Saugraum des Einspritzpumpengehäuses verbunden ist.
  • Die Saug- bzw. Absteuerbohrung 14 ist vom Niederdruckraum 13 aus schräg in Richtung Hochdruckraum 11 gebohrt, um der Lage des Hochdruckraumes 11 Rechnung zu tragen.
  • Der Niederdruckraum 13 ist außerdem über eine Rücklaufbohrung 15 mit einem Ringraum 16 einer Steuerventilbüchse 17 des Sitzventils 3 verbunden. Dadurch wird eine externe Rücklaufleitung, die Bauaufwand und Leckagerisiko bedeutet, vermieden.
  • Das Sitzventil 3 sitzt mit Spielpassung in der Stufenbohrung 19 der Plungerbüchse 5 und ist in zwei Hochdruckdichtelemente 20 gelagert. Es wird durch nicht dargestellte Schrauben, die durch Bohrungen in einem Abschlußdeckel 21 und der Plungerbüchse 5 hindurchgesteckt und in die Steuerventilbüchse 17 eingeschraubt werden, zu einem festen Verband mit der Plungerbüchse 5 verbunden, ohne daß das Sitzventil 3 verspannt würde. Durch das Einbauspiel zwischen Steuerventilbüchse 17 und Stufenbohrung 19 wird außerdem ein Verspannen und folglich ein Klemmen des Sitzventilels 3, verursacht durch das Anziehen der Einspritzleitung 48, vermieden.
  • Ein besonderer Vorteil dieser Anordnung besteht darin, daß ein unabhängiger Austausch von Steuerventil 2 und Einspritzpumpenelement 1 so wie der elektromagnetischen Stellvorrichtung 7 sichergestellt ist. Durch diesen modularen Aufbau ist eine kostengünstige Fertigung und Reparatur der Brennstoffeinspritzvorrichtung möglich.
  • Das Sitzventil 3 besitzt eine Steuerventilbüchse 17 und einen Steuerventilkörper 22, der in der Steuerventilbüchse 17 axial beweglich geführt ist, und zwar in einer Hochdruckführung 23 und einer Niederdruckführung 24.
  • Der Steuerventilkörper 22 trennt mit einem Steuerventilsitz 25 einen Hochdruckringraum 26 von einem Niederdruckringraum 27. Der Hochdruckringraum 26 ist über eine Hochdrucksteuerbohrung 28 und die Hochdruckbohrung 12 mit dem Hochdruckraum 11 verbunden. Der Niederdruckringraum 27 ist über die Absteuerbohrung 29, den Ringraum 16 und die Rücklaufbohrung 15 mit dem Niederdruckraum 13 verbunden.
  • Der Steuerventilkörper 22 besitzt eine Lecköllängsbohrung 42 und eine Leckölquerbohrung 43, die eine Verbindung zwischen einem Leckölraum 44 und einem Federraum 34 schaffen.
  • An dem Ende des Steuerventilkörpers 22, an dem sich die Niederdruckführung 24 befindet, ist eine Ankerplatte 30 befestigt, die von der elektromagnetischen Stellvorrichtung 7 bewegt wird. Die Befestigung der Ankerplatte 30 geschieht mittels einer in den Steuerventilkörper 22 geschraubten Senkschraube 31, die die Ankerplatte 30 und einen Anschlagring 32 axial gegen den Steuerventilkörper 22 spannt.
  • Die Ankerplatte 30 befindet sich in einem kraftstoffgefüllten Dämpfungsraum 33, der von einem Zwischenstück 41 und der elektromagnetischen Stellvorrichtung 7 begrenzt wird. Das Volumen des Dämpfungsraumes 33 ist so dimensioniert, daß bei der axialen Bewegung der Ankerplatte 30 keine nennenswerten Strömungswiderstände zwischen der Ankerplatte 30 und den Wänden des Zwischenstückes 41 auftreten.
  • Der Dämpfungsraum 33 steht in Verbindung mit einem ebenfalls brennstoffgefüllten Federraum 34. Im Federraum 34 befindet sich eine Feder 36, deren Kraft den Anschlagring 32 in Richtung Anschlag 35 beaufschlagt. Der Anschlag 35 dient als Hubbegrenzung des Steuerventilkörpers 22.
  • Der Dämpfungsraum 33 und der Federraum 34 stehen über eine Drosselbohrung 37 mit der Absteuerbohrung 29 in Verbindung.
  • Im Bereich der in Einbaulage höchsten Stelle des Dämpfungsraumes 33 ist eine Gewindebohrung 38 angebracht, an die eine Entlüftungs- bzw. Brennstoffrücklaufleitung 39 angeschlossen ist, die zum nicht abgebildeten Brennstofftank führt.
  • In dieser Entlüftungs- bzw. Brennstoffrücklaufleitung 39 ist eine Druckhalteventil 40 angeordnet, dessen Absteuerdruck kleiner als der Förderdruck der nicht abgebildeten Kraftstofförderpumpe ist.
  • Die elektromagnetische Stellvorrichtung 7 wird durch nicht dargestellte, parallel zur Achse des Steuerventilkörpers 22 wirkenden Schrauben mit dem Zwischenstück 41 gegen die Steuerventilbüchse 17 gespannt, ohne diese zu verspannen.
  • Der gesamte Niederdruckbereich des Steuerventils 2 wird durch Runddichtringe 45 abgedichtet.
  • Die Brennstoffeinspritzvorrichtung funktioniert folgendermaßen:
  • Beim Förderhub wird der Pumpenplunger 4 aus seiner unteren Totpunktlage in Richtung Steuerventil 2 bewegt. Dabei schließt er nach Durchlaufen eines Vorhubes zunächst die Saug- und Absteuerbohrung 14. Danach fördert der Plunger 4 Brennstoff in die Hochdruckbohrung 12 und in die Hochdrucksteuerbohrung 28.
  • Solange der Steuerventilkörper 22 mit dem Anschlagring 32 und der Ankerplatte 30 von der Feder 36 am Anschlag 35 gehalten wird, sind der Hochdruckringraum 26 und der Niederdruckringraum 27 über den Steuerventilsitz 25 verbunden. Dadurch strömt der geförderte Kraftstoff über die Absteuerbohrungen 29, den Ringraum 16 und die Rücklaufbohrung 15 in den Niederdruckraum 13 zurück.
  • Sobald die elektromagnetische Stellvorrichtung 7 durch einen Stromimpuls erregt wird, wird die Ankerplatte 39 angezogen. Dadurch wird der Steuerventilkörper 22 gegen den Steuerventilsitz 25 gezogen, wodurch die Förderung des Brennstoffs über die Einspritzleitung 48 zur Einspritzdüse 49 beginnt.
  • Mit dem Anziehen der Ankerplatte 30 wird zugleich die Feder 36 vorgespannt. Sobald die elektromagnetische Stellvorrichtung 7 stromlos gemacht wird, hebt die Feder 36 den Steuerventilkörper 22 von seinem Sitz 25 ab. Dadurch strömt der Brennstoff wieder in die Niederdruckräume und die Brennstoffeinspritzung ist beendet.
  • Eine Voraussetzung für die präzise Funktion des Sitzventils 3 und damit für reproduzierbaren Förderbeginn und schwankungsfreie Fördermenge ist ein rückprallfreies Aufsetzen des Steuerventilkörpers 22 auf den Steuerventilsitz 25. Dies wird erfindungsgemäß erreicht durch eine fein abgestimmte Dämpfung der Bewegung des Steuerventilkörpers 22. Zur Dämpfung wird die Verdrängerströmung zwischen Ankerplatte 30 und der elektromagnetischen Stellvorrichtung 7 benutzt. Die Ankerplatte 30 ist ohne offene, axiale Bohrungen ausgeführt, um eine möglichst wirksame Quetschströmung am Hubende zwischen Ankerplatte 30 und elektromagnetische Stellvorrichtung 7 zu bewirken.
  • Das erforderliche Maß der Dämpfung hängt unter anderem von der bewegten Masse ab, d. h. von der Masse des Steuerventilkörpers 22 + Ankerplatte 30 + Senkschraube 31 + Anschlagring 32 + Anteil der Masse der Feder 36. Ein weitere dämpfungsrelevanter Faktor ist die Federsteifigkeit des Steuerventilsitzes 25.
  • Die Dämpfung selbst hängt unter anderem von der Brennstoffviskosität, der Geometrie der Ankerplatte 30 und dem Mindestabstand 46 zwischen Ankerplatte 30 und elektromagnetischer Stellvorrichtung 7 sowie von dem Druck im Dämpfungsraum 33 ab. Diese Einflußfaktoren müssen aufeinander abgestimmt werden. Die optimale Abstimmung ist erreicht, wenn das Aufsetzen des Steuerventilkörpers 22 auf den Steuerventilsitz 25 gerade rückschlagfrei erfolgt und die dämpfungsbedingte Verlangsamung der Bewegung des Steuerventilkörpers 22 minimiert ist.
  • Die Versorgung des Dämpfungsraumes 33 mit Dämpfungsflüssigkeit, z. B. Dämpfungsöl, kann über einen gesonderten Dämpfungsölkreislauf erfolgen. Im vorliegenden Fall wird erfindungsgemäß Brennstoff aus dem Niederdruckbereich, speziell aus der Absteuerbohrung 29 des Sitzventils 3 entnommen und zwar über die Drosselbohrung 37. Letztere verhindert, daß die Druckstöße in der Absteuerbohrung 29 in den Dämpfungsraum 33 gelangen.
  • Für ein einwandfreies Funktionieren der Dämpfung ist es wichtig, daß sich keine Luft im Dämpfungsraum 33 befindet, da hierdurch die Viskosität und Kompressibilität des Dämpfungsmediums beeinflußt werden. Außerdem ist es wichtig, daß die Dämpfungsflüssigkeit kontinuierlich erneuert wird, da diese sich erwärmt und altert.
  • Erfindungsgemäß wird die Entlüftung des Dämpfungsraumes 33 über die Gewindebohrung 38 bewerkstelligt, die so angebracht ist, daß sie sich in Einbaulage des Steuerventils 2 im Bereich der höchsten Stelle des Dämpfungsraumes 33 befindet.
  • An die Gewindebohrung 38 ist die Entlüftungs- bzw. Brennstoffrücklaufleitung 39 angeschlossen, durch die der Brennstoff über das Druckhalteventil 40 zurück zum nicht abgebildeten Brennstofftank fließt. Das Druckhalteventil 40 stellt einen bestimmten Flüssigkeitsdruck in Dämpfungsraum 33 sicher, der niedriger als der maximale Förderdruck der nicht dargestellten Niederdruckpumpe und niedriger als der Druck in den Niederdruckräumen der Brennstoffeinspritzvorrichtung ist. Dadurch wird eine Durchströmung des Dämpfungsraumes 33 und damit eine Erneuerung des Dämpfungsmediums Brennstoff und eine Kühlung des Steuerventils 2 sichergestellt. Außerdem bewirkt das Druckhalteventil 40, daß beim Stillstand des Motors der Dämpfungsraum 33 nicht leerlaufen kann, was zu ungedämpfter Hubbewegung und damit zu Sitzprellen des Steuerventils 3 führt. Dies hätte unter anderem einen falschen Förderbeginn beim Wiederanlassen des Motors zur Folge.
  • Das Lecköl aus dem Leckölraum 44 wird über die Lecköllängsbohrung 42 und die Leckölquerbohrung 43 im Steuerventilkörper 22 zum Federraum 34 und damit in den Dämpfungsölkreislauf geführt. Diese erfindungsgemäße Lösung erspart eine separate Leckölrückführleitung.
  • Für den Fall eines Versagens des Steuerventils 2 sorgt die Absteuernut 8 des Pumpenplungers 4 am Ende des Förderhubes für ein Absteuern des Brennstoffes in die Saug- bzw. Absteuerbohrung 14. Damit wird die Brennstoffeinspritzung in jedem Fall beendet, bevor die Förderung in den Kuppenbereich des Einspritzpumpennockens gelangt und diesen überbelastet.
  • Der Pumpenplunger 4 des Einspritzpumpenelements 1 ist erheblich einfacher zu fertigen, als der des Normalelementes 1a, da die Verdreheinrichtung und die präzisen Steuerkanten entfallen.
  • Die erfindungsgemäße Brennstoffeinspritzvorrichtung gestattet eine genaue Bestimmung von Förderbeginn und Dosierung der Brennstoffeinspritzmenge durch das rückprallfreie Aufsetzen des Steuerventilkörpers 22 auf den Steuerventilsitz 25. Außerdem ist sie fertigungsund servicefreundlich, da die Hauptkomponenten Einspritzpumpenelement 1, Steuerventil 2 und elektromagnetische Stellvorrichtung 7 einzeln und unabhängig voneinander zu fertigen, zu prüfen und auszutauschen sind.

Claims (11)

  1. Brennstoffeinspritzvorrichtung für Dieselbrennkraftmaschinen, mit mindestens einem Pumpenplunger (4), der in einer Plungerbuchse (5) dichtend geführt ist und zusammen mit der Plungerbuchse (5) einen Hochdruckraum (11) bildet, der zur Steuerung der Einspritzzeit und Einspritzmenge über ein Steuerelement mit einem Niederdruckraum (13) verbindbar ist, wobei der Hochdruckraum (11) über eine in der Plungerbuchse (5) bzw. einem Adapterstück vorgesehene Hochdruckbohrung (12) und eine daran anschließende Einspritzleitung (48) in Strömungsverbindung mit einem Einspritzventil (49) steht, wobei zwischen dem Hochdruckraum (11) und dem Einspritzventil (49) eine dauernd offene Strömungsverbindung besteht, die einen konstanten oder in etwa konstanten Strömungsquerschnitt aufweist und wobei das Steuerelement als ein elektromagnetisch betätigbares Sitzventil (3) ausgebildet ist, das eine Rücklaufbohrung (15) vom Hochdruckraum (11) zum Niederdruckraum (13) beherrscht und das einen Steuerventilkörper (22) aufweist, der in einer Steuerventilbüchse (17) durch eine elektromagnetische Stellvorrichtung (7) in Verbindung mit einer- Feder (36) axial bewegbar ist, und an dessen einem Ende eine Ankerplatte (30) befestigt ist,
    dadurch gekennzeichnet, daß ein in der Steuerventilbüchse (17) angeordneter Niederdruckringraum (27) mit dem Niederdruckraum (13) über die Rücklaufbohrung (15) in Verbindung steht, daß in der Plungerbüchse (5) oder in einem Adapterstück mit geringem Abstand oberhalb des Hochdruckraumes (11) eine Stufenbohrung (19) zur Aufnahme des Sitzventils (3) angeordnet ist, daß die Ankerplatte (30) in einem brennstoffgefüllten Dämpfungsraum (33) angeordnet ist, daß zwischem dem Dämpfungsraum (33) und den Niederdruck führenden Räumen eine Drosselbohrung (37) vorgesehen ist und daß im Bereich der in Einbaulage der Brennstoffeinspritzvorrichtung höchsten Stelle des Dämpfungsraums (33) eine Entlüftungs- bzw. Brennstoffrücklaufleitung (38) angeschlossen ist.
  2. Brennstoffeinspritzvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, daß die Stufenbohrung (19) und die Hochdruckbohrung (12) sich schneiden.
  3. Brennstoffeinspritzvorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß der Schnittwinkel zwischen der Stufenbohrung (19) und der Hochdruckbohrung (12) 90° beträgt.
  4. Brennstoffeinspritzvorrichtung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß in der Entlüftungs- bzw. Brennstoffrucklaufleitung (39) ein Druckhalteventil (40) angeordnet ist, dessen Öffnungsdruck kleiner als der Druck in den Niederdruckräumen des Einspritzpumpenelementes (1) ist.
  5. Einspritzvorrichtung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß das Sitzventil (3) zwischen Hochdruckraum (11) und Einspritzleitung (48) angeordnet ist.
  6. Einspritzvorrichtung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß das Sitzventil (3) die Hochdruckbohrung (12) durchdringt und die Hochdruckbohrung (12) im Durchdringungsbereich als ein das Sitzventil (3) umgreifender Hochdruckringraum (26) ausgebildet ist.
  7. Einspritzvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß der Niederdruckraum (13) ein nach außen dicht schließendes Zulaufventil (51) und ein dicht schließendes, nach außen öffnendes Druckhalteventil (52) aufweist.
  8. Brennstoffeinspritzvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß das Sitzventil (3) in der Stufenbohrung (19) mit Schiebesitz angeordnet ist.
  9. Brennstoffeinspritzvorrichtung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß zwischen der Steuerventilbüchse (17) und der Stufenbohrung (19) beiderseits einer Hochdrucksteuerbohrung (28) Dichtelemente (20) angeordnet sind.
  10. Brennstoffeinspritzvorrichtung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß zur Befestigung des Sitzventils (3) an der Plungerbüchse (5) Befestigungselemente mit einer parallel zur Richtung der Achse des Steuerventilkorpers (22) wirkenden Befestigungskraft angeordnet sind.
  11. Brennstoffeinspritzvorrichtung nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß die Ankerplatte (30) massiv ausgebildet ist und daß bei gegebener Masse der bewegten Teile des Sitzventils (3), einer gegebenen Kraft der Feder (36), einer gegebenen Geometrie der Ankerplatte (30) und einer gegebenen Brennstoffviskosität im Betriebstemperaturbereich die Kraft der elektromagnetischen Stellvorrichtung und der Spalt zwischen Ankerplatte (30) und der elektromagnetischen Stellvorrichtung (7) in angezogener Stellung so abgestimmt sind, daß das Aufsetzen des Steuerventilkörpers (22) auf einen Steuerventilsitz (25) rückprallfrei erfolgt.
EP90106394A 1989-04-04 1990-04-04 Brennstoffeinspritzvorrichtung Expired - Lifetime EP0391366B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90106394T ATE99386T1 (de) 1989-04-04 1990-04-04 Brennstoffeinspritzvorrichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3910793A DE3910793C2 (de) 1989-04-04 1989-04-04 Brennstoffeinspritzvorrichtung
DE3910793 1989-04-04

Publications (3)

Publication Number Publication Date
EP0391366A2 EP0391366A2 (de) 1990-10-10
EP0391366A3 EP0391366A3 (de) 1991-01-09
EP0391366B1 true EP0391366B1 (de) 1993-12-29

Family

ID=6377773

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106394A Expired - Lifetime EP0391366B1 (de) 1989-04-04 1990-04-04 Brennstoffeinspritzvorrichtung

Country Status (4)

Country Link
US (1) US5125807A (de)
EP (1) EP0391366B1 (de)
AT (1) ATE99386T1 (de)
DE (2) DE3910793C2 (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4038443A1 (de) * 1990-12-01 1992-06-04 Kloeckner Humboldt Deutz Ag Kraftstoffeinspritzvorrichtung
WO1994021932A2 (en) * 1993-03-18 1994-09-29 Barmag Ag Antifriction bearing
DE4320620B4 (de) * 1993-06-22 2004-04-01 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE4322546A1 (de) * 1993-07-07 1995-01-12 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE4339948A1 (de) * 1993-11-24 1995-06-01 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
US6308690B1 (en) * 1994-04-05 2001-10-30 Sturman Industries, Inc. Hydraulically controllable camless valve system adapted for an internal combustion engine
DE4414242A1 (de) * 1994-04-23 1995-10-26 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
US6257499B1 (en) 1994-06-06 2001-07-10 Oded E. Sturman High speed fuel injector
US6161770A (en) 1994-06-06 2000-12-19 Sturman; Oded E. Hydraulically driven springless fuel injector
US6148778A (en) 1995-05-17 2000-11-21 Sturman Industries, Inc. Air-fuel module adapted for an internal combustion engine
US5954487A (en) * 1995-06-23 1999-09-21 Diesel Technology Company Fuel pump control valve assembly
JP3237549B2 (ja) * 1996-11-25 2001-12-10 トヨタ自動車株式会社 内燃機関の高圧燃料供給装置
US6123059A (en) * 1997-09-05 2000-09-26 Denso Corporation Fuel supply apparatus
US5961045A (en) * 1997-09-25 1999-10-05 Caterpillar Inc. Control valve having a solenoid with a permanent magnet for a fuel injector
US6000379A (en) * 1997-11-25 1999-12-14 Caterpillar Inc. Electronic fuel injection quiet operation
US5975053A (en) * 1997-11-25 1999-11-02 Caterpillar Inc. Electronic fuel injection quiet operation
US6085991A (en) 1998-05-14 2000-07-11 Sturman; Oded E. Intensified fuel injector having a lateral drain passage
GB9823025D0 (en) * 1998-10-22 1998-12-16 Lucas Ind Plc Fuel system
US6158419A (en) * 1999-03-10 2000-12-12 Diesel Technology Company Control valve assembly for pumps and injectors
US6089470A (en) * 1999-03-10 2000-07-18 Diesel Technology Company Control valve assembly for pumps and injectors
DE19923422C2 (de) * 1999-05-21 2003-05-08 Bosch Gmbh Robert Elektronisches Einspritzsystem
US6168091B1 (en) * 1999-08-12 2001-01-02 Caterpillar Inc. Low noise electronically actuated oil valve and fuel injector using same
US6394073B1 (en) * 1999-08-26 2002-05-28 Caterpillar Inc. Hydraulic valve with hydraulically assisted opening and fuel injector using same
DE19954057A1 (de) * 1999-11-10 2001-06-07 Bosch Gmbh Robert Steuerelement für die Steuerung von Einspritzsystemen
DE10023236A1 (de) 2000-05-12 2001-11-22 Bosch Gmbh Robert Gestreckte Pumpen-Ventil-Düseneinheit mit hydraulisch-mechanischer Übersetzung
DE10031570C2 (de) * 2000-06-29 2002-09-26 Bosch Gmbh Robert Leckage reduzierter Hochdruckinjektor
DE10046040A1 (de) * 2000-09-18 2002-04-04 Bosch Gmbh Robert Einrichtung zur Verbesserung der Reproduzierbarkeit der Einspritzdauer an Einspritzsystemen
DE10059424A1 (de) * 2000-11-30 2002-06-06 Bosch Gmbh Robert Hubgesteuertes Ventil als Kraftstoff-Zumesseinrichtung eines Einspritzsystems für Brennkraftmaschinen
US6450778B1 (en) 2000-12-07 2002-09-17 Diesel Technology Company Pump system with high pressure restriction
US6866204B2 (en) * 2001-04-10 2005-03-15 Siemens Vdo Automotive Corporation End of valve motion detection for a spool control valve
US20050186094A1 (en) * 2002-09-03 2005-08-25 Visteon Global Technologies, Inc. Power steering pump having electronic bypass control
JP3979313B2 (ja) * 2003-03-14 2007-09-19 株式会社日立製作所 高圧ポンプ
DE102011082668A1 (de) 2011-09-14 2013-03-14 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung
DE102011089478B3 (de) * 2011-12-21 2013-06-27 Continental Automotive Gmbh Einspritzsystem
DE102018200715A1 (de) * 2018-01-17 2019-07-18 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102018211338A1 (de) * 2018-07-10 2020-01-16 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe und Verfahren zum Betreiben einer Kraftstofffördereinrichtung

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2700397A (en) * 1949-08-24 1955-01-25 Borg Warner Unloading valve
CH394710A (de) * 1962-08-09 1965-06-30 Schweizerische Lokomotiv Brennstoffeinspritzpumpe für Brennkraftmaschinen
US3237568A (en) * 1963-04-19 1966-03-01 Gen Motors Corp Fuel injection pump with pneumatic damper
DE6610398U (de) * 1967-05-03 1973-11-29 Winkelhofer & Soehne Joh Kette.
US3701366A (en) * 1970-08-14 1972-10-31 Atos Apparecchiature Oleodinam Hydraulic solenoid valve directly operated with adjustable over-ride speed
US3779225A (en) * 1972-06-08 1973-12-18 Bendix Corp Reciprocating plunger type fuel injection pump having electromagnetically operated control port
FR2481752A1 (fr) * 1980-04-30 1981-11-06 Renault Vehicules Ind Amelioration des dispositifs mecaniques d'injection de combustible, notamment pour des moteurs diesel
DE3147467C1 (de) * 1981-12-01 1983-04-21 Daimler-Benz Ag, 7000 Stuttgart Einspritzanlage fuer Brennkraftmaschinen
DE3207393C1 (de) * 1982-03-02 1983-10-13 Daimler-Benz Ag, 7000 Stuttgart Steuerventil,insbesondere elektrohydraulisches Steuerventil
US4471740A (en) * 1982-10-06 1984-09-18 Regie Nationale Des Usines Renault Premetered pump injector having constant injection pressure, and derivative system
DE3302294A1 (de) * 1983-01-25 1984-07-26 Klöckner-Humboldt-Deutz AG, 5000 Köln Kraftstoffeinspritzvorrichtung fuer luftverdichtende, selbstzuendende brennkraftmaschinen
JPS6032971A (ja) * 1983-08-02 1985-02-20 Nissan Motor Co Ltd 内燃機関の燃料噴射装置
JPS6090979A (ja) * 1983-10-25 1985-05-22 Mitsubishi Heavy Ind Ltd 燃料噴射装置
DE3406570A1 (de) * 1984-02-23 1985-09-12 Mannesmann Rexroth GmbH, 8770 Lohr Elektromagnet/ventil-anordnung
EP0174261B1 (de) * 1984-08-14 1989-01-11 Ail Corporation Fördermengensteuersystem
DE3614495A1 (de) * 1986-04-29 1987-11-05 Kloeckner Humboldt Deutz Ag Kraftstoffeinspritzvorrichtung fuer eine brennkraftmaschine
GB8619992D0 (en) * 1986-08-16 1986-09-24 Lucas Ind Plc Fuel injection pumping apparatus
DE3719831A1 (de) * 1987-06-13 1988-12-22 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
US4988967A (en) * 1988-08-26 1991-01-29 Borg-Warner Automotive Electronic & Mechanical Systems Corporation Solenoid operated hydraulic control valve
JPH02129476A (ja) * 1988-11-09 1990-05-17 Aisin Aw Co Ltd 圧力調整弁

Also Published As

Publication number Publication date
EP0391366A2 (de) 1990-10-10
DE3910793A1 (de) 1990-10-11
EP0391366A3 (de) 1991-01-09
US5125807A (en) 1992-06-30
DE3910793C2 (de) 1996-05-23
ATE99386T1 (de) 1994-01-15
DE59003995D1 (de) 1994-02-10

Similar Documents

Publication Publication Date Title
EP0391366B1 (de) Brennstoffeinspritzvorrichtung
DE4142940C2 (de) Elektrisch gesteuerte Pumpedüse
DE3235413C2 (de)
DE2126787C3 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19545162B4 (de) Brennstoffeinspritzvorrichtung mit federvorgespanntem Steuerventil
DE2126777A1 (de) Pumpe Düse zur Kraftstoffeinspritzung fur Brennkraftmaschinen
DE19507295B4 (de) Radialkolbenpumpe, insbesondere Kraftstoffpumpe für einen Verbrennungsmotor
EP0451227B1 (de) Kraftstoffeinspritzpumpe
DE19756087A1 (de) Hochdruckpumpe zur Kraftstoffversorgung bei Kraftstoffeinspritzsystemen von Brennkraftmaschinen
EP0882180B1 (de) Verteilereinspritzpumpe
DE10129449A1 (de) Kraftstoffhochdruckpumpe für Brennkraftmaschine mit verbessertem Teillastverhalten
DE10394136T5 (de) Kraftstoffeinspritzer für einen Verbrennungsmotor
DE10139055A1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät sowie Kraftstoffsystem für eine Brennkraftmaschine
EP0372562B1 (de) Brennstoffeinspritzvorrichtung
EP1361357A2 (de) Kraftstoffpumpe, insbesondere für eine Brennkraftmaschine mit Direkteinspritzung
DE3247584A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
EP0530206B1 (de) Kraftstoffeinspritzpumpe für brennkraftmaschinen
DE3704578A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE10240310A1 (de) Kraftstoffsystem für eine Brennkraftmaschine
DE3509770A1 (de) Kraftstoffeinspritzeinheit
DE2716854A1 (de) Kraftstoff-foerderanlage
DE3700358A1 (de) Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen, insbesondere pumpeduesen
DE10229395A1 (de) Verdrängermaschine, insbesondere Radialkolbenpumpe in einem Kraftstoffsystem einer Brennkraftmaschine, sowie hydraulisches System
DE19909329A1 (de) Kraftstoffeinspritzsystem
DE3806669C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT

17P Request for examination filed

Effective date: 19901201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KLOECKNER-HUMBOLDT-DEUTZ AG

17Q First examination report despatched

Effective date: 19920117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19931229

Ref country code: GB

Effective date: 19931229

Ref country code: FR

Effective date: 19931229

REF Corresponds to:

Ref document number: 99386

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59003995

Country of ref document: DE

Date of ref document: 19940210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940404

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19931229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050426

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061101