EP0530206B1 - Kraftstoffeinspritzpumpe für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzpumpe für brennkraftmaschinen Download PDF

Info

Publication number
EP0530206B1
EP0530206B1 EP91907821A EP91907821A EP0530206B1 EP 0530206 B1 EP0530206 B1 EP 0530206B1 EP 91907821 A EP91907821 A EP 91907821A EP 91907821 A EP91907821 A EP 91907821A EP 0530206 B1 EP0530206 B1 EP 0530206B1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel
pump
working space
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91907821A
Other languages
English (en)
French (fr)
Other versions
EP0530206A1 (de
Inventor
Wolfgang Fehlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0530206A1 publication Critical patent/EP0530206A1/de
Application granted granted Critical
Publication of EP0530206B1 publication Critical patent/EP0530206B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means

Definitions

  • the invention is based on a fuel injection pump for internal combustion engines according to the preamble of claim 1.
  • a check valve opening in the flow direction to the fuel supply and downstream of the solenoid valve is arranged in the fuel channel between and the check valve, the filling channel opens with the fuel channel.
  • the pump work space is both filled and relieved via the electrically operated valve.
  • the electrically operated valve must be equipped with a sufficiently large passage cross-section so that the injection phase can be ended quickly and the pump work space can also be filled from the fuel supply at a constant pressure during its filling stroke.
  • This large cross-section makes the electrically operated valve, which is designed as a solenoid valve, more expensive.
  • the actuation time becomes longer with increasing opening cross section, which is disadvantageous for exact and fast control in all speed ranges of the internal combustion engine.
  • the fuel injection pump according to the invention with the characterizing features of claim 1 has the advantage that the electrically controlled valve only has to serve the requirements for relieving the pump work space. To this end, it is sufficient to reduce the pressure in the pump work chamber to a certain extent at the end of the injection without the latter immediately having to assume the pressure of the fuel supply.
  • the cross-section of the check valve in the filling channel is also available for filling the pump workspace during the suction stroke of the pump piston. This ensures that the pump work space is always sufficiently filled to a desired level even with a small cross section of the electrically operated valve and thus a small size.
  • the switching times of the electrically operated valve can be shorter for a given size and for a given effort. Overall, construction costs and energy requirements for the fuel injection pump are improved.
  • FIG. 1 the schematic structure of a distributor fuel injection pump of the reciprocating type is shown.
  • a pump piston 1 moves in a pump cylinder 2 back and forth and at the same time rotating, driven by a cam disk 6 running on a roller ring 4 (here pivoted by 90 ° and shown offset).
  • the pump piston also serves as a distributor, alternately driving one of several injection lines 7 arranged around the pump cylinder 2 via a distributor groove 8 in the course of its rotation.
  • the distributor groove is permanently connected via a longitudinal channel 9 in the pump piston to a pump working space 10 enclosed by the pump piston in the pump cylinder 2.
  • the injection lines each lead via a pressure valve 12 to an injection valve 13.
  • the pump piston During the suction stroke of the pump piston - the pump piston is held on the cam disk by a spring (not shown here) and this is held on the rollers of the roller ring - fuel is supplied via a filling channel 15 in which a non-return valve 16 opening in the direction of the pump work chamber is connected to a pump suction chamber 17, which serves as a fuel supply.
  • the pump suction chamber is supplied with fuel by a fuel delivery pump 18 from a fuel tank 19 and is kept at a certain pressure via a pressure control valve 20.
  • the pump suction chamber is also connected to the fuel tank or to the suction side of the fuel delivery pump 18 via a flushing throttle 22 and is connected to a working chamber 24 in front of a spray-start adjusting piston 25 via a decoupling throttle 23.
  • the working space 24 is clocked or relieved analogously via a solenoid valve 27 and a downstream throttle 28 to the reservoir 19, so that the pressure in the working space can be modified independently of the pressure in the suction space 17 if the electromagnet is actuated accordingly.
  • the spray start adjustment piston can be adjusted and adjusted against the force of a return spring 29 by the pressure in the working space 24, which is set in this corresponding manner the rotational position of the roller ring 4.
  • This rotational position determines the start of the stroke of the pump piston with each pump piston stroke during its rotation. This will change the start of injection.
  • the rotational position of the roller ring can be detected by a transmitter 30 and reported back to a control device 31, which in turn controls the solenoid valve 27.
  • the fuel displaced by the pump piston can be displaced via a fuel channel 33, which has a part of the filling channel 15 located upstream of the check valve 16, as long as an electrically controlled valve 34 inserted in the fuel channel 33 can be displaced in the pump working chamber 10 without substantial pressure build-up is open.
  • the fuel channel 33 downstream of the electrically controlled valve is connected to the filling channel 15 downstream of the check valve 16.
  • the electrically controlled valve 34 is controlled by the control device 31, opened during the respective suction stroke of the pump piston, so that the pump working space can be filled with fuel via the fuel channel 33 and in parallel via the filling channel 15.
  • the fuel channel 33 can initially still be open, whereas the filling channel is closed by the check valve 16.
  • the electrically controlled valve closes, the high pressure build-up in the pump work space then begins, with displacement of the displaced fuel via the longitudinal channel 9, the distributor groove 8 and the fuel injection line 7, which is actuated by the latter in each case, to the fuel injection nozzle 13 opened so that the pump work space can be relieved via the fuel line 33 to the pump suction chamber 17.
  • This is advantageously used to correct the opening times of the electrically controlled solenoid valve 34 in order to compensate for the temperature influence on the fuel injection quantity.
  • FIG. 2 shows an exemplary embodiment of the electrically controlled valve 34, in which the check valve 16 is integrated.
  • the valve is designed as an electromagnetic valve and has a valve housing 36 which adjoins the pump working space 10 according to FIG. 1 with its end face 37 and seals it tightly.
  • a guide bore 38 is provided in the valve housing, in which a stem 39 of the valve member 40 is guided.
  • the guide bore 38 opens into an annular space 41 in which the closing part 42 of the valve member 40 adjoining the stem 39 projects.
  • the closing part 42 has on its side facing away from the shaft 39 a conical sealing surface 43 which cooperates with a corresponding conical annular valve seat 44.
  • the valve seat delimits a bore 46 which extends coaxially to the guide bore 39 and into which an extension 47 of the valve member 40 projects, on which a return spring 48 is supported on the end face.
  • the return spring on the other hand, is supported in a narrowing part 49 of the bore 46, which merges into a passage opening 50 for the guide bore.
  • a conical seat 51 and a check valve 52 then adjoin the passage opening.
  • the check valve 52 has a hemispherical element, the spherical surface 54 of which cooperates with the conical seat 51 as a sealing surface.
  • the valve closing member is acted upon by a closing spring 55, which is supported on a bore 56 extending from the conical seat 51, which now opens directly into the guide bore 38 in the pump working space.
  • a fuel channel 133 which corresponds to the fuel channel 33 of FIG. 1, leads into the valve housing, opens into the annular space 41 and leads from there via the annular valve seat into the bore 36, from where it is used Cross bore 58 to the fuel supply, the pump suction chamber 17 leads.
  • the valve member is actuated by an electromagnet 60 which is integrated in the valve housing 36 in a manner not shown and which, when current is applied, presses the valve member 40 against the force of the return spring 48 on the valve seat and closes the fuel channel 33. If the pump piston is in its suction stroke when the valve is closed, the pump piston can draw fuel from the pump suction chamber 17 via the transverse bore 58, which is part of the fuel channel 33 from FIG. 1 or 133 from FIG. 3, and via the check valve 52.
  • the bore 46, the opening 50, the conical seat 51 and the bore 56 form the filling channel, which was designated 15 in the exemplary embodiment according to FIG.
  • the check valve is closed, in particular when the valve member 40 is also in the closed position, and when the magnet is not energized, the valve member 40 goes into the open position and ends the injection in a manner analogous to that described in FIG. 1.
  • This design has the advantage that it has a very compact design and no unnecessary line connections, which also represent harmful rooms, are necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird eine Kraftstoffeinspritzpumpe für Brennkraftmaschinen vorgeschlagen, die bezüglich der von ihr unter Hochdruck geförderten Kraftstoffeinspritzmenge mit einem Magnetventil (34) versehen ist, das einen vom Pumpenarbeitsraum (10) zu einem Pumpensaugraum (17) führenden Kraftstoffkanal (33), der als Entlastungskanal dient, steuert. Mit dem Schließen des Magnetventils (34) kann Kraftstoff unter Hochdruck zur Kraftstoffeinspritzdüse (13) gefördert werden. Dasselbe Magnetventil dient beim Saughub des Pumpenkolbens der Füllung des Pumpenarbeitsraumes aus dem Pumpensaugraum (17). Um die Durchtrittsquerschnitte des Magnetventils klein halten zu können, ist parallel zu diesem ein Rückschlagventil (16) in einem vom Saugraum (17) zum Pumpenarbeitsraum (10) führenden Füllkanal (15) vorgesehen.

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Kraftstoffeinspritzpumpe für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1. Bei einer solchen durch die US-A-4 643 155 bekannten Kraftstoffeinspritzpumpe ist in dem Kraftstoffkanal ein in Flußrichtung zum Kraftstoffvorrat, öffnendes Rückschlagventil stromabwärts des Magnetventils angeordnet, zwischen dem und dem Rückschlagventil der Füllkanal mit dem Kraftstoffkanal einmündet.
  • Bei dieser Kraftstoffeinspritzpumpe wird über das elektrisch betätigte Ventil der Pumpenarbeitsraum sowohl gefüllt als auch entlastet. Dabei muß das elektrisch betätigte Ventil mit einem ausreichend großen Durchtrittsquerschnitt ausgestattet sein, damit die Einspritzphase schnell beendet werden kann und auch der Pumpenarbeitsraum bei seinem Füllhub auf gleichbleibendem Druck aus dem Kraftstoffvorrat gefüllt werden kann. Dieser große Querschnitt verteuert das elektrisch betätigte Ventil, das als Magnetventil ausgeführt wird. Außerdem wird bei gegebener elektrisch magnetischer Kraft mit zunehmendem Öffnungsquerschnitt die Betätigungszeit größer, was einer exakten und schnellen Steuerung in allen Drehzahlbereichen der Brennkraftmaschine nachteilig entgegensteht.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Kraftstoffeinspritzpumpe mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß das elektrisch gesteuerte Ventil lediglich den Anforderungen zur Entlastung des Pumpenarbeitsraumes dienen muß. Hierzu genügt es, zur Beendigung der Einspritzung den Druck im Pumpenarbeitsraum auf ein gewisses Maß zu senken, ohne daß dieser sofort den Druck des Kraftstoffvorrats annehmen muß. Dagegen steht für die Füllung des Pumpenarbeitsraumes beim Saughub des Pumpenkolbens neben dem geöffneten Querschnitt des elektrisch betätigten Ventils auch noch der Querschnitt des Rückschlagventils im Füllkanal zur Verfügung. Damit wird gewährleistet, daß der Pumpenarbeitsraum selbst bei kleinem Querschnitt des elektrisch betätigten Ventils und somit kleiner Baugröße immer ausreichend auf ein gewünschtes Maß gefüllt wird. Die Schaltzeiten des elektrisch betätigten Ventils können dabei bei gegebener Baugröße und bei gegebenem Aufwand kürzer werden. Insgesamt verbessern sich dabei Bauaufwand und Energiebedarf für die Kraftstoffeinspritzpumpe.
  • In Figur 1 ist der schematische Aufbau einer Verteilerkraftstoffeinspritzpumpe der Hubkolbenbauart dargestellt. Dabei bewegt sich ein Pumpenkolben 1 in einem Pumpenzylinder 2 angetrieben durch eine auf einem Rollenring 4 (hier um 90° geschwenkt und versetzt gezeichnet dargestellt) ablaufenden Nockenscheibe 6 hin- und hergehend und zugleich rotierend. Bei der rotierenden Bewegung dient der Pumpenkolben zugleich als Verteiler, wobei er im Wechsel im Laufe seiner Umdrehung jeweils eine von mehreren um den Pumpenzylinder 2 herum verteilt angeordneten Einspritzleitungen 7 über eine Verteilernut 8 ansteuert. Die Verteilernut ist über einen Längskanal 9 im Pumpenkolben mit einem vom Pumpenkolben im Pumpenzylinder 2 eingeschlossenen Pumpenarbeitsraum 10 ständig verbunden. Die Einspritzleitungen führen jeweils über ein Druckventil 12 zu einem Einspritzventil 13. Bei dem Saughub des Pumpenkolbens - der Pumpenkolben wird dabei über eine hier nicht gezeigte Feder an der Nockenscheibe und diese auf den Rollen des Rollenrings gehalten - wird Kraftstoff über einen Füllkanal 15, in dem ein in Richtung Pumpenarbeitsraum öffnendes Rünckschlagventil 16 angeordnet ist, mit einem Pumpensaugraum 17, der als Kraftstoffvorrat dient, verbunden. Der Pumpensaugraum wird dabei von einer Kraftstofförderpumpe 18 aus einem Kraftstoffbehälter 19 mit Kraftstoff versorgt und über ein Drucksteuerventil 20 auf einen bestimmten Druck gehalten. Außer mit dem Füllkanal 15 ist der Pumpensaugraum noch über eine spüldrossel 22 mit dem Kraftstoffbehälter bzw. mit der Saugseite der Kraftstofförderpumpe 18 verbunden und über eine Abkoppeldrossel 23 mit einem Arbeitsraum 24 vor einem spritzbeginnverstellkolben 25 verbunden. Der Arbeitsraum 24 ist dabei getaktet oder analog über ein Elektromagnetventil 27 und eine nachgeschaltete Drossel 28 zum Vorratsbehälter 19 hin entlastbar, so daß bei entsprechender Ansteuerung des Elektromagneten der Druck im Arbeitsraum unabhängig vom Druck im Saugraum 17 modifiziert werden kann. Der Spritzbeginnverstellkolben ist vom Druck im Arbeitsraum 24, der in dieser entsprechenden Weise eingestellt wird, gegen die Kraft einer Rückstellfeder 29 verstellbar und verstellt dabei die Drehstellung des Rollenrings 4. Diese Drehstellung bestimmt den Hubbeginn des Pumpenkolbens bei jedem Pumpenkolbenhub im Laufe seiner Drehung. Damit wird eine Veränderung des spritzbeginns erzielt. Die Drehstellung des Rollenrings kann durch einen Geber 30 erfaßt werden und zu einer Steuereinrichtung 31 rückgemeldet werden, die wiederum das Elektromagnetventil 27 steuert.
  • Mit beginnendem Pumpenkolbenfbörderhub kann der vom Pumpenkolben verdrängte Kraftstoff über einen Kraftstoffkanal 33, der einen Stromaufwärts des Rückschlagventils 16 liegenden Teil des Füllkanals 15 mit diesem gemeinsam hat, so lange ohne wesentlichen Druckaufbau im Pumpenarbeitsraum 10 verdrängt werden solange ein im Kraftstoffkanal 33 eingesetztes elektrisch gesteuertes Ventil 34 geöffnet ist. Der Kraftstoffkanal 33 stromabwärts des elektrisch gesteuerten Ventils ist mit dem Füllkanal 15 stromabwärts des Rückschlagventils 16 verbunden.
  • Das elektrisch gesteuerte Ventil 34 wird gesteuert durch die Steuereinrichtung 31, während des jeweiligen Saughubes des Pumpenkolbens geöffnet, so daß der Pumpenarbeitsraum über den Kraftstoffkanal 33 und parallel dazu über den Füllkanal 15 mit Kraftstoff gefüllt werden kann. Beim beginnenden Förderhub des Pumpenkolbens kann der Kraftstoffkanal 33 zunächst noch geöffnet sein, wohingegen der Füllkanal durch das Rückschlagventil 16 geschlossen ist. Mit Schließen des elektrisch gesteuerten Ventils setzt dann die Hochdruckbildung im Pumpenarbeitsraum ein mit Förderung des verdrängten Kraftstoffs über den Längskanal 9, die Verteilernut 8 und die jeweils von dieser angesteuerte Kraftstoffeinspritzleitung 7 zur Kraftstoffeinspritzdüse 13. Zur Beendigung der Kraftstoffhochdruckförderung wird dann wieder das elektrisch gesteuerte Magnetventil 34 geöffnet, so daß der Pumpenarbeitsraum über die Kraftstoffleitung 33 zum Pumpensaugraum 17 hin entlastet werden kann. Dies wird vorteilhaft zu einer Korrektur der Öffnungszeiten der elektrisch gesteuerten Magnetventils 34 eingesetzt, um den Temperatureinfluß auf die Kraftstoffeinspritzmenge zu kompensieren.
  • Figur 2 zeigt ein Ausführungsbeispiel des elektrisch gesteuerten Ventils 34, bei dem das Rückschlagventil 16 integriert ist. Das Ventil ist als Elektromagnetventil ausgebildet und weist ein Ventilgehäuse 36 auf, das mit seiner Stirnseite 37 an den Pumpenarbeitsraum 10 gemäß Figur 1 angrenzt und diesen dicht vrschließt. In dem Ventilgehäuse ist eine Führungsbohrung 38 vorgesehen, in dem ein Schaft 39 des Ventilglieds 40 geführt ist. Die Führungsbohrung 38 mündet in einen Ringraum 41, in dem das sich an den Schaft 39 anschließende Schließteil 42 des Ventilglieds 40 ragt. Das Schließteil 42 weist an seiner vom Schaft 39 wegweisenden Seite eine konische Dichtfläche 43 auf, die mit einem entsprechenden konischen ringförmigen Ventilsitz 44 zusammenwirkt. Der Ventilsitz begrenzt eine koaxial zur Führungsbohrung 39 weiterführende Bohrung 46, in die ein Fortsatz 47 des Ventilglieds 40 ragt, an welchem sich eine Rückstellfeder 48 stirnseitig abstützt. Die Rückstellfeder stützt sich andererseits in einem sich verengenden Teil 49 der Bohrung 46 ab, der in eine Durchtrittsöffnung 50 zur Führungsbohrung übergeht. An die Durchtrittsöffnung schließt sich dann ein Kegelsitz 51 eine Rückschlagventils 52 an. Als Ventilschließglied 53 weist das Rückschlagventil 52 ein halbkugelförmiges Element auf, dessen Kugeloberfläche 54 als Dichtfläche mit dem Kegelsitz 51 zusammenwirkt. Rückseitig wird das Ventilschließglied von einer Schließfeder 55 beaufschlagt, die sich an einer vom Kegelsitz 51 weiterführenden Bohrung 56 abstützt, die nun unmittelbar zur Führungsbohrung 38 in den Pumpenarbeitsraum mündet.
  • Von der Stirnseite 37 her führt parallel zur Achse der Führungsbohrung ein Kraftstoffkanal 133, der dem Kraftstoffkanal 33 von Figur 1 entspricht, in das Ventilgehäuse, mündet in den Ringraum 41 und führt von diesem über den ringförmigen Ventilsitz in die Bohrung 36, von wo er als Querbohrung 58 zum Kraftstoffvorrat, dem Pumpensaugraum 17 führt.
  • Das Ventilglied wird durch einen Elektromagneten 60 betätigt, der im Ventilgehäuse 36 in nicht weiter dargestellter Weise integriert ist und bei Strombeaufschlagung das Ventilglied 40 entgegen der Kraft der Rückstellfeder 48 auf den Ventilsitz drückt und den Kraftstoffkanal 33 schließt. Befindet sich der Pumpenkolben bei geschlossenem Ventil in seinem Saughub, so kann der Pumpenkolben über die Querbohrung 58, die Teil des Kraftstoffkanals 33 von Figur 1 bzw. 133 von Figur 3 ist, und über das Rückschlagventil 52 Kraftstoff aus dem Pumpensaugraum 17 ansaugen. Die Bohrung 46, die Öffnung 50, der Kegelsitz 51 und die Bohrung 56 bilden dabei den Füllkanal, der im Ausführungsbeispiel nach Figur 1 mit 15 bezeichnet wurde. Während des Druckhubs des Pumpenkolbens ist das Rückschlagventil verschlossen, insbesondere dann, wenn auch das Ventilglied 40 in Schließstellung ist, und bei nicht erregtem Magneten geht das Ventilglied 40 in Öffnungsstellung und beendet die Einspritzung analog der zu Figur 1 beschriebenen Arbeitsweise. Diese Ausführung hat den Vorteil, daß sie sehr kompakt aufgebaut ist und keine unnötigen Leitungsverbindungen, die unter anderem auch schädliche Räume darstellen, notwendig werden.

Claims (6)

  1. Kraftstoffeinspritzpumpe für Brennkraftmaschinen mit einem einen Pumpenarbeitsraum (10) in einem Pumpenzylinder (2) einschließenden Pumpenkolben (1) und einem die Hin- und Herbewegung des Pumpenkolbens steuernden Nockenantrieb (6, 4) und mit einer mit dem Pumpenarbeitsraum verbindbaren, zu einem Kraftstoffeinspritzventil (13) führenden Kraftstoffeinspritzleitung (7), ferner mit einem den Pumpenarbeitsraum (10) mit einem Kraftstoffvorrat (17) verbindenden, von einem elektrisch betätigten Ventil (34) gesteuerten Kraftstoffkanal (33), der bei geöffnetem Ventil (34) sowohl in Füll- als auch in Entlastungsrichtung durchströmbar ist je nach Pumpenkolbenbewegung und mit einem den Pumpenarbeitsraum (10) mit dem Kraftstoffvorrat (17) verbindenden, ein in Richtung Pumpenarbeitsraum öffnendes Rückschlagventil (16) enthaltenden Füllkanal (15), dadurch gekennzeichnet, daß der Füllkanal (15) parallel zum elektrisch betätigten Ventil (34) liegt und die stromaufwärts und stromabwärts des Ventils (34) liegenden Teile des Kraftstoffkanals (33) miteinander verbindet.
  2. Kraftstoffeinspritzpumpe nach Anspruch 1, dadurch gekennzeichnet, daß der Kraftstoffkanal (33) zugleich den stromaufwärts des Rückschlagventils (16) liegenden Teil des Füllkanals (15) bildet.
  3. Kraftstoffeinspritzpumpe nach Anspruch 2, dadurch gekennzeichnet, daß das elektrisch gesteuerte Ventil (34) und das Rückschlagventil (16) ein gemeinsames Ventilgehäuse haben.
  4. Kraftstoffeinspritzpumpe nach Anspruch 2, dadurch gekennzeichnet, daß das elektrisch gesteuerte Ventil (34) als sitzventil ausgebildet ist mit einem von einem Elektromagneten (60) entgegen der Kraft einer Rückstellfeder (48) betätigbaren Ventilglied (40), das mit einem den durch das Ventilgehäuse geführten Kraftstoffkanal (133, 41, 46, 58) begrenzenden Ventilsitz (44) zusammenwirkt und der Füllkanal (46, 50, 51, 56) vom kraftstoffseitigen Teil des Kraftstoffkanals im Ventilgehäuse abführt und über das im Ventilgehäuse angeordnete Rückschlagventil (52) in den Pumpenarbeitsraum (10) mündet.
  5. Kraftstoffeinspritzpumpe nach Anspruch 4, dadurch gekennzeichnet, daß das Ventilgehäuse (36) mit seiner Stirnseite (37) an den Pumpenarbeitsraum (10) angrenzt und das Ventiglied (40) auf seiner dem Elektromagneten abgewandten Seite von der Rückstellfeder (48) beaufschlagt ist, die sich in einer zum Ventilglied (40) koaxialen Bohrung (46) im Ventilgehäuse abstützt, die über das Rückschlagventil (52) axial in den Pumpenarbeitsraum mündet und in die andererseits der Kraftstoffkanal (133, 58) vom Pumpenarbeitsraum (10) her über den Ventilsitz (44) und vom Kraftstoffvorrat (17) her einmündet.
  6. Kraftstoffeinspritzpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Pumpenkolben durch den Nockenantrieb sowohl in eine hin- und hergehende pumpende Bewegung als auch in eine drehende Bewegung versetzbar ist, wobei er als Verteiler der vom Pumpenkolben verdrängten Kraftstoffmenge in jeweils eine von mehreren Kraftstoffeinspritzleitungen (7) dient.
EP91907821A 1990-05-21 1991-04-25 Kraftstoffeinspritzpumpe für brennkraftmaschinen Expired - Lifetime EP0530206B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4016309 1990-05-21
DE4016309A DE4016309A1 (de) 1990-05-21 1990-05-21 Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
PCT/DE1991/000341 WO1991018200A1 (de) 1990-05-21 1991-04-25 Kraftstoffeinspritzpumpe für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP0530206A1 EP0530206A1 (de) 1993-03-10
EP0530206B1 true EP0530206B1 (de) 1994-08-24

Family

ID=6406874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91907821A Expired - Lifetime EP0530206B1 (de) 1990-05-21 1991-04-25 Kraftstoffeinspritzpumpe für brennkraftmaschinen

Country Status (6)

Country Link
US (1) US5343845A (de)
EP (1) EP0530206B1 (de)
JP (1) JP3027185B2 (de)
DE (2) DE4016309A1 (de)
ES (1) ES2059135T3 (de)
WO (1) WO1991018200A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648690A1 (de) * 1996-11-25 1998-05-28 Bosch Gmbh Robert Kraftstoffeinspritzsystem
US6128653A (en) * 1997-03-17 2000-10-03 Microsoft Corporation Method and apparatus for communication media commands and media data using the HTTP protocol
JPH11200990A (ja) * 1998-01-07 1999-07-27 Unisia Jecs Corp 燃料噴射制御装置
JP2000345901A (ja) * 1999-05-31 2000-12-12 Isuzu Motors Ltd 電子燃料噴射装置
US6298826B1 (en) 1999-12-17 2001-10-09 Caterpillar Inc. Control valve with internal flow path and fuel injector using same
US6647966B2 (en) 2001-09-21 2003-11-18 Caterpillar Inc Common rail fuel injection system and fuel injector for same
US9422898B2 (en) * 2013-02-12 2016-08-23 Ford Global Technologies, Llc Direct injection fuel pump

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942010A1 (de) * 1979-10-17 1981-05-07 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
JPS5741462A (en) * 1980-08-25 1982-03-08 Mazda Motor Corp Fuel injection device for diesel engine
JPS57193729A (en) * 1981-05-25 1982-11-29 Nissan Motor Co Ltd Fuel shutoff device of fuel injection pump
DE3144361A1 (de) * 1981-11-07 1983-05-19 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen
JPS59128967A (ja) * 1983-01-11 1984-07-25 Nissan Motor Co Ltd デイ−ゼルエンジンの燃料噴射ポンプ
DE3429129C2 (de) * 1984-08-08 1995-01-19 Bosch Gmbh Robert Dosiervorrichtung zur Zumessung von Flüssigkeitsmengen
US4643155A (en) * 1984-10-05 1987-02-17 Olin Corporation Variable stroke, electronically controlled fuel injection control system
DE3436768A1 (de) * 1984-10-06 1986-04-10 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur steuerung der kraftstoffeinspritzung bei brennkraftmaschinen und kraftstoffeinspritzsystem zur durchfuehrung des verfahrens
US4884549A (en) * 1986-04-21 1989-12-05 Stanadyne Automotive Corp. Method and apparatus for regulating fuel injection timing and quantity
DE3711744A1 (de) * 1987-04-07 1988-10-27 Bosch Gmbh Robert Verfahren und vorrichtung zur steuerung der kraftstoffeinspritzmenge
DE3722151A1 (de) * 1987-07-04 1989-01-12 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE4119467C2 (de) * 1991-06-13 1996-10-17 Daimler Benz Ag Nach dem Verdrängerprinzip arbeitende Vorrichtung zur Kraft- und Hubübersetzung bzw. -übertragung

Also Published As

Publication number Publication date
US5343845A (en) 1994-09-06
ES2059135T3 (es) 1994-11-01
EP0530206A1 (de) 1993-03-10
WO1991018200A1 (de) 1991-11-28
DE59102657D1 (de) 1994-09-29
JPH05507136A (ja) 1993-10-14
JP3027185B2 (ja) 2000-03-27
DE4016309A1 (de) 1991-11-28

Similar Documents

Publication Publication Date Title
EP0960274B1 (de) Kraftstoffeinspritzvorrichtung für brennkraftmaschinen
DE69738385T2 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE2503346C2 (de) Kraftstoffverteilereinspritzpumpe für Brennkraftmaschinen
EP0078983B1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP0840009A2 (de) Hochdruckpumpe
DE19832287A1 (de) Nadelgesteuerte Kraftstoffinjektoreinheit
DE4341543A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19612413A1 (de) Druckfluid-Versorgungssystem, insbesondere für ein Kraftstoff-Einspritzsystem
DE102005022661A1 (de) Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
DE3148671A1 (de) Kraftstoffeinspritzvorrichtung fuer brennkraftmaschinen, insbesondere fuer dieselmotoren
DE19545162B4 (de) Brennstoffeinspritzvorrichtung mit federvorgespanntem Steuerventil
DE2558790A1 (de) Kraftstoffeinspritzduese fuer brennkraftmaschinen
DE3144277C2 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE1919969C2 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
EP0290797A2 (de) Kraftstoffeinspritzpumpe
DE3420345A1 (de) Kraftstoffeinspritzpumpe
EP0530206B1 (de) Kraftstoffeinspritzpumpe für brennkraftmaschinen
DE3318236C2 (de)
DE19516565A1 (de) Einspritzventil einer Brennkraftmaschine
EP0281580B1 (de) Brennstoffeinspritzvorrichttung für eine dieselbrennkraftmaschine
DE19625698A1 (de) Einspritzeinrichtung zum kombinierten Einspritzen von Kraftstoff und Zusatzflüssigkeit
DE3743532A1 (de) Kraftstoffeinspritzanlage fuer brennkraftmaschinen
DE10139055A1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät sowie Kraftstoffsystem für eine Brennkraftmaschine
DE4318078A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE2913909C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19940111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59102657

Country of ref document: DE

Date of ref document: 19940929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2059135

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010409

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010420

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010625

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050425