EP0755894B1 - Method and apparatus for measuring the load in an elevator car - Google Patents

Method and apparatus for measuring the load in an elevator car Download PDF

Info

Publication number
EP0755894B1
EP0755894B1 EP96111277A EP96111277A EP0755894B1 EP 0755894 B1 EP0755894 B1 EP 0755894B1 EP 96111277 A EP96111277 A EP 96111277A EP 96111277 A EP96111277 A EP 96111277A EP 0755894 B1 EP0755894 B1 EP 0755894B1
Authority
EP
European Patent Office
Prior art keywords
load magnitude
load
lift
travel
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96111277A
Other languages
German (de)
French (fr)
Other versions
EP0755894A1 (en
Inventor
Jürgen Dr. Dipl.-Ing. Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP0755894A1 publication Critical patent/EP0755894A1/en
Application granted granted Critical
Publication of EP0755894B1 publication Critical patent/EP0755894B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • B66B1/3484Load weighing or car passenger counting devices using load cells

Definitions

  • the invention relates to a method and a device to measure the load in an elevator car using Spring elements is supported on a support frame, the by means of a carrying cable guided over a traction sheave is movable in an elevator shaft, one of one Motor control controlled motor drives the traction sheave and executes travel commands of an elevator control, the Position of the elevator car in the elevator shaft by means of a Position sensor device is detected.
  • DE 30 42 968 is a Elevator device with a movable in a shaft Elevator car and one serving as a weight counterbalance Counterweight became known.
  • Cabin and counterweight are connected by a suspension cable, which is connected to a traction sheave is drivable.
  • a motor drives the traction sheave and one Tachogenerator on, which is the actual speed value representing control signal of the motor shaft.
  • the Cabin has a load measuring floor, which by the Movement of the load measuring floor caused by load Potentiometers is detected.
  • the signal from the potentiometer is used as a disturbance variable in the speed control loop Speed actual value and speed setpoint fed.
  • a disadvantage of the known devices is that elaborate construction and assembly of the angles with the Strain gauge or the potentiometer on the floor support of the support frame. In addition, there is considerable adjustment work for the circuit and the amplifier necessary. Such systems are accordingly expensive to manufacture and in Entertains.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, solves the Task to the disadvantages of the known device avoid and create a facility with anyway in an elevator system the load in precisely recorded in an elevator car.
  • the advantage achieved by the invention is in essential to see in that cabin floor and Support frame can be simplified, which in turn is a Load measurement also with cheap elevator systems Makes cost reasons possible.
  • 1 is an elevator shaft Stops 2, in which an elevator car 3rd is movable.
  • a motor 4 drives a traction sheave 5 over which a suspension cable 6 is guided.
  • At one end of the Support rope 6 is a support frame 7 and at the other end of the Support rope 6, a counterweight 8 is arranged.
  • the Elevator car 3 rests on spring elements 9, which are on Support the support frame 7.
  • One over a first deflection roller 10 and a second deflection roller 11 is guided belt 12 mechanically coupled to the elevator car 3.
  • the movement the elevator car 3 is transferred to the belt 12, the one coupled to the first deflection roller 10 Pulse generator 13 drives. Every vertical movement of the Elevator car 3 is thus in the pulse generator 13 in electrical impulses converted.
  • Pulse generator 13 volume 12 and pulleys 10.11 are part of a commonly used in elevator systems built-in encoder, the exact location of the Elevator car 3 detected in elevator shaft 1.
  • the Pulse generator 13 can also be from a not shown Speed limiters are driven.
  • the motor 4 can Support frame 7, for example in the case of linear motor drives or rope-less friction wheel drives can be arranged.
  • the Pulse generator 13 can also be arranged on the elevator car 3 his. In this variant, belt 12 and pulleys can be used 10.11 are omitted. The pulse generator 13 is then by means of a Friction wheels driven, for example on a The guide rail rolls off.
  • Fig. 2 shows an elevator system with the inventive Device for measuring the load in the elevator car.
  • a Elevator control 14 generates on the basis of sensors 15 Stops 2 entered floor calls FL and Car calls CA from passengers 16 in the elevator car 3 Travel commands DO that are sent to an engine controller 17 to get redirected.
  • the engine control 17, for example, an inverter determines based on the Driving commands and based on a path signal SL des Pulse generator 13, the current position of the Elevator car 3 in elevator shaft 1 corresponds to that Driving curve of the elevator car 3.
  • With the driving curve is the Setpoint of acceleration, nominal speed and the delay of the elevator car 3 determined.
  • a motor current IW is measured and also the path signal SL of an evaluation unit 18 for determining load sizes fed.
  • the path signal SL is fed to a first converter 19 of the evaluation unit 18 and is stopped there when the elevator car 3 stops at the stop 2, for example by means of a table or a mathematical formula, in one of the movements of the elevator car 3 compared to the elevator shaft 1 corresponding first load size m SL converted.
  • the motor current IW is fed to a second converter 20 of the evaluation unit 18 and is converted there at the set speed of the elevator car 3, for example by means of a table or a mathematical formula, into a second load variable m IW corresponding to the car load. This size serves as a new load reference.
  • the second load variable m IW and the first load variable m SL corresponding to the new load in the elevator car 3 are added with the correct sign using an adder 21 to a third load variable m IW - m SL , which is the influenced by the motor control 17 controlled motor current IW.
  • the third load variable m IW -m SL can be evaluated by the elevator control 14 and, depending on the load in the elevator car 3, the car allocation, for example no further car calls are accepted when the elevator car 3 is full.
  • FIG. 4 shows a flow chart of the evaluation unit 18 implemented, for example, in software.
  • a first step S1 it is checked whether the elevator car 3 is at a stop 2 and the doors are still closed. If the result of the test carried out in step S1 is yes, the path signal SL is read in in a second step S2 and stored as a reference signal. After it has been determined in a third step S3 that the doors of the elevator car 3 have been opened and the door closing command has been given, the travel signal SL is evaluated in a fourth step S4 and, with the difference to the reference signal of the second step S2, the first load variable m SL formed and saved. In a fifth step S5 it is checked whether the doors have been closed again.
  • the third load variable m IW -m SL is determined in the sixth step S6, the second load variable m IW during the preceding journey and the first load variable m SL being formed in the fourth step S4.
  • the third load variable m IW -m SL is also communicated to the elevator control 3 and the motor control 17.
  • the speed of the elevator car 3 is checked until the elevator car 3 has reached its target speed.
  • the second load variable m IW is formed and stored on the basis of the instantaneous motor current IW.
  • the elevator car 3 then travels with the second load variable m IW influencing the motor current IW controlled by the motor controller 17 until the next stop at a stop 2.
  • the motor current can be influenced using only the first load variable m SL . If the elevator car 3 is empty, a reference signal is generated in this case. At each stop, each load change is added to the load size m SL of the previous trip with the correct sign.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

The load measuring system detects the compression of the springs (9) supporting the lift cabin (3) relative to a surrounding carrier frame (7) for detecting variations in the load within the lift cabin. The movement of the lift cabin relative to the carrier frame and the lift shaft is detected via an endless band (12) displaced in conjunction with the lift cabin and a cooperating pulse generator (13). This provides a signal (SL) which is evaluated for controlling the current for the lift drive motor (4).

Description

Die Erfindung betrifft ein Verfahren und eine Einrichtung zur Messung der Last in einer Aufzugskabine, die mittels Federelementen an einem Tragrahmen abgestützt ist, der mittels eines über eine Treibscheibe geführten Tragseiles in einem Aufzugsschacht verfahrbar ist, wobei ein von einer Motorsteuerung gesteuerter Motor die Treibscheibe antreibt und Fahrbefehle einer Aufzugssteuerung ausführt, wobei die Lage der Aufzugskabine im Aufzugsschacht mittels einer Weggebereinrichtung detektiert wird.The invention relates to a method and a device to measure the load in an elevator car using Spring elements is supported on a support frame, the by means of a carrying cable guided over a traction sheave is movable in an elevator shaft, one of one Motor control controlled motor drives the traction sheave and executes travel commands of an elevator control, the Position of the elevator car in the elevator shaft by means of a Position sensor device is detected.

Aus der Patentschrift CH 663 949 ist eine Aufzugskabine mit einer Lastmesseinrichtung bekannt geworden. Der Kabinenboden der Aufzugskabine stützt sich über Federelemente auf horizontal verlaufenden Schenkeln von Winkeln ab, deren vertikal verlaufende Schenkel mit einem Bodenträger eines Tragrahmens verschraubt sind. An der oberen und unteren Seite des horizontal verlaufenden Schenkels eines jeden Winkels ist je ein Dehnungsmessstreifen befestigt. Es sind vier Winkel vorgesehen, die an den vier Ecken des Bodenträgers angeordnet sind. Die Dehnungsmessstreifen der vier Winkel sind zu einer Brückenschaltung zusammengeschaltet, die mit einem Verstärker verbunden ist. Der Verstärker ist türseitig unter der Aufzugskabine am Bodenträger befestigt.From the patent specification CH 663 949 there is an elevator car a load measuring device has become known. The The floor of the elevator car is supported Spring elements on horizontally extending legs from Angle off, the vertical legs with a Bottom bracket of a support frame are screwed. At the top and bottom of the horizontal Leg of each angle is one Strain gauges attached. There are four angles provided at the four corners of the floor support are arranged. The strain gauges of the four angles are connected to a bridge circuit, which with is connected to an amplifier. The amplifier is Attached to the floor support on the door side under the elevator car.

Aus der Offenlegungsschrift DE 30 42 968 ist eine Aufzugseinrichtung mit einer in einem Schacht verfahrbaren Aufzugskabine und einem als Gewichtsausgleich dienenden Gegengewicht bekannt geworden. Kabine und Gegengewicht sind über ein Tragseil verbunden, das mittels einer Treibscheibe antreibbar ist. Ein Motor treibt die Treibscheibe und einen Tachogenerator an, der ein den Drehzahlistwert darstellendes Regelsignal der Motorwelle erzeugt. Die Kabine weist einen Lastmessboden auf, wobei die durch die Last verursachte Bewegung des Lastmessbodens mittels Potentiometern erfasst wird. Das Signal der Potentiometer wird als Störgrösse in den Drehzahlregelkreis mit Drehzahlistwert und Drehzahlsollwert eingespeist.DE 30 42 968 is a Elevator device with a movable in a shaft Elevator car and one serving as a weight counterbalance Counterweight became known. Cabin and counterweight are connected by a suspension cable, which is connected to a traction sheave is drivable. A motor drives the traction sheave and one Tachogenerator on, which is the actual speed value representing control signal of the motor shaft. The Cabin has a load measuring floor, which by the Movement of the load measuring floor caused by load Potentiometers is detected. The signal from the potentiometer is used as a disturbance variable in the speed control loop Speed actual value and speed setpoint fed.

Nachteilig bei den bekannten Einrichtungen ist die aufwendige Konstruktion und Montage der Winkel mit den Dehnungsmessstreifen bzw. der Potentiometer am Bodenträger des Tragrahmens. Zudem sind erhebliche Einstellarbeiten für die Schaltung und den Verstärker notwendig. Solche Systeme sind dementsprechend auch teuer in der Herstellung und im Unterhalt. A disadvantage of the known devices is that elaborate construction and assembly of the angles with the Strain gauge or the potentiometer on the floor support of the support frame. In addition, there is considerable adjustment work for the circuit and the amplifier necessary. Such systems are accordingly expensive to manufacture and in Entertains.

Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, löst die Aufgabe, die Nachteile der bekannten Einrichtung zu vermeiden und eine Einrichtung zu schaffen, die mit ohnehin in einem Aufzugssystem vorhandenen Messmitteln die Last in einer Aufzugskabine präzise erfasst.The invention seeks to remedy this. The invention, as characterized in the claims, solves the Task to the disadvantages of the known device avoid and create a facility with anyway in an elevator system the load in precisely recorded in an elevator car.

Der durch die Erfindung erreichte Vorteil ist im wesentlichen darin zu sehen, dass Kabinenboden und Tragrahmen vereinfacht werden können, was wiederum eine Lastmessung auch bei Billig-Aufzugssystemen aus Kostengründen möglich macht.The advantage achieved by the invention is in essential to see in that cabin floor and Support frame can be simplified, which in turn is a Load measurement also with cheap elevator systems Makes cost reasons possible.

Im folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert. Es zeigen:

Fig. 1
einen Aufzugsschacht mit einer Aufzugskabine und einem Weggeber,
Fig. 2
ein Aufzugssystem mit der erfindungsgemässen Einrichtung zur Messung der Last in der Aufzugskabine,
Fig. 3
ein Blockschaltbild einer Auswerteeinheit und
Fig. 4
ein Flussdiagramm nach dem die Auswerteeinheit arbeitet.
The invention is explained in more detail below with the aid of drawings which illustrate only one embodiment. Show it:
Fig. 1
an elevator shaft with an elevator car and a travel sensor,
Fig. 2
an elevator system with the device according to the invention for measuring the load in the elevator car,
Fig. 3
a block diagram of an evaluation unit and
Fig. 4
a flowchart according to which the evaluation unit works.

In den Fig. 1 bis 4 ist mit 1 ein Aufzugsschacht mit Haltestellen 2 bezeichnet, in dem eine Aufzugskabine 3 verfahrbar ist. Ein Motor 4 treibt eine Treibscheibe 5 an, über die ein Tragseil 6 geführt ist. Am einen Ende des Tragseiles 6 ist ein Tragrahmen 7 und am anderen Ende des Tragseiles 6 ist ein Gegengewicht 8 angeordnet. Die Aufzugskabine 3 ruht auf Federelementen 9, die sich am Tragrahmen 7 abstützen. Ein über eine erste Umlenkrolle 10 und eine zweite Umlenkrolle 11 geführtes Band 12 ist mechanisch mit der Aufzugskabine 3 gekoppelt. Die Bewegung der Aufzugskabine 3 wird auf das Band 12 übertragen, das einen an die erste Umlenkrolle 10 angekoppelten Impulsgenerator 13 antreibt. Jede vertikale Bewegung der Aufzugskabine 3 wird somit vom Impulsgenerator 13 in elektrische Impulse umgewandelt. Vertikale Bewegungen gegenüber dem Aufzugsschacht 1 werden durch den Motor 4 beim Verfahren der Aufzugskabine 3 von Haltestelle 2 zu Haltestelle 2, durch Dehnung des Tragseiles 6 und durch Laständerungen in der Aufzugskabine 3 verursacht. Bei Laständerungen werden die Federelemente 9 entsprechend ihrer Charakteristik mehr oder weniger zusammengepresst, wodurch sich die Aufzugskabine 3 gegenüber dem Tragrahmen 7 und gegenüber dem Aufzugsschacht 1 bewegt, was wiederum vom Impulsgenerator 13 erfasst wird und in Impulse umgesetzt wird. Impulsgenerator 13, Band 12 und Umlenkrollen 10,11 sind Bestandteil eines üblicherweise in den Aufzugssystemen eingebauten Weggebers, der die genaue Lage der Aufzugskabine 3 im Aufzugsschacht 1 detektiert. Der Impulsgenerator 13 kann auch von einem nicht dargestellten Geschwindigkeitsbegrenzer angetrieben werden.1 to 4, 1 is an elevator shaft Stops 2, in which an elevator car 3rd is movable. A motor 4 drives a traction sheave 5 over which a suspension cable 6 is guided. At one end of the Support rope 6 is a support frame 7 and at the other end of the Support rope 6, a counterweight 8 is arranged. The Elevator car 3 rests on spring elements 9, which are on Support the support frame 7. One over a first deflection roller 10 and a second deflection roller 11 is guided belt 12 mechanically coupled to the elevator car 3. The movement the elevator car 3 is transferred to the belt 12, the one coupled to the first deflection roller 10 Pulse generator 13 drives. Every vertical movement of the Elevator car 3 is thus in the pulse generator 13 in electrical impulses converted. Vertical movements opposite the elevator shaft 1 by the motor 4 when moving elevator car 3 from stop 2 to Stop 2, by stretching the suspension cable 6 and through Load changes in the elevator car 3 caused. At Load changes are the spring elements 9 accordingly their characteristics more or less compressed, whereby the elevator car 3 is opposite the support frame 7 and moved opposite the elevator shaft 1, which in turn from Pulse generator 13 is detected and converted into pulses becomes. Pulse generator 13, volume 12 and pulleys 10.11 are part of a commonly used in elevator systems built-in encoder, the exact location of the Elevator car 3 detected in elevator shaft 1. The Pulse generator 13 can also be from a not shown Speed limiters are driven.

In einer weiteren Ausführungsvariante kann der Motor 4 am Tragrahmen 7, beispielsweise bei Linearmotorantrieben oder seillosen Reibradantrieben, angeordnet sein. Der Impulsgeber 13 kann auch an der Aufzugskabine 3 angeordnet sein. Bei dieser Variante kann Band 12 und Umlenkrollen 10,11 entfallen. Der Impulsgeber 13 wird dann mittels eines Reibrades angetrieben, das beispielsweise auf einer Führungsschiene abrollt.In a further embodiment, the motor 4 can Support frame 7, for example in the case of linear motor drives or rope-less friction wheel drives can be arranged. The Pulse generator 13 can also be arranged on the elevator car 3 his. In this variant, belt 12 and pulleys can be used 10.11 are omitted. The pulse generator 13 is then by means of a Friction wheels driven, for example on a The guide rail rolls off.

Fig. 2 zeigt ein Aufzugssystem mit der erfindungsgemässen Einrichtung zur Messung der Last in der Aufzugskabine. Eine Aufzugssteuerung 14 erzeugt aufgrund von an Gebern 15 der Haltestellen 2 eingegebenen Stockwerkrufen FL und Kabinenrufen CA von Fahrgästen 16 in der Aufzugskabine 3 Fahrbefehle DO, die an eine Motorsteuerung 17 weitergeleitet werden. Die Motorsteuerung 17, beispielsweise ein Umrichter bestimmt aufgrund der Fahrbefehle und aufgrund eines Wegsignales SL des Impulsgenerators 13, das der momentanen Lage der Aufzugskabine 3 im Aufzugsschacht 1 entspricht, die Fahrkurve der Aufzugskabine 3. Mit der Fahrkurve ist der Sollwert der Beschleunigung, der Nenngeschwindigkeit und der Verzögerung der Aufzugskabine 3 bestimmt. Im weiteren wird ein Motorstrom IW gemessen und wie auch das Wegsignal SL einer Auswerteeinheit 18 zur Bestimmung von Lastgrössen zugeführt.Fig. 2 shows an elevator system with the inventive Device for measuring the load in the elevator car. A Elevator control 14 generates on the basis of sensors 15 Stops 2 entered floor calls FL and Car calls CA from passengers 16 in the elevator car 3 Travel commands DO that are sent to an engine controller 17 to get redirected. The engine control 17, for example, an inverter determines based on the Driving commands and based on a path signal SL des Pulse generator 13, the current position of the Elevator car 3 in elevator shaft 1 corresponds to that Driving curve of the elevator car 3. With the driving curve is the Setpoint of acceleration, nominal speed and the delay of the elevator car 3 determined. In the further a motor current IW is measured and also the path signal SL of an evaluation unit 18 for determining load sizes fed.

Fig. 3 zeigt prinzipiell die Funktionsweise der Auswerteeinheit 18. Das Wegsignal SL wird einem ersten Wandler 19 der Auswerteeinheit 18 zugeführt und wird dort bei einem Halt der Aufzugskabine 3 auf der Haltestelle 2 beispielsweise mittels einer Tabelle oder einer mathematischen Formel in eine der Bewegung der Aufzugskabine 3 gegenüber dem Aufzugsschacht 1 entsprechende erste Lastgrösse mSL umgewandelt. Der Motorstrom IW wird einem zweiten Wandler 20 der Auswerteeinheit 18 zugeführt und wird dort bei Sollgeschwindigkeit der Aufzugskabine 3 beispielsweise mittels einer Tabelle oder einer mathematischen Formel in eine der Kabinenlast entsprechende zweite Lastgrösse mIW umgewandelt. Diese Grösse dient als neue Lastreferenz. Beim Halt der Aufzugskabine 3 und anschliessendem Entladen bzw. neuem Beladen werden die zweite Lastgrösse mIW und die der neuen Last in der Aufzugskabine 3 entsprechende erste Lastgrösse mSL mittels eines Addierers 21 vorzeichenrichtig zu einer dritten Lastgrösse mIW - mSL addiert, die den mittels der Motorsteuerung 17 gesteuerten Motorstrom IW beeinflusst. Gleichzeitig kann die dritte Lastgrösse mIW -mSL von der Aufzugssteuerung 14 ausgewertet werden und abhängig von der Last in der Aufzugskabine 3 die Kabinenzuteilung, beispielsweise werden bei voller Aufzugskabine 3 keine weiteren Kabinenrufe mehr akzeptiert, vorgenommen werden.3 shows the principle of operation of the evaluation unit 18. The path signal SL is fed to a first converter 19 of the evaluation unit 18 and is stopped there when the elevator car 3 stops at the stop 2, for example by means of a table or a mathematical formula, in one of the movements of the elevator car 3 compared to the elevator shaft 1 corresponding first load size m SL converted. The motor current IW is fed to a second converter 20 of the evaluation unit 18 and is converted there at the set speed of the elevator car 3, for example by means of a table or a mathematical formula, into a second load variable m IW corresponding to the car load. This size serves as a new load reference. When the elevator car 3 is stopped and then unloaded or reloaded, the second load variable m IW and the first load variable m SL corresponding to the new load in the elevator car 3 are added with the correct sign using an adder 21 to a third load variable m IW - m SL , which is the influenced by the motor control 17 controlled motor current IW. At the same time, the third load variable m IW -m SL can be evaluated by the elevator control 14 and, depending on the load in the elevator car 3, the car allocation, for example no further car calls are accepted when the elevator car 3 is full.

Fig. 4 zeigt ein Flussdiagramm der beispielsweise softwaremässig realisierten Auswerteeinheit 18. In einem ersten Schritt S1 wird geprüft, ob die Aufzugskabine 3 auf einer Haltestelle 2 steht und die Türen noch geschlossen sind. Bei einem mit ja bezeichneten positiven Ergebnis der im Schritt S1 durchgeführten Prüfung wird in einem zweiten Schritt S2 das Wegsignal SL eingelesen und als Referenzsignal gespeichert. Nachdem in einem dritten Schritt S3 festgestellt worden ist, dass die Türen der Aufzugskabine 3 geöffnet worden sind und der Türschliessbefehl erfolgt ist, wird in einem vierten Schritt S4 das Wegsignal SL ausgewertet und mit der Differenz zum Referenzsignal des zweiten Schrittes S2 die erste Lastgrösse mSL gebildet und gespeichert. In einem fünften Schritt S5 wird geprüft, ob die Türen wieder geschlossen worden sind. Bei geschlossenen Türen wird im sechsten Schritt S6 die dritte Lastgrösse mIW - mSL bestimmt, wobei die zweite Lastgrösse mIW während der vorangehenden Fahrt und die erste Lastgrösse mSL im vierten Schritt S4 gebildet worden sind. Die dritte Lastgrösse mIW - mSL wird auch der Aufzugsteuerung 3 und der Motorsteuerung 17 mitgeteilt. Im siebten Schritt S7 wird nach dem vorangehenden Halt auf der Haltestelle 2 solange die Geschwindigkeit der Aufzugskabine 3 überprüft, bis die Aufzugskabine 3 ihre Sollgeschwindigkeit erreicht hat. Dann wird in einem achten Schritt S8 aufgrund des momentanen Motorstromes IW die zweite Lastgrösse mIW gebildet und gespeichert. Die im sechsten Schritt S6 der Aufzugssteuerung 14 und der Motorsteuerung 17 mitgeteilte und gespeicherte dritte Lastgrösse mIW - mSL wird nun mit der zweiten Lastgrösse mIW überschrieben. Die Aufzugskabine 3 fährt dann mit der zweiten den mittels der Motorsteuerung 17 gesteuerten Motorstrom IW beeinflussenden Lastgrösse mIW bis zum nächsten Halt auf einer Haltestelle 2.FIG. 4 shows a flow chart of the evaluation unit 18 implemented, for example, in software. In a first step S1, it is checked whether the elevator car 3 is at a stop 2 and the doors are still closed. If the result of the test carried out in step S1 is yes, the path signal SL is read in in a second step S2 and stored as a reference signal. After it has been determined in a third step S3 that the doors of the elevator car 3 have been opened and the door closing command has been given, the travel signal SL is evaluated in a fourth step S4 and, with the difference to the reference signal of the second step S2, the first load variable m SL formed and saved. In a fifth step S5 it is checked whether the doors have been closed again. When the doors are closed, the third load variable m IW -m SL is determined in the sixth step S6, the second load variable m IW during the preceding journey and the first load variable m SL being formed in the fourth step S4. The third load variable m IW -m SL is also communicated to the elevator control 3 and the motor control 17. In the seventh step S7, after the previous stop at the stop 2, the speed of the elevator car 3 is checked until the elevator car 3 has reached its target speed. Then, in an eighth step S8, the second load variable m IW is formed and stored on the basis of the instantaneous motor current IW. The third load variable m IW - m SL communicated and stored in the sixth step S6 to the elevator control 14 and the motor control 17 is now overwritten with the second load variable m IW . The elevator car 3 then travels with the second load variable m IW influencing the motor current IW controlled by the motor controller 17 until the next stop at a stop 2.

Bei Motorsteuerungen in denen der Motorstrom nicht ausgewertet wird, kann die Beeinflussung des Motorstromes anhand lediglich der ersten Lastgrösse mSL erfolgen. Bei leerer Aufzugskabine 3 wird in diesem Fall ein Referenzsignal erzeugt. Bei jedem Halt wird dann jeder Lastwechsel zur Lastgrösse mSL der vorhergehenden Fahrt vorzeichenrichtig summiert.In the case of motor controls in which the motor current is not evaluated, the motor current can be influenced using only the first load variable m SL . If the elevator car 3 is empty, a reference signal is generated in this case. At each stop, each load change is added to the load size m SL of the previous trip with the correct sign.

Claims (6)

  1. Method for the measurement of the load change in a lift cage (3), which is supported by means of spring elements (9) at a carrying frame (7), which is movable in a lift shaft (1) by means of a hoist cable (6) guided over a drive pulley (5), wherein a motor (4) controlled by a motor control (17) drives the drive pulley (5) and executes travel commands of a lift control (14), wherein the position of the lift cage (3) in the lift shaft (1) is detected by means of a travel transmitter device (10, 11, 12, 13), characterised in that the movement of the lift cage (3) relative to the lift shaft (1) caused by alighting and boarding passengers (16) is converted by means of the travel transmitter device (10, 11, 12, 13) into a travel signal (SL) and that a first load magnitude (mSL) is formed from the travel signal (SL), wherein the first load magnitude (mSL) influences a motor current (IW) controlled by means of the motor control (17).
  2. Method according to claim 1, characterised in that in the case of a stop of the lift cage (3) at a stopping place (2), the travel signal (SL) is detected before and after the alighting and boarding of the passengers (16) and that the first load magnitude (mSL) is formed therefrom.
  3. Method according to claim 2, characterised in that a second load magnitude (mIW) is formed from the motor current (IW) and that a third load magnitude (mIW-mSL) is formed from the sum of the first load magnitude (mSL) and the second load magnitude (mIW), wherein the third load magnitude (mIW - mSL) influences the motor current (IW) controlled by means of the motor control (17).
  4. Method according to claim 3, characterised in that the third load magnitude (mIW - mSL) is formed after the closing of the cage doors, wherein the second load magnitude (mIW) was formed during the preceding journey on the basis of the motor current at the intended speed of the lift cage (3).
  5. Equipment for the measurement of the load change in a lift cage (3), which is supported by means of spring elements (9) at a carrying frame (7), which is movable in a lift shaft (1) by means of a hoist cable (6) guided over a drive pulley (5), wherein a motor (4) controlled by a motor control (17) drives the drive pulley (5) and executes travel commands of a lift control (14), wherein the position of the lift cage (3) in the lift shaft (1) is detected by means of a travel transmitter device (10, 11, 12, 13), characterised in that for the measurement of the movement of the lift cage (3) relative to the lift shaft (1) caused by alighting and boarding passengers (16), the travel transmitter device (10, 11, 12, 13) is provided, which produces a travel signal (SL) corresponding to the movement, and that for the ascertaining of a first load magnitude (mSL) corresponding to the travel signal (SL), an evaluating unit (18) with a first converter (19) is provided, wherein the first load magnitude (mSL) influences a motor current (IW) controlled by means of the motor control (17).
  6. Equipment according to claim 5, characterised in that the evaluating unit (18) comprises a second converter (20) for ascertaining a second load magnitude (mIW) corresponding to the motor current (IW) and that the evaluating unit (18) comprises an adder (21) for determining a third load magnitude (mIW - mSL) formed from the sum of the first load magnitude (mSL) and the second load magnitude (mIW), wherein the third load magnitude (mIW - mSL) influences the motor current (IW) controlled by means of the motor control (17).
EP96111277A 1995-07-26 1996-07-12 Method and apparatus for measuring the load in an elevator car Expired - Lifetime EP0755894B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH2187/95 1995-07-26
CH218795 1995-07-26
CH218795 1995-07-26

Publications (2)

Publication Number Publication Date
EP0755894A1 EP0755894A1 (en) 1997-01-29
EP0755894B1 true EP0755894B1 (en) 2001-03-14

Family

ID=4227930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96111277A Expired - Lifetime EP0755894B1 (en) 1995-07-26 1996-07-12 Method and apparatus for measuring the load in an elevator car

Country Status (7)

Country Link
US (1) US5852264A (en)
EP (1) EP0755894B1 (en)
JP (1) JP3628814B2 (en)
AT (1) ATE199699T1 (en)
BR (1) BR9603180A (en)
CA (1) CA2181882C (en)
DE (1) DE59606572D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019200052A1 (en) 2019-01-04 2020-01-23 Thyssenkrupp Ag elevator system

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314868A (en) * 1998-04-28 1999-11-16 Toshiba Elevator Co Ltd Car load detecting device of elevator
US6216824B1 (en) * 1998-12-24 2001-04-17 United Technologies Corporation Semi-active elevator hitch
US6776263B2 (en) * 2000-05-19 2004-08-17 Esw-Extel Systems Wedel Gesellschaft Fuer Austruestung Mbh Elevator system for the vertical transport of loads in an aircraft
US6450299B1 (en) * 2000-09-14 2002-09-17 C.E. Electronics, Inc. Load measuring for an elevator car
ITVI20050313A1 (en) * 2005-11-29 2007-05-30 Maber Costruzioni Srl SAFETY DEVICE FOR THE AUTOMATIC CONTROL OF THE WEIGHT OF THE LOAD PRESENTED ON ONE OR MORE LIFTER GROUPS OF A LIFT, A PLATFORM, ELEVATOR OR OTHER CONSIMILI
DE102010019368A1 (en) * 2010-05-05 2011-11-10 Viktor Dulger Lift i.e. rope winch for transporting people and/or load in building, has load sensor determining load within movable cabin, and control unit controlling drive power of electric motor based on determined load within movable cabin
EP2969058B1 (en) 2013-03-14 2020-05-13 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
CN105164506A (en) * 2013-03-15 2015-12-16 艾肯运动与健康公司 Devices and methods for determining the weight of a treadmill user
WO2015100429A1 (en) 2013-12-26 2015-07-02 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
WO2015138339A1 (en) 2014-03-10 2015-09-17 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US9573789B2 (en) 2014-03-27 2017-02-21 Thyssenkrupp Elevator Corporation Elevator load detection system and method
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
WO2016040568A1 (en) 2014-09-12 2016-03-17 Otis Elevator Company Elevator load weighing system
DE102014225551A1 (en) * 2014-12-11 2016-06-16 Thyssenkrupp Ag Method for determining a load in a car of an elevator system
US10258828B2 (en) 2015-01-16 2019-04-16 Icon Health & Fitness, Inc. Controls for an exercise device
WO2016197044A1 (en) * 2015-06-05 2016-12-08 Gogoro Inc. Systems and methods for vehicle load detection and response
US10953305B2 (en) 2015-08-26 2021-03-23 Icon Health & Fitness, Inc. Strength exercise mechanisms
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10561894B2 (en) 2016-03-18 2020-02-18 Icon Health & Fitness, Inc. Treadmill with removable supports
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10293211B2 (en) 2016-03-18 2019-05-21 Icon Health & Fitness, Inc. Coordinated weight selection
US10252109B2 (en) 2016-05-13 2019-04-09 Icon Health & Fitness, Inc. Weight platform treadmill
US10471299B2 (en) 2016-07-01 2019-11-12 Icon Health & Fitness, Inc. Systems and methods for cooling internal exercise equipment components
US10441844B2 (en) 2016-07-01 2019-10-15 Icon Health & Fitness, Inc. Cooling systems and methods for exercise equipment
US10500473B2 (en) 2016-10-10 2019-12-10 Icon Health & Fitness, Inc. Console positioning
US10376736B2 (en) 2016-10-12 2019-08-13 Icon Health & Fitness, Inc. Cooling an exercise device during a dive motor runway condition
TWI646997B (en) 2016-11-01 2019-01-11 美商愛康運動與健康公司 Distance sensor for console positioning
US10661114B2 (en) 2016-11-01 2020-05-26 Icon Health & Fitness, Inc. Body weight lift mechanism on treadmill
TWI680782B (en) 2016-12-05 2020-01-01 美商愛康運動與健康公司 Offsetting treadmill deck weight during operation
TWI744546B (en) 2017-08-16 2021-11-01 美商愛康運動與健康公司 Systems for providing torque resisting axial impact
US10729965B2 (en) 2017-12-22 2020-08-04 Icon Health & Fitness, Inc. Audible belt guide in a treadmill
ES2962692T3 (en) 2020-01-10 2024-03-20 Inventio Ag System for measuring the load in an elevator system and procedure for determining the load of an elevator car

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053742A (en) * 1976-12-20 1977-10-11 Youngstown Sheet And Tube Company Energy measuring systems adapted for use in conjunction with load moving and weight indicating devices
DE3042968A1 (en) * 1980-11-14 1982-07-01 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8500 Nürnberg Load measurement and evaluation in lifts - by weighing cabin floor via measurement of displacement w.r.t frame
US4460066A (en) * 1982-02-08 1984-07-17 Mitsubishi Denki Kabushiki Kaisha Crime prevention apparatus for elevators
CH663949A5 (en) * 1984-02-14 1988-01-29 Inventio Ag LOAD MEASURING DEVICE FOR AN ELEVATOR CAB.
US4793442A (en) * 1987-11-05 1988-12-27 Schindler Elevator Corporation Method and apparatus for providing pre-travel balancing energy to an elevator drive
US5149922A (en) * 1989-09-08 1992-09-22 Mitsubishi Denki Kabushiki Kaisha Elevator load detector device using movable detector plates
FI94121C (en) * 1991-08-15 1995-07-25 Kone Oy Configuring elevator car transfers
US5306879A (en) * 1992-01-30 1994-04-26 Inventio Ag Load measuring apparatus for an elevator car
EP0613850B1 (en) * 1993-03-04 1997-02-05 Otis Elevator Company Bias torque for elevator hoist drive to avoid rollback, rollforward

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019200052A1 (en) 2019-01-04 2020-01-23 Thyssenkrupp Ag elevator system

Also Published As

Publication number Publication date
EP0755894A1 (en) 1997-01-29
CA2181882C (en) 2007-01-09
DE59606572D1 (en) 2001-04-19
US5852264A (en) 1998-12-22
JP3628814B2 (en) 2005-03-16
ATE199699T1 (en) 2001-03-15
CA2181882A1 (en) 1997-01-27
BR9603180A (en) 2004-08-17
JPH0943039A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
EP0755894B1 (en) Method and apparatus for measuring the load in an elevator car
EP0390972B1 (en) Arrangement and method to detect physical parameters of an elevator
EP0391174B2 (en) Arrangement and method to detect physical parameters of an elevator
DE69930426T2 (en) Measurement of the load in an elevator car
DE112007003542B4 (en) Safety device for lifts and rope slip detection methods
AT503454B1 (en) DYNAMIC SPEEDY TESTING
DE112014007092B4 (en) ELEVATOR CONTROL DEVICE
EP0563836B1 (en) Method to measure the driving capability of a transporting device
EP2316776B1 (en) Method for placing into operation an elevator system
DE3912575C2 (en)
DE112017006819T5 (en) Breakage detecting device
DE112014006938T5 (en) winder
DE112016003550T5 (en) BREAK DETECTION DEVICE
DE4119253C2 (en)
EP0297232B1 (en) Actual value transmitter for closed loop position control of a lift system
DE112014005549T5 (en) Elevator installation and method for its control
DE112013007076T5 (en) winder
DE3638247A1 (en) HYDRAULIC ELEVATOR AND METHOD FOR CONTROLLING A HYDRAULIC ELEVATOR
DE3122720C1 (en) Method of braking a stacking vehicle with an extendable load-bearing element and a lifting framework, and a stacking vehicle, in particular a high-bay stacker, for carrying out the method
EP2499077A1 (en) Elevator system
DE102009026992A1 (en) Proper operational characteristics e.g. traction characteristics, testing method for lift, involves measuring change of distance between lift cage and fixed measurement point in lift shaft mine opening for determining characteristic values
AT503455B1 (en) STATIC SPEEDY TESTING
DE112020007714T5 (en) LIFT DEVICE
EP0884264A1 (en) Method and device for drive control
DE19521519C2 (en) Method for checking a catch-up device of a hydraulic elevator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19970617

17Q First examination report despatched

Effective date: 19991006

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20010314

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010314

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010314

REF Corresponds to:

Ref document number: 199699

Country of ref document: AT

Date of ref document: 20010315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59606572

Country of ref document: DE

Date of ref document: 20010419

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20010314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010927

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070719

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070716

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071015

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731