EP0366539B1 - Pitch-based activated carbon fibers and process for preparing the same - Google Patents

Pitch-based activated carbon fibers and process for preparing the same Download PDF

Info

Publication number
EP0366539B1
EP0366539B1 EP89402927A EP89402927A EP0366539B1 EP 0366539 B1 EP0366539 B1 EP 0366539B1 EP 89402927 A EP89402927 A EP 89402927A EP 89402927 A EP89402927 A EP 89402927A EP 0366539 B1 EP0366539 B1 EP 0366539B1
Authority
EP
European Patent Office
Prior art keywords
pitch
activated carbon
carbon fibers
based activated
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89402927A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0366539A3 (en
EP0366539A2 (en
Inventor
Katsumi Kaneko
Takeshi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of EP0366539A2 publication Critical patent/EP0366539A2/en
Publication of EP0366539A3 publication Critical patent/EP0366539A3/en
Application granted granted Critical
Publication of EP0366539B1 publication Critical patent/EP0366539B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/122Oxygen, oxygen-generating compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch

Definitions

  • the present invention relates to pitch-based activated carbon fibers and a process for preparing the same.
  • Activated carbon fibers have been heretofore employed as materials useful for gas phase adsorptions as in removal of nitrogen oxides detrimental to humans and contained in the exhaust gases from factories, motor vehicles or the like, in recovery of solvents, etc. and for liquid phase adsorptions as in purification of municipal water or sewage, in disposal of waste water, etc.
  • the adsorbed materials can not be removed by conducting a usual thermal desorption method at a temperature of 100 to 200°C. In this case, the adsorbed materials must be removed by heating at a higher temperature or by calcination at a temperature of 750 to 900°C for reactivation.
  • the cellulose-based activated carbon fibers as used in said conventional method are burnt away or impaired in properties when heated in air at a temperature exceeding 350°C, making impossible thermal desorption in air. Therefore the heating of cellulose-based activated carbon fibers entails the disadvantages of requiring a regeneration treatment in an atmosphere of inert gas such as combustion gas, carbon dioxide gas, steam or the like and thus necessitating equipment for supplying and retaining the inert gas atmosphere, consequently involving labor for regeneration and increasing the equipment costs.
  • inert gas such as combustion gas, carbon dioxide gas, steam or the like
  • Document JP-A-61 34 225 discloses pitch-based activated carbon fibers prepared from a raw material consisting of (optically) anisotropic or mesophase pitch. Whereas, after the infusibilization step, the oxygen content of the fibers is as high as 13.0 to 20.1 %, following the activation step the oxygen content of the resulting activated carbon fibers is reduced by virtue of the oxygen in the fibers being released from the same in the form of CO and CO 2 formed upon reaction with carbon in the fibers.
  • the present Invention provides pitch-based activated carbon fibers, characterized in that they have an oxygen content of 3% or more based on the whole weight of said pitch-based activated carbon fibers, with the proviso that said fibers are not mesophase pitch-based activated carbon fibers.
  • the Invention also provides a process for preparing the foregoing pitch-based activated carbon fibers, characterized in that it comprises oxidizing pitch-based activated carbon fibers having a specific surface area of 700 to 2500 m 2 /g as the starting material until the resulting pitch-based activated carbon fibers are given an oxygen content of about 3% by weight or more, with the proviso that said fibers are not mesophase pitch-based activated carbon fibers.
  • the pitch-based activated carbon fibers of the invention have the excellent feature of being capable of adsorbing well ammonia gas and like basic gases, water vapors, etc. due to the high oxygen content.
  • the pitch-based activated carbon fibers of the invention have such high heat resistance that they can be heat-treated even under conditions under which conventional cellulose-based activated carbon fibers would be likely to burn away or deteriorate in properties, namely the conditions of high temperatures in air or like oxygen-containing gas. Consequently the pitch-based activated carbon fibers of the invention can be calcined in air or like oxygen-containing gas for reactivation and such calcination can remove, without use of inert gas, the adsorbed materials unremovable by a usual thermal desorption method as well as those removable thereby. With this advantage, the pitch-based activated carbon fibers of the invention eliminate a need for large-scale equipment for regeneration and enable easy and effective regeneration treatment employing simplified equipment irrespective of the degree of adsorption and the kind of adsorbed materials.
  • the process of the invention comprises an extremely simple procedure of oxidation and can produce with extreme ease the pitch-based activated carbon fibers of the invention so improved as to exhibit the aforesaid outstanding properties, hence commercially advantageous.
  • the improved pitch-based activated carbon fibers of the invention have a surface provided with oxygen-containing functional groups such as carbonyl group, carboxyl group, lactone group or the like due to the high oxygen content, so that the fibers are given an increased affinity for water, ammonia gas or the like and thus an enhanced adsorptive capacity.
  • oxygen-containing functional groups such as carbonyl group, carboxyl group, lactone group or the like due to the high oxygen content, so that the fibers are given an increased affinity for water, ammonia gas or the like and thus an enhanced adsorptive capacity.
  • the improved pitch-based activated carbon fibers of the invention have the feature of containing oxygen in an amount of at least about 3% by weight, preferably about 3 to about 18% by weight, more preferably about 6 to about 10% by weight, based on the whole weight of the improved pitch-based activated carbon fibers of the invention.
  • Pitch which is the starting material of common pitch-based activated carbon fibers has an oxygen content of about 1.5% by weight.
  • the pitch-based activated carbon fibers prepared from such pitch in the conventional manner as by spinning the pitch, infusibilizing the thus obtained pitch fibers and activating the thus obtained carbon fibers have an oxygen content of about 1.0 to 1.5% by weight.
  • the improved pitch-based activated carbon fibers of the invention have an oxygen content of not less than 2 times that of conventional pitch-based activated carbon fibers.
  • the improved pitch-based activated carbon fibers of the invention can be formed by oxidizing conventional pitch-based activated carbon fibers.
  • Pitch-based activated carbon fibers useful as the starting material in this invention are not specifically limited and can be any of conventional pitch-based activated carbon fibers prepared in the conventional manner as by first preparing pitch by purification and distillation of coal tar and subsequent polycondensation, melt spinning the pitch, either infusibilizing the resulting fibers or infusibilizing and carbonizing the same to give carbon fibers and activating the carbon fibers.
  • the melt spinning and infusibilizing steps are not specifically limited and can be conducted by the conventional method as by feeding pitch to a spinning device, forcing out through a nozzle the pitch heated at about 300 to about 400°C under pressure applied with use of inert gas to form pitch fibers and maintaining the fibers at about 300 to about 400°C in an oxidizing atmosphere for about 0.3 to about 1.5 hours to infusibilize the fibers.
  • the carbonization of infusibilized fibers can be performed by the conventional method as at about 800 to about 1500°C in an inert gas atmosphere for about 0.5 to about 30 minutes.
  • infusibilized fibers or infusibilized and carbonized fibers can be done in the conventional manner as in the presence of a known activator such as steam, alkali metal hydroxide or the like at a temperature of about 700 to about 1000°C for about 0.5 to 1 hour.
  • a known activator such as steam, alkali metal hydroxide or the like at a temperature of about 700 to about 1000°C for about 0.5 to 1 hour.
  • Pitch-based activated carbon fibers useful as the starting material in the invention are disclosed, for example, in Japanese Unexamined Patent Publication (Kokai) No.34225/1986.
  • pitch-based activated carbon fibers obtained by the foregoing method for use as the starting material in the invention preferable are those having a fiber diameter of about 12 ⁇ m, a tensile strength of about 8 to about 25 kg/mm 2 , a tension modulus of about 330 to about 700 kg/mm 2 , a specific surface area of about 200 to about 2500 m 2 /g or about 700 to about 2500m 2 /g, and preferably about 300 to about 1000m 2 /g and a pore radius of about 5 to about 20 ⁇ , preferably about 7 to about 10 ⁇ and particularly about 8 ⁇ .
  • the pitch-based activated carbon fibers for use as the starting material is oxidized in the invention.
  • the oxidation can be performed by (1) exposing the starting material pitch-based activated carbon fibers to an ozone-containing atmosphere, (2) immersing the pitch-based activated carbon fibers in a hydrogen peroxide solution, (3) immersing the same in a nitric acid or (4) heating the same in an oxygen-containing atmosphere.
  • each of the methods (1) to (4) is performed such that the obtained pitch-based activated carbon fibers of the invention are given the specific oxygen content.
  • the conditions for each of the methods (1) to (4) are not specifically limited and are variable over a wide range. Yet preferred conditions are as follows.
  • the pitch-based activated carbon fibers are kept in contact with an ozone-containing atmosphere having an ozone concentration of about 700 to about 1000 ppm and containing nitrogen, air and the like at or about room temperature for about 5 to about 20 hours; or with a hydrogen peroxide solution having a concentration of about 20 to about 30% by weight at room temperature for about 0.5 to about 1 hour, during which the temperature of the hydrogen peroxide solution (room temperature at the beginning of immersion) is elevated to the boiling point thereof due to the heat of reaction; or with a nitric acid having a concentration of about 30 to about 40% by weight at a boiling point thereof for about 0.5 to about 1 hour.
  • the oxidized fibers are washed with water for safety in case of immersion in a nitric acid.
  • the method (4) is carried out by heating the fibers in an oxygen-containing atmosphere.
  • the oxygen-containing atmosphere most preferably is air per se, but may be one similar in oxygen content to air and containing an inert gas such as nitrogen gas, argon gas, helium gas or a mixture thereof.
  • the heating temperature in the method (4) is about 300 to about 900°C, preferably about 400 to about 600°C, more preferably about 450 to about 550°C.
  • the heating in the method (4) continues until the oxygen content of the pitch-based activated carbon fibers reaches the specific level, usually for about 0.25 to about 0.75 hour.
  • the oxidation consumes the pitch-based activated carbon fibers in an amount increased as the heating temperature approaches 900°C so that the heating time is shorter than, e.g., 0.5 hour at this temperature range.
  • the oxidation consumes the pitch-based activated carbon fibers in an amount decreased as the heating temperature approaches 300°C, so that the heating time is longer at this temerature range.
  • the heat treatment reduces the weight of fibers at a ratio of about 30% or less.
  • the heating in the invention does not decrease but increases the pore volume.
  • the improved pitch-based activated carbon fibers of the invention thus obtained retain or increase, although slightly, the pore volume of the pitch-based activated carbon fibers used as the starting material.
  • the hygroscopicity of the improved pitch-based activated carbon fibers of the invention is significantly improved, and thus the hygroscopicity as determined, for example, at RH of 30% is 12 times that of the starting pitch-based activated carbon fibers.
  • the improved pitch-based activated carbon fibers of the invention can adsorb basic gases, particularly ammonia, in an amount of about 1.2 to about 8 times larger than the starting pitch-based activated carbon fibers, as determined at a relative ammonia pressure of 50 to 600 Torr.
  • the improved pitch-based activated carbon fibers of the invention have such excellent heat resistance that they enable regeneration treatment by thermal desorption even in air at a high temperature ranging from about 500 to about 900°C. Accordingly the pitch-based activated carbon fibers of the invention have the further advantage of eliminating a need for large-scale equipment for regeneration. In other words, the invention enables easy and effective regeneration treatment employing simplified equipment irrespective of the degree of adsorption and the kind of adsorbed materials.
  • Pitch-based activated carbon fibers having a nominal specific surface area of 1,000 m 2 /g (tradename "A-10,” product of Osaka Gas Co., Ltd.) were heated in air at a temperature of 600°C for 1 hour, giving improved pitch-based activated carbon fibers of the invention.
  • the improved pitch-based activated carbon fibers of the invention and untreated pitch-based activated carbon fibers (tradename "A-10,” product of Osaka Gas Co., Ltd., Comparison Example 1) for comparison were subjected to elementary analysis and checked for hygroscopicity.
  • the pitch-based activated carbon fibers were given an increased content of oxygen by the oxidation according to the invention (see Table 1). This leads to presumption that oxygen-containing functional groups have been provided on the surface of pitch-based activated carbon fibers by the oxidation.
  • the pitch-based activated carbon fibers of the invention had a hygroscopicity 5.6 to 12 times as high as that of the untreated pitch-based activated carbon fibers (see Table 2).
  • the activated carbon fibers of the invention were subjected to the following tests to determine the properties thereof.
  • the pitch-based activated carbon fibers having a nominal specific surface area of 1,000 m 2 /g were heated in air for 1 hour at each of varied temperatures.
  • the weights of oxidized and untreated fibers were measured to determine the ratio of the post-treatment weight to the pretreatment weight, namely the ratio of weight decrease.
  • a graph is shown in Fig. 1 wherein the heating temperature (represented as the temperature for oxidation in air) is plotted as abscissa and the ratio of the post-treatment weight to the pre-treatment weight as ordinate.
  • Fig. 1 shows that the pitch-based activated carbon fibers of the invention was 20% in weight decrease when heated in air at 500°C and 27% in weight decrease when heated in air at 900°C, and that the pitch-based activated carbon fibers of the invention have a high heat resistance and can be regenerated by thermal desorption at a high temperature of 500 to 900°C.
  • cellulose-based activated carbon fibers having a nominal specific surface area of 1,500 m 2 /g (tradename "KF 1500", product of Toyobo Co., Ltd.) were heated in air for 1 hour at each of varied temperatures.
  • the amount of N 2 gas adsorbed by each of the cellulose-based activated carbon fibers thus prepared was determined and the result was plotted with a line ( ⁇ - ⁇ ) in Fig. 2 in the same manner as above.
  • the cellulose-based activated carbon fibers burn out when oxidized at 500°C and cannot be subjected to oxidation at above 500°C.
  • the pitch-based activated carbon fibers used as the starting material in the invention can withstand the oxidation at above 500°C, and the thus-obtained improved pitch-based activated carbon fibers are endowed with an enhanced adsorptive capacity for nitrogen gas.
  • Fig. 2 shows that the cellulose-based activated carbon fibers exhibit a higher adsorptive capacity for nitrogen gas at or below about 350°C than the pitch-based activated carbon fibers. This is because the cellulose-based activated carbon fibers used herein had a specific surface area of 1,500 m 2 /g whereas the pitch-based activated carbon fibers used had a specific surface area of 1,000 m 2 /g.
  • the pitch-based activated carbon fibers having a nominal specific surface area of 1,000 m 2 /g (tradename "A-10", product of Osaka Gas Co., Ltd.) were heated in air at 900°C which is a maximum calcination temperature for reactivation.
  • Four kinds of improved pitch-based activated carbon fibers were prepared by heating at this temperature for varied periods.
  • the weights of oxidized and untreated fibers were measured to determine the ratio of weight decrease.
  • a graph is shown in Fig. 3 wherein the heating time (indicated as the time for oxidation in air) is plotted as abscissa and the ratio of post-treatment weight to pre-treatment weight as ordinate.
  • Fig. 3 shows the following. While the pitch-based activated carbon fibers are kept unburnt by oxidation at 900°C for up to about 3 hours, a marked weight decrease results from oxidation at 900°C for longer than 1 hour. This shows that the heat treatment for oxidation at 900°C needs to be completed within 1 hour or so. In other words, the pitch-based activated carbon fibers can be subjected to heat treatment at 900°C for less than about 1 hour. It is therefore evident that the improved pitch-based activated carbon fibers can be regenerated in air by calcination for reactivation under usual calcination conditions for reactivation (750 to 900°C, about 30 to about 60 minutes).
  • the pore volume was determined based on the adsorption amount of N 2 measured in the same manner as in Test 2.
  • a graph is shown in Fig. 4 wherein the heating temperature (represented as the temperature for oxidation in air) is plotted as abscissa and the pore volume as ordinate.
  • Fig. 4 shows the following.
  • the heat treatment according to the invention retains the fibers free from reduction of pore volume and collapse of pores.
  • the results demonstrate that the higher the heat-treatment temperature, the larger the pore volume is. It is clear that the pitch-based activated carbon fibers having a large pore volume can be obtained by the heat treatment according to the invention.
  • the pitch-based activated carbon fibers having a nominal specific surface area of 1,000 m 2 /g were heated in air for 1 hour at each of varied temperatures (temperatures for oxidation in air).
  • the adsorption amount of ammonia was determined in respect of thus obtained fibers and untreated fibers.
  • a graph is shown in Fig. 5 wherein the relative pressure of ammonia is plotted as abscissa and the adsorption amount of ammonia as ordinate.
  • the temperature in the graph indicates the temperature used for the above heating.
  • Figs. 5 to 7 reveal that the improved pitch-based activated carbon fibers of the invention exhibit a higher adsorptive capacity for ammonia than the untreated pitch-based activated carbon fibers (see Fig. 5 ) and that the pitch-based activated carbon fibers of the invention obtained by oxidation at about 500°C are imparted a significantly high adsorptive capacity (see Figs. 6 and 7).
  • the adsorption amount of ammonia referred to herein was determined by the following method with use of a measuring device having the structure as shown in Fig. 8.
  • the measuring device comprises a gas reservoir 1, a specimen-holding tube 2, a mercury manometer 3 and a vacuum pump 4, all connected and communicated with each other.
  • First 100 mg of pitch-based activated carbon fibers specimen was placed into a basket 5.
  • the basket 5 was attached to the forward end of a quartz spring 6 (tension modulus of 60 to 120 mm/g) and inserted into the specimen-holding tube 2.
  • a cock 7 at an inlet toward the gas reservoir 1 was closed while a cock 8 at an outlet and cocks 9 were opened.
  • a vacuum pump 4 was put into operation to evacuate the gas reservoir 1 by reducing the pressure therein to about 10 -4 mmHg.
  • the cock 8 at the outlet was shut off and the cock 7 at the inlet was opened, whereupon ammonia was supplied into the gas reservoir 1 and used as a gas source.
  • the cock 8 at the outlet was opened to admit the ammonia into the measuring system until the pressure in the system returned to the predetermined level.
  • the adsorption amount of N 2 was measured by the following method.
  • the same measuring device as used in measuring the adsorption amount of ammonia was employed. Nitrogen gas was fed into a gas reservoir 1 and used as a gas source. A specimen-holding tube 2 was immersed into a bath 10 of liquid nitrogen as shown in the fragmentary side view of Fig. 9. When the adsorption reached an equilibrium level, the resulting extension of quartz spring 6 was measured by a cathetometer wherein the reading was made in the order of 1/100 mm, whereby the adsorption amount of nitrogen was determined.
  • the adsorption amount of moisture was determined by the following method.
  • the air in an air cylinder 11 completely free of moisture was used as a specimen gas.
  • the specimen gas was treated successively with calcium chloride 12 useful for moisture absorption and with activated carbon 13 useful for purification of air.
  • the treated specimen gas was separated into dried air and wetted air saturated with water vapor by the passage of gas through water tanks 14, 14.
  • the specimen gas was supplied through flow meters 15a, 15b such that the dried air and the wetted air were fed at a predetermined flow ratio into a mixer 17 within a constant temperature chamber 16.
  • the gas adjusted to a predetermined temperature was supplied into an experimental column 18 until an adsorption equilibrium was reached in the column. After the equilibrium was reached, the activated carbon fibers were withdrawn from the column 18 and weighed to determine the adsorption amount of water.
  • the column 18 accommodated about 1 g of dried activated carbon fibers before feeding of the gas.
  • P.S. To convert from to multiply by Kg/mm 2 Pa 9.807x10 6 ⁇ nm 10 -1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
EP89402927A 1988-10-25 1989-10-24 Pitch-based activated carbon fibers and process for preparing the same Expired - Lifetime EP0366539B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63268877A JPH02118121A (ja) 1988-10-25 1988-10-25 ピッチ系活性炭素繊維およびその製造方法
JP268877/88 1988-10-25

Publications (3)

Publication Number Publication Date
EP0366539A2 EP0366539A2 (en) 1990-05-02
EP0366539A3 EP0366539A3 (en) 1991-11-13
EP0366539B1 true EP0366539B1 (en) 1998-03-25

Family

ID=17464502

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89402927A Expired - Lifetime EP0366539B1 (en) 1988-10-25 1989-10-24 Pitch-based activated carbon fibers and process for preparing the same

Country Status (4)

Country Link
US (1) US5997613A (ko)
EP (1) EP0366539B1 (ko)
JP (1) JPH02118121A (ko)
KR (1) KR970010733B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110397B2 (en) 2018-06-04 2021-09-07 Pure Berkey, Llc Device and method for water priming microporous-carbon water filters using negative pressure

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932921A (ja) * 1982-08-17 1984-02-22 Toyobo Co Ltd 除湿用活性炭素繊維及びその製造法
JPH02118121A (ja) * 1988-10-25 1990-05-02 Osaka Gas Co Ltd ピッチ系活性炭素繊維およびその製造方法
DE69231789T2 (de) * 1991-06-19 2001-09-20 Morinobu Endo Faser aus aktiviertem Kohlenstoff auf Pechbasis
JPH0617321A (ja) * 1992-06-25 1994-01-25 Morinobu Endo ピッチ系活性炭素繊維
AU692167B2 (en) * 1993-09-21 1998-06-04 Sekisui Kagaku Kogyo Kabushiki Kaisha Plastic foam material composed of polyolefin based resin and silane-modified polymer and method for making same
BR9807949A (pt) * 1997-04-09 2000-03-08 Conoco Inc Processo para estabilização de um artefato de fibra de resina de pinheiro e controle da geração de calor do mesmo
ATE291479T1 (de) * 1998-07-02 2005-04-15 Procter & Gamble Kohlenstoffaserfilter
US7615152B2 (en) 2001-08-23 2009-11-10 Pur Water Purification Products, Inc. Water filter device
US20050279696A1 (en) 2001-08-23 2005-12-22 Bahm Jeannine R Water filter materials and water filters containing a mixture of microporous and mesoporous carbon particles
KR100777951B1 (ko) 2001-08-23 2007-11-28 더 프록터 앤드 갬블 캄파니 정수 필터 재료, 대응하는 정수 필터 및 그의 사용 방법
US7614508B2 (en) 2001-08-23 2009-11-10 Pur Water Purification Products Inc. Water filter materials, water filters and kits containing silver coated particles and processes for using the same
US7614507B2 (en) 2001-08-23 2009-11-10 Pur Water Purification Products Inc. Water filter materials, water filters and kits containing particles coated with cationic polymer and processes for using the same
KR100644668B1 (ko) 2004-12-18 2006-11-10 삼성전자주식회사 미러 지지 장치 및 이를 구비하는 광주사장치
DE102008031579A1 (de) * 2008-07-03 2010-01-07 Bayer Materialscience Ag Ein hocheffizientes Gasphasenverfahren zur Modifizierung und Funktionalisierung von Kohlenstoff-Nanofasern mit Salpetersäuredampf
JP2011038203A (ja) * 2009-08-10 2011-02-24 Denso Corp カーボンナノチューブ繊維複合体、およびカーボンナノチューブ繊維複合体の製造方法
KR101315112B1 (ko) * 2011-04-28 2013-10-08 고등기술연구원연구조합 탄소격자상 나노기공 제조방법
CN102660813B (zh) * 2011-12-16 2014-04-09 浙江欣之球科技发展有限公司 生物活性碳纤维、包括其的生态碳纤维复合材料及其制备方法
US20130196155A1 (en) * 2012-02-01 2013-08-01 Ut-Battelle, Llc Apparatus and process for the surface treatment of carbon fibers
TW201348131A (zh) * 2012-03-13 2013-12-01 Nichias Corp 矽醇化合物去除劑、矽醇化合物之去除方法、化學過濾器及曝光裝置
US20150203356A1 (en) * 2012-07-26 2015-07-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon having high active surface area
CN102826540B (zh) * 2012-08-06 2016-01-13 常州第六元素材料科技股份有限公司 一种制备还原石墨烯或石墨烯薄膜的方法
CN102874800B (zh) * 2012-09-29 2015-10-07 常州第六元素材料科技股份有限公司 一种活化石墨烯、其制备方法及其用途
CN103657591A (zh) * 2013-12-04 2014-03-26 中国科学院过程工程研究所 一种用于烟气脱汞的硝酸改性活性炭吸附剂、其制备方法及用途
US20150321919A1 (en) * 2014-05-07 2015-11-12 Solarno, Inc. System and method for producing carbon nanofibers via radio-frequency induction heating
MX2017015486A (es) * 2015-06-30 2018-02-19 Anellotech Inc Proceso mejorado de pirolisis rapida catalitica con remocion de impurezas.
KR101717369B1 (ko) * 2015-08-20 2017-03-17 오씨아이 주식회사 불화 온실 가스의 정제 방법
WO2017192728A1 (en) 2016-05-03 2017-11-09 Virginia Commonwealth University Heteroatom -doped porous carbons for clean energy applications and methods for their synthesis
JP6568328B1 (ja) * 2018-06-19 2019-08-28 日本製紙株式会社 自動車キャニスタ用活性炭素繊維シート
CN109082880B (zh) * 2018-07-05 2021-07-09 浪达网络科技(浙江)有限公司 功能活性碳纤维、制备方法及其应用
CN110143894A (zh) * 2019-06-04 2019-08-20 扬州天启新材料股份有限公司 一种改善双酚a型氰酸酯单体均匀性的工艺
CN110669539B (zh) * 2019-10-25 2021-04-02 华东理工大学 一种各向同性高软化点煤沥青的制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1180441A (en) * 1967-02-21 1970-02-04 Nat Res Dev Treatment of Carbon Fibres and Composite Materials including such Fibres
US3959448A (en) * 1969-08-27 1976-05-25 Coal Industry (Patents) Limited Process for the manufacture of carbon fibers
US3720536A (en) * 1970-06-18 1973-03-13 United Aircraft Corp Treatment of carbon fibers
US3723607A (en) * 1970-07-16 1973-03-27 Celanese Corp Surface modification of carbon fibers
US3745104A (en) * 1970-12-17 1973-07-10 Celanese Corp Surface modification of carbon fibers
US3816598A (en) * 1971-05-17 1974-06-11 Lockheed Aircraft Corp Process for surface treatment of graphite fibers
JPS5614608B2 (ko) * 1973-03-13 1981-04-06
JPS5198679A (ko) * 1975-02-26 1976-08-31
US4073869A (en) * 1975-06-05 1978-02-14 Celanese Corporation Internal chemical modification of carbon fibers to yield a product of reduced electrical conductivity
JPS5338275A (en) * 1976-09-20 1978-04-08 Hitachi Ltd Semiconductor integrated circuit and its production
US4111842A (en) * 1977-06-01 1978-09-05 Stamicarbon, B.V. Process for the preparation of supported catalysts
JPS5932921A (ja) * 1982-08-17 1984-02-22 Toyobo Co Ltd 除湿用活性炭素繊維及びその製造法
JPS59119680A (ja) * 1982-12-27 1984-07-10 Toyobo Co Ltd 流通型電解槽用電極
US4686096A (en) * 1984-07-20 1987-08-11 Amoco Corporation Chopped carbon fibers and methods for producing the same
JPS6134225A (ja) * 1984-07-23 1986-02-18 Osaka Gas Co Ltd 高比表面積の炭素繊維及びその製造方法
US4657753A (en) * 1985-04-29 1987-04-14 E. I. Du Pont De Nemours And Company Stabilization of pitch fiber
JPS62191040A (ja) * 1986-02-17 1987-08-21 Nippon Denso Co Ltd 吸着性炭素材およびその製造方法
JPH0672328B2 (ja) * 1987-10-19 1994-09-14 東邦レーヨン株式会社 生理ナプキン及び紙おむつ用活性炭素繊維及びその製造方法
JPH02118121A (ja) * 1988-10-25 1990-05-02 Osaka Gas Co Ltd ピッチ系活性炭素繊維およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110397B2 (en) 2018-06-04 2021-09-07 Pure Berkey, Llc Device and method for water priming microporous-carbon water filters using negative pressure
US11731082B2 (en) 2018-06-04 2023-08-22 Liagic Llc Method and device for water priming microporous-carbon water filters using negative pressure

Also Published As

Publication number Publication date
EP0366539A3 (en) 1991-11-13
KR900006578A (ko) 1990-05-08
US5997613A (en) 1999-12-07
EP0366539A2 (en) 1990-05-02
JPH02118121A (ja) 1990-05-02
KR970010733B1 (ko) 1997-06-30

Similar Documents

Publication Publication Date Title
EP0366539B1 (en) Pitch-based activated carbon fibers and process for preparing the same
US4919860A (en) Manufacture of porous carbon membranes
KR970011323B1 (ko) 실리콘을 함유한 수지가 주입된 폴리우레탄 포말로부터 실리콘 카바이드 포말을 제조하는 방법
US4285831A (en) Process for production of activated carbon fibers
Magne et al. Phenol adsorption on activated carbons: application to the regeneration of activated carbons polluted with phenol
Ko et al. The effects of activation by carbon dioxide on the mechanical properties and structure of PAN-based activated carbon fibers
EP0474106A2 (en) Process for making modified carbon molecular sieves for gas separation
McKee et al. Surface properties of carbon fibers
US4978650A (en) Desensitizing activated carbon sorbents to the effects of humidity
US5202302A (en) Preparation of activated carbons by impregnation with a boron compound and a phosphorus compound
JPS5836095B2 (ja) 活性炭素繊維の製造法
GB2125388A (en) Fibrous activated carbon and process of producing it
JP2001019984A (ja) 燃料ガス中付臭剤除去用活性炭素繊維吸着剤
JP2967389B2 (ja) 活性炭素繊維、その製造方法及び該活性炭素繊維を吸着体とする浄水器
KR870002124B1 (ko) 탄소 분자체의 제조방법
US3723605A (en) Process for the production of a continuous length of graphitic fibrous material
Lee et al. Influence of tension during oxidative stabilization on SO2 adsorption characteristics of polyacrylonitrile (PAN) based activated carbon fibers
JPH043257B2 (ko)
KR100291886B1 (ko) 탄화공정이도입된활성탄소섬유의제조방법
JP4138294B2 (ja) 排煙脱硫用活性炭素繊維の製造方法
JP2000044214A (ja) 多孔質炭素材料、その製造方法、及びそれを用いた排ガス処理方法
JPH0251669B2 (ko)
JPS61191510A (ja) 窒素濃縮用炭素分子篩の製法
JPS62149917A (ja) 活性炭繊維の製造方法
JPS6147827A (ja) 中空状活性炭繊維

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): FR GB

17P Request for examination filed

Effective date: 19920424

17Q First examination report despatched

Effective date: 19950127

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST