EP0362233A1 - Procede et dispositif de separation de substances contenues dans un liquide - Google Patents

Procede et dispositif de separation de substances contenues dans un liquide

Info

Publication number
EP0362233A1
EP0362233A1 EP88904175A EP88904175A EP0362233A1 EP 0362233 A1 EP0362233 A1 EP 0362233A1 EP 88904175 A EP88904175 A EP 88904175A EP 88904175 A EP88904175 A EP 88904175A EP 0362233 A1 EP0362233 A1 EP 0362233A1
Authority
EP
European Patent Office
Prior art keywords
liquid
ultrasonic
sound
flow
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP88904175A
Other languages
German (de)
English (en)
Inventor
Wolfgang Dipl.-Ing. Stuckart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3510228&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0362233(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP0362233A1 publication Critical patent/EP0362233A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • B01D21/283Settling tanks provided with vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D43/00Separating particles from liquids, or liquids from solids, otherwise than by sedimentation or filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations

Definitions

  • the invention relates to a process for flocculation, precipitation, agglomeration or coagulation of ingredients or microorganisms dissolved, colloidally dissolved, suspended or emulsified in a liquid and for separating these substances or microorganisms from this liquid, the one loaded with the ingredients or microorganisms to be separated Liquid is subjected to the field effect of ultrasonic waves, which bring about an accumulation of particles to be separated in the vibration node regions or antinode regions of the ultrasonic wave, and the particles thus collected are separated from the liquid, which separation takes place in particular by sedimentation.
  • suspended particles or microorganisms which can also have submicroscopic dimensions, from liquids by sedimentation or by filtration in a reasonably short time, they have to be combined into larger particles or attached to larger particles. It can be made possible in a disperse system by removing the electrostatic surface charges of the particles (destabilization; and by supplying kinetic energy (transport; coagulation processes.
  • the sound radiation pressure conveys the particles into the rapid abdominal areas of the ultrasound field, i.e. to those places where the deflection of the water mouse is greatest. If the ultrasound frequency exceeds a certain cut-off frequency fo, the particles only minimally follow the vibration of the water. In the fast bellies there is therefore maximum relative movement between the particles and the oscillating water.
  • the Wassermoieküie periodically pass through the rapid abdominal areas at right angles with maximum sound velocity. Due to the particles accumulated in the rapid abdominal areas, which only minimally participate in the vibration of the water, there is a reduction in the cross-section that can be flowed through. The speed of the oscillating water must therefore increase between the particles, which inevitably results in a local reduction in the pressure between the particles while maintaining the total energy. This relative negative pressure between the particles causes their mutual attraction, which according to the invention is used to coagulate the particles.
  • the method according to the invention of the type mentioned at the outset is characterized in that the liquid loaded with ingredients or microorganisms is exposed to one or more fields of ultrasound waves, the ultrasound frequency f being greater than one seventh of the limit frequency fo, the range above half the limit frequency fo being preferred is and applies to fo:
  • standing ultrasonic wave fields can be done simply by exciting piezoelectric electro-acoustic transducers in the resonance frequency or in one of the odd-numbered harmonics of the sound reinforcement room forming a resonator, so that a standing ultrasonic wave field builds up in the sound reinforcement room, although as a resonator the package of all sounded acoustic waves Rails including those OR surfaces on which the sound waves are reflected is to be understood.
  • the forces of a standing and flat ultrasonic wave field acting on the liquid to be cleaned cause the particles to be arranged in surfaces perpendicular to the direction of sound propagation.
  • the distance between the surfaces corresponds to half the length of the ultrasonic waves in the liquid in question.
  • the particles agglomerate in the respective areas. Agglomerates that are so large that they can be easily separated from the liquid by sedimentation or filtration.
  • the liquid is sonicated in the flow. It is furthermore favorable if the liquid is passed through one or more fields of standing ultrasonic waves in a flow approximately at right angles to the direction of sound propagation of the ultrasound. It is also advantageous if the liquid flows in a laminar manner.
  • the particles When the suspension flows through the ultrasonic field, the particles are held there and agglomerated, while the liquid leaves the sound field after cleaning.
  • an attachment room can be provided below the PA. If the direction of sound propagation is horizontal, the particles arrange themselves in vertical planes and, after they have joined together to form larger agglomerates, sink into the sedimentation space following gravity.
  • the flow rate of the liquid in the sound system can also be chosen so high that the coagulates are discharged with the liquid; the ingredients are then separated from the liquid by sedimentation or filtration.
  • the liquid can also be passed through the ultrasound field in or against the direction of sound propagation of the ultrasound field.
  • An advantageous embodiment of the method according to the invention provides that the liquid is sonicated in a standing ultrasonic wave field that is formed between two parallel and oppositely arranged ultrasonic transducers, the opposite ultrasonic transducers being excited with electrical vibrations of the same frequency, the mutual phase angle of which changes constantly and so a slow relative movement of the wave field in relation to the ultrasonic transducers.
  • the particular advantage of this embodiment is that the particles, which have been arranged in the Sehnelledauch vom, follow the relative movement of the ultrasonic field, which is advantageously selected transversely to the direction of flow of the liquid, and in this way coagulate with a particularly low energy expenditure and simply from the liquid can be separated.
  • Another embodiment of the method according to the invention provides that the liquid is exposed to two ultrasound fields, which overlap one another spatially within the coating area and act on the liquid simultaneously or alternately, preferably using two flat ultrasound fields which intersect at right angles, whereby the intersection lines of the vibration node planes run parallel to the direction of flow of the liquid.
  • a particular advantage of this embodiment is then that the particles are arranged in lines and thereby concentrate there to a much greater extent than with a one-dimensional sound system.
  • the lines in which the particles arrange themselves represent the intersection of the rapid abdominal planes of the two ultrasound fields.
  • a further advantageous embodiment of the method according to the invention is characterized in that the liquid is in a cylindrical ultrasonic field, the oscillation nodes of which are approximately cylindrical and coaxial surfaces and through which the liquid is guided approximately parallel to the geometric axis of the field, or in succession in several such fields is sonicated.
  • the ultrasound treatment is carried out under pressure to avoid cavitation in closed containers or pipes leads, which is higher than the sum of the vapor pressure of the liquid and the pressure amplitude of the ultrasonic vibration.
  • the pass-through liquid path is advantageously chosen to be less than 1 m, with a preference for the range below 0.6 m.
  • the power of the electrical oscillation with which the ultrasonic transducers are excited is advantageously chosen with less than 3 watts per cm 2 of the controlled ultrasonic transducer surface, the range between 0.5 and 2 watts / cm 2 being preferred.
  • the energy input per m 3 of suspension is advantageously selected between 0.05 and 10 kWh, depending on its density and the electrostatic surface charge of the suspended particles, the range between 0.1 and 4 kWh being preferred.
  • sonication with ultrasonic frequencies between fo / 3 and 10 fo is advantageously used, with frequencies between fo / 2 and 4 fo being particularly favorable for widely graded particle size distributions.
  • frequencies between fo / 2 and 4 fo are particularly favorable for widely graded particle size distributions.
  • frequencies between 2 fo and 12 fo are advantageous to work at frequencies between 2 fo and 12 fo, the range between 3 fo and 5 fo being preferred.
  • Ultrasound frequencies between fo / 2 and 10 fo are advantageous for the coagulation of coal particles, which are in water, and for their separation, a particularly intensive flocculation in the range between fo and 4 fo being achieved.
  • Ultrasonic frequencies between fo / 7 and 10 fo are advantageously used for the coagulation of ingredients of higher density, such as metal dusts, the range between fo / 6 and fo / 2 being preferred in view of an economical use of energy.
  • the coagulates grow, their radius R increases and the limit frequency fo, which is dependent on R, becomes smaller.
  • the agglomerates formed in the first stage can then be combined again in the subsequent stages.
  • the radius R of the agglomerates can grow up to a quarter of the respective ultrasonic wavelength.
  • sonication with amplitude-modulated ultrasound can achieve significantly faster coagulation.
  • Amplitude modulation with frequencies DIS 20 kHz has proven to be particularly advantageous, the modulation signal being e.g. Sine and square wave signals can be used.
  • Activated carbon or other surface-active substances e.g. some clays, used as adsorption media for liquid ingredients, which can also be dissolved.
  • a powdery introduction of the adsorption media results in a more intimate mixing with the liquid and thus enables shorter contact times, thereby avoiding desorption processes.
  • the agglomerated particles can be separated from the liquid by sedimentation or filtration.
  • the ultrasound treatment can also promote the attachment of the liquid contents to the adsorption medium.
  • the coal separation in the water can be improved by the formation of larger and more stable flakes.
  • the invention further relates to a device for performing the method according to the invention.
  • an advantageous embodiment of such a device is characterized in that the sound reinforcement chamber of the device is formed by a straight tube, which is sealed at one end by an ultrasound transducer and at the other end by a preferably reverberant reflector at right angles and tightly, near the side of the two tube ends the supply and discharge lines for the liquid to be sonicated are attached.
  • the sound reinforcement chamber of the device is formed by a straight tube, which is sealed at right angles and tightly at its lower end by an ultrasonic transducer and is open at its upper end, near the side of the two tube ends the inlet and outlet for the liquid to be sonicated are attached.
  • a very simply constructed device is characterized in that the device has a cladding tank, on the bottom of which one or more ultrasonic transducers are mounted horizontally.
  • a preferred embodiment of the device according to the invention has a preferably cuboid sound tank, which can also be open at the top, and forms the sound reinforcement of the liquid; this coating tank has one or more ultrasonic transducers on a side wall parallel to the horizontal direction of flow of the liquid and sound reflectors on the opposite parallel side wall. The sound is spread horizontally and at right angles to the direction of flow.
  • the inlet and outlet for the liquid are located on the two rare walls perpendicular to the direction of flow.
  • One or more, preferably funnel-like, settling spaces, which have removal devices at their lowest points, are provided in the bottom of the sonication tank.
  • the sedimentation spaces are preferably separated from the casing tank by a horizontal grid-like flow orifice. After the inlet and before the outlet, vertical calming grids can be provided, which are at right angles to the direction of flow.
  • a baffle in the sonication tank Immediately in front of the inlet opening and the outlet opening, you can attach a baffle in the
  • a further embodiment of the device according to the invention is characterized in that the sound reinforcement chamber of the device is formed by a sound reinforcement chamber, through which the liquid flows horizontally, so that one or more ultrasonic transducers or ultrasonic transducers can be found on the two rare walls of the sound reinforcement chamber that run at right angles to the direction of flow and refiectors are arranged opposite and parallel to each other, and that one or more funnel-shaped sedimentation chambers are provided in the bottom of the sound-absorbing chamber, which are preferably delimited at the top by flow baffles and have removal devices for the sunken particles at their lowest points.
  • the chamber of the device is formed by a vessel in the form of a straight line Cylinder is made of preferably sound-resistant material, in which a cylindrical, radially vibrating ultrasonic transducer is installed coaxially.
  • a cylindrical, radially vibrating ultrasonic transducer is installed coaxially.
  • the common axis of the transducer and the vessel can be perpendicular, the liquid being first passed from top to bottom through the interior of the tubular ultrasonic transducer and then exiting at its lower end into the outer vessel and flowing up there while the Coagulates sink down and are separated from the liquid.
  • a further embodiment of the device according to the invention is characterized in that the sound reinforcement chamber of the device is formed by a flow-through cuboid sound reinforcement tank, into which two planar walls, at right angles to one another, are built, which groups of ultrasonic transducers carry, these walls facing the side surfaces
  • Public address tank run parallel and preferably cut each other within the public address room so that the public address room is divided into two or more flowable sub-rooms.
  • the flow through the peeling tank can e.g. can be divided into four sub-rooms, which can also have a different cross-section and can be flowed through both in parallel and in series, the individual sub-rooms can also be flowed through in opposite directions.
  • Another embodiment of the device according to the invention is characterized in that a parallel plate separator is arranged in the sound reinforcement area of the device, through which the intermediate spaces between the separating plates the liquid is passed, and that two planes Groups of ultrasonic generators are arranged parallel to the separating plate pack, the entire separating plate pack lying between the ultrasonic transducers, and the thickness of the separating plates preferably corresponding to an odd multiple of a quarter of the wavelength of the ultrasound in these separating plates and the surface roughness of the separating plates not exceeding one tenth of the ultrasonic wavelength.
  • a standing wave field is generated which moves relative to the ultrasonic transducers in such a way that the vertical component of the relative movement is directed downward.
  • the particular advantage of this embodiment is that the particles are coagulated in the ultrasonic field and, following the movement of the field, are conveyed to the separating plates and sedimented there, as a result of which a much higher separation performance is achieved than in conventional parallel plate separators.
  • ultrasound transducers made of piezoelectric plastics such as e.g. Find polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • FIG. 1 shows a first embodiment of the device according to the invention in section
  • Fig. 2a shows a second embodiment of the device according to the invention in horizontal section along the line Ila-IIa in 2b and Fig. 2b this embodiment in section along the line IIb-IIb,
  • FIG. 3a shows another embodiment of the device according to the invention in longitudinal section along the line IIIa-IIIa in FIG. 3b and FIG. 3b this embodiment in section along the line III-IIIb,
  • FIG. 4a a further embodiment of the device according to the invention in vertical section and FIG. 4b this embodiment in section along the line IVb-IVb, in which a coaxial cylindrical wave field is generated in a tube,
  • FIG. 5 shows an embodiment of the device according to the invention, in which the free liquid surface serves as a sound reflector, in vertical section,
  • FIG. 6 shows a further embodiment of the device according to the invention in a vertical section, in which a tub is sonicated from below,
  • FIG. 9a a further embodiment of the device according to the invention in vertical section and FIG. 9b this embodiment in section along the line IXb-IXb,
  • Fig. 10 shows an embodiment of the device according to the invention in a view in which a two-dimensional sonication takes place
  • Fig. 11 is a schematic diagram of an embodiment of the device according to the invention provided with a parallel plate separator.
  • a straight pipe 1 is provided as the sound reinforcement chamber, which pipe 6 introduces the liquid 6 via a feed pipe 2 and out via a discharge pipe 3.
  • One pipe end 1a is sealed at right angles and tightly by an ultrasonic transducer 4, the other pipe end 1b by a reflector 5 designed as a rigid metal plate.
  • the ultrasonic transducer 4 is fed with high-frequency current.
  • a public address tank 8 is provided in all public address rooms, in the bottom 7 of which settling funnels 9 are installed, which have drainage nozzles 10 which can be closed at their lowest points.
  • the settling funnels 9 are separated from the sonication tank by a grille-like flow nozzle 11.
  • Ultrasonic transducers 4 and ultrasonic reflectors 12 are attached to the two side walls 13 and 14 of the sonication tank 8, which are parallel to the flow direction 6a, and are opposite and parallel to one another.
  • Flow orifices 15 and 16 and calming grilles 17 and 18 are arranged after the inlet pipe 2 and before the outlet pipe 3.
  • the flow direction 6a runs at right angles to the direction of sound propagation.
  • the device shown in FIGS. 3a and 3b has a sound reinforcement chamber 19 as the sound reinforcement chamber, on the front side walls 20 and 21 of which the ultrasonic transducer 4 and the reflector 12 are attached.
  • a sound reinforcement chamber 19 as the sound reinforcement chamber, on the front side walls 20 and 21 of which the ultrasonic transducer 4 and the reflector 12 are attached.
  • funnel-shaped settling spaces 9 are provided, at the lowest points of which closable removal nozzles 10 are attached.
  • the settling rooms 9 are separated from the sonication chamber 19 by a grille-like flow orifice 11.
  • the liquid is supplied via the inlet connection 2 and derived via the discharge pipe 3.
  • the flow direction 6a runs in the direction of sound propagation.
  • the front side walls 20, 21 run at right angles to the flow direction.
  • a vessel 22 in the form of a straight, cylindrical tube made of sound-resistant material is provided as the PA, in which a cylindrical, radially oscillating ultrasonic transducer 23 is installed coaxially.
  • a coaxial cylindrical ultrasonic field is generated in the vessel 22 .
  • the device shown in FIG. 5 consists of a straight vertical tube 1, into which the liquid is introduced via a nozzle 2 and is discharged via a further nozzle 3.
  • the lower tube end 1 a is sealed off by an ultrasonic transducer 4.
  • the upper tube end 1b is open.
  • the free liquid surface 37 acts here as a sound-soft reflector.
  • the device shown in FIG. 6 has a sound reinforcement pool 38 which is open at the top and on the bottom of which an ultrasonic transducer 4 is mounted horizontally.
  • the free liquid surface 37 acts as a sound-soft reflector.
  • the experimental arrangement shown in FIG. 8 is provided with a device according to the invention, the ultrasonic transducer 27 of which is fed by a broadband amplifier 33, this broadband amplifier being controlled by a high-frequency signal generator 32.
  • the public address room of the device is formed by a public address pool 24.
  • the ultrasonic transducer 27 is mounted on a brass plate 26 on a narrow side 25 of the soundproofing basin 24 and a reflector in the form of a brass plate 31 is arranged on the opposite narrow side 30 of the soundproofing basin 24.
  • the device shown in FIGS. 9a and 9b has a vertical cylindrical sound tank 39 as the sound chamber, which is closed at the bottom by a funnel-shaped settling chamber 9 which has a closable removal nozzle 10.
  • a tubular ultrasonic transducer 40 through which the liquid is guided into the PA, is coaxially installed in the PA tank 39.
  • the liquid 6 to be sonicated first flows through the ultrasonic transducer 40 and then flows upwards on the outside of this transducer in the sonication tank 39, after which it is conducted via the channel 41.
  • FIG. 10 shows a device which has a cuboid-shaped PA tank, in which two walls 43 and 44 are installed, which carry ultrasonic transducers 4.
  • the walls 43 and 44 run parallel to the side surfaces 45, 46, 47, 48 of the sound reinforcement tank 42 and are at right angles to one another and intersect one another, so that the sound reinforcement space is divided into four flowable spaces 50, 51, 52, 53.
  • the ultrasonic transducers form ultrasonic fields in the subspaces, which intersect at right angles.
  • the device shown in FIG. 11 has a parallel plate separator with a group of inclined and mutually parallel separator plates 54 and two ultrasonic transducers 4 parallel to the separator plates.
  • the coal content of suspension 28 was approx. 10 g / l.
  • the grain size distribution curve of the suspended carbon particles is shown in Fig. 7. Before the sonication test, the quickly settable grain size fraction was separated from the coal suspension 28 by sedimentation.
  • an approximately 3 mm thick brass plate 31 was immersed perpendicularly and parallel to the piezoceramic disc 27 in the suspension 28.
  • a high-frequency alternating voltage with a frequency of 1.1 MHz was then applied to the piezoceramic disk.
  • the high-frequency voltage was generated by means of a signal generator 32 and a British band amplifier 33.
  • the leading and the reflected electrical power were measured using a high-frequency wattmeter 34. In the experiment at hand, the leading power was measured at 7 watts. There was practically no reflected performance.
  • the carbon particles arranged in vertical planes 36 which were at a mutual normal distance of about 0.7 mm and were parallel to the piezoceramic disk 27.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • External Artificial Organs (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Colloid Chemistry (AREA)

Abstract

Procédé et dispositif de floculation, de précipitation, d'agglomération ou de coagulation de substances ou de micro-organismes en dissolution, en dissolution colloïdale, en suspension ou émulsifiés dans un liquide. On expose le liquide à un ou plusieurs champs d'ondes ultrasoniques stationnaires dont la fréquence f est supérieure à un septième d'une fréquence de seuil fo qui est une fonction de la viscosité cinématique du liquide et du rayon effectif des particules présentes dans le liquide. Le dispositif comprend une cuve d'irradation acoustique contenant le fluide à purifier et un convertisseur ultrasonique qui dirige des rayonnements ultrasoniques sur une surface opposée de réflexion.
EP88904175A 1987-05-19 1988-05-17 Procede et dispositif de separation de substances contenues dans un liquide Pending EP0362233A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0126987A AT389235B (de) 1987-05-19 1987-05-19 Verfahren zur reinigung von fluessigkeiten mittels ultraschall und vorrichtungen zur durchfuehrung dieses verfahrens
AT1269/87 1987-05-19

Publications (1)

Publication Number Publication Date
EP0362233A1 true EP0362233A1 (fr) 1990-04-11

Family

ID=3510228

Family Applications (2)

Application Number Title Priority Date Filing Date
EP88890124A Expired - Lifetime EP0292470B1 (fr) 1987-05-19 1988-05-17 Procédé de séparation de substances des liquides et dispositif pour effectuer le procédé
EP88904175A Pending EP0362233A1 (fr) 1987-05-19 1988-05-17 Procede et dispositif de separation de substances contenues dans un liquide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP88890124A Expired - Lifetime EP0292470B1 (fr) 1987-05-19 1988-05-17 Procédé de séparation de substances des liquides et dispositif pour effectuer le procédé

Country Status (14)

Country Link
US (1) US5164094A (fr)
EP (2) EP0292470B1 (fr)
JP (1) JPH02503528A (fr)
CN (1) CN1037463A (fr)
AT (2) AT389235B (fr)
AU (1) AU1726288A (fr)
CA (1) CA1320151C (fr)
DE (1) DE3865526D1 (fr)
ES (1) ES2027423T3 (fr)
GR (1) GR3003471T3 (fr)
NO (1) NO171539C (fr)
PL (1) PL160668B1 (fr)
RU (1) RU2067079C1 (fr)
WO (1) WO1988009210A1 (fr)

Families Citing this family (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT390739B (de) * 1988-11-03 1990-06-25 Ewald Dipl Ing Dr Benes Verfahren und einrichtung zur separation von teilchen, welche in einem dispersionsmittel dispergiert sind
GB9005705D0 (en) * 1990-03-14 1990-05-09 Health Lab Service Board Particle manipulation
GB2265004B (en) * 1992-03-10 1996-01-10 Univ Cardiff Immuno-agglutination assay using ultrasonic standing wave field
WO1993019873A2 (fr) * 1992-04-06 1993-10-14 Mountford Norman D G Traitement par ultrasons de liquides dans certains metaux en fusion
GB9213198D0 (en) * 1992-06-22 1992-08-05 Univ Cardiff Phase partition separation method
US6216538B1 (en) * 1992-12-02 2001-04-17 Hitachi, Ltd. Particle handling apparatus for handling particles in fluid by acoustic radiation pressure
AT398707B (de) * 1993-05-11 1995-01-25 Trampler Felix Mehrschichtiger piezoelektrischer resonator für die separation von suspendierten teilchen
CA2137699A1 (fr) * 1993-05-11 1994-11-24 Felix Trampler Resonateur piezo-electrique multicouche servant a la separation de particules en suspension
US5626767A (en) * 1993-07-02 1997-05-06 Sonosep Biotech Inc. Acoustic filter for separating and recycling suspended particles
US5395592A (en) * 1993-10-04 1995-03-07 Bolleman; Brent Acoustic liquid processing device
US5538628A (en) * 1993-12-16 1996-07-23 Logan; James R. Sonic processor
CN1091626C (zh) * 1994-04-28 2002-10-02 王晓庆 一种利用超声分离悬浮颗粒的仪器
GB9410558D0 (en) * 1994-05-26 1994-07-13 The Technology Partnership Ltd Method of transferring matter from a bulk medium
US5885424A (en) * 1994-06-15 1999-03-23 Mobil Oil Corporation Method and apparatus for breaking hydrocarbon emulsions
AU4854996A (en) * 1995-01-26 1996-08-21 Irwin A. Pless A method and apparatus for generating large velocity, high pressure, and high temperature conditions
DE19539533A1 (de) * 1995-10-24 1997-04-30 Basf Ag Apparat zur Schallbehandlung von Produkten
WO1997016231A1 (fr) * 1995-10-30 1997-05-09 Trunk Technology Group Separateur a ultrasons pour particules en suspension
US6055859A (en) * 1996-10-01 2000-05-02 Agency Of Industrial Science And Technology Non-contact micromanipulation method and apparatus
PT948410E (pt) * 1996-12-11 2002-09-30 Earth Sciences Ltd Metodos e aparelhos para a tilizacao no tratamento de cinzas
GB9708984D0 (en) * 1997-05-03 1997-06-25 Univ Cardiff Particle manipulation
US5951456A (en) * 1997-05-16 1999-09-14 Scott; Harold W. Ultrasonic methods and apparatus for separating materials in a fluid mixture
WO1999059139A2 (fr) 1998-05-11 1999-11-18 Koninklijke Philips Electronics N.V. Codage de la parole base sur la determination d'un apport de bruit du a un changement de phase
AU1581499A (en) * 1998-06-02 1999-12-20 Jury Redkoborody Method for vibrational cleaning a liquid of foreign particles
JP2000024431A (ja) * 1998-07-14 2000-01-25 Hitachi Ltd 微粒子処理装置
GB2369308B (en) * 1998-07-22 2002-11-06 Protasis Uk Ltd Particle manipulation device
US6090295A (en) * 1998-08-11 2000-07-18 University Technology Corporation Method and apparatus for acoustically demixing aqueous solutions
US6402965B1 (en) * 1999-07-13 2002-06-11 Oceanit Laboratories, Inc. Ship ballast water ultrasonic treatment
US6291180B1 (en) 1999-09-29 2001-09-18 American Registry Of Pathology Ultrasound-mediated high-speed biological reaction and tissue processing
CN100495030C (zh) 2000-09-30 2009-06-03 清华大学 多力操纵装置及其应用
WO2002029400A2 (fr) * 2000-09-30 2002-04-11 Aviva Biosciences Corporation Appareils et procedes pour le fractionnement en continu de particules a l'aide de forces acoustiques et autres forces
EP1216778B1 (fr) * 2000-12-22 2005-02-09 Charmilles Technologies S.A. Dispositif de purification de liquides d'usinage pour machines à életroérosion
US6547935B2 (en) * 2001-01-06 2003-04-15 Harold W. Scott Method and apparatus for treating fluids
SE0103013D0 (sv) * 2001-03-09 2001-09-12 Erysave Ab Ideon System and method for treatment of whole blood
SE522801C2 (sv) * 2001-03-09 2004-03-09 Erysave Ab Anordning för att separera suspenderade partiklar från en fluid med ultraljud samt metod för sådan separering
US6911153B2 (en) * 2001-06-22 2005-06-28 The Halliday Foundation, Inc. Method and apparatus for treating fluid mixtures with ultrasonic energy
US20020197182A1 (en) * 2001-06-22 2002-12-26 Ozone Generator Method and apparatus for directing ultrasonic energy
CA2491663A1 (fr) * 2001-07-06 2003-01-16 American Registry Of Pathology Reaction biologique et traitement de tissus grande vitesse par ultrasons
US6776118B2 (en) * 2002-04-16 2004-08-17 The Mitre Corporation Robotic manipulation system utilizing fluidic patterning
US6749666B2 (en) * 2002-04-26 2004-06-15 Board Of Regents, The University Of Texas System Modulated acoustic aggiomeration system and method
WO2003102737A2 (fr) * 2002-06-04 2003-12-11 Protasis Corporation Dispositif et procede permettant de manipuler de maniere ultrasonique des particules transportees par un fluide
US6818128B2 (en) * 2002-06-20 2004-11-16 The Halliday Foundation, Inc. Apparatus for directing ultrasonic energy
US20030234173A1 (en) * 2002-06-20 2003-12-25 Minter Bruce E. Method and apparatus for treating fluid mixtures with ultrasonic energy
ES2199683B1 (es) * 2002-08-01 2005-06-01 Consejo Sup. De Invest. Cientificas Procedimiento de separacion o extraccion con fluidos supercriticos asistidos por ultrasonidos de alta intensidad.
GB0222421D0 (en) * 2002-09-27 2002-11-06 Ratcliff Henry K Advanced ultrasonic processor
US7108137B2 (en) * 2002-10-02 2006-09-19 Wisconsin Alumni Research Foundation Method and apparatus for separating particles by size
CA2506770A1 (fr) * 2002-11-01 2004-05-21 George Douglas Meegan, Jr. Stimulation acoustique d'un systeme de diffusion de vapeur et procede associe
EP2557788A1 (fr) * 2002-11-29 2013-02-13 Sony Corporation Appareil de codage et procédé
US6878288B2 (en) * 2002-12-17 2005-04-12 Harold W. Scott System and apparatus for removing dissolved and suspended solids from a fluid stream
US6745590B1 (en) 2003-01-13 2004-06-08 American Power Conversion Condensate removal system
DE60336685D1 (de) * 2003-02-07 2011-05-19 Touzova Tamara Vibrationsverfahren zur trennung einer mischung in eine trägerflüssigkeit und einen komplementären bestandteil
US7340957B2 (en) 2004-07-29 2008-03-11 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US20080272034A1 (en) * 2004-08-16 2008-11-06 Searete Llc, Separation of particles from a fluid by wave action
US20060034733A1 (en) * 2004-08-16 2006-02-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Separation of particles from a fluid by wave action
AT413655B (de) * 2004-08-19 2006-04-15 Felix Dipl Ing Dr Trampler Vorrichtung zur abscheidung von dispergierten partikeln
WO2006032048A2 (fr) * 2004-09-15 2006-03-23 The Board Of Trustees Of The Leland Stanford Junior University Separation de types de particules par un champ acoustique non uniforme
US7766121B2 (en) * 2005-12-20 2010-08-03 Cyclotech Limited Methods and apparatus for conditioning and degassing liquids and gases in suspension
US7810743B2 (en) 2006-01-23 2010-10-12 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US7703698B2 (en) 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
DE102006004526A1 (de) * 2006-02-01 2007-08-02 Lanxess Deutschland Gmbh IPBC haltige Koazervate
US7867384B2 (en) * 2006-04-07 2011-01-11 Coveley Michael E Apparatus, system, and method for separating bitumen from crude oil sands
US8034286B2 (en) * 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US7835000B2 (en) 2006-11-03 2010-11-16 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer or the like
AR060106A1 (es) 2006-11-21 2008-05-28 Crystal Lagoons Corp Llc Proceso de obtencion de grandes cuerpos de agua mayores a 15.000 m3 para uso recreacionales con caracteristicas de coloracion, transparencia y limpieza similares a las piscinas o mares tropicales a bajo costo
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
EP2156178B1 (fr) 2007-04-02 2011-12-21 Acoustic Cytometry Systems, Inc. Procédés pour l'analyse amplifiée de cellules et particules focalisées par un champ acoustique
US7837040B2 (en) 2007-04-09 2010-11-23 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US8083068B2 (en) 2007-04-09 2011-12-27 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7998322B2 (en) * 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US7785674B2 (en) * 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
ES2340896B1 (es) * 2007-07-26 2011-04-08 Antonio Fabre Del Rivero Dispostivo reestructurador molecular mediante sonido.
US8263407B2 (en) 2007-10-24 2012-09-11 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US8528406B2 (en) 2007-10-24 2013-09-10 Los Alamos National Security, LLP Method for non-contact particle manipulation and control of particle spacing along an axis
US20090147905A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
US8266951B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US20090158821A1 (en) * 2007-12-20 2009-06-25 General Electric Company Devices, methods and systems for measuring one or more characteristics of a suspension
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US20090166177A1 (en) 2007-12-28 2009-07-02 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8215822B2 (en) 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8206024B2 (en) 2007-12-28 2012-06-26 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for particle dispersion into formulations
US8714014B2 (en) 2008-01-16 2014-05-06 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
EP2285744A1 (fr) * 2008-05-27 2011-02-23 Kolmir Water Technologies Ltd. Appareil et procédé pour le traitement d'un fluide contaminé à base d'eau
CN102065970A (zh) * 2008-05-30 2011-05-18 艾本德股份有限公司 用于移动流体中颗粒的装置和方法
US8387803B2 (en) * 2008-08-26 2013-03-05 Ge Healthcare Bio-Sciences Ab Particle sorting
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
JO3758B1 (ar) 2008-12-24 2021-01-31 Crystal Lagoons Tech Inc جهاز شفط
KR100947558B1 (ko) * 2009-10-16 2010-03-12 우시 브라이트스카이 이렉트로닉 컴퍼니 리미티드 밸러스트수 수처리 시스템
US8691145B2 (en) 2009-11-16 2014-04-08 Flodesign Sonics, Inc. Ultrasound and acoustophoresis for water purification
ES2366066B1 (es) * 2009-11-26 2012-05-16 Carlos V�?Zquez Montufo Equipo de filtración previsto para el filtrado de fluidos utilizados o contaminados y procedimiento de filtrado para fluidos utilizados o contaminados.
WO2011126371A2 (fr) * 2010-04-09 2011-10-13 Stichting Wetsus Centre Of Excellence For Sustainable Water Technology Dispositif et procédé de purification destinés à purifier un fluide
NL2004530C2 (en) * 2010-04-09 2011-10-11 Stichting Wetsus Ct Excellence Sustainable Water Technology Purification device and method for purifying a fluid.
WO2011128923A1 (fr) * 2010-04-16 2011-10-20 M.E.S. S.R.L. Appareil pour le traitement de fluides
US8714360B2 (en) * 2010-05-12 2014-05-06 Ethicon Endo-Surgery, Inc. Tissue processing device with ultrasonic tissue particle separator
CN101865187A (zh) * 2010-05-18 2010-10-20 浙江大学 应用于液压系统的超声波在线除气装置
US20130206703A1 (en) * 2010-05-25 2013-08-15 High Power Ultrasonics Pty., Ltd. Gravity sedimentation process and apparatus
DE102010017137A1 (de) * 2010-05-28 2011-12-01 Rwth Aachen Verfahren zum Trennen von Partikeln
JP5688451B2 (ja) * 2010-06-04 2015-03-25 エンパイア テクノロジー ディベロップメント エルエルシー 音響的に駆動されるナノ粒子コンセントレータ
US8956538B2 (en) 2010-06-16 2015-02-17 Flodesign Sonics, Inc. Phononic crystal desalination system and methods of use
US9421553B2 (en) 2010-08-23 2016-08-23 Flodesign Sonics, Inc. High-volume fast separation of multi-phase components in fluid suspensions
US8679338B2 (en) 2010-08-23 2014-03-25 Flodesign Sonics, Inc. Combined acoustic micro filtration and phononic crystal membrane particle separation
US8592204B2 (en) * 2010-08-23 2013-11-26 Flodesign Sonics, Inc. Ultrasound and acoustophoresis for collection and processing of oleaginous microorganisms
US9695390B2 (en) 2010-08-23 2017-07-04 President And Fellows Of Harvard College Acoustic waves in microfluidics
US8454838B2 (en) 2011-03-30 2013-06-04 Crystal Lagoons (Curacao) B.V. Method and system for the sustainable cooling of industrial processes
JO3415B1 (ar) 2011-03-30 2019-10-20 Crystal Lagoons Tech Inc نظام لمعالجة الماء المستخدم لأغراض صناعية
US8465651B2 (en) 2011-03-30 2013-06-18 Crystal Lagoons (Curacao) B.V. Sustainable method and system for treating water bodies affected by bacteria and microalgae at low cost
CN102344217A (zh) * 2011-07-02 2012-02-08 毛丙纯 等离子体和超声波集成污水处理装置
RU2477650C1 (ru) * 2011-07-25 2013-03-20 Андрей Александрович Геталов Способ ультразвуковой кавитационной обработки жидких сред
NL1039053C2 (en) * 2011-09-19 2013-03-21 Stichting Wetsus Ct Excellence Sustainable Water Technology Device and method for a bioreactor, catalysis reactor or crystallizer without internals.
US9266117B2 (en) * 2011-09-20 2016-02-23 Jo-Ann Reif Process and system for treating particulate solids
RU2487838C2 (ru) * 2011-10-11 2013-07-20 Сергей Алексеевич Бахарев Способ очистки и обеззараживания воды
US20130116459A1 (en) * 2011-10-13 2013-05-09 Los Alamos National Security, Llc Method and apparatus for acoustically manipulating biological particles
CN102527488A (zh) * 2011-12-27 2012-07-04 中国矿业大学 一种微纳米颗粒超声分离装置
US9752114B2 (en) 2012-03-15 2017-09-05 Flodesign Sonics, Inc Bioreactor using acoustic standing waves
US9950282B2 (en) 2012-03-15 2018-04-24 Flodesign Sonics, Inc. Electronic configuration and control for acoustic standing wave generation
US9688958B2 (en) 2012-03-15 2017-06-27 Flodesign Sonics, Inc. Acoustic bioreactor processes
US9340435B2 (en) 2012-03-15 2016-05-17 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
US9416344B2 (en) 2012-03-15 2016-08-16 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US10040011B2 (en) 2012-03-15 2018-08-07 Flodesign Sonics, Inc. Acoustophoretic multi-component separation technology platform
US10967298B2 (en) 2012-03-15 2021-04-06 Flodesign Sonics, Inc. Driver and control for variable impedence load
US9567559B2 (en) 2012-03-15 2017-02-14 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US9422328B2 (en) 2012-03-15 2016-08-23 Flodesign Sonics, Inc. Acoustic bioreactor processes
US9745548B2 (en) 2012-03-15 2017-08-29 Flodesign Sonics, Inc. Acoustic perfusion devices
US10689609B2 (en) 2012-03-15 2020-06-23 Flodesign Sonics, Inc. Acoustic bioreactor processes
US9822333B2 (en) 2012-03-15 2017-11-21 Flodesign Sonics, Inc. Acoustic perfusion devices
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
US10370635B2 (en) 2012-03-15 2019-08-06 Flodesign Sonics, Inc. Acoustic separation of T cells
US9752113B2 (en) 2012-03-15 2017-09-05 Flodesign Sonics, Inc. Acoustic perfusion devices
US9458450B2 (en) 2012-03-15 2016-10-04 Flodesign Sonics, Inc. Acoustophoretic separation technology using multi-dimensional standing waves
US9796956B2 (en) 2013-11-06 2017-10-24 Flodesign Sonics, Inc. Multi-stage acoustophoresis device
US9783775B2 (en) 2012-03-15 2017-10-10 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US9272234B2 (en) 2012-03-15 2016-03-01 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
US10322949B2 (en) 2012-03-15 2019-06-18 Flodesign Sonics, Inc. Transducer and reflector configurations for an acoustophoretic device
US10953436B2 (en) 2012-03-15 2021-03-23 Flodesign Sonics, Inc. Acoustophoretic device with piezoelectric transducer array
US9623348B2 (en) 2012-03-15 2017-04-18 Flodesign Sonics, Inc. Reflector for an acoustophoretic device
US10737953B2 (en) 2012-04-20 2020-08-11 Flodesign Sonics, Inc. Acoustophoretic method for use in bioreactors
US11324873B2 (en) 2012-04-20 2022-05-10 Flodesign Sonics, Inc. Acoustic blood separation processes and devices
US9718708B2 (en) 2012-04-20 2017-08-01 Flodesign Sonics Inc. Acoustophoretic enhanced system for use in tanks
CN106964010A (zh) * 2012-04-20 2017-07-21 弗洛设计声能学公司 脂质颗粒与红血球的声电泳分离
WO2013172810A1 (fr) 2012-05-14 2013-11-21 Empire Technology Development Llc Concentrateur de nanoparticules entraîné acoustiquement
CN102698679B (zh) * 2012-06-26 2014-04-16 南京航空航天大学 纳米物质操控方法
JP2014079748A (ja) * 2012-09-26 2014-05-08 Hitachi Ltd 超音波を用いた懸濁液処理装置
RU2649051C2 (ru) * 2012-10-02 2018-03-29 Флоудизайн Соникс, Инк. Технология сепарации с помощью акустофореза, использующая многомерные стоячие волны
EP2953700B1 (fr) * 2013-02-07 2021-04-07 Flodesign Sonics Inc. Bioréacteur utilisant des ondes acoustiques stationnaires
DE102013209282A1 (de) * 2013-05-21 2014-11-27 Krones Ag Sedimentationsvorrichtung zur Separation eines Materialgemischs und Verfahren zum Entfernen von Sediment aus einer Sedimentationsvorrichtung
RU2531931C1 (ru) * 2013-06-05 2014-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мурманский государственный технический университет" (ФГОУВПО "МГТУ") Способ физико-химической очистки сточных вод
KR101442486B1 (ko) * 2013-06-07 2014-09-24 아이에스테크놀로지 주식회사 초음파를 이용한 유체내 불순물 분리장치 및 분리방법
WO2014210046A1 (fr) 2013-06-24 2014-12-31 Flodesign Sonics, Inc. Séparateur sonique par la dynamique des fluides
US9604860B2 (en) 2013-08-22 2017-03-28 Hitachi, Ltd. Suspension processing device
US9745569B2 (en) 2013-09-13 2017-08-29 Flodesign Sonics, Inc. System for generating high concentration factors for low cell density suspensions
WO2015069739A1 (fr) * 2013-11-05 2015-05-14 Flodesign Sonics, Inc. Dispositif d'acoustophorèse à composants modulaires
US9920498B2 (en) 2013-11-05 2018-03-20 Crystal Lagoons (Curacao) B.V. Floating lake system and methods of treating water within a floating lake
US9470008B2 (en) 2013-12-12 2016-10-18 Crystal Lagoons (Curacao) B.V. System and method for maintaining water quality in large water bodies
US20160312168A1 (en) * 2013-12-30 2016-10-27 Ge Healthcare Bio-Sciences Corp. Apparatus for cell cultivation
US9725710B2 (en) 2014-01-08 2017-08-08 Flodesign Sonics, Inc. Acoustophoresis device with dual acoustophoretic chamber
US20150210979A1 (en) * 2014-01-27 2015-07-30 Northrop Grumman Systems Corporation Scaffold-free tissue engineering using field induced forces
DE102014204645A1 (de) * 2014-03-13 2015-09-17 Siemens Aktiengesellschaft Vorrichtung zur Behandlung einer Öltröpfchen enthaltenden Flüssigkeit
DE102014206823A1 (de) * 2014-04-09 2015-10-15 Siemens Aktiengesellschaft Vorrichtung zum Trennen einer Emulsion und/oder einer Suspension
EP3140387A1 (fr) 2014-05-08 2017-03-15 Flodesign Sonics Inc. Dispositif d'acoustophorèse comprenant un ensemble de transducteurs piézoélectriques
US9744483B2 (en) 2014-07-02 2017-08-29 Flodesign Sonics, Inc. Large scale acoustic separation device
KR102487073B1 (ko) 2014-07-02 2023-01-10 프로디자인 소닉스, 인크. 일정한 유체 유동을 갖는 음파영동 장치
WO2016042832A1 (fr) * 2014-09-16 2016-03-24 株式会社日立製作所 Procédé de séparation d'émulsion, tuyauterie d'alimentation en émulsion, dispositif de séparation d'émulsion et système de séparation d'émulsion
US9675906B2 (en) 2014-09-30 2017-06-13 Flodesign Sonics, Inc. Acoustophoretic clarification of particle-laden non-flowing fluids
LT3217854T (lt) 2014-11-12 2019-06-10 Crystal Lagoons (Curacao) B.V. Siurbimo įrenginys dideliems dirbtiniams vandens telkiniams
DE102015101542A1 (de) 2015-02-03 2016-08-18 ACO Severin Ahlmann GmbH & Co Kommanditgesellschaft Verfahren und Vorrichtung zur Abtrennung von Stoffen
US10106770B2 (en) 2015-03-24 2018-10-23 Flodesign Sonics, Inc. Methods and apparatus for particle aggregation using acoustic standing waves
US9533241B2 (en) * 2015-03-24 2017-01-03 Flodesign Sonics, Inc. Methods and apparatus for particle aggregation using acoustic standing waves
EP3075725A1 (fr) * 2015-03-30 2016-10-05 Casale SA Sonication dans un processus de synthèse de l'urée ou la mélamine
WO2016176663A1 (fr) 2015-04-29 2016-11-03 Flodesign Sonics, Inc. Dispositif acoustophorétique pour déviation de particules à onde angulaire
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11021699B2 (en) 2015-04-29 2021-06-01 FioDesign Sonics, Inc. Separation using angled acoustic waves
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US20160325206A1 (en) * 2015-05-06 2016-11-10 Flodesign Sonics, Inc. Acoustic pre-conditioner
BR112017024713B1 (pt) 2015-05-20 2022-09-27 Flodesign Sonics, Inc Método para a separação de um segundo fluido ou um particulado de um fluido principal
EP3302810A4 (fr) * 2015-06-01 2018-12-19 Cetamax Ventures Ltd. Systèmes et procédés de traitement de fluides
US10161926B2 (en) 2015-06-11 2018-12-25 Flodesign Sonics, Inc. Acoustic methods for separation of cells and pathogens
US9663756B1 (en) 2016-02-25 2017-05-30 Flodesign Sonics, Inc. Acoustic separation of cellular supporting materials from cultured cells
CN108025333B (zh) 2015-07-09 2020-10-02 弗洛设计声能学公司 非平面和非对称压电晶体及反射器
US11459540B2 (en) 2015-07-28 2022-10-04 Flodesign Sonics, Inc. Expanded bed affinity selection
US11474085B2 (en) 2015-07-28 2022-10-18 Flodesign Sonics, Inc. Expanded bed affinity selection
LT3341116T (lt) 2015-08-27 2022-05-25 President And Fellows Of Harvard College Rūšiavimo naudojant akustines bangas būdas
EP3341102A1 (fr) * 2015-08-28 2018-07-04 Flodesign Sonics Inc. Dispositif de séparation acoustique à grande échelle
US11053788B2 (en) 2015-12-16 2021-07-06 Saudi Arabian Oil Company Acoustic downhole oil-water separation
US10428324B1 (en) * 2016-01-08 2019-10-01 Triad National Security, Llc Acoustic manipulation of fluids based on eigenfrequency
RU2617472C1 (ru) * 2016-01-13 2017-04-25 Сергей Алексеевич Бахарев Способ безреагентной очистки оборотной воды от сапонитсодержащих шламовых частиц
RU2628383C1 (ru) * 2016-02-25 2017-08-16 Сергей Алексеевич Бахарев Способ безреагентной очистки сапонитсодержащей воды и уплотнения сапонитсодержащего осадка
EP3426372A1 (fr) * 2016-03-12 2019-01-16 Flodesign Sonics, Inc. Dispositif d'acoustophorèse à plusieurs étages
CA3017528A1 (fr) * 2016-04-14 2017-09-21 Bart Lipkens Dispositif d'acoustophorese a plusieurs etages
US10710006B2 (en) 2016-04-25 2020-07-14 Flodesign Sonics, Inc. Piezoelectric transducer for generation of an acoustic standing wave
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
US11085035B2 (en) 2016-05-03 2021-08-10 Flodesign Sonics, Inc. Therapeutic cell washing, concentration, and separation utilizing acoustophoresis
CN114891635A (zh) 2016-05-03 2022-08-12 弗洛设计声能学公司 利用声泳的治疗细胞洗涤、浓缩和分离
US11324105B2 (en) * 2016-06-09 2022-05-03 Charlies Bohdy Nanoplasmoid suspensions and systems and devices for the generation thereof
US10625182B2 (en) 2016-06-14 2020-04-21 Hitachi, Ltd. Suspension flow-through separation apparatus, system and method
RU2638370C1 (ru) * 2016-06-28 2017-12-13 Сергей Алексеевич Бахарев Способ безреагентной очистки сапонитсодержащей воды и уплотнения сапонитсодержащего осадка
WO2018075830A1 (fr) 2016-10-19 2018-04-26 Flodesign Sonics, Inc. Extraction par affinité de cellules par un procédé acoustique
JP6661512B2 (ja) * 2016-10-26 2020-03-11 日立Geニュークリア・エナジー株式会社 懸濁液送液分離装置
WO2018094189A1 (fr) * 2016-11-18 2018-05-24 The Regents Of The University Of California Agglomération de particules fondée sur des ondes acoustiques
US11643342B2 (en) 2017-03-09 2023-05-09 B.G. Negev Technologies & Applications Ltd., At Ben-Gurion University Process and apparatus for purifying liquid
CN110998311A (zh) * 2017-03-30 2020-04-10 弗洛设计声能学公司 采用成角度的声波的分离
CN107324446A (zh) * 2017-09-04 2017-11-07 深圳市城道通环保科技有限公司 一种管形超声分离腔
CN107907373A (zh) * 2017-11-29 2018-04-13 中国科学院声学研究所 一种颗粒物取样器及其系统
WO2019118921A1 (fr) 2017-12-14 2019-06-20 Flodesign Sonics, Inc. Circuit d'excitation et circuit de commande de transducteur acoustique
WO2019140484A1 (fr) * 2018-01-16 2019-07-25 Ozran Scientific Pty Ltd Appareil et procédé pour agglomérer une matière particulaire
CN108479660B (zh) * 2018-04-09 2020-06-19 清华大学深圳研究生院 一种超声固液分离装置
WO2020013818A1 (fr) * 2018-07-10 2020-01-16 Vermeer Manufacturing Company Systèmes et procédés de déshydrater des boues
JP7122950B2 (ja) * 2018-12-11 2022-08-22 株式会社日立製作所 分析試料前処理装置、分析試料前処理方法、及び分析試料前処理システム
AT521789B1 (de) 2019-05-16 2020-07-15 Felix Trampler Dr Vorrichtung zur erzeugung eines stehenden ultraschallfeldes
US20220233992A1 (en) * 2019-06-28 2022-07-28 Korea Institute Of Industrial Technology Fine particle aggregation method and apparatus
US11701658B2 (en) 2019-08-09 2023-07-18 President And Fellows Of Harvard College Systems and methods for microfluidic particle selection, encapsulation, and injection using surface acoustic waves
RU2718539C1 (ru) * 2019-09-25 2020-04-08 Сергей Алексеевич Бахарев Способ безреагентной очистки сапонитсодержащей воды и уплотнения сапонитсодержащего осадка
CN111874990A (zh) * 2020-08-03 2020-11-03 江苏江大五棵松生物科技有限公司 一种短柱状逆流发散式超声波设备
CN112870854B (zh) * 2021-01-18 2022-04-08 南京航空航天大学 一种驻波切换型声流微操控筛选装置及其工作方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR828204A (fr) * 1936-10-24 1938-05-12 Procédé pour le traitement de corps en fusion et de liquides de toute nature par les sons et les ultra-sons
CH294746A (de) * 1950-02-25 1953-11-30 Fruengel Frank Ing Dr Vorrichtung zur Beschallung strömender Flüssigkeiten.
DE836640C (de) * 1950-04-27 1952-04-15 Dr Gerhard Dickel Verfahren zur Stofftrennung in fluessiger Phase
GB713272A (en) * 1951-03-09 1954-08-11 Clevite Corp Apparatus and method for removing particles from a liquid
US4055491A (en) * 1976-06-02 1977-10-25 Porath Furedi Asher Apparatus and method for removing fine particles from a liquid medium by ultrasonic waves
SU701670A1 (ru) * 1978-05-26 1979-12-05 Каунасский Политехнический Институт Им.Антанаса Снечкуса Устройство дл очистки жидкости
GB2098498B (en) * 1980-10-27 1984-08-22 Secr Defence Separating particles from fluid
US4358373A (en) * 1980-12-08 1982-11-09 Rock Oil Corporation Continuous apparatus for separating hydrocarbon from earth particles and sand
EP0147032B1 (fr) * 1983-10-31 1990-02-07 National Research Development Corporation Manipulation de particules
GB8417240D0 (en) * 1984-07-06 1984-08-08 Unilever Plc Particle separation
DE3505161A1 (de) * 1985-02-15 1986-08-21 GCA Corp., Bedford, Mass. Verfahren und vorrichtung zur elektrofusion mit hilfe von schallwellen
US4983189A (en) * 1986-02-21 1991-01-08 Technical Research Associates, Inc. Methods and apparatus for moving and separating materials exhibiting different physical properties
GB8612759D0 (en) * 1986-05-27 1986-07-02 Unilever Plc Manipulating particulate matter
GB8612760D0 (en) * 1986-05-27 1986-07-02 Unilever Plc Ultrasonic field generation
US4883532A (en) * 1986-10-27 1989-11-28 Bodine Albert G Sonic method for facilitating the extraction of minerals from ore in a leachant
US4885098A (en) * 1986-10-27 1989-12-05 Bodine Albert G Sonic method for facilitating the removal of solid particles from a slurry
US4830758A (en) * 1986-12-03 1989-05-16 Bodine Albert G Sonic method and apparatus for winning minerals from liquid carriers
SU1426950A1 (ru) * 1987-03-25 1988-09-30 Институт Горного Дела Дальневосточного Научного Центра Аппарат дл осветлени суспензий
GB8724067D0 (en) * 1987-10-14 1987-11-18 Unilever Plc Manipulating particles
US4854170A (en) * 1988-10-12 1989-08-08 Separation Technology, Inc. Apparatus and method for using ultrasound to determine hematocrit
US4944886A (en) * 1988-11-23 1990-07-31 Masri Saad A Method of sewage treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8809210A1 *

Also Published As

Publication number Publication date
PL272541A1 (en) 1989-03-20
CA1320151C (fr) 1993-07-13
CN1037463A (zh) 1989-11-29
AT389235B (de) 1989-11-10
NO171539B (no) 1992-12-21
NO890219L (no) 1989-01-18
JPH02503528A (ja) 1990-10-25
US5164094A (en) 1992-11-17
ATA126987A (de) 1989-04-15
DE3865526D1 (de) 1991-11-21
NO171539C (no) 1993-03-31
ES2027423T3 (es) 1992-06-01
WO1988009210A1 (fr) 1988-12-01
EP0292470A1 (fr) 1988-11-23
ATE68369T1 (de) 1991-11-15
NO890219D0 (no) 1989-01-18
GR3003471T3 (en) 1993-02-17
PL160668B1 (pl) 1993-04-30
EP0292470B1 (fr) 1991-10-16
AU1726288A (en) 1988-12-21
RU2067079C1 (ru) 1996-09-27

Similar Documents

Publication Publication Date Title
EP0362233A1 (fr) Procede et dispositif de separation de substances contenues dans un liquide
AT390739B (de) Verfahren und einrichtung zur separation von teilchen, welche in einem dispersionsmittel dispergiert sind
US10870593B2 (en) Method for preventing scale deposits and removing contaminants from fluid columns
DE60014391T2 (de) Beeinflussung von partikeln in flüssigen medien
EP3253472B1 (fr) Procédé et dispositif de separation de matières de liquides par agglomeration au moyen d'ultrasons et par sédimentation
DE69420339T2 (de) Verfahren zur Behandlung einer Flüssigkeit
US9718708B2 (en) Acoustophoretic enhanced system for use in tanks
US9352336B2 (en) Method and apparatus for treating fluid columns
DE102006037638A1 (de) Verfahren und Vorrichtung zum Sieben, Klassieren, Filtern oder Sortieren trockener fester Stoffe oder fester Stoffe in Flüssigkeiten
EP0927579A2 (fr) Procédé et dispositif pour extraire des solides d' un mélange solide- liquide
DE2331242A1 (de) Kontinuierlich arbeitende emulsionstrennanlage mit vollstaendiger schlammaufbereitung
RU2745993C1 (ru) Способ комбинированного обезвоживания стойких водонефтяных эмульсий
AT162580B (de) Verfahren zum Abscheiden von Schwebeteilchen aus Gasen oder Flüssigkeiten mit Hilfe von stehenden Schallwellen
WO2015135764A1 (fr) Dispositif et procédé de traitement d'un liquide contenant des gouttelettes d'huile
DE69315639T2 (de) Verfahren zur reinigung einer nicht elektrisch leitenden flüssigkeit
CH200053A (de) Verfahren zur Behandlung von flüssigen dispersen Systemen durch Einwirkung von Schall- und Ultraschallwellen.
CH223105A (de) Einrichtung, bei welcher eine Flüssigkeit in Schall- oder Ultraschallschwingungen versetzt wird.
DE2039021A1 (de) Zentrifuge zum Trennen von inhomogenen fluessigen Stoffgemischen
CH526981A (de) Verfahren zum Filtrieren von Flüssigkeit und Einrichtung zur Durchführung des Verfahrens
KR20120113040A (ko) 에멜젼 재생 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 19891117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

XX Miscellaneous (additional remarks)

Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 88890124.6/0292470 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 18.07.90.