EP0390972B1 - Arrangement and method to detect physical parameters of an elevator - Google Patents

Arrangement and method to detect physical parameters of an elevator Download PDF

Info

Publication number
EP0390972B1
EP0390972B1 EP89122928A EP89122928A EP0390972B1 EP 0390972 B1 EP0390972 B1 EP 0390972B1 EP 89122928 A EP89122928 A EP 89122928A EP 89122928 A EP89122928 A EP 89122928A EP 0390972 B1 EP0390972 B1 EP 0390972B1
Authority
EP
European Patent Office
Prior art keywords
signals
travel
evaluating unit
lift
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89122928A
Other languages
German (de)
French (fr)
Other versions
EP0390972A1 (en
Inventor
Hans Peter Dipl.-Ing. Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technischer Ueberwachungs-Verein Bayern Sachsen E
Original Assignee
Technischer Ueberwachungs-Verein Bayern Sachsen Ev
Technischer Uberwachungsverei Bayern Sachsen eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6378143&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0390972(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Technischer Ueberwachungs-Verein Bayern Sachsen Ev, Technischer Uberwachungsverei Bayern Sachsen eV filed Critical Technischer Ueberwachungs-Verein Bayern Sachsen Ev
Publication of EP0390972A1 publication Critical patent/EP0390972A1/en
Application granted granted Critical
Publication of EP0390972B1 publication Critical patent/EP0390972B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0087Devices facilitating maintenance, repair or inspection tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector

Definitions

  • the invention relates to a method for detecting physical parameters, in particular movement parameters, of a goods and / or passenger elevator, the elevator having at least one cable pull guided over a traction sheave, at one end of which a car and at the other end of which a counterweight hangs , is driven by a drive motor controlled by an electrical control circuit and operates on the traction sheave and comprises a braking device connected to the traction sheave and controlled by the control circuit, the physical parameters being determined by connecting at least one distance sensor to the cable pull and / or the traction sheave is to generate distance signals, the distance sensors are connected to an evaluation unit provided with a timer in order to supply the distance signals to the evaluation unit, and by the evaluation unit having switching points of the control circuit at which the Control signals are applied to control the motion sequence of the elevator, is connected.
  • the background for the present invention is safety checks on goods and passenger lifts. Such lifts must be subjected to regular checks, whereby, for example, characteristic values such as travel paths, braking distances, catching paths and the slip resistance (driving ability) of the cable pull driven by the traction sheave must be determined.
  • DE-A-3 822 466 discloses methods for checking the position and movements of cable-driven transport devices. It is used in mining shaft hoisting systems to determine the exact position of the car, taking into account the elongation or the slipping of the rope.
  • the turns of the rope are detected optically and the location of the car is determined depending on the number of turns.
  • the known method regulates the daily operation of the elevator and has no relation to safety checks.
  • the driving ability is not determined, but only a possible rope slide is corrected.
  • this object is achieved in that the driving ability and / or from the distance and control signals of the braking and / or catching path, or the braking and / or catching curve as a record of distances, speed and Acceleration values are determined as a function of time or the path.
  • kinematic data of the elevators can be determined with little effort as a function of the signals controlling the movement sequence of the elevator, the required test characteristic values being able to be determined from the kinematic data.
  • the determination and recording of distances, speed and acceleration values can advantageously take place as a function of time or of the path.
  • the braking and catching curves recorded in this way are output on a screen or printer and with calculated envelopes (which ones permissible upper and lower limits) superimposed. This makes it easy to determine the effectiveness of the brake and safety gear.
  • the determined curves can be saved on a data carrier.
  • the cable pull is connected to a force measuring signal transmitter, by means of which the forces transmitted by the cable pull and determining the movement sequence of the car can be determined.
  • a force measuring signal transmitter by means of which the forces transmitted by the cable pull and determining the movement sequence of the car can be determined.
  • a computer preferably a personal computer, is expediently included in the method.
  • test method according to the invention also represents a significant improvement in terms of safety technology in that no high loads are placed on the elevator during the test.
  • the reference numeral 1 designates a traction sheave which has two guide grooves for a cable pull 2 formed in the present case by two cables.
  • a car 3 is attached to one end of the cable 2.
  • a counterweight 4 hangs at the other end of the cable 2.
  • the mass of the counterweight 4 usually corresponds to the mass of the car 3 plus half the permissible car load.
  • 5 designates a motor-gear unit for driving the traction sheave 1, this unit having a handwheel 10 for rotating the traction sheave 1.
  • a braking device not shown in FIG. 1, is arranged between the motor-transmission unit 5 and the drive pulley 1.
  • the motor-gear unit 5 with the traction sheave 1 is arranged above a ceiling 11 which closes the elevator shaft upwards.
  • the car 3 When driving, the car 3 is moved via the cable 2, which is driven by the motor-transmission unit via the traction sheave 1.
  • the cable For the elevator system to operate properly, it is necessary that the cable is laid over the traction sheave in a non-slip manner.
  • the car can be used in an emergency as well Repairs or checks can also be moved by the handwheel 10.
  • 6 denotes an evaluation unit, which in the present exemplary embodiment comprises a personal computer 12, an input / output interface 13 and an interface module 14.
  • the dashed outline 6 ' is intended to indicate that the input / output interface 13 and the interface module 14 form a functional unit.
  • the personal computer has a screen 36 as a display device and an input keyboard 37. Between the individual components of the evaluation unit, data traffic takes place in both directions in accordance with the arrows that connect the components.
  • the evaluation unit 6 is in each case via one of the lines 15 to 17 with a first distance sensor 7, which can be connected to a cable of the cable 2, a second distance sensor 18, which can be connected to the traction sheave 1, and a force measuring signal transmitter 8 connected, the lines being connected to the evaluation unit via inputs provided on the interface module.
  • 9 designates lines via which the evaluation unit is connected to the control circuit of the elevator system.
  • the lines 9, like the lines 15 to 17, are connected to inputs which are provided on the interface module 14.
  • the lines 9 are combined to form a 12-wire shielded cable which has at one end a test plug or terminals and which can be connected to the control circuit of the elevator system has a circuit board connector with a voltage protection circuit at the other end.
  • the interface module 14 comprises four modules.
  • a control subinterface For electrical signals that are transmitted from the control circuit via the lines 9 to the evaluation unit, a control subinterface is provided, which has an optocoupler for each input for a galvanic separation of the evaluation unit from the control circuit, one that can be operated with only one operating voltage, with a capacitive feedback provided operational amplifier for signal amplification and a Schmitt trigger.
  • a largely symmetrical sensor sub-interface is provided for recording and preprocessing signals from the distance sensors and the force measuring signal transmitter. Pulse-forming Schmitt triggers are used as input modules, the output of which is connected to a monoflop with a narrow pulse width.
  • logic modules are provided for linking signals from different inputs of the sensor sub-interface.
  • the interface module 14 has a divider module for dividing the system clock of the personal computer.
  • the interface module contains an acoustic signal generator which has a monoflop with a pulse width of approximately 500 ms and a downstream piezo beeper.
  • the input / output interface has a decoder, an input / output and a timer module.
  • the timer block contains a universally programmable counter, whose clock input is connected to the via the divider block of the interface block System clock of the personal computer is connected.
  • the distance sensor has a perforated disk 19 with light passage holes 20 arranged concentrically around the pivot point of the perforated disk at equal intervals.
  • the perforated disk is concentrically connected to a drive disk 21 having a guide groove for a driving cable rope.
  • the perforated disk 19 with the drive disk 21 has an axis of rotation 24 which is rotatably mounted in a holder 23.
  • 25 denotes a first and 26 denotes a second light barrier measuring device, the light rays of which pass through the perforated disk or are interrupted by the perforated disk.
  • the distance between the two light barriers and the distance between the light through holes on the perforated disk was chosen so that when the perforated disk rotates in one direction for the signals of the two light barrier devices, the pulse diagrams shown in FIG. 5 with temporally offset pulses result.
  • the direction of rotation can be determined by evaluating the measurement signals emitted by both light barriers.
  • Such an evaluation circuit is shown in FIG. 6.
  • the circuit In addition to travel pulses, the number of which is characteristic of the travel path of the car, the circuit also supplies a signal indicating the direction of movement of the car.
  • FIG. 7 shows an exemplary embodiment of a force transducer 8 that can be used in an arrangement according to FIG. 2.
  • the Force transducer has a helical compression spring 28 guided in a guide sleeve 27, which can be compressed by a pull rod 29 which has a disc 30 at one end against which the spring 28 comes into contact and an eyelet 31 at the other end.
  • 32 with a distance transducer is designated by which a displacement of the pull rod 29 against the guide sleeve 27 can be detected and thus a measurement signal for the force acting on the pull rod can be supplied.
  • the distance sensor 32 is shown separately in FIG. 8. 3 and 4, it has a perforated disk 19 'and two light barrier measuring devices 25' and 26 '(25' not visible in FIG. 8).
  • the perforated disk 19 ' is connected via an axis of rotation 24' to a drive wheel 33 which comes against the tie rod 29 and is driven by the tie rod.
  • FIG. 9 another embodiment of a force transducer is shown, which differs from the embodiment of FIG. 7 in that one end of the tie rod 29 'formed as a hook 34 and a distance sensor for detecting the displacement of the tie rod 29' against the guide sleeve 27 'is provided, which has a tie rod 29' connected to the guide sleeve, displaceable against the guide sleeve 35 with equidistantly arranged in a line light passage holes 20 '.
  • a first light barrier device 25 ⁇ and a second light barrier device 26 ⁇ are provided to scan the through holes 20 '.
  • FIGS. 10 and 11 show a catching test carried out in practice.
  • the catching path s of the car over the catching time t is recorded in the form of a curve f.
  • the slip resistance (driving ability) of the cable can also be advantageously determined.
  • the pull rod of the force transducer (from FIG. 7 or FIG. 9) is to be connected to one or more cables of the cable using a suitable cable clamp.
  • the guide sleeve of the force transducer is expediently attached to the ceiling 11 closing the elevator shaft at a fixed point.
  • the onset of slipping at the maximum driving force that can be transmitted by the traction sheave can be registered by evaluating the signals of the first distance sensor that can be connected to the cable pull and the second distance sensor that can be connected to the traction sheave, or only visually by the elevator inspector.
  • the control circuit of the elevator by checking the chronological sequence of the control signals. E.g. the time it takes for the control to switch off the drive or to apply a brake after a safety switch has been opened can be determined.
  • the evaluation unit 6 has a number of functional devices (in the present exemplary embodiment partially implemented as a software solution).
  • a functional device is provided for determining the speed and / or acceleration values.
  • the measurement of the speed and acceleration can be triggered by actuating the keyboard of the personal computer or triggered by signals from the control circuit of the elevator. Measurement results can be displayed on the screen of the personal computer and, if necessary, can be output as a complete test report on a connected printer.
  • the acoustic signal transmitter contained in the interface module 14 or activatable via the software in the personal computer can be activated.
  • the screen can also be used to display instructions for operating the device.
  • the sensor interface causes the personal computer when an external event, e.g. Advance the perforated disc to interrupt its work and update the corresponding internal memory for distance and possibly time.
  • an external event e.g. Advance the perforated disc to interrupt its work and update the corresponding internal memory for distance and possibly time.
  • the timer and acoustic signal transmitter with the necessary control were accommodated in the sensor interface.
  • the values to be measured were immediately converted into digital signals.
  • the measured value acquisition analogously and, for example, of registering speeds (and thus also distances and accelerations) with a tachometer generator, or forces can be measured using strain gauges or piezoelectric pressure transducers can be determined.
  • These analog signals can be converted into digital signals with an A / D converter and then further processed with an evaluation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

The invention relates to a method of detecting physical parameters, in particular motion parameters, of a goods and/or passenger lift, whose car is suspended on a cable pull driven by a driving pulley. It is the object of the invention to propose a test method for such lifts in which there is a reduction in the amount of work by contrast with previously known test methods, while the test quality is simultaneously increased. According to the invention, this object is achieved when the physical parameters of the lift are determined by connecting at least one displacement sensor to the cable pull and/or the driving pulley in order to generate displacement signals, by connecting the displacement sensors to an evaluation unit which contains a time generator, in order to feed the displacement signals to the evaluation unit, and by connecting the evaluation unit to switching points of the control circuit, at which signals are present which control the sequence of motions of the lift, in order to determine physical parameters from the displacement signals and the control signals. The method can be used advantageously to check the drivability of the driving pulley. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Erfassen von physikalischen Kenngrößen, insbesondere von Bewegungsparametern, eines Lasten- und/oder Personenaufzugs, wobei der Aufzug wenigstens einen über eine Treibscheibe geführten Seilzug, an dessen einem Ende ein Fahrkorb und an dessen anderem Ende ein Gegengewicht hängt, aufweist, von einem durch eine elektrische Steuerschaltung gesteuerten, auf die Treibscheibe arbeitenden Antriebsmotor angetrieben wird und eine mit der Treibscheibe verbundene und durch die Steuerschaltung gesteuerte Bremsvorrichtung umfaßt, wobei die physikalischen Kenngrößen ermittelt werden, indem mit dem Seilzug oder/und der Treibscheibe wenigstens ein Wegstreckenaufnehmer verbunden wird, um Wegstreckensignale zu erzeugen, die Wegstreckenaufnehmer an eine mit einem Zeitgeber versehene Auswerteeinheit angeschlossen werden, um die Wegstreckensignale der Auswerteinheit zuzuführen, und indem die Auswerteeinheit mit Schaltpunkten der Steuerschaltung, an denen der Bewegungsablauf des Aufzugs steuernde Steuersignale anliegen, verbunden wird.The invention relates to a method for detecting physical parameters, in particular movement parameters, of a goods and / or passenger elevator, the elevator having at least one cable pull guided over a traction sheave, at one end of which a car and at the other end of which a counterweight hangs , is driven by a drive motor controlled by an electrical control circuit and operates on the traction sheave and comprises a braking device connected to the traction sheave and controlled by the control circuit, the physical parameters being determined by connecting at least one distance sensor to the cable pull and / or the traction sheave is to generate distance signals, the distance sensors are connected to an evaluation unit provided with a timer in order to supply the distance signals to the evaluation unit, and by the evaluation unit having switching points of the control circuit at which the Control signals are applied to control the motion sequence of the elevator, is connected.

Den Hintergrund für die vorliegende Erfindung bilden Sicherheitsprüfungen an Lasten- und Personenaufzügen. Solche Aufzüge müssen regelmäßigen Kontrollen unterworfen werden, wobei z.B. Kennwerte wie Fahrwege, Bremswege, Fangwege und die Rutschfestigkeit (Treibfähigkeit) des von der Treibscheibe angetriebenen Seilzugs zu ermitteln sind.The background for the present invention is safety checks on goods and passenger lifts. Such lifts must be subjected to regular checks, whereby, for example, characteristic values such as travel paths, braking distances, catching paths and the slip resistance (driving ability) of the cable pull driven by the traction sheave must be determined.

Die Überprüfung von Aufzügen erforderte bisher einen hohen Arbeitsaufwand, da die Überprüfung der Wirksamkeit der Bremse und der Fangvorrichtung ein Beladen des Aufzugs mit der zulässigen Nutzlast und bei der Überprüfung der Rutschfestigkeit sogar mit mindestens eineinhalbfacher Nutzlast erforderlich machte. Das Ein und Ausladen von entsprechenden Gewichten ist nicht nur zeitraubend, sondern auch mit schwerer körperlicher Arbeit verbunden. Es kommt außerdem hinzu, daß bei der Gewichtsprobe die Bauteile der Aufzugsanlage stark beansprucht werden.Up to now, the inspection of elevators has required a lot of work, since the effectiveness of the brake and the safety gear had to be loaded onto the elevator with the permissible payload and, when checking the slip resistance, even with at least one and a half times the payload. The loading and unloading of appropriate weights is not only time-consuming, but also involves heavy physical work. There is also the fact that the components of the elevator system are heavily stressed during the weight test.

Aus der DE-A- 3 822 466 ist Verfahren zur Kontrolle von Lage und Bewegungen seilbewegter Transporteinrichtungen bekannt. Es dient dazu bei bergbaulichen Schachtförderanlagen den Fahrkorb in seiner Lage exakt zu bestimmen und zwar unter Einbeziehung der Dehnung, beziehungsweise des Durchrutschens des Seiles.DE-A-3 822 466 discloses methods for checking the position and movements of cable-driven transport devices. It is used in mining shaft hoisting systems to determine the exact position of the car, taking into account the elongation or the slipping of the rope.

Die Windungen des Seiles werden optisch erfaßt und in Abhängigheit von der Zahl der Windungen der Ort des Fahrkorbes bestimmt.The turns of the rope are detected optically and the location of the car is determined depending on the number of turns.

Das bekannte Verfahren regelt den Alltagsbetrieb des Aufzugs und hat keinen Bezug zu Sicherheitsprüfung. Die Treibfähigkeit wird nicht bestimmt, sondern lediglich eventueller Seilrutsch ausgeregelt.The known method regulates the daily operation of the elevator and has no relation to safety checks. The driving ability is not determined, but only a possible rope slide is corrected.

Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Überprüfung von Lasten- und/oder Personenaufzügen vorzuschlagen, durch die der Arbeitsaufwand für die Prüfung bei gleichzeitiger Erhöhung der Prüfqualität erheblich verringert ist.It is the object of the present invention to propose a method for checking freight and / or passenger lifts by means of which the workload for the test is considerably reduced while at the same time increasing the test quality.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß für die Sicherheitsprüfung aus den physikalischen Kenngrößen die Treibfähigkeit und/oder aus den Wegstrecken- und Steuersignalen der Brems- und/oder Fangweg, beziehungsweise die Brems- und/oder Fangkurve als Aufzeichnung von Strecken, Geschwindigkeits- und Beschleunigungswerten als eine Funktion der Zeit, beziehungsweise des Weges, ermittelt wird.According to the invention, this object is achieved in that the driving ability and / or from the distance and control signals of the braking and / or catching path, or the braking and / or catching curve as a record of distances, speed and Acceleration values are determined as a function of time or the path.

Nach einem derartigen Verfahren lassen sich kinematische Daten der Aufzüge, also fahrweg- und zugehörige Zeitmeßwerte in Abhängigkeit von den den Bewegungsablauf des Aufzugs steuernden Signalen mit geringem Arbeitsaufwand bestimmen, wobei aus den kinematischen Daten die benötigen Prüfkennwerte ermittelt werden können. Insbesondere kann vorteilhaft die Bestimmung und Aufzeichnung von Strecken, Geschwindigkeits- und Beschleunigungswerten als eine Funktion der Zeit bzw. des Weges erfolgen. Die so aufgenommenen Brems- und Fangkurven werden auf einen Bildschirm bzw. Drucker ausgegeben und mit errechneten Hüllkurven (welche zulässige Ober- und Untergrenzen festlegen) überlagert. Dadurch läßt sich auf einfache Art die Wirksamkeit von Bremse und Fangvorrichtung ermitteln. Die ermittelten Kurven können auf Datenträger gespeichert werden.According to such a method, kinematic data of the elevators, that is to say travel path and associated time measurement values, can be determined with little effort as a function of the signals controlling the movement sequence of the elevator, the required test characteristic values being able to be determined from the kinematic data. In particular, the determination and recording of distances, speed and acceleration values can advantageously take place as a function of time or of the path. The braking and catching curves recorded in this way are output on a screen or printer and with calculated envelopes (which ones permissible upper and lower limits) superimposed. This makes it easy to determine the effectiveness of the brake and safety gear. The determined curves can be saved on a data carrier.

In zweckmäßiger Ausgestaltung wird bei dem erfindungsgemäßen Verfahren der Seilzug mit einem Kraftmeßsignalgeber verbunden, durch den die durch den Seilzug übertragenen, den Bewegungsablauf des Fahrkorbs bestimmenden Kräfte ermittelbar sind. Mit Hilfe einer solchen Kraftmessung läßt sich insbesondere die Prüfung der Rutschfestigkeit des durch die Treibscheibe angetriebenen Seilzugs vorteilhaft durchführen. Man kann die Treibfähigkeit von einem bis x Seilen bestimmen und auf die gesamte Treibfähigkeit hochrechnen.In an expedient embodiment, in the method according to the invention, the cable pull is connected to a force measuring signal transmitter, by means of which the forces transmitted by the cable pull and determining the movement sequence of the car can be determined. With the aid of such a force measurement, in particular the testing of the slip resistance of the cable pull driven by the traction sheave can advantageously be carried out. You can determine the driving ability from one to x ropes and extrapolate it to the total driving ability.

Zweckmäßigerweise wird in das Verfahren ein Computer, vorzugsweise ein Personal-Computer, einbezogen.A computer, preferably a personal computer, is expediently included in the method.

Das erfindungsgemäße Prüfverfahren stellt auch in sicherheitstechnischer Hinsicht eine deutliche Verbesserung dar, indem keine hohen Belastungen des Aufzugs bei der Prüfung auftreten.The test method according to the invention also represents a significant improvement in terms of safety technology in that no high loads are placed on the elevator during the test.

Weitere vorteilhafte Ausgestaltungsmöglichkeiten der Erfindung gehen aus den Unteransprüchen hervor.Further advantageous design options of the invention emerge from the subclaims.

Die Erfindung soll nun anhand von Ausführungsbeispielen und der beiliegenden Zeichnungen weiter erläutert und beschrieben werden. Es zeigen:

Fig. 1
eine Aufzugsanlage (schematisch), zu deren Überprüfung das erfindungsgemäße Verfahren vorgesehen ist,
Fig. 2
ein Ausführungsbeispiel für eine Vorrichtung gemäß dem erfindungsgemäßen Verfahren,
Fig. 3
ein Ausführungsbeispiel für einen bei dem erfindungsgemäßen Verfahren verwendbaren Wegstreckenaufnehmer in Vorderansicht,
Fig. 4
den Wegstreckenaufnehmer gemäß der Fig. 3 in Seitenansicht,
Fig. 5
Zeitdiagramme der von dem Wegstreckenaufnehmer gemäß der Fig. 3 und 4 abgegebenen Meßsignale,
Fig. 6
eine Auswerteschaltung für die von dem Wegstreckenaufnehmer gemäß der Fig. 3 und 4 abgegebenen Meßsignale,
Fig. 7
ein Ausführungsbeispiel für einen bei dem erfindungsgemäßen Verfahren verwendbaren Kraftmeßsignalgeber,
Fig. 8
ein bei dem Kraftmeßsignalgeber gemäß der Fig. 7 als Meßwandler verwendeter Wegstreckenaufnehmer.
Fig. 9
ein weiteres Ausführungsbeispiel für einen bei dem erfindungsgemäßen Verfahren verwendbaren Kraftmeßsignalgeber.
Fig.10
ein Fangdiagramm mit der tatsächlich aufgezeigten Funktion "Weg über Zeit",
Fig.11
ein Fangdiagramm mit Hüllkurven als Grenzwerte für die Fangkurve, und
Fig.12
eine Gegenüberstellung der Kräfte bei beladenem Aufzug und angeschlossenem Kraftmesser.
The invention will now be explained and described with reference to exemplary embodiments and the accompanying drawings. Show it:
Fig. 1
an elevator installation (schematic), for the checking of which the method according to the invention is provided,
Fig. 2
an embodiment of a device according to the inventive method,
Fig. 3
1 shows an exemplary embodiment of a distance sensor that can be used in the method according to the invention, in front view,
Fig. 4
the distance sensor according to FIG. 3 in side view,
Fig. 5
3 and 4, time diagrams of the measurement signals emitted by the distance sensor,
Fig. 6
an evaluation circuit for the measuring signals emitted by the distance sensor according to FIGS. 3 and 4,
Fig. 7
1 shows an exemplary embodiment of a force transducer which can be used in the method according to the invention,
Fig. 8
a distance transducer used as a transducer in the force measuring signal generator according to FIG. 7.
Fig. 9
a further embodiment for a force measuring signal generator that can be used in the method according to the invention.
Fig. 10
a catch diagram with the actually shown function "way over time",
Fig. 11
a catch diagram with envelopes as limit values for the catch curve, and
Fig. 12
a comparison of the forces when the elevator is loaded and the dynamometer connected.

Um das erfindungsgemäße Verfahren später besser beschreiben zu können, soll anhand von Fig. 1 zunächst eine Aufzugsanlage beschrieben werden, zu deren Überprüfung das erfindungsgemäße Verfahren vorgesehen ist.In order to be able to better describe the method according to the invention later, an elevator installation is to be described first with reference to FIG. 1, the method according to the invention being provided for checking.

In Fig. 1 ist mit dem Bezugszeichen 1 eine Treibscheibe bezeichnet, die zwei Führungsrillen für einen im vorliegenden Fall durch zwei Seile gebildeten Seilzug 2 aufweist. An einem Ende des Seilzugs 2 ist ein Fahrkorb 3 befestigt. Am anderen Ende des Seilzugs 2 hängt ein Gegengewicht 4. Die Masse des Gegengewichts 4 entspricht üblicherweise der Masse des Fahrkorbes 3 zuzüglich der halben zulässigen Fahrkorbbeladung. Mit 5 ist eine Motor-Getriebe-Einheit für den Antrieb der Treibscheibe 1 bezeichnet, wobei diese Einheit ein Handrad 10 für die Drehung der Treibscheibe 1 aufweist. Zwischen der Motor-Getriebe-Einheit 5 und der Treibscheibe 1 ist eine in der Fig. 1 nicht dargestellte Bremsvorrichtung angeordnet. Die Motor-Getriebe-Einheit 5 mit der Treibscheibe 1 ist oberhalb einer den Aufzugsschacht nach oben abschließenden Decke 11 angeordnet.In Fig. 1, the reference numeral 1 designates a traction sheave which has two guide grooves for a cable pull 2 formed in the present case by two cables. A car 3 is attached to one end of the cable 2. A counterweight 4 hangs at the other end of the cable 2. The mass of the counterweight 4 usually corresponds to the mass of the car 3 plus half the permissible car load. 5 designates a motor-gear unit for driving the traction sheave 1, this unit having a handwheel 10 for rotating the traction sheave 1. A braking device, not shown in FIG. 1, is arranged between the motor-transmission unit 5 and the drive pulley 1. The motor-gear unit 5 with the traction sheave 1 is arranged above a ceiling 11 which closes the elevator shaft upwards.

Im Fahrbetrieb wird der Fahrkorb 3 über den Seilzug 2, der von der Motor-Getriebe-Einheit über die Treibscheibe 1 angetrieben wird, bewegt. Für einen einwandfreien Betrieb der Aufzugsanlage ist es erforderlich, daß der Seilzug ausreichend rutschfest über die Treibscheibe verlegt ist. Der Fahrkorb kann im Notfall sowie bei Reparaturen oder bei Überprüfungen auch durch das Handrad 10 bewegt werden.When driving, the car 3 is moved via the cable 2, which is driven by the motor-transmission unit via the traction sheave 1. For the elevator system to operate properly, it is necessary that the cable is laid over the traction sheave in a non-slip manner. The car can be used in an emergency as well Repairs or checks can also be moved by the handwheel 10.

In der Fig. 2 ist mit 6 eine Auswerteeinheit bezeichnet, die im vorliegenden Ausführungsbespiel einen Personalcomputer 12, eine Ein-/Ausgabeschnittstelle 13 und einen Schnittstellenbaustein 14 umfaßt. Mit der gestrichelten Umrandungslinie 6′ soll angedeutet werden, daß die Ein-/Ausgabeschnittstelle 13 und der Schnittstellenbaustein 14 eine Funktionseinheit bilden. Der Personalcomputer weist, wie üblich, einen Bildschirm 36 als Anzeigevorrichtung und eine Eingabetastatur 37 auf. Zwischen den einzelnen Bausteinen der Auswerteeinheit erfolgt entsprechend den eingezeichneten, die Bausteine verbindenden Pfeilen ein Datenverkehr in beiden Richtungen. Die Auswerteeinheit 6 ist im vorliegenden Ausführungsbeispiel jeweils über eine der Leitungen 15 bis 17 mit einem ersten Wegstreckenaufnehmer 7, der mit einem Seil des Seilzugs 2 verbunden sein kann, einem zweiten Wegstreckenaufnehmer 18, der mit der Treibscheibe 1 verbunden sein kann, und einem Kraftmeßsignalgeber 8 verbunden, wobei die Leitungen über am Schnittstellenbaustein vorgesehene Eingänge an der Auswerteeinheit angeschlossen sind. Mit 9 sind Leitungen bezeichnet, über die die Auswerteeinheit mit der Steuerschaltung der Aufzugsanlage verbunden ist. Die Leitungen 9 sind wie die Leitungen 15 bis 17 an Eingänge angeschlossen, die am Schnittstellenbaustein 14 vorgesehen sind.In FIG. 2, 6 denotes an evaluation unit, which in the present exemplary embodiment comprises a personal computer 12, an input / output interface 13 and an interface module 14. The dashed outline 6 'is intended to indicate that the input / output interface 13 and the interface module 14 form a functional unit. As usual, the personal computer has a screen 36 as a display device and an input keyboard 37. Between the individual components of the evaluation unit, data traffic takes place in both directions in accordance with the arrows that connect the components. In the present exemplary embodiment, the evaluation unit 6 is in each case via one of the lines 15 to 17 with a first distance sensor 7, which can be connected to a cable of the cable 2, a second distance sensor 18, which can be connected to the traction sheave 1, and a force measuring signal transmitter 8 connected, the lines being connected to the evaluation unit via inputs provided on the interface module. 9 designates lines via which the evaluation unit is connected to the control circuit of the elevator system. The lines 9, like the lines 15 to 17, are connected to inputs which are provided on the interface module 14.

Die Leitungen 9 sind im vorliegenden Ausführungsbeispiel zu einem 12-adrigen abgeschirmten Kabel zusammengefaßt, das an einem Ende einen mit der Steuerschaltung der Aufzugsanlage verbindbaren Prüfstecker bzw. Klemmen und am anderen Ende einen Platinenstecker mit einer Spannungsschutzbeschaltung aufweist.In the present exemplary embodiment, the lines 9 are combined to form a 12-wire shielded cable which has at one end a test plug or terminals and which can be connected to the control circuit of the elevator system has a circuit board connector with a voltage protection circuit at the other end.

Der Schnittstellenbaustein 14 umfaßt vier Baugruppen. Für elektrische Signale, die von der Steuerschaltung über die Leitungen 9 auf die Auswerteeinheit übertragen werden, ist eine Steuerungsteilschnittstelle vorgesehen, die je Eingang einen Optokoppler für eine galvanische Trennung der Auswerteeinheit von der Steuerschaltung, einen mit nur einer Betriebsspannung zu betreibenden, mit einer kapazitiven Rückkopplung versehenen Operationsverstärker für die Signalverstärkung und einen Schmitt-Trigger aufweist. Zur Erfassung und Vorverarbeitung von Signalen der Wegstreckenaufnehmer und des Kraftmeßsignalgebers ist eine weitgehend symmetrisch aufgebaute Sensorteilschnittstelle vorgesehen. Als Eingangsbaustein dienen hier jeweils impulsformende Schmitt-Trigger, deren Ausgang jeweils an einen Monoflop mit geringer Impulsbreite gelegt wird. Darüberhinaus sind Logikbausteine für die Verknüpfung von Signalen verschiedener Eingänge der Sensorteilschnittstelle vorgesehen. Als dritte Baugruppe weist der Schnittstellenbaustein 14 einen Teiler-Baustein zum Teilen des Systemtakts des Personalcomputers auf. Schließlich enthält der Schnittstellenbaustein einen akustischen Signalgeber, der ein Monoflop mit einer Impulsbreite von ca. 500 ms und einen nachgeschalteten Piezopiepser aufweist.The interface module 14 comprises four modules. For electrical signals that are transmitted from the control circuit via the lines 9 to the evaluation unit, a control subinterface is provided, which has an optocoupler for each input for a galvanic separation of the evaluation unit from the control circuit, one that can be operated with only one operating voltage, with a capacitive feedback provided operational amplifier for signal amplification and a Schmitt trigger. A largely symmetrical sensor sub-interface is provided for recording and preprocessing signals from the distance sensors and the force measuring signal transmitter. Pulse-forming Schmitt triggers are used as input modules, the output of which is connected to a monoflop with a narrow pulse width. In addition, logic modules are provided for linking signals from different inputs of the sensor sub-interface. As a third module, the interface module 14 has a divider module for dividing the system clock of the personal computer. Finally, the interface module contains an acoustic signal generator which has a monoflop with a pulse width of approximately 500 ms and a downstream piezo beeper.

Die Ein-/Ausgabeschnittstelle weist einen Decoder-, einen Ein-/Ausgabe- und einen Zeitgeberbaustein auf. Der Zeitgeberbaustein enthält einen universell programmierbaren Zähler, dessen Takteingang über den Teiler-Baustein des Schnittstellenbausteins mit dem Systemtakt des Personalcomputers verbunden ist.The input / output interface has a decoder, an input / output and a timer module. The timer block contains a universally programmable counter, whose clock input is connected to the via the divider block of the interface block System clock of the personal computer is connected.

Die Fig. 3 und 4 zeigen ein Ausführungsbeispiel für einen Wegstreckenaufnehmer in Vorder- bzw. Seitenansicht, wie er bei dem erfindungsgemäßen Verfahren verwendet werden kann. Der Wegstreckenaufnehmer weist eine Lochscheibe 19 mit konzentrisch um den Drehpunkt der Lochscheibe in gleichen Abständen angeordneten Lichtdurchgangslöchern 20 auf. Die Lochscheibe ist konzentrisch mit einer eine Führungsrille für ein antreibendes Seilzugseil aufweisenden Antriebsscheibe 21 verbunden. Die Lochscheibe 19 mit der Antriebsscheibe 21 weist eine in einer Halterung 23 drehbar gelagerte Drehachse 24 auf. Mit 25 ist eine erste und mit 26 ist eine zweite Lichtschrankenmeßeinrichtung bezeichnet, deren Lichtstrahlen durch die Lochscheibe hindurchtreten bzw. durch die Lochscheibe unterbrochen werden. Der Abstand zwischen den beiden Lichtschranken und der Abstand zwischen den Lichtdurchgangslöchern auf der Lochscheibe wurde so gewählt, daß sich bei Drehung der Lochscheibe in einer Richtung für die Signale der beiden Lichtschrankeneinrichtungen die in der Fig. 5 gezeigten Impulsdiagramme mit zeitlich versetzten Impulsen ergeben. Durch Auswertung der von beiden Lichtschranken abgegebenen Meßsignale kann die Drehrichtung ermittelt werden. Eine solche Auswerteschaltung ist in der Fig. 6 dargestellt. Neben Wegimpulsen, deren Anzahl für den Fahrweg des Fahrkorbes kennzeichnend ist, liefert die Schaltung auch ein die Bewegungsrichtung des Fahrkorbes anzeigendes Signal.3 and 4 show an embodiment of a distance sensor in front and side view, as it can be used in the method according to the invention. The distance sensor has a perforated disk 19 with light passage holes 20 arranged concentrically around the pivot point of the perforated disk at equal intervals. The perforated disk is concentrically connected to a drive disk 21 having a guide groove for a driving cable rope. The perforated disk 19 with the drive disk 21 has an axis of rotation 24 which is rotatably mounted in a holder 23. 25 denotes a first and 26 denotes a second light barrier measuring device, the light rays of which pass through the perforated disk or are interrupted by the perforated disk. The distance between the two light barriers and the distance between the light through holes on the perforated disk was chosen so that when the perforated disk rotates in one direction for the signals of the two light barrier devices, the pulse diagrams shown in FIG. 5 with temporally offset pulses result. The direction of rotation can be determined by evaluating the measurement signals emitted by both light barriers. Such an evaluation circuit is shown in FIG. 6. In addition to travel pulses, the number of which is characteristic of the travel path of the car, the circuit also supplies a signal indicating the direction of movement of the car.

In Fig. 7 ist ein Ausführungsbeispiel für einen in einer Anordnung gemäß der Fig. 2 verwendbaren Kraftmeßsignalgeber 8 dargestellt. Der Kraftmeßsignalgeber weist eine in einer Führungshülse 27 geführte Schraubendruckfeder 28 auf, die durch eine Zugstange 29, die an einem Ende eine Scheibe 30, gegen die die Feder 28 zur Anlage kommt, und am anderen Ende eine Öse 31 aufweist, zusammendrückbar ist. Mit 32 ist ein Wegstreckenaufnehmer bezeichnet, durch den eine Verschiebung der Zugstange 29 gegen die Führungshülse 27 erfaßbar und damit ein Meßsignal für die an der Zugstange angreifende Kraft lieferbar ist. Der Wegstreckenaufnehmer 32 ist gesondert in Fig. 8 dargestellt. Er weist wie der Wegstreckenaufnehmer gemäß der Fig. 3 und 4 eine Lochscheibe 19′ und zwei Lichtschrankenmeßeinrichtungen 25′ und 26′ (25′ in Fig. 8 nicht sichtbar) auf. Die Lochscheibe 19′ ist über eine Drehachse 24′ mit einem Antriebsrad 33, das gegen die Zugstange 29 zur Anlage kommt und durch die Zugstange angetrieben ist, verbunden.FIG. 7 shows an exemplary embodiment of a force transducer 8 that can be used in an arrangement according to FIG. 2. The Force transducer has a helical compression spring 28 guided in a guide sleeve 27, which can be compressed by a pull rod 29 which has a disc 30 at one end against which the spring 28 comes into contact and an eyelet 31 at the other end. 32 with a distance transducer is designated by which a displacement of the pull rod 29 against the guide sleeve 27 can be detected and thus a measurement signal for the force acting on the pull rod can be supplied. The distance sensor 32 is shown separately in FIG. 8. 3 and 4, it has a perforated disk 19 'and two light barrier measuring devices 25' and 26 '(25' not visible in FIG. 8). The perforated disk 19 'is connected via an axis of rotation 24' to a drive wheel 33 which comes against the tie rod 29 and is driven by the tie rod.

In Fig. 9 ist ein weiteres Ausführungsbeispiel für einen Kraftmeßsignalgeber dargestellt, das sich von dem Ausführungsbeispiel gemäß der Fig. 7 dadurch unterscheidet, daß das eine Ende der Zugstange 29′ als Haken 34 ausgebildet und ein Wegstreckenaufnehmer zum Erfassen der Verschiebung der Zugstange 29′ gegen die Führungshülse 27′ vorgesehen ist, der einen mit der Zugstange 29′ verbundenen, gegen die Führungshülse verschiebbaren Lochstreifen 35 mit äquidistant in einer Linie angeordneten Lichtdurchgangslöchern 20′ aufweist. Zur Abtastung der Durchgangslöcher 20′ sind eine erste Lichtschrankeneinrichtung 25˝ und eine zweite Lichtschrankeneinrichtung 26˝ vorgesehen.In Fig. 9, another embodiment of a force transducer is shown, which differs from the embodiment of FIG. 7 in that one end of the tie rod 29 'formed as a hook 34 and a distance sensor for detecting the displacement of the tie rod 29' against the guide sleeve 27 'is provided, which has a tie rod 29' connected to the guide sleeve, displaceable against the guide sleeve 35 with equidistantly arranged in a line light passage holes 20 '. To scan the through holes 20 ', a first light barrier device 25˝ and a second light barrier device 26˝ are provided.

Durch Verwendung von jeweils zwei Lichtschranken bei den Wegstreckenaufnehmern für die Kraftmeßsignalgeber kann eine Ermittlung der Bewegungsrichtung der Zugstange erfolgen.By using two light barriers in each of the distance sensors for the force measuring signal transmitters, a determination of the direction of movement of the Pull rod.

Mit der anhand der Fig. 2 bis 9 beschriebenen Vorrichtung können nach dem erfindungsgemäßen Verfahren Messungen von Fahrtstrecken, Geschwindigkeiten und Beschleunigungen des Fahrkorbs als Funktion der Zeit bzw. des Weges in Abhängigkeit von den die Bewegung des Fahrkorbes steuernden Signalen der Steuerschaltung der Aufzugsanlage durchgeführt und aufgezeichnet werden.With the device described with reference to FIGS. 2 to 9, measurements of travel distances, speeds and accelerations of the car as a function of time or of the path as a function of the signals of the control circuit of the elevator system controlling the movement of the car can be carried out and recorded according to the inventive method will.

Diese Kurven können auf den Bildschirm des Computers bzw. auf einen Drucker ausgegeben werden.These curves can be output on the computer screen or on a printer.

Durch Vergleich mit den Sollkurven lassen sich damit Aussagen über die Wirksamkeit von Bremse und Fangvorrichtung machen.By comparing with the target curves, statements about the effectiveness of the brake and safety gear can be made.

Die Figuren 10 und 11 zeigen einen in der Praxis durchgeführten Fangversuch. In Fig. 10 ist der Fangweg s des Fahrkorbes über die Fangzeit t in Form einer Kurve f aufgezeichnet.FIGS. 10 and 11 show a catching test carried out in practice. In FIG. 10, the catching path s of the car over the catching time t is recorded in the form of a curve f.

Die Fig. 11 zeigt die gleiche Kurve f, jedoch mit den als Grenzwerte errechneten Hüllkurven h.11 shows the same curve f, but with the envelope curves h calculated as limit values.

Mit Hilfe des neuen Verfahrens kann vorteilhaft auch die Rutschfestigkeit (Treibfähigkeit) des Seilzugs bestimmt werden. Dazu ist die Zugstange des Kraftmeßsignalgebers (von Fig. 7 oder Fig. 9) mit einem oder mehreren Seilen des Seilzugs mit Hilfe einer geeigneten Seilklemme zu verbinden. Die Führungshülse des Kraftmeßsignalgebers wird an einem Festpunkt zweckmäßig an der den Aufzugsschacht abschließenden Decke 11 befestigt. Durch Drehen des Handrades oder Bewegen des Antriebes ist bei der Rutschprüfung so lange die Zugkraft zu erhöhen, bis entweder ein ermittelter Grenzwert erreicht ist und der Signalgeber ein Warnsignal abgibt, oder das Seil oder die Seile auf der Treibscheibe zu rutschen beginnen. Die Treibfähigkeit der gesamten Treibscheibe wird aus dem Wert der gemessenen Kraft von einem x Seilen berechnet. Das einsetzende Rutschen bei der zu bestimmenden maximal durch die Treibscheibe übertragbaren Antriebskraft kann durch Auswertung der Signale des ersten mit dem Seilzug und des zweiten mit der Treibscheibe verbindbaren Wegstreckenaufnehmers oder auch nur visuell durch den Prüfer des Aufzugs registriert werden.With the help of the new method, the slip resistance (driving ability) of the cable can also be advantageously determined. For this purpose, the pull rod of the force transducer (from FIG. 7 or FIG. 9) is to be connected to one or more cables of the cable using a suitable cable clamp. The guide sleeve of the force transducer is expediently attached to the ceiling 11 closing the elevator shaft at a fixed point. By turning the handwheel or moving the drive, this is the case with the slip test long to increase the tractive force until either a determined limit value is reached and the signal generator emits a warning signal, or the rope or the ropes on the traction sheave begin to slide. The driving capacity of the entire traction sheave is calculated from the value of the measured force of one x ropes. The onset of slipping at the maximum driving force that can be transmitted by the traction sheave can be registered by evaluating the signals of the first distance sensor that can be connected to the cable pull and the second distance sensor that can be connected to the traction sheave, or only visually by the elevator inspector.

Nach dem beschriebenen Verfahren ist es ferner möglich, die Steuerschaltung des Aufzugs zu überprüfen, indem die zeitliche Abfolge der Steuersignale kontrolliert wird. Z.B. läßt sich die Zeit ermitteln, die die Steuerung benötigt, um den Antrieb abzuschalten bzw. eine Bremse einfallen zu lassen, nachdem ein Sicherheitsschalter geöffnet wurde.According to the described method, it is also possible to check the control circuit of the elevator by checking the chronological sequence of the control signals. E.g. the time it takes for the control to switch off the drive or to apply a brake after a safety switch has been opened can be determined.

Die Auswerteeinheit 6 weist eine Reihe von (im vorliegenden Ausführungsbeispiel zum Teil als Software-Lösung realisierte) Funktionseinrichtungen auf. Eine Funktionseinrichtung ist für die Bestimmung der Geschwindigkeits- und/oder Beschleunigungswerte vorgesehen. Die Messung der Geschwindigkeit und Beschleunigung kann durch Betätigung der Tastatur des Personalcomputers getriggert sein oder es erfolgt eine Triggerung durch Signale der Steuerschaltung des Aufzugs. Meßergebnisse sind auf dem Bildschirm des Personalcomputers darstellbar und können im Bedarfsfall als vollständiges Prüfprotokoll über einen angeschlossenen Drucker ausgegeben werden. Um insbesondere auf unzulässige Prüfwerte aufmerksam zu machen, kann der im Schnittstellenbaustein 14 bzw. aktivierbar über die Software im Personalcomputer enthaltene akustische Signalgeber aktiviert werden. Der Bildschirm kann auch zur Darstellung von Hinweisen für die Bedienung der Vorrichtung benutzt werden.The evaluation unit 6 has a number of functional devices (in the present exemplary embodiment partially implemented as a software solution). A functional device is provided for determining the speed and / or acceleration values. The measurement of the speed and acceleration can be triggered by actuating the keyboard of the personal computer or triggered by signals from the control circuit of the elevator. Measurement results can be displayed on the screen of the personal computer and, if necessary, can be output as a complete test report on a connected printer. Around In particular to draw attention to impermissible test values, the acoustic signal transmitter contained in the interface module 14 or activatable via the software in the personal computer can be activated. The screen can also be used to display instructions for operating the device.

Bei dem beschriebenen Ausführungsbeispiel veranlaßt die Sensorschnittstelle den Personalcomputer beim Auftreten eines externen Ereignisse, z.B. Weiterrücken der Lochscheibe, seine Arbeit zu unterbrechen und die entsprechenden internen Speicher für Weg und evtl. Zeit zu aktualisieren.In the described embodiment, the sensor interface causes the personal computer when an external event, e.g. Advance the perforated disc to interrupt its work and update the corresponding internal memory for distance and possibly time.

Es besteht jedoch auch die Möglichkeit, diese Impulse einem Vorwärts-/Rückwärtszähler zuzuführen und das Ergebnis durch einen gewöhnlichen Displaybaustein darzustellen. Den dargestellten Werten lassen sich dann entsprechende Kräfte bzw. Strecken zuordnen.However, it is also possible to feed these pulses to an up / down counter and to display the result using a conventional display module. Corresponding forces or distances can then be assigned to the values shown.

Bei dem beschriebenen Ausführungsbeispiel wurden Zeitgeber und akustischer Signalgeber mit der nötigen Ansteuerung in der Seonsorschnittstelle untergebracht. Es besteht alternativ die Möglichkeit auf diese Baugruppen zu verzichten und stattdessen, durch Software gesteuert, die entsprechenden Baugruppen im Personalcumputer zu verwenden.In the exemplary embodiment described, the timer and acoustic signal transmitter with the necessary control were accommodated in the sensor interface. Alternatively, there is the option of dispensing with these modules and instead, controlled by software, using the corresponding modules in the personal computer.

Bei dem oben beschriebenen Ausführungsbeispiel wurden die zu messenden Werte unmittelbar in digitale Signale umgewandelt. Es besteht alternativ die Möglichkeit, die Meßwerterfassung auch analog vorzunehmen und z.B. Geschwindigkeiten (und damit auch Strecken und Beschleunigungen) mit einem Tachogenerator zu erfassen oder es können Kräfte mittels Dehnungsmeßstreifen oder piezoelektrischer Druckaufnehmer ermittelt werden. Diese Analogsignale lassen sich mit einem A/D-Wandler in Digitalsignale umwandeln und dann mit einer Auswerteinheit weiterverarbeiten.In the embodiment described above, the values to be measured were immediately converted into digital signals. Alternatively, there is the possibility of performing the measured value acquisition analogously and, for example, of registering speeds (and thus also distances and accelerations) with a tachometer generator, or forces can be measured using strain gauges or piezoelectric pressure transducers can be determined. These analog signals can be converted into digital signals with an A / D converter and then further processed with an evaluation unit.

Die Fig. 12 zeigt eine Gegenüberstellung der an der Treibscheibe auftretenden Kräfte bei beladenem Aufzug und bei angeschlossenen Kraftmesser. Es gelten die folgenden Abkürzungen:

FF =
Fahrkorbkraft
FL =
Nutzlastkraft
F1 =
Kraft/Seil an Gegengewicht-Seite
F2 =
Kraft/Seil an Fahrkorb-Seite
F5 =
Kraft des eingespannten Seils <-> Treibscheibe
F6 =
Kraft eines Seils vom Fahrkorb <-> Einspannstelle
F7 =
Kraft Fixpunkt <-> Einspannstelle (gemessen)
FQ =
Tragkraft
n =
Anzahl der Tragseile
Betrachtet man die Kräfte bei einem beladenen Aufzug, so gelten folgende Formeln:

F1= (F F +.5*F Q )/n
Figure imgb0001

F2= (F F /n)+(F L /n)
Figure imgb0002


Dieser Fall ist in Fig. 12 links dargestellt.12 shows a comparison of the forces occurring on the traction sheave when the elevator is loaded and when the dynamometer is connected. The following abbreviations apply:
F F =
Car power
F L =
Payload
F1 =
Strength / rope on the counterweight side
F2 =
Power / rope on the car side
F5 =
Force of the clamped rope <-> traction sheave
F6 =
Power of a rope from the car <-> clamping point
F7 =
Force fixed point <-> clamping point (measured)
F Q =
Load capacity
n =
Number of suspension ropes
If you consider the forces in a loaded elevator, the following formulas apply:

F1 = (F F + .5 * F Q ) / n
Figure imgb0001

F2 = (F F / n) + (F L / n)
Figure imgb0002


This case is shown on the left in FIG. 12.

Rechts dagegen ist die Situation gezeigt, bei der ein Seil an einem Kraftmesser angeschlossen und deshalb festgespannt ist. Voraussetzung für die nachfolgenden Gleichungen ist, daß das Seil nicht über die Treibscheibe gerutscht ist.On the right, however, the situation is shown in which a rope is connected to a dynamometer and is therefore tightened. The prerequisite for the following equations is that the rope has not slipped over the traction sheave.

Dann gilt:

F3=F1; F6=F F /n

Figure imgb0003

F5=(F F /n)+F7
Figure imgb0004

F2=F5 =>
(F F /n)+(F L /n)=(F F /n)+F7
Figure imgb0006

F L /n=F7
Figure imgb0007

F L =F7*n
Figure imgb0008
Then:

F3 = F1; F6 = F F / n
Figure imgb0003

F5 = (F F / n) + F7
Figure imgb0004

F2 = F5 =>
(F F / n) + (F L / n) = (F F / n) + F7
Figure imgb0006

F L / n = F7
Figure imgb0007

F L = F7 * n
Figure imgb0008

Claims (25)

  1. A method of determining physical parameters, more particularly motion parameters, of a goods lift and/or passenger lift, the lift comprising at least one cable system (2) guided over a driving pulley (1) and having a cage (3) suspended at one end and a counter-weight (4) suspended at the other end, the lift (14) being driven by a motor (5) controlled by an electric control circuit and acting on the pulley (1), and the lift also comprising a brake device connected to the pulley and controlled by the control circuit, the physical parameters being determined by at least one travel recorder (7, 18) connected to the cable system (2) and/or to the pulley (1) so as to generate travel signals, the travel recorder being connected to an evaluating unit (6) comprising a timer, in order to supply the travel signals to the evaluating unit (6), and the evaluating unit (6) being connected to places on the control circuit where signals are received for controlling the motion of the lift, characterised in that as a safety test, the driving capacity is determined from the physical parameters and/or the braking and/or guard travel or the braking and/or guard curve as a record of distances, speeds and accelerations is determined from the travel and control signals as a function of time and/or travel.
  2. A method according to claim 1, characterised in that at least one cable in the cable system (2) is connected to a dynamometer signal transmitter (8) and the dynamometer signal transmitter (8) is connected to the evaluating unit (6) in order to supply the evaluating unit (6) with a dynamometer signal, and the maximum drive force (drive capacity) transmittable by the pulley (1) to the cable system (2) is determined from the dynamometer signal and from the travel signals of a travel recorder connected to the cable system and a travel recorder connected to the pulley (1).
  3. A method according to claim 1 or 2, characterised in that the drive capacity determined in the case of one or x cables is used to extrapolate the drive capacity of all cables on the pulley.
  4. A method according to claim 1 or 3, characterised in that speeds and/or accelerations are determined by a device contained in the evaluating unit (6).
  5. A method according to any of claims 1 to 4, characterised in that evaluation processes, e.g. determination of distances, speeds, accelerations and/or forces,, are triggered by signals from the control circuit, by means of a device contained in the evaluating unit (6).
  6. A method according to any of claims 1 to 5, characterised in that evaluation processes, e.g. determination of distances, speeds and/or forces, are triggered via input switches (37) provided for the evaluating unit (6).
  7. A method according to any of claims 1 to 6, characterised in that evaluation results are displayed by a display device (36) contained in the evaluating unit (6).
  8. A method according to claim 7, characterised in that the evaluation results are displayed by a video display device (36).
  9. A method according to claim 6 or 8, characterised in that travel distances, speeds and accelerations and/or forces are displayed by the display device (36).
  10. A method according to any of claims 6 to 9, characterised in that operating instructions for the user of the device are displayed by the display device (36).
  11. A method according to any of claims 1 to 10, characterised in that alarm signals depending on evaluation results are generated by signal means contained in the evaluating unit (6), e.g. in a personal computer, where they can be activated via a program.
  12. A device according to claim 11, characterised in that the alarm signals are audio signals.
  13. A method according to any of claims 1 to 12, characterised in that distance signals are generated by at least one light barrier (25, 26) which scans a perforated plate (19) rotatable in accordance with the length of travel to be measured.
  14. A method according to claim 13, characterised in that the perforated disc (19) is scanned by a double light barrier (25, 26) in order to determine the direction of rotation.
  15. A method according to claim 13 or 14, characterised in that the perforated disc (19) is driven by the pulley or by a drive roller (21) pressed against the cable system (2).
  16. A method according to claim 15, characterised in that the drive roller (21) is driven by the cable system (2), in that the cable system (2) is inserted into a guide groove (22) in the drive roller (21).
  17. A method according to any of claims 2 to 16, characterised in that the dynamometer signal transmitter (8) is a spring sensor.
  18. A method according to claim 17, characterised in that the change in the spring travel is determined by a travel recorder (32).
  19. A method according to claim 18, characterised in that the travel recorder (32) is used to generate travel signals in that a coding strip (35) formed with regularly distributed light-transmitting openings (20') is scanned by at least one light barrier.
  20. A method according to claim 19, characterised in that the coding strip (35) is scanned by a double light barrier (25'', 26'') in order to determine the direction of rotation of the coding strip.
  21. A method according to claim 18, characterised in that a perforated disc (19') is used as a travel recorder and is scanned by at least one light barrier, preferably by a double light barrier, in order to determine travel signals.
  22. A method according to claim 21, characterised in that the test signals from the travel transmitter (7, 18) or the dynamometer signal transmitter are supplied to an interface component (14) upstream of an input/output interface (13) of a personal computer (12), and the test signals are initially processed by the interface component (14).
  23. A method according to claim 22, characterised in that the direction of motion of the lift or the direction of spring travel is determined by a logic circuit contained in the interface component (14).
  24. A method according to claim 22, characterised in that audio signals are delivered by an audio-signal transmitter contained with the software in the personal computer or the interface component (14).
  25. A method according to any of claims 1 to 24, characterised in that signals from the control circuit are tested by a device contained in the evaluating unit (6).
EP89122928A 1989-04-07 1989-12-12 Arrangement and method to detect physical parameters of an elevator Expired - Lifetime EP0390972B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3911391A DE3911391C5 (en) 1989-04-07 1989-04-07 Method and device for checking the driving ability
DE3911391 1989-04-07

Publications (2)

Publication Number Publication Date
EP0390972A1 EP0390972A1 (en) 1990-10-10
EP0390972B1 true EP0390972B1 (en) 1994-08-03

Family

ID=6378143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89122928A Expired - Lifetime EP0390972B1 (en) 1989-04-07 1989-12-12 Arrangement and method to detect physical parameters of an elevator

Country Status (6)

Country Link
US (1) US5233139A (en)
EP (1) EP0390972B1 (en)
JP (1) JPH0367880A (en)
AT (1) ATE109427T1 (en)
DE (2) DE3911391C5 (en)
ES (1) ES2060733T3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011093A1 (en) * 2006-03-08 2007-09-13 TÜV Rheinland Industrie Service GmbH Lift`s track rope slip-detector for determining dynamic state variable e.g. speed, has sensor for detecting dynamic state variable of track rope of lift, where detector is arranged in direct proximity to track rope
DE102006011395A1 (en) * 2006-03-09 2007-09-13 TÜV Rheinland Industrie Service GmbH Measuring device for a driving capability measurement
DE102006011092A1 (en) * 2006-03-08 2007-09-13 TÜV Rheinland Industrie Service GmbH Test lever with support
DE102007009602A1 (en) 2007-02-26 2008-08-28 TÜV Rheinland Industrie Service GmbH Lift facility's operating parameter testing method, involves introducing excess force initiated in supporting cable of lift facility by using testing device, and loading adjacent supporting cable along section
DE102009001056A1 (en) 2009-02-20 2010-09-02 Dekra Testing & Inspection Gmbh Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
US10023429B2 (en) 2013-12-16 2018-07-17 Inventio Ag Brake for elevator systems

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8904375U1 (en) * 1989-04-07 1989-07-27 Tuev Bayern E.V., 8000 Muenchen, De
AT395078B (en) * 1990-07-06 1992-09-10 Rudoba Klaus Dipl Ing METHOD FOR REFURBISHING FLUORESCENT TUBES
DE9015495U1 (en) * 1990-11-12 1992-01-02 Technischer Ueberwachungs-Verein Bayern E.V., 8000 Muenchen, De
DE9109188U1 (en) * 1991-07-25 1991-09-19 Flexion B.V., Roermont, Nl
DE4211289C2 (en) * 1992-04-03 1994-01-05 Tech Ueberwachungs Verein Hann Method for measuring the driving ability of a conveyor drive
DE4217587C2 (en) * 1992-05-21 1999-02-25 Ernst Dipl Ing Kasten Plant diagnostic procedures
DE4311011C2 (en) * 1992-07-24 1994-07-14 Arno John Method and device for testing an elevator with a traction sheave drive
DE19510786C2 (en) * 1995-03-24 1997-04-10 Stahl R Foerdertech Gmbh Hoist with undercarriage and low oscillation when braking
FI102884B1 (en) * 1995-12-08 1999-03-15 Kone Corp Procedure and apparatus for analyzing a lift's functions
SG138440A1 (en) * 1998-07-13 2008-01-28 Inventio Ag Rope traction elevator
FI981887A (en) * 1998-09-04 2000-03-05 Kone Corp An elevator arrangement for setting the output torque of an elevator motor
JP2001019292A (en) * 1999-06-25 2001-01-23 Inventio Ag Device and method to prevent vertical directional displacement and vertical directional vibration of load support means of vertical carrier device
WO2001014237A1 (en) * 1999-08-24 2001-03-01 N.V. Teclion S.A. A device for monitoring an operation of an elevator car
US6325179B1 (en) * 2000-07-19 2001-12-04 Otis Elevator Company Determining elevator brake, traction and related performance parameters
DE10042724A1 (en) * 2000-08-31 2002-03-14 Tech Ueberwachungs Ver Hannove Measurement device for braking force, has hoisting rope with one end wound to drum winch and another end connected flexibly with fixed point via dynamometer
DE10125972B4 (en) * 2001-05-29 2005-02-10 Aufzugswerke M. Schmitt & Sohn Gmbh & Co. elevator system
CN1141243C (en) * 2001-06-18 2004-03-10 王俊智 Multiple protector for preventing inertial slide for lift with released brake
DE10150284A1 (en) * 2001-10-12 2003-04-30 Henning Gmbh Diagnostic device and method for diagnosing elevator systems
US7134645B1 (en) * 2003-02-05 2006-11-14 Advanced Design Consulting Usa Winch assembly for use with synthetic ropes
FI118684B (en) * 2004-01-09 2008-02-15 Kone Corp Method and system for testing the condition of elevator brakes
DE102004004714A1 (en) * 2004-01-30 2005-09-01 Aufzugswerke M. Schmitt & Sohn Gmbh & Co. Method for checking the braking device in a cable lift installation
DE102004029133A1 (en) * 2004-06-17 2006-01-05 TÜV Industrie Service GmbH - TÜV Rheinland Group Force-reduced measuring method for traction drives, in particular traction sheave drives of elevators
EP1795485A4 (en) * 2004-08-19 2011-07-27 Mitsubishi Electric Corp Brake device for elevator
CN101128381B (en) * 2005-02-25 2010-04-21 奥蒂斯电梯公司 Elevator tractor assembly and method for measuring load of ladder assembly
DE102005010346A1 (en) 2005-03-07 2006-09-14 TÜV Rheinland Industrie Service GmbH Test device and associated method
JP4881072B2 (en) * 2006-05-30 2012-02-22 伊藤超短波株式会社 Traction equipment
GB0705110D0 (en) * 2007-03-16 2007-04-25 Lewis Ltd Wireline intervention system
FI119596B (en) * 2007-08-24 2009-01-15 Konecranes Oyj Method for controlling the crane
KR100919857B1 (en) * 2007-09-18 2009-09-30 오티스 엘리베이터 컴파니 Elevator motor brake torque measurement device
DE102009026992A1 (en) 2009-06-17 2010-12-30 Dekra Testing & Inspection Gmbh Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
DE102009028596A1 (en) 2009-08-17 2011-03-03 Dekra Testing & Inspection Gmbh Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
EP2650245B1 (en) 2009-02-20 2015-09-02 DEKRA e.V. Method and assembly for testing that a lift is functioning correctly
DE102009001055A1 (en) * 2009-02-20 2010-09-02 Dekra Testing & Inspection Gmbh Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
KR101164710B1 (en) 2009-02-27 2012-07-12 박노억 The system for analysis and inspection of braking capacity of emergency braking device in the elevator
EP2460753A1 (en) * 2010-12-03 2012-06-06 Inventio AG Method for testing elevator brakes
KR101704149B1 (en) 2011-12-15 2017-02-22 데크라 이.브이. Method and arrangement for testing the proper functionality of an elevator
WO2014124890A1 (en) * 2013-02-12 2014-08-21 Inventio Ag Method for carrying out a safety gear test
EP2958843B1 (en) * 2013-02-22 2017-08-02 KONE Corporation Method and arrangement for monitoring the safety of a counterweighted elevator
CN104418206A (en) * 2013-08-23 2015-03-18 西安丰树电子科技发展有限公司 Multifunctional safety monitoring system for construction hoist
DE112014006631B4 (en) * 2014-04-30 2021-05-27 Mitsubishi Electric Corporation Elevator system and elevator test method
DE202014010222U1 (en) 2014-12-30 2016-03-31 TÜV SÜD Industrie Service GmbH Device for detecting at least one movement parameter of an engine roomless traction sheave elevator installation
CN104973475B (en) * 2015-05-19 2017-11-03 绍兴市特种设备检测院 A kind of monitoring method of quality of elevator safety index
EP3106417B1 (en) * 2015-06-16 2018-08-08 KONE Corporation A control arrangement and a method
US10745244B2 (en) * 2017-04-03 2020-08-18 Otis Elevator Company Method of automated testing for an elevator safety brake system and elevator brake testing system
CN107826919B (en) * 2017-10-20 2019-09-13 中国矿业大学 A kind of lifting system critical component multimode health monitoring device and monitoring method
WO2019116501A1 (en) * 2017-12-14 2019-06-20 三菱電機ビルテクノサービス株式会社 Elevator remote monitoring system
US10890288B2 (en) 2018-04-13 2021-01-12 Microsoft Technology Licensing, Llc Systems and methods of providing a multipositional display
DE102022104832A1 (en) 2022-03-01 2023-09-07 Henning Testing Systems Gmbh Method for checking at least one safety-relevant parameter of an elevator system
CN114873405B (en) * 2022-06-18 2022-11-11 宁波昊鸿电子有限公司 Elevator falling emergency control method and system, storage medium and intelligent terminal

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886137A (en) * 1958-03-27 1959-05-12 Westinghouse Electric Corp Load measuring device for elevator systems
US3781901A (en) * 1972-03-14 1973-12-25 E Morrison Method for evaluating elevator performance
US3773146A (en) * 1972-05-09 1973-11-20 Reliance Electric Co Elevator electronic position device
US3973648A (en) * 1974-09-30 1976-08-10 Westinghouse Electric Corporation Monitoring system for elevator installation
US4085823A (en) * 1975-11-03 1978-04-25 Westinghouse Electric Corporation Elevator system
JPS5299546A (en) * 1976-02-16 1977-08-20 Mitsubishi Electric Corp Speed control device for elevator
SU779845A1 (en) * 1978-03-31 1980-11-15 Московское Городское Производственное Объединение "Мослифт" Method of measuring traction capacity of rope-guiding pulley lift winch
EP0044849A1 (en) * 1980-02-08 1982-02-03 PAYNE, Reginald Kenneth Monitoring and controlling lift positions
US4561093A (en) * 1983-02-22 1985-12-24 Otis Elevator Company Servicing a software-controlled elevator
FR2577329B1 (en) * 1985-02-12 1988-04-29 Logilift Sarl CONTROLLED CONTROL METHOD OF AN ELECTRIC MOTOR FOR MOVING A MOBILE AND CONTROL DEVICE FOR IMPLEMENTING THE METHOD
US4698780A (en) * 1985-10-08 1987-10-06 Westinghouse Electric Corp. Method of monitoring an elevator system
DE3763766D1 (en) * 1986-07-07 1990-08-23 Inventio Ag SYSTEM FOR REMOTE MANAGEMENT OF ELEVATOR SYSTEMS.
DE3822466A1 (en) * 1987-07-21 1989-02-02 Univ Magdeburg Tech Method of checking the position and movement of transport equipment moved by rope
US4738337A (en) * 1987-07-29 1988-04-19 Westinghouse Electric Corp. Method and apparatus for providing a load compensation signal for a traction elevator system
FI84050C (en) * 1988-04-18 1991-10-10 Kone Oy FOERFARANDE FOER KONTROLL AV FRIKTIONEN MELLAN DRIVSKIVA OCH BAERLINOR TILL EN HISS.
US4930604A (en) * 1988-10-31 1990-06-05 United Technologies Corporation Elevator diagnostic monitoring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011093A1 (en) * 2006-03-08 2007-09-13 TÜV Rheinland Industrie Service GmbH Lift`s track rope slip-detector for determining dynamic state variable e.g. speed, has sensor for detecting dynamic state variable of track rope of lift, where detector is arranged in direct proximity to track rope
DE102006011092A1 (en) * 2006-03-08 2007-09-13 TÜV Rheinland Industrie Service GmbH Test lever with support
DE102006011395A1 (en) * 2006-03-09 2007-09-13 TÜV Rheinland Industrie Service GmbH Measuring device for a driving capability measurement
DE102006011395B4 (en) * 2006-03-09 2014-12-31 TÜV Rheinland Industrie Service GmbH Measuring device for a driving capability measurement
DE102007009602A1 (en) 2007-02-26 2008-08-28 TÜV Rheinland Industrie Service GmbH Lift facility's operating parameter testing method, involves introducing excess force initiated in supporting cable of lift facility by using testing device, and loading adjacent supporting cable along section
DE102009001056A1 (en) 2009-02-20 2010-09-02 Dekra Testing & Inspection Gmbh Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
US10023429B2 (en) 2013-12-16 2018-07-17 Inventio Ag Brake for elevator systems

Also Published As

Publication number Publication date
EP0390972A1 (en) 1990-10-10
DE3911391C5 (en) 2010-04-29
US5233139A (en) 1993-08-03
DE3911391C2 (en) 1995-10-19
DE58908150D1 (en) 1994-09-08
DE3911391A1 (en) 1990-10-11
ATE109427T1 (en) 1994-08-15
ES2060733T3 (en) 1994-12-01
JPH0367880A (en) 1991-03-22

Similar Documents

Publication Publication Date Title
EP0390972B1 (en) Arrangement and method to detect physical parameters of an elevator
EP0391174B2 (en) Arrangement and method to detect physical parameters of an elevator
EP1445075B2 (en) Method for monitoring a robot and robot with monitoring means
EP0755894B1 (en) Method and apparatus for measuring the load in an elevator car
EP1847501B1 (en) Lift installation with a surveillance device of the load carrier for monitoring the status of the load carrier and method for testing the load carrier
DE3019385A1 (en) CRANE WITH DATA PROCESSING SYSTEM
EP0563836B1 (en) Method to measure the driving capability of a transporting device
DE102015226702A1 (en) Device and method for detecting at least one motion parameter of an elevator of a wind turbine
DE4217587C2 (en) Plant diagnostic procedures
WO2005123561A1 (en) Force-reduced measuring method for traction drives, particularly friction pulley drives for elevators
DE112016003550T5 (en) BREAK DETECTION DEVICE
EP1628900B1 (en) Test lever
DE112014006714T5 (en) LIFT POSITION DETECTION DEVICE
DE4311011C2 (en) Method and device for testing an elevator with a traction sheave drive
DE2642915A1 (en) BRAKE, IN PARTICULAR FOR CONVEYOR MACHINES IN UNDERGROUND MINING
EP1472175A1 (en) Device for detecting the load on a hoisting gear
DE4424094C1 (en) Testing antilocking system of motor vehicle having separate pressure control valve for each wheel
DE102016204422A1 (en) Device and method for checking a load limiting device esp. From a conveyor system
DE102017202589A1 (en) Method and device for determining the driving capability of a conveyor system via a torque measurement
DE3822466A1 (en) Method of checking the position and movement of transport equipment moved by rope
DE102007009602A1 (en) Lift facility&#39;s operating parameter testing method, involves introducing excess force initiated in supporting cable of lift facility by using testing device, and loading adjacent supporting cable along section
EP1914186A1 (en) Method and device for checking suspension means on lifts
EP3628631B1 (en) Method for detecting state of carriers
DE102023112419A1 (en) Inspection of elevator systems based on distance measurements
EP3851410A1 (en) Load torque measurement for industrial trucks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19901128

17Q First examination report despatched

Effective date: 19920206

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNISCHER UEBERWACHUNGS-VEREIN BAYERN SACHSEN E.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940803

REF Corresponds to:

Ref document number: 109427

Country of ref document: AT

Date of ref document: 19940815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58908150

Country of ref document: DE

Date of ref document: 19940908

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940920

ITF It: translation for a ep patent filed

Owner name: PROPRIA PROTEZIONE PROPR. IND.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2060733

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3013751

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: TECHNISCHER UEBERWACHUNGS-VEREIN BAYERN HESSEN SAC

Ref country code: CH

Ref legal event code: PFA

Free format text: TECHNISCHER UEBERWACHUNGS-VEREIN BAYERN SACHSEN E.V. TRANSFER- TECHNISCHER UEBERWACHUNGS-VEREIN BAYERN HESSEN SACHSEN E.V.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19971125

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971216

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19981127

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090129

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081217

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20091211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091211