JP2000044214A - 多孔質炭素材料、その製造方法、及びそれを用いた排ガス処理方法 - Google Patents

多孔質炭素材料、その製造方法、及びそれを用いた排ガス処理方法

Info

Publication number
JP2000044214A
JP2000044214A JP10217140A JP21714098A JP2000044214A JP 2000044214 A JP2000044214 A JP 2000044214A JP 10217140 A JP10217140 A JP 10217140A JP 21714098 A JP21714098 A JP 21714098A JP 2000044214 A JP2000044214 A JP 2000044214A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon material
gas
pore diameter
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10217140A
Other languages
English (en)
Inventor
Mio Nozaki
未央 野崎
Masazumi Taura
昌純 田浦
Satoshi Omura
聡 大村
Hideji Fujii
秀治 藤井
Masaki Minemoto
雅樹 峯元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10217140A priority Critical patent/JP2000044214A/ja
Publication of JP2000044214A publication Critical patent/JP2000044214A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【課題】 細孔径を制御した多孔質炭素材料とその製造
方法、さらに低温の窒素酸化物を高性能に無害化できる
脱硝方法及び窒素酸化物や希ガスの吸着方法を提供す
る。 【解決手段】 厚さ100μm以下の原料用高分子材料
を二酸化炭素、水蒸気、酸素などから選ばれる少なくと
も1種以上を含む酸化性雰囲気中、800℃〜1100
℃で0.5時間以上加熱処理することを特徴とする、細
孔径を制御した多孔質炭素材料の製造方法を提供する。
また、該方法により得られた、細孔径を制御した多孔質
炭素材料を用いて、室温における窒素酸化物を無害化す
る脱硝方法及び窒素酸化物や希ガス等を吸着する吸着方
法を提供する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、細孔径を制御した
多孔質炭素材料とその製造方法、および当該多孔質炭素
材料を用いた排ガスの処理方法に関する。
【0002】
【従来の技術】例えば、廃棄物焼却ガス中に含まれる窒
素酸化物を還元除去する脱硝触媒として、多孔質炭素材
料は、室温から脱硝活性を示す。このような多孔質材料
は細孔と呼ばれる微細な空孔を数多く有する。細孔は細
孔径の大きさにより、細孔径50nm以上のマクロ孔、
細孔径2〜50nmのメソ孔、細孔径2nm以下のミク
ロ孔に分類される。多孔質炭素材料の中でも、ミクロ孔
のみを持つと言われている活性炭素繊維(以下、ACF
と呼ぶ)が、室温付近から高い脱硝性能を発現している
ことが認められている。ACFの脱硝性能発現の因子と
しては、反応分子の表面官能基への化学吸着の効果と、
小さな細孔径による細孔内吸着の効果が考えられる。A
CFの低温での脱硝活性を向上させるために研究が進め
られ、その結果、ACFの表面処理によって表面官能基
を変化させることにより、高い脱硝率が達成されるよう
になった。表面処理したACF触媒は、比表面積が78
0〜890m 2 /g、細孔径が0.68〜0.81nm
である。しかし、該ACF触媒は、表面処理による細孔
径の変化が小さく、触媒性能の一方の因子である、細孔
径の脱硝性能に対する効果は、独立に求められていな
い、という問題がある。また、ACF触媒はミクロ孔が
強い吸着力をもつので、室温において、NO分圧80k
Paで約100mg/g、NO分圧10kPaで約20
mg/gのNO吸着が可能である。一方、PSAによる
NOの分離回収用としてゼオライト、金属酸化物吸着剤
が開発されている。しかし、この金属酸化物吸着剤の吸
着速度は早いが、NOの平衡吸着量が数mg/gに留ま
るという問題がある。従って、排ガス中のNO等、低濃
度の有害ガスを効率的に吸着除去するためには、より低
濃度の有害ガスを速やかに吸着しうる吸着剤が要求され
ている。
【0003】従って、ミクロ孔をもつ炭素材料の脱硝触
媒活性をさらに向上させるためには、表面官能基だけで
なく、細孔径を最適化させる必要がある。さらに吸着剤
としての性能向上のためにも、細孔径を制御した製造法
が必要である。さらに、取扱い及び使用環境の側面から
考えて、炭素材料は、グラファイト状の結晶構造から成
るため、他の高分子材料などに比べて、高温での使用が
可能であり、様々な使用環境で幅広く利用することがで
きる。なおさらに、多様な環境における使用に対応する
ため、多孔質炭素材料は様々な形状をとる必要がある。
また、吸着剤の飛散を嫌う場所や、容積が小さい場所で
の利用には、高密度の充填が可能であり、かつ単位体積
当たりの吸着容量の大きな多孔質炭素材料が求められて
いる。このような要件を満たすものとして、フィルム状
多孔質炭素材料がある。しかし、これまでのフィルム状
炭素材料は低比表面積の材料としての開発が主で、ガス
分離膜等への利用に限られている。そのため、高比表面
積なフィルム状炭素材料は、まだ開発されていないし、
その触媒、吸着剤としての利用例もない。
【0004】
【発明が解決しようとする課題】本発明は、上記の問題
に鑑み、炭素材料の脱硝触媒活性及び吸着活性を向上さ
せるために、細孔径を制御した多孔質炭素材料とその製
造方法を提供することを目的とする。また、本発明は、
高脱硝性能及び高吸着性能を有しており、多様な環境に
おける使用にも対応でき、微少の充填容積で利用可能で
ある、高比表面積なフィルム状多孔質炭素材料を提供す
ることを目的とする。
【0005】
【課題を解決するための手段】本発明によれば、厚さ1
00μm以下の原料用高分子材料を二酸化炭素、水蒸
気、酸素などから選ばれる少なくとも1種以上を含む酸
化性雰囲気中で加熱処理して、細孔径を制御することを
特徴とする、多孔質炭素材料の製造方法が提供される。
また厚さ100μm以下の原料用高分子材料を、二酸化
炭素、水蒸気、酸素等から選ばれる少なくとも1種以上
を含む酸化性雰囲気中、800〜1100℃で0.5時
間以上加熱処理し、細孔径を制御する多孔質炭素材料の
製造方法が提供される。さらに、本発明によれば、上記
方法により得られた、比表面積500m2 /g以上、細
孔径2nm以下の細孔径に制御した多孔質炭素材料が提
供される。さらに、本発明によれば、上記の比表面積5
00m2 /g以上、細孔径2nm以下の細孔径に制御し
た多孔質炭素材料を、低温排ガス中の窒素酸化物のガス
流通系に充填して窒素酸化物と接触させることにより、
室温において排ガス中の窒素酸化物を無害化する脱硝方
法が提供される。さらに、本発明によれば、上記の比表
面積500m2 /g以上、細孔径2nm以下の細孔径に
制御した多孔質炭素材料を、排ガス中の窒素酸化物や希
ガス等のガス流通系、或いはガス封入系に充填して目的
ガスの吸着を行う吸着方法が提供される。
【0006】
【発明の実施の形態】以下、本発明の実施形態について
説明する。なお、本発明は以下の実施形態にのみ限定さ
れるものではない。ミクロ孔性炭素材料の脱硝触媒活性
をさらに向上させるために、表面官能基だけでなく、細
孔径を最適化させる必要があり、さらに吸着剤としての
性能向上のためにも、細孔径を制御する。本発明では、
原料物質として厚さ100μm以下の高分子材料を使用
し、この原料用高分子材料を酸化性雰囲気中、加熱処理
を行う。先ず、本発明で用いられる原料用高分子材料と
しては、ポリイミド、ポリアミド、ポリイミン、ポリフ
ェニレン、ポリビニレン、セルロース、セルロースエス
テル、ポリエステル、ポリアクリロニトリル、ピッチ、
ポリウレタン、ポリウレア、ポリエーテル、ポリスルフ
ィド、ポリスルホン、ポリオレフィン、ポリスチレン、
ポリアセチレン、ポリビニルアルコール等のポリマー或
いはこれらの共重合体から選ばれた重合体の単独叉は2
種以上の混合体が挙げられるが、これらに限定されるも
のではない。その中でも、多孔質炭素材の調製後の炭素
化の均一性の側面から、膜厚100μm以下の高配向性
グラファイトの前駆体である、芳香族ポリイミド系高分
子材料が好ましく、フィルムとしてはカプトン(Kap
ton)、ノバク(Novax)や、ポリフェニレン−
ビニレン、ポリ−p−フェニレン−1、3、4−オキサ
ジアゾール等が適している。
【0007】なお、本発明において、酸化性雰囲気と
は、二酸化炭素、水蒸気、酸素等から選ばれる少なくと
も1種以上を含むものである。また、本発明における加
熱処理は、800〜1100℃の温度で行われることが
好ましい。加熱温度が800℃より下がると、細孔の形
成が困難であり、加熱温度が1100℃を超えると、実
用的な収率を得難く、非経済的である。本発明の製造方
法に必要な酸化性雰囲気を維持するためには、反応流通
経路内のガスを1時間以内に置換可能な流量で流通させ
る必要がある。また、試料温度の低下を防ぐため、酸化
性気体が流通経路容積内に1分以上滞留するように流量
を調整する必要がある。
【0008】さらに、加熱処理時、反応を均一に進行さ
せるためには、原料用高分子材料を均一なガス雰囲気下
で加熱する必要がある。従って、フィルム状の原料を用
いる場合は、該原料を平板状耐熱材料間に保持し、原料
表面のガス条件を均一にする。また、フィルム状でない
原料を使用する場合は、原料用高分子材料を耐熱材料に
塗布する等、均一な条件下で処理が進行するようにす
る。なお、本発明の製造方法において、細孔径の制御は
加熱処理時間によって可能である。酸化性雰囲気中にお
ける加熱処理では、加熱時間が長くなるにしたがって、
細孔容積の増大と表面積の拡大が起こる。そのため、触
媒として活性な細孔を持つ多孔質材料を、再現性よく製
造するには、上記温度で0.5時間以上加熱する必要が
ある。
【0009】本発明の製造方法において、ミクロ孔を持
つ高分子炭素材を用いて、酸化性雰囲気で800℃以上
に加熱して細孔径を制御することにより、細孔径を2n
m以下、好ましくは0.65nmから1.08nmで変
化させることができる。また、高比表面積のフィルム状
多孔質炭素材料が得られ、その比表面積は500m2
g以上が得られる。
【0010】本発明の方法で得られた、細孔径を制御し
た多孔質炭素材料は、比表面積が500m2 /g以上、
細孔径が2nm以下である。この細孔径を制御した多孔
質炭素材料は、低温排ガス中の窒素酸化物に対して室温
から高い脱硝性能を示す。また、本発明の細孔径を制御
した多孔質炭素材料は、室温における窒素酸化物の吸着
性能や、室温から400℃以上の高温における希ガス等
の吸着性能も発揮する。すなわち、本発明の細孔径を制
御した多孔質炭素材料を、低温排ガス中の窒素酸化物の
ガス流通系に充填して窒素酸化物と接触させることによ
り、室温において排ガス中の窒素酸化物を無害化するこ
とができる。なお、当該材料を脱硝触媒として利用する
場合は、アンモニアを還元剤として用いることによって
脱硝性能を発現するものであり、本材料にアンモニアを
注入することにより、窒素酸化物を高性能に無害化でき
る。なおさらに、本発明の細孔径を制御した多孔質炭素
材料を、排ガス中の窒素酸化物や希ガス等のガス流通
系、或いはガス封入系に充填して目的ガスの吸着を行
う。
【0011】
【実施例】次に本発明を実施例によりさらに詳細に説明
するが、本発明がこれらの実施例により限定されるもの
ではない。 (実施例1)まず、反応を均一に進行するためにアルミ
ナ基板間に保持された膜厚25μmの芳香族ポリイミド
フィルムを、ガスの流通の可能である、流通経路容積3
リットルの炉内に充填した。この反応炉において、10
0%二酸化炭素を1リットル/分の流量で流通させ、目
的処理温度まで昇温し、同流量条件下、目的処理温度で
2時間加熱処理した。続いて、加熱処理の終了後、雰囲
気気体を二酸化炭素から不活性アルゴンに切り換えて、
細孔形成反応を抑制してから放冷した。その後、多孔質
炭素材料において細孔を形成する加熱温度を把握するた
めの試験を行った。すなわち、細孔の形成条件を決定す
るため、処理時間を2時間に固定して加熱温度を変化さ
せて試料物質を調製した。BET法により試料物質の細
孔容積を評価し、その結果を表1に示す。
【0012】
【表1】 上記の表1から判るように、850℃以下で2時間加熱
した試料番号1と2においては、細孔の形成は認められ
なかった。しかし、900℃以上で2時間加熱した試料
では、細孔の形成が認められ、さらに1000℃の加熱
で、細孔容積が急激に増大することがわかった。したが
って、本実施例で用いた原料の芳香族ポリイミドから得
られる炭素膜に対して、加熱時間2時間で細孔を形成す
るには、850℃を超える温度が必要であることがわか
った。
【0013】(実施例2)本実施例では、上記実施例1
の結果に基づき、900℃、950℃、1000℃で時
間を変えて加熱処理を行い、細孔構造の異なる試料を調
製した。したがって、得られた炭素膜の調製条件とt−
プロットから細孔構造パラメータを求め、その結果を表
2に示す。
【表2】 上記表2から明らかなように、加熱処理条件によって、
細孔径、細孔容積、比表面積を制御した多孔質炭素膜が
調製可能になった。細孔径は0.65nmから1.08
nmの範囲で変化させることに成功した。900℃で処
理した試料の細孔容積は最大800mm3 /g以上、比
表面積は最大1900m2 /g以上が得られた。100
0℃で処理した試料では、細孔容積は最大1100mm
3 /g以上、比表面積は最大2300m2 /g以上が得
られた。
【0014】(実施例3)本実施例では、本発明の細孔
径を制御した多孔質炭素材料の脱硝活性機能についての
評価試験を行った。上記実施例2で調製した試料に対し
て、脱硝反応開始後24時間経過時の脱硝率を求め、そ
の結果を表3に示す。脱硝率の評価を行った反応ガス組
成は、NOが100ppm、NH3 が200ppm、O
2 が4%、残部はアルゴンとヘリウムからなっている。
脱硝活性の測定は、試料0.2gを反応槽内に充填し、
総ガス流量が40sccmになるようにガスの流通を行
った。
【0015】
【表3】 上記表3から、脱硝率と細孔構造のパラメータを比較す
ると、脱硝率は900℃で処理した試料番号6から9
と、1000℃で処理した試料番号12から15のどち
らにおいても、平均細孔径0.77nmの試料、すなわ
ち試料番号8と13が、最大脱硝率を示していることが
判った。
【0016】(実施例4)本実施例では、本発明の細孔
径を制御した多孔質炭素材料のNO吸着活性機能につい
ての評価試験を行った。上記実施例2で調製した試料に
対して、窒素酸化物の一つである一酸化窒素(NO)の
平衡吸着量と吸着速度を求め、その結果を表4に示す。
吸着活性の測定は、40℃の空気恒温槽内に設置した試
料管(測定系全容積約80ml)に、試料を約50mg
充填し、反応ガス(NO3%、Heバランス)を約56
0torrの圧力で封入し、圧力変化から吸着量を求め
た。測定開始時のNO分圧は2.24kPaである。
【0017】
【表4】 上記表4から明らかなように、NOの吸着量は比表面積
の変化にはよらない。この理由は、NOは細孔径の小さ
な細孔内で安定に吸着可能なためであり、平均細孔径と
比表面積の両方とも小さな試料と、平均細孔径と比表面
積の両方とも大きな試料において、ほぼ同じ吸着量を示
した。
【0018】(実施例5)本実施例では、本発明の細孔
径を制御した多孔質炭素材料の希ガス吸着活性機能につ
いての評価試験を行った。上記実施例2で調製した試料
の中で、1000℃で1.5時間賦活した試料を用い
て、希ガスの一つであるキセノン(Xe)吸着を行っ
た。キセノン吸着の測定は、試料温度25℃と100℃
で行った。空気恒温槽内に設置した試料管内に、フィル
ム状吸着材を測定温度25℃の場合は10ml、測定温
度100℃の場合は85mlの量で充填して、吸着管を
所定温度に昇温した。反応ガス(Xeガス濃度:5%、
常温、常圧におけるXe分圧:0.05atm、Heバ
ランス)を100ml/min(25℃で、標準状態換
算)、50ml/min(100℃で、標準状態換算)
の流量で試料管に流通した。試験試料の細孔構造パラメ
ータと、Xe吸着量(標準状態)を表5に示す。
【0019】
【表5】 上記表5の結果より、細孔径1nm以下の炭素膜は、高
温での希ガス吸着剤として利用可能であることが分か
る。また、炭素膜吸着剤は、嵩密度が大きいため、試料
充填可能な容積が微少な環境において使用することによ
り、大容量のガスの吸着が可能となる。
【0020】
【発明の効果】以上説明したところから明らかなよう
に、本発明によれば、ミクロ孔を持つ原料用炭素材を用
いて、酸化性雰囲気で800℃以上に加熱処理すること
により、細孔径を2nm以下、好ましくは0.65nm
から1.08nmで変化させることができ、高比表面積
のフィルム状多孔質炭素材料が得られ、その比表面積は
最大で2300m2 /g以上が得られた。細孔径を変化
させた試料の脱硝率の評価結果より、ミクロ孔性炭素材
の触媒性能の細孔径依存性が明かとなり、細孔径0.7
7nmで最大脱硝率90%を示した。また、本発明で得
られた高比表面積を有する膜状の吸着剤は、室温におい
て低分圧(2.24kPa)のNO混合ガス(Heバラ
ンス)からNOを14〜18ml/g(標準状態)吸着
可能である。また、Xe5%の気体から25℃において
Xeを20ml/g(標準状態)、100℃において
5.8ml/g(標準状態)吸着可能である。このこと
から、高分子を前駆体とするフィルム状多孔質炭素材料
は、高い脱硝性能と強いガス吸着力を持ち、幅広い環境
において使用可能であり、微少の充填容積で利用が可能
である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大村 聡 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 藤井 秀治 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 峯元 雅樹 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 Fターム(参考) 4D002 AA12 AA40 BA04 CA07 CA20 DA41 GA01 GB12 GB20 4G046 CA04 CB03 CB08 CC02 CC03 4G066 AA04B AA09D AA10D AA14D AA43D AC27A BA03 BA22 BA23 BA26 BA36 CA21 CA28 DA02 FA34 4G069 AA02 AA08 AA12 BA01B BA08A BA08B BA22C CA02 CA03 CA08 CA13 DA05 EA08 EB15X EB15Y EC04X EC04Y EC05X EC05Y EC07Y EC11X EC12X EC12Y EC13X EC13Y ED10 FA01 FA03 FB23 FB30 FB34 FB40 FC02 FC07

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 厚さ100μm以下の原料用高分子材料
    を二酸化炭素、水蒸気、酸素などから選ばれる少なくと
    も1種以上を含む酸化性雰囲気中で加熱処理し、細孔径
    を制御することを特徴とする多孔質炭素材料の製造方
    法。
  2. 【請求項2】 上記加熱処理が、800℃〜1100℃
    で0.5時間以上行なわれることを特徴とする請求項1
    に記載の多孔質炭素材料の製造方法。
  3. 【請求項3】 請求項1または2項に記載の方法により
    製造された、比表面積500m2 /g以上、細孔径2n
    m以下の細孔径を有する多孔質炭素材料。
  4. 【請求項4】 請求項3に記載の多孔質炭素材料を、排
    ガスの流通系に充填してガス中の有害ガスと接触させる
    ことを特徴とする排ガスの処理方法。
  5. 【請求項5】 請求項3に記載の多孔質炭素材料を、排
    ガス中の窒素酸化物や希ガス等のガス流通系、あるいは
    ガス封入系に充填して、目的ガスの吸着を行うことを特
    徴とする吸着方法。
JP10217140A 1998-07-31 1998-07-31 多孔質炭素材料、その製造方法、及びそれを用いた排ガス処理方法 Pending JP2000044214A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10217140A JP2000044214A (ja) 1998-07-31 1998-07-31 多孔質炭素材料、その製造方法、及びそれを用いた排ガス処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10217140A JP2000044214A (ja) 1998-07-31 1998-07-31 多孔質炭素材料、その製造方法、及びそれを用いた排ガス処理方法

Publications (1)

Publication Number Publication Date
JP2000044214A true JP2000044214A (ja) 2000-02-15

Family

ID=16699491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10217140A Pending JP2000044214A (ja) 1998-07-31 1998-07-31 多孔質炭素材料、その製造方法、及びそれを用いた排ガス処理方法

Country Status (1)

Country Link
JP (1) JP2000044214A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041769A (ja) * 2003-07-07 2005-02-17 Toyo Tanso Kk 炭素化物及びその製造方法
JP2009262144A (ja) * 2008-03-31 2009-11-12 Carbotech Ac Gmbh 活性炭触媒
JPWO2008139747A1 (ja) * 2007-05-14 2010-07-29 株式会社Hi−Van 炭素アルミニウム複合化合物及び炭素アルミニウム複合化合物被覆無機化合物
KR101214930B1 (ko) 2010-11-16 2012-12-24 고려대학교 산학협력단 다공성 표면의 제조방법
KR20160005572A (ko) * 2014-07-07 2016-01-15 한국과학기술연구원 응고욕을 이용한 다공성 탄소 물질 제조 방법 및 이에 따라 제조된 다공성 탄소 물질
WO2023286809A1 (ja) * 2021-07-13 2023-01-19 旭化成株式会社 均一性の高いナノ構造を有する多孔質ポリイミド

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221518A (ja) * 1988-02-29 1989-09-05 Mitsubishi Rayon Co Ltd 中空炭素膜繊維及びその製造方法
JPH0354109A (ja) * 1989-07-21 1991-03-08 Nisshinbo Ind Inc 活性炭及びその製造方法
JPH046760A (ja) * 1990-04-23 1992-01-10 Osaka Gas Co Ltd 2次電池および電気2重層キヤパシタ
JPH0598942A (ja) * 1991-03-15 1993-04-20 Hokkaido Rehabili 軽油燃焼機器の排ガス処理、活性炭及びその製法
JPH07289889A (ja) * 1994-04-28 1995-11-07 Takeda Chem Ind Ltd ハニカム状活性炭およびその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221518A (ja) * 1988-02-29 1989-09-05 Mitsubishi Rayon Co Ltd 中空炭素膜繊維及びその製造方法
JPH0354109A (ja) * 1989-07-21 1991-03-08 Nisshinbo Ind Inc 活性炭及びその製造方法
JPH046760A (ja) * 1990-04-23 1992-01-10 Osaka Gas Co Ltd 2次電池および電気2重層キヤパシタ
JPH0598942A (ja) * 1991-03-15 1993-04-20 Hokkaido Rehabili 軽油燃焼機器の排ガス処理、活性炭及びその製法
JPH07289889A (ja) * 1994-04-28 1995-11-07 Takeda Chem Ind Ltd ハニカム状活性炭およびその用途

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041769A (ja) * 2003-07-07 2005-02-17 Toyo Tanso Kk 炭素化物及びその製造方法
JPWO2008139747A1 (ja) * 2007-05-14 2010-07-29 株式会社Hi−Van 炭素アルミニウム複合化合物及び炭素アルミニウム複合化合物被覆無機化合物
JP2009262144A (ja) * 2008-03-31 2009-11-12 Carbotech Ac Gmbh 活性炭触媒
KR101214930B1 (ko) 2010-11-16 2012-12-24 고려대학교 산학협력단 다공성 표면의 제조방법
KR20160005572A (ko) * 2014-07-07 2016-01-15 한국과학기술연구원 응고욕을 이용한 다공성 탄소 물질 제조 방법 및 이에 따라 제조된 다공성 탄소 물질
KR101660330B1 (ko) 2014-07-07 2016-09-27 한국과학기술연구원 응고욕을 이용한 다공성 탄소 물질 제조 방법 및 이에 따라 제조된 다공성 탄소 물질
WO2023286809A1 (ja) * 2021-07-13 2023-01-19 旭化成株式会社 均一性の高いナノ構造を有する多孔質ポリイミド

Similar Documents

Publication Publication Date Title
RU2619788C2 (ru) Способ разделения газов с использованием цеолитов типа DDR со стабилизированной адсорбционной активностью
US5670124A (en) Nitrogen-containing molecular sieving carbon, a process for preparing the same and use thereof
US6479022B1 (en) Sequential adsorptive capture and catalytic oxidation of volatile organic compounds in a reactor bed
CA2193949C (en) Carbon adsorbent, manufacturing method therefor,gas seperation method and device therefor
CN110642238B (zh) 类石墨烯氮掺杂多孔碳材料及其制备方法和应用
JPH02118121A (ja) ピッチ系活性炭素繊維およびその製造方法
CN111790350B (zh) 一种氮掺杂炭材料的制备方法及其在脱除含硫气体中的应用
CN113101898A (zh) 一种多孔颗粒状分子筛VOCs吸附剂及制备方法
Maldonado-Hódar Removing aromatic and oxygenated VOCs from polluted air stream using Pt–carbon aerogels: Assessment of their performance as adsorbents and combustion catalysts
JP2000044214A (ja) 多孔質炭素材料、その製造方法、及びそれを用いた排ガス処理方法
JP2011504156A (ja) 四フッ化ケイ素の精製方法
JPH11244652A (ja) 炭酸ガス吸着剤、炭酸ガス吸着体、炭酸ガス除去方法及び炭酸ガス除去装置
EP0685258A1 (en) Material having selective adsorptivity of inorganic materials and production method thereof
Bai et al. Modification of textural properties of CuO-supported activated carbon fibers for SO2 adsorption based on electrical investigation
Ling et al. One-pot to fabrication of calcium oxide/carbon foam composites for the adsorption of trace SO2
JP2008100186A (ja) ガス吸着処理装置
WO2015109385A1 (en) Carbon monolith, carbon monolith with metal impregnant and method of producing same
CN107051578B (zh) 铌铈负载铁交换分子筛低温脱硝催化剂及其制备方法和应用
CN109701548A (zh) 一种整体式VOCs催化燃烧催化剂及其制备方法
CN104159671B (zh) 催化剂体系
JPS6230554A (ja) 気・気反応用撥水性微細孔性触媒及びそれを使用した気・気反応方法
JPS61191510A (ja) 窒素濃縮用炭素分子篩の製法
CN113247942B (zh) 一种纳米氧化铜的制备方法及应用
JP2002066255A (ja) 排気ガスの処理材、処理エレメント、処理装置及び処理方法
JPH0576753A (ja) 一酸化窒素吸着剤及びその製法並びに一酸化窒素の吸着除去法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081003