EP0362233A1 - Procede et dispositif de separation de substances contenues dans un liquide - Google Patents
Procede et dispositif de separation de substances contenues dans un liquideInfo
- Publication number
- EP0362233A1 EP0362233A1 EP88904175A EP88904175A EP0362233A1 EP 0362233 A1 EP0362233 A1 EP 0362233A1 EP 88904175 A EP88904175 A EP 88904175A EP 88904175 A EP88904175 A EP 88904175A EP 0362233 A1 EP0362233 A1 EP 0362233A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- ultrasonic
- sound
- flow
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/28—Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
- B01D21/283—Settling tanks provided with vibrators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D43/00—Separating particles from liquids, or liquids from solids, otherwise than by sedimentation or filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/10—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/34—Treatment of water, waste water, or sewage with mechanical oscillations
- C02F1/36—Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
Definitions
- the invention relates to a process for flocculation, precipitation, agglomeration or coagulation of ingredients or microorganisms dissolved, colloidally dissolved, suspended or emulsified in a liquid and for separating these substances or microorganisms from this liquid, the one loaded with the ingredients or microorganisms to be separated Liquid is subjected to the field effect of ultrasonic waves, which bring about an accumulation of particles to be separated in the vibration node regions or antinode regions of the ultrasonic wave, and the particles thus collected are separated from the liquid, which separation takes place in particular by sedimentation.
- suspended particles or microorganisms which can also have submicroscopic dimensions, from liquids by sedimentation or by filtration in a reasonably short time, they have to be combined into larger particles or attached to larger particles. It can be made possible in a disperse system by removing the electrostatic surface charges of the particles (destabilization; and by supplying kinetic energy (transport; coagulation processes.
- the sound radiation pressure conveys the particles into the rapid abdominal areas of the ultrasound field, i.e. to those places where the deflection of the water mouse is greatest. If the ultrasound frequency exceeds a certain cut-off frequency fo, the particles only minimally follow the vibration of the water. In the fast bellies there is therefore maximum relative movement between the particles and the oscillating water.
- the Wassermoieküie periodically pass through the rapid abdominal areas at right angles with maximum sound velocity. Due to the particles accumulated in the rapid abdominal areas, which only minimally participate in the vibration of the water, there is a reduction in the cross-section that can be flowed through. The speed of the oscillating water must therefore increase between the particles, which inevitably results in a local reduction in the pressure between the particles while maintaining the total energy. This relative negative pressure between the particles causes their mutual attraction, which according to the invention is used to coagulate the particles.
- the method according to the invention of the type mentioned at the outset is characterized in that the liquid loaded with ingredients or microorganisms is exposed to one or more fields of ultrasound waves, the ultrasound frequency f being greater than one seventh of the limit frequency fo, the range above half the limit frequency fo being preferred is and applies to fo:
- standing ultrasonic wave fields can be done simply by exciting piezoelectric electro-acoustic transducers in the resonance frequency or in one of the odd-numbered harmonics of the sound reinforcement room forming a resonator, so that a standing ultrasonic wave field builds up in the sound reinforcement room, although as a resonator the package of all sounded acoustic waves Rails including those OR surfaces on which the sound waves are reflected is to be understood.
- the forces of a standing and flat ultrasonic wave field acting on the liquid to be cleaned cause the particles to be arranged in surfaces perpendicular to the direction of sound propagation.
- the distance between the surfaces corresponds to half the length of the ultrasonic waves in the liquid in question.
- the particles agglomerate in the respective areas. Agglomerates that are so large that they can be easily separated from the liquid by sedimentation or filtration.
- the liquid is sonicated in the flow. It is furthermore favorable if the liquid is passed through one or more fields of standing ultrasonic waves in a flow approximately at right angles to the direction of sound propagation of the ultrasound. It is also advantageous if the liquid flows in a laminar manner.
- the particles When the suspension flows through the ultrasonic field, the particles are held there and agglomerated, while the liquid leaves the sound field after cleaning.
- an attachment room can be provided below the PA. If the direction of sound propagation is horizontal, the particles arrange themselves in vertical planes and, after they have joined together to form larger agglomerates, sink into the sedimentation space following gravity.
- the flow rate of the liquid in the sound system can also be chosen so high that the coagulates are discharged with the liquid; the ingredients are then separated from the liquid by sedimentation or filtration.
- the liquid can also be passed through the ultrasound field in or against the direction of sound propagation of the ultrasound field.
- An advantageous embodiment of the method according to the invention provides that the liquid is sonicated in a standing ultrasonic wave field that is formed between two parallel and oppositely arranged ultrasonic transducers, the opposite ultrasonic transducers being excited with electrical vibrations of the same frequency, the mutual phase angle of which changes constantly and so a slow relative movement of the wave field in relation to the ultrasonic transducers.
- the particular advantage of this embodiment is that the particles, which have been arranged in the Sehnelledauch vom, follow the relative movement of the ultrasonic field, which is advantageously selected transversely to the direction of flow of the liquid, and in this way coagulate with a particularly low energy expenditure and simply from the liquid can be separated.
- Another embodiment of the method according to the invention provides that the liquid is exposed to two ultrasound fields, which overlap one another spatially within the coating area and act on the liquid simultaneously or alternately, preferably using two flat ultrasound fields which intersect at right angles, whereby the intersection lines of the vibration node planes run parallel to the direction of flow of the liquid.
- a particular advantage of this embodiment is then that the particles are arranged in lines and thereby concentrate there to a much greater extent than with a one-dimensional sound system.
- the lines in which the particles arrange themselves represent the intersection of the rapid abdominal planes of the two ultrasound fields.
- a further advantageous embodiment of the method according to the invention is characterized in that the liquid is in a cylindrical ultrasonic field, the oscillation nodes of which are approximately cylindrical and coaxial surfaces and through which the liquid is guided approximately parallel to the geometric axis of the field, or in succession in several such fields is sonicated.
- the ultrasound treatment is carried out under pressure to avoid cavitation in closed containers or pipes leads, which is higher than the sum of the vapor pressure of the liquid and the pressure amplitude of the ultrasonic vibration.
- the pass-through liquid path is advantageously chosen to be less than 1 m, with a preference for the range below 0.6 m.
- the power of the electrical oscillation with which the ultrasonic transducers are excited is advantageously chosen with less than 3 watts per cm 2 of the controlled ultrasonic transducer surface, the range between 0.5 and 2 watts / cm 2 being preferred.
- the energy input per m 3 of suspension is advantageously selected between 0.05 and 10 kWh, depending on its density and the electrostatic surface charge of the suspended particles, the range between 0.1 and 4 kWh being preferred.
- sonication with ultrasonic frequencies between fo / 3 and 10 fo is advantageously used, with frequencies between fo / 2 and 4 fo being particularly favorable for widely graded particle size distributions.
- frequencies between fo / 2 and 4 fo are particularly favorable for widely graded particle size distributions.
- frequencies between 2 fo and 12 fo are advantageous to work at frequencies between 2 fo and 12 fo, the range between 3 fo and 5 fo being preferred.
- Ultrasound frequencies between fo / 2 and 10 fo are advantageous for the coagulation of coal particles, which are in water, and for their separation, a particularly intensive flocculation in the range between fo and 4 fo being achieved.
- Ultrasonic frequencies between fo / 7 and 10 fo are advantageously used for the coagulation of ingredients of higher density, such as metal dusts, the range between fo / 6 and fo / 2 being preferred in view of an economical use of energy.
- the coagulates grow, their radius R increases and the limit frequency fo, which is dependent on R, becomes smaller.
- the agglomerates formed in the first stage can then be combined again in the subsequent stages.
- the radius R of the agglomerates can grow up to a quarter of the respective ultrasonic wavelength.
- sonication with amplitude-modulated ultrasound can achieve significantly faster coagulation.
- Amplitude modulation with frequencies DIS 20 kHz has proven to be particularly advantageous, the modulation signal being e.g. Sine and square wave signals can be used.
- Activated carbon or other surface-active substances e.g. some clays, used as adsorption media for liquid ingredients, which can also be dissolved.
- a powdery introduction of the adsorption media results in a more intimate mixing with the liquid and thus enables shorter contact times, thereby avoiding desorption processes.
- the agglomerated particles can be separated from the liquid by sedimentation or filtration.
- the ultrasound treatment can also promote the attachment of the liquid contents to the adsorption medium.
- the coal separation in the water can be improved by the formation of larger and more stable flakes.
- the invention further relates to a device for performing the method according to the invention.
- an advantageous embodiment of such a device is characterized in that the sound reinforcement chamber of the device is formed by a straight tube, which is sealed at one end by an ultrasound transducer and at the other end by a preferably reverberant reflector at right angles and tightly, near the side of the two tube ends the supply and discharge lines for the liquid to be sonicated are attached.
- the sound reinforcement chamber of the device is formed by a straight tube, which is sealed at right angles and tightly at its lower end by an ultrasonic transducer and is open at its upper end, near the side of the two tube ends the inlet and outlet for the liquid to be sonicated are attached.
- a very simply constructed device is characterized in that the device has a cladding tank, on the bottom of which one or more ultrasonic transducers are mounted horizontally.
- a preferred embodiment of the device according to the invention has a preferably cuboid sound tank, which can also be open at the top, and forms the sound reinforcement of the liquid; this coating tank has one or more ultrasonic transducers on a side wall parallel to the horizontal direction of flow of the liquid and sound reflectors on the opposite parallel side wall. The sound is spread horizontally and at right angles to the direction of flow.
- the inlet and outlet for the liquid are located on the two rare walls perpendicular to the direction of flow.
- One or more, preferably funnel-like, settling spaces, which have removal devices at their lowest points, are provided in the bottom of the sonication tank.
- the sedimentation spaces are preferably separated from the casing tank by a horizontal grid-like flow orifice. After the inlet and before the outlet, vertical calming grids can be provided, which are at right angles to the direction of flow.
- a baffle in the sonication tank Immediately in front of the inlet opening and the outlet opening, you can attach a baffle in the
- a further embodiment of the device according to the invention is characterized in that the sound reinforcement chamber of the device is formed by a sound reinforcement chamber, through which the liquid flows horizontally, so that one or more ultrasonic transducers or ultrasonic transducers can be found on the two rare walls of the sound reinforcement chamber that run at right angles to the direction of flow and refiectors are arranged opposite and parallel to each other, and that one or more funnel-shaped sedimentation chambers are provided in the bottom of the sound-absorbing chamber, which are preferably delimited at the top by flow baffles and have removal devices for the sunken particles at their lowest points.
- the chamber of the device is formed by a vessel in the form of a straight line Cylinder is made of preferably sound-resistant material, in which a cylindrical, radially vibrating ultrasonic transducer is installed coaxially.
- a cylindrical, radially vibrating ultrasonic transducer is installed coaxially.
- the common axis of the transducer and the vessel can be perpendicular, the liquid being first passed from top to bottom through the interior of the tubular ultrasonic transducer and then exiting at its lower end into the outer vessel and flowing up there while the Coagulates sink down and are separated from the liquid.
- a further embodiment of the device according to the invention is characterized in that the sound reinforcement chamber of the device is formed by a flow-through cuboid sound reinforcement tank, into which two planar walls, at right angles to one another, are built, which groups of ultrasonic transducers carry, these walls facing the side surfaces
- Public address tank run parallel and preferably cut each other within the public address room so that the public address room is divided into two or more flowable sub-rooms.
- the flow through the peeling tank can e.g. can be divided into four sub-rooms, which can also have a different cross-section and can be flowed through both in parallel and in series, the individual sub-rooms can also be flowed through in opposite directions.
- Another embodiment of the device according to the invention is characterized in that a parallel plate separator is arranged in the sound reinforcement area of the device, through which the intermediate spaces between the separating plates the liquid is passed, and that two planes Groups of ultrasonic generators are arranged parallel to the separating plate pack, the entire separating plate pack lying between the ultrasonic transducers, and the thickness of the separating plates preferably corresponding to an odd multiple of a quarter of the wavelength of the ultrasound in these separating plates and the surface roughness of the separating plates not exceeding one tenth of the ultrasonic wavelength.
- a standing wave field is generated which moves relative to the ultrasonic transducers in such a way that the vertical component of the relative movement is directed downward.
- the particular advantage of this embodiment is that the particles are coagulated in the ultrasonic field and, following the movement of the field, are conveyed to the separating plates and sedimented there, as a result of which a much higher separation performance is achieved than in conventional parallel plate separators.
- ultrasound transducers made of piezoelectric plastics such as e.g. Find polyvinylidene fluoride (PVDF).
- PVDF polyvinylidene fluoride
- FIG. 1 shows a first embodiment of the device according to the invention in section
- Fig. 2a shows a second embodiment of the device according to the invention in horizontal section along the line Ila-IIa in 2b and Fig. 2b this embodiment in section along the line IIb-IIb,
- FIG. 3a shows another embodiment of the device according to the invention in longitudinal section along the line IIIa-IIIa in FIG. 3b and FIG. 3b this embodiment in section along the line III-IIIb,
- FIG. 4a a further embodiment of the device according to the invention in vertical section and FIG. 4b this embodiment in section along the line IVb-IVb, in which a coaxial cylindrical wave field is generated in a tube,
- FIG. 5 shows an embodiment of the device according to the invention, in which the free liquid surface serves as a sound reflector, in vertical section,
- FIG. 6 shows a further embodiment of the device according to the invention in a vertical section, in which a tub is sonicated from below,
- FIG. 9a a further embodiment of the device according to the invention in vertical section and FIG. 9b this embodiment in section along the line IXb-IXb,
- Fig. 10 shows an embodiment of the device according to the invention in a view in which a two-dimensional sonication takes place
- Fig. 11 is a schematic diagram of an embodiment of the device according to the invention provided with a parallel plate separator.
- a straight pipe 1 is provided as the sound reinforcement chamber, which pipe 6 introduces the liquid 6 via a feed pipe 2 and out via a discharge pipe 3.
- One pipe end 1a is sealed at right angles and tightly by an ultrasonic transducer 4, the other pipe end 1b by a reflector 5 designed as a rigid metal plate.
- the ultrasonic transducer 4 is fed with high-frequency current.
- a public address tank 8 is provided in all public address rooms, in the bottom 7 of which settling funnels 9 are installed, which have drainage nozzles 10 which can be closed at their lowest points.
- the settling funnels 9 are separated from the sonication tank by a grille-like flow nozzle 11.
- Ultrasonic transducers 4 and ultrasonic reflectors 12 are attached to the two side walls 13 and 14 of the sonication tank 8, which are parallel to the flow direction 6a, and are opposite and parallel to one another.
- Flow orifices 15 and 16 and calming grilles 17 and 18 are arranged after the inlet pipe 2 and before the outlet pipe 3.
- the flow direction 6a runs at right angles to the direction of sound propagation.
- the device shown in FIGS. 3a and 3b has a sound reinforcement chamber 19 as the sound reinforcement chamber, on the front side walls 20 and 21 of which the ultrasonic transducer 4 and the reflector 12 are attached.
- a sound reinforcement chamber 19 as the sound reinforcement chamber, on the front side walls 20 and 21 of which the ultrasonic transducer 4 and the reflector 12 are attached.
- funnel-shaped settling spaces 9 are provided, at the lowest points of which closable removal nozzles 10 are attached.
- the settling rooms 9 are separated from the sonication chamber 19 by a grille-like flow orifice 11.
- the liquid is supplied via the inlet connection 2 and derived via the discharge pipe 3.
- the flow direction 6a runs in the direction of sound propagation.
- the front side walls 20, 21 run at right angles to the flow direction.
- a vessel 22 in the form of a straight, cylindrical tube made of sound-resistant material is provided as the PA, in which a cylindrical, radially oscillating ultrasonic transducer 23 is installed coaxially.
- a coaxial cylindrical ultrasonic field is generated in the vessel 22 .
- the device shown in FIG. 5 consists of a straight vertical tube 1, into which the liquid is introduced via a nozzle 2 and is discharged via a further nozzle 3.
- the lower tube end 1 a is sealed off by an ultrasonic transducer 4.
- the upper tube end 1b is open.
- the free liquid surface 37 acts here as a sound-soft reflector.
- the device shown in FIG. 6 has a sound reinforcement pool 38 which is open at the top and on the bottom of which an ultrasonic transducer 4 is mounted horizontally.
- the free liquid surface 37 acts as a sound-soft reflector.
- the experimental arrangement shown in FIG. 8 is provided with a device according to the invention, the ultrasonic transducer 27 of which is fed by a broadband amplifier 33, this broadband amplifier being controlled by a high-frequency signal generator 32.
- the public address room of the device is formed by a public address pool 24.
- the ultrasonic transducer 27 is mounted on a brass plate 26 on a narrow side 25 of the soundproofing basin 24 and a reflector in the form of a brass plate 31 is arranged on the opposite narrow side 30 of the soundproofing basin 24.
- the device shown in FIGS. 9a and 9b has a vertical cylindrical sound tank 39 as the sound chamber, which is closed at the bottom by a funnel-shaped settling chamber 9 which has a closable removal nozzle 10.
- a tubular ultrasonic transducer 40 through which the liquid is guided into the PA, is coaxially installed in the PA tank 39.
- the liquid 6 to be sonicated first flows through the ultrasonic transducer 40 and then flows upwards on the outside of this transducer in the sonication tank 39, after which it is conducted via the channel 41.
- FIG. 10 shows a device which has a cuboid-shaped PA tank, in which two walls 43 and 44 are installed, which carry ultrasonic transducers 4.
- the walls 43 and 44 run parallel to the side surfaces 45, 46, 47, 48 of the sound reinforcement tank 42 and are at right angles to one another and intersect one another, so that the sound reinforcement space is divided into four flowable spaces 50, 51, 52, 53.
- the ultrasonic transducers form ultrasonic fields in the subspaces, which intersect at right angles.
- the device shown in FIG. 11 has a parallel plate separator with a group of inclined and mutually parallel separator plates 54 and two ultrasonic transducers 4 parallel to the separator plates.
- the coal content of suspension 28 was approx. 10 g / l.
- the grain size distribution curve of the suspended carbon particles is shown in Fig. 7. Before the sonication test, the quickly settable grain size fraction was separated from the coal suspension 28 by sedimentation.
- an approximately 3 mm thick brass plate 31 was immersed perpendicularly and parallel to the piezoceramic disc 27 in the suspension 28.
- a high-frequency alternating voltage with a frequency of 1.1 MHz was then applied to the piezoceramic disk.
- the high-frequency voltage was generated by means of a signal generator 32 and a British band amplifier 33.
- the leading and the reflected electrical power were measured using a high-frequency wattmeter 34. In the experiment at hand, the leading power was measured at 7 watts. There was practically no reflected performance.
- the carbon particles arranged in vertical planes 36 which were at a mutual normal distance of about 0.7 mm and were parallel to the piezoceramic disk 27.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Water Treatments (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- External Artificial Organs (AREA)
- Extraction Or Liquid Replacement (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
- Colloid Chemistry (AREA)
Abstract
Procédé et dispositif de floculation, de précipitation, d'agglomération ou de coagulation de substances ou de micro-organismes en dissolution, en dissolution colloïdale, en suspension ou émulsifiés dans un liquide. On expose le liquide à un ou plusieurs champs d'ondes ultrasoniques stationnaires dont la fréquence f est supérieure à un septième d'une fréquence de seuil fo qui est une fonction de la viscosité cinématique du liquide et du rayon effectif des particules présentes dans le liquide. Le dispositif comprend une cuve d'irradation acoustique contenant le fluide à purifier et un convertisseur ultrasonique qui dirige des rayonnements ultrasoniques sur une surface opposée de réflexion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0126987A AT389235B (de) | 1987-05-19 | 1987-05-19 | Verfahren zur reinigung von fluessigkeiten mittels ultraschall und vorrichtungen zur durchfuehrung dieses verfahrens |
AT1269/87 | 1987-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0362233A1 true EP0362233A1 (fr) | 1990-04-11 |
Family
ID=3510228
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88890124A Expired - Lifetime EP0292470B1 (fr) | 1987-05-19 | 1988-05-17 | Procédé de séparation de substances des liquides et dispositif pour effectuer le procédé |
EP88904175A Pending EP0362233A1 (fr) | 1987-05-19 | 1988-05-17 | Procede et dispositif de separation de substances contenues dans un liquide |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88890124A Expired - Lifetime EP0292470B1 (fr) | 1987-05-19 | 1988-05-17 | Procédé de séparation de substances des liquides et dispositif pour effectuer le procédé |
Country Status (14)
Country | Link |
---|---|
US (1) | US5164094A (fr) |
EP (2) | EP0292470B1 (fr) |
JP (1) | JPH02503528A (fr) |
CN (1) | CN1037463A (fr) |
AT (2) | AT389235B (fr) |
AU (1) | AU1726288A (fr) |
CA (1) | CA1320151C (fr) |
DE (1) | DE3865526D1 (fr) |
ES (1) | ES2027423T3 (fr) |
GR (1) | GR3003471T3 (fr) |
NO (1) | NO171539C (fr) |
PL (1) | PL160668B1 (fr) |
RU (1) | RU2067079C1 (fr) |
WO (1) | WO1988009210A1 (fr) |
Families Citing this family (219)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT390739B (de) * | 1988-11-03 | 1990-06-25 | Ewald Dipl Ing Dr Benes | Verfahren und einrichtung zur separation von teilchen, welche in einem dispersionsmittel dispergiert sind |
GB9005705D0 (en) * | 1990-03-14 | 1990-05-09 | Health Lab Service Board | Particle manipulation |
GB2265004B (en) * | 1992-03-10 | 1996-01-10 | Univ Cardiff | Immuno-agglutination assay using ultrasonic standing wave field |
WO1993019873A2 (fr) * | 1992-04-06 | 1993-10-14 | Mountford Norman D G | Traitement par ultrasons de liquides dans certains metaux en fusion |
GB9213198D0 (en) * | 1992-06-22 | 1992-08-05 | Univ Cardiff | Phase partition separation method |
US6216538B1 (en) * | 1992-12-02 | 2001-04-17 | Hitachi, Ltd. | Particle handling apparatus for handling particles in fluid by acoustic radiation pressure |
AT398707B (de) * | 1993-05-11 | 1995-01-25 | Trampler Felix | Mehrschichtiger piezoelektrischer resonator für die separation von suspendierten teilchen |
CA2137699A1 (fr) * | 1993-05-11 | 1994-11-24 | Felix Trampler | Resonateur piezo-electrique multicouche servant a la separation de particules en suspension |
US5626767A (en) * | 1993-07-02 | 1997-05-06 | Sonosep Biotech Inc. | Acoustic filter for separating and recycling suspended particles |
US5395592A (en) * | 1993-10-04 | 1995-03-07 | Bolleman; Brent | Acoustic liquid processing device |
US5538628A (en) * | 1993-12-16 | 1996-07-23 | Logan; James R. | Sonic processor |
CN1091626C (zh) * | 1994-04-28 | 2002-10-02 | 王晓庆 | 一种利用超声分离悬浮颗粒的仪器 |
GB9410558D0 (en) * | 1994-05-26 | 1994-07-13 | The Technology Partnership Ltd | Method of transferring matter from a bulk medium |
US5885424A (en) * | 1994-06-15 | 1999-03-23 | Mobil Oil Corporation | Method and apparatus for breaking hydrocarbon emulsions |
AU4854996A (en) * | 1995-01-26 | 1996-08-21 | Irwin A. Pless | A method and apparatus for generating large velocity, high pressure, and high temperature conditions |
DE19539533A1 (de) * | 1995-10-24 | 1997-04-30 | Basf Ag | Apparat zur Schallbehandlung von Produkten |
WO1997016231A1 (fr) * | 1995-10-30 | 1997-05-09 | Trunk Technology Group | Separateur a ultrasons pour particules en suspension |
US6055859A (en) * | 1996-10-01 | 2000-05-02 | Agency Of Industrial Science And Technology | Non-contact micromanipulation method and apparatus |
PT948410E (pt) * | 1996-12-11 | 2002-09-30 | Earth Sciences Ltd | Metodos e aparelhos para a tilizacao no tratamento de cinzas |
GB9708984D0 (en) * | 1997-05-03 | 1997-06-25 | Univ Cardiff | Particle manipulation |
US5951456A (en) * | 1997-05-16 | 1999-09-14 | Scott; Harold W. | Ultrasonic methods and apparatus for separating materials in a fluid mixture |
WO1999059139A2 (fr) | 1998-05-11 | 1999-11-18 | Koninklijke Philips Electronics N.V. | Codage de la parole base sur la determination d'un apport de bruit du a un changement de phase |
AU1581499A (en) * | 1998-06-02 | 1999-12-20 | Jury Redkoborody | Method for vibrational cleaning a liquid of foreign particles |
JP2000024431A (ja) * | 1998-07-14 | 2000-01-25 | Hitachi Ltd | 微粒子処理装置 |
GB2369308B (en) * | 1998-07-22 | 2002-11-06 | Protasis Uk Ltd | Particle manipulation device |
US6090295A (en) * | 1998-08-11 | 2000-07-18 | University Technology Corporation | Method and apparatus for acoustically demixing aqueous solutions |
US6402965B1 (en) * | 1999-07-13 | 2002-06-11 | Oceanit Laboratories, Inc. | Ship ballast water ultrasonic treatment |
US6291180B1 (en) | 1999-09-29 | 2001-09-18 | American Registry Of Pathology | Ultrasound-mediated high-speed biological reaction and tissue processing |
CN100495030C (zh) | 2000-09-30 | 2009-06-03 | 清华大学 | 多力操纵装置及其应用 |
WO2002029400A2 (fr) * | 2000-09-30 | 2002-04-11 | Aviva Biosciences Corporation | Appareils et procedes pour le fractionnement en continu de particules a l'aide de forces acoustiques et autres forces |
EP1216778B1 (fr) * | 2000-12-22 | 2005-02-09 | Charmilles Technologies S.A. | Dispositif de purification de liquides d'usinage pour machines à életroérosion |
US6547935B2 (en) * | 2001-01-06 | 2003-04-15 | Harold W. Scott | Method and apparatus for treating fluids |
SE0103013D0 (sv) * | 2001-03-09 | 2001-09-12 | Erysave Ab Ideon | System and method for treatment of whole blood |
SE522801C2 (sv) * | 2001-03-09 | 2004-03-09 | Erysave Ab | Anordning för att separera suspenderade partiklar från en fluid med ultraljud samt metod för sådan separering |
US6911153B2 (en) * | 2001-06-22 | 2005-06-28 | The Halliday Foundation, Inc. | Method and apparatus for treating fluid mixtures with ultrasonic energy |
US20020197182A1 (en) * | 2001-06-22 | 2002-12-26 | Ozone Generator | Method and apparatus for directing ultrasonic energy |
CA2491663A1 (fr) * | 2001-07-06 | 2003-01-16 | American Registry Of Pathology | Reaction biologique et traitement de tissus grande vitesse par ultrasons |
US6776118B2 (en) * | 2002-04-16 | 2004-08-17 | The Mitre Corporation | Robotic manipulation system utilizing fluidic patterning |
US6749666B2 (en) * | 2002-04-26 | 2004-06-15 | Board Of Regents, The University Of Texas System | Modulated acoustic aggiomeration system and method |
WO2003102737A2 (fr) * | 2002-06-04 | 2003-12-11 | Protasis Corporation | Dispositif et procede permettant de manipuler de maniere ultrasonique des particules transportees par un fluide |
US6818128B2 (en) * | 2002-06-20 | 2004-11-16 | The Halliday Foundation, Inc. | Apparatus for directing ultrasonic energy |
US20030234173A1 (en) * | 2002-06-20 | 2003-12-25 | Minter Bruce E. | Method and apparatus for treating fluid mixtures with ultrasonic energy |
ES2199683B1 (es) * | 2002-08-01 | 2005-06-01 | Consejo Sup. De Invest. Cientificas | Procedimiento de separacion o extraccion con fluidos supercriticos asistidos por ultrasonidos de alta intensidad. |
GB0222421D0 (en) * | 2002-09-27 | 2002-11-06 | Ratcliff Henry K | Advanced ultrasonic processor |
US7108137B2 (en) * | 2002-10-02 | 2006-09-19 | Wisconsin Alumni Research Foundation | Method and apparatus for separating particles by size |
CA2506770A1 (fr) * | 2002-11-01 | 2004-05-21 | George Douglas Meegan, Jr. | Stimulation acoustique d'un systeme de diffusion de vapeur et procede associe |
EP2557788A1 (fr) * | 2002-11-29 | 2013-02-13 | Sony Corporation | Appareil de codage et procédé |
US6878288B2 (en) * | 2002-12-17 | 2005-04-12 | Harold W. Scott | System and apparatus for removing dissolved and suspended solids from a fluid stream |
US6745590B1 (en) | 2003-01-13 | 2004-06-08 | American Power Conversion | Condensate removal system |
DE60336685D1 (de) * | 2003-02-07 | 2011-05-19 | Touzova Tamara | Vibrationsverfahren zur trennung einer mischung in eine trägerflüssigkeit und einen komplementären bestandteil |
US7340957B2 (en) | 2004-07-29 | 2008-03-11 | Los Alamos National Security, Llc | Ultrasonic analyte concentration and application in flow cytometry |
US20080272034A1 (en) * | 2004-08-16 | 2008-11-06 | Searete Llc, | Separation of particles from a fluid by wave action |
US20060034733A1 (en) * | 2004-08-16 | 2006-02-16 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Separation of particles from a fluid by wave action |
AT413655B (de) * | 2004-08-19 | 2006-04-15 | Felix Dipl Ing Dr Trampler | Vorrichtung zur abscheidung von dispergierten partikeln |
WO2006032048A2 (fr) * | 2004-09-15 | 2006-03-23 | The Board Of Trustees Of The Leland Stanford Junior University | Separation de types de particules par un champ acoustique non uniforme |
US7766121B2 (en) * | 2005-12-20 | 2010-08-03 | Cyclotech Limited | Methods and apparatus for conditioning and degassing liquids and gases in suspension |
US7810743B2 (en) | 2006-01-23 | 2010-10-12 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid delivery device |
US7703698B2 (en) | 2006-09-08 | 2010-04-27 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment chamber and continuous flow mixing system |
DE102006004526A1 (de) * | 2006-02-01 | 2007-08-02 | Lanxess Deutschland Gmbh | IPBC haltige Koazervate |
US7867384B2 (en) * | 2006-04-07 | 2011-01-11 | Coveley Michael E | Apparatus, system, and method for separating bitumen from crude oil sands |
US8034286B2 (en) * | 2006-09-08 | 2011-10-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment system for separating compounds from aqueous effluent |
US9283188B2 (en) | 2006-09-08 | 2016-03-15 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
US7835000B2 (en) | 2006-11-03 | 2010-11-16 | Los Alamos National Security, Llc | System and method for measuring particles in a sample stream of a flow cytometer or the like |
AR060106A1 (es) | 2006-11-21 | 2008-05-28 | Crystal Lagoons Corp Llc | Proceso de obtencion de grandes cuerpos de agua mayores a 15.000 m3 para uso recreacionales con caracteristicas de coloracion, transparencia y limpieza similares a las piscinas o mares tropicales a bajo costo |
US7712353B2 (en) | 2006-12-28 | 2010-05-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
US7673516B2 (en) | 2006-12-28 | 2010-03-09 | Kimberly-Clark Worldwide, Inc. | Ultrasonic liquid treatment system |
EP2156178B1 (fr) | 2007-04-02 | 2011-12-21 | Acoustic Cytometry Systems, Inc. | Procédés pour l'analyse amplifiée de cellules et particules focalisées par un champ acoustique |
US7837040B2 (en) | 2007-04-09 | 2010-11-23 | Los Alamos National Security, Llc | Acoustic concentration of particles in fluid flow |
US8083068B2 (en) | 2007-04-09 | 2011-12-27 | Los Alamos National Security, Llc | Apparatus for separating particles utilizing engineered acoustic contrast capture particles |
US7947184B2 (en) | 2007-07-12 | 2011-05-24 | Kimberly-Clark Worldwide, Inc. | Treatment chamber for separating compounds from aqueous effluent |
US7998322B2 (en) * | 2007-07-12 | 2011-08-16 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber having electrode properties |
US7785674B2 (en) * | 2007-07-12 | 2010-08-31 | Kimberly-Clark Worldwide, Inc. | Delivery systems for delivering functional compounds to substrates and processes of using the same |
ES2340896B1 (es) * | 2007-07-26 | 2011-04-08 | Antonio Fabre Del Rivero | Dispostivo reestructurador molecular mediante sonido. |
US8263407B2 (en) | 2007-10-24 | 2012-09-11 | Los Alamos National Security, Llc | Method for non-contact particle manipulation and control of particle spacing along an axis |
US8528406B2 (en) | 2007-10-24 | 2013-09-10 | Los Alamos National Security, LLP | Method for non-contact particle manipulation and control of particle spacing along an axis |
US20090147905A1 (en) * | 2007-12-05 | 2009-06-11 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for initiating thermonuclear fusion |
US8266951B2 (en) | 2007-12-19 | 2012-09-18 | Los Alamos National Security, Llc | Particle analysis in an acoustic cytometer |
US20090158821A1 (en) * | 2007-12-20 | 2009-06-25 | General Electric Company | Devices, methods and systems for measuring one or more characteristics of a suspension |
US8454889B2 (en) | 2007-12-21 | 2013-06-04 | Kimberly-Clark Worldwide, Inc. | Gas treatment system |
US8858892B2 (en) | 2007-12-21 | 2014-10-14 | Kimberly-Clark Worldwide, Inc. | Liquid treatment system |
US8632613B2 (en) | 2007-12-27 | 2014-01-21 | Kimberly-Clark Worldwide, Inc. | Process for applying one or more treatment agents to a textile web |
US20090166177A1 (en) | 2007-12-28 | 2009-07-02 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing emulsions |
US8215822B2 (en) | 2007-12-28 | 2012-07-10 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing antimicrobial formulations |
US8057573B2 (en) | 2007-12-28 | 2011-11-15 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for increasing the shelf life of formulations |
US9421504B2 (en) | 2007-12-28 | 2016-08-23 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for preparing emulsions |
US8206024B2 (en) | 2007-12-28 | 2012-06-26 | Kimberly-Clark Worldwide, Inc. | Ultrasonic treatment chamber for particle dispersion into formulations |
US8714014B2 (en) | 2008-01-16 | 2014-05-06 | Life Technologies Corporation | System and method for acoustic focusing hardware and implementations |
EP2285744A1 (fr) * | 2008-05-27 | 2011-02-23 | Kolmir Water Technologies Ltd. | Appareil et procédé pour le traitement d'un fluide contaminé à base d'eau |
CN102065970A (zh) * | 2008-05-30 | 2011-05-18 | 艾本德股份有限公司 | 用于移动流体中颗粒的装置和方法 |
US8387803B2 (en) * | 2008-08-26 | 2013-03-05 | Ge Healthcare Bio-Sciences Ab | Particle sorting |
US8685178B2 (en) | 2008-12-15 | 2014-04-01 | Kimberly-Clark Worldwide, Inc. | Methods of preparing metal-modified silica nanoparticles |
US8163388B2 (en) | 2008-12-15 | 2012-04-24 | Kimberly-Clark Worldwide, Inc. | Compositions comprising metal-modified silica nanoparticles |
JO3758B1 (ar) | 2008-12-24 | 2021-01-31 | Crystal Lagoons Tech Inc | جهاز شفط |
KR100947558B1 (ko) * | 2009-10-16 | 2010-03-12 | 우시 브라이트스카이 이렉트로닉 컴퍼니 리미티드 | 밸러스트수 수처리 시스템 |
US8691145B2 (en) | 2009-11-16 | 2014-04-08 | Flodesign Sonics, Inc. | Ultrasound and acoustophoresis for water purification |
ES2366066B1 (es) * | 2009-11-26 | 2012-05-16 | Carlos V�?Zquez Montufo | Equipo de filtración previsto para el filtrado de fluidos utilizados o contaminados y procedimiento de filtrado para fluidos utilizados o contaminados. |
WO2011126371A2 (fr) * | 2010-04-09 | 2011-10-13 | Stichting Wetsus Centre Of Excellence For Sustainable Water Technology | Dispositif et procédé de purification destinés à purifier un fluide |
NL2004530C2 (en) * | 2010-04-09 | 2011-10-11 | Stichting Wetsus Ct Excellence Sustainable Water Technology | Purification device and method for purifying a fluid. |
WO2011128923A1 (fr) * | 2010-04-16 | 2011-10-20 | M.E.S. S.R.L. | Appareil pour le traitement de fluides |
US8714360B2 (en) * | 2010-05-12 | 2014-05-06 | Ethicon Endo-Surgery, Inc. | Tissue processing device with ultrasonic tissue particle separator |
CN101865187A (zh) * | 2010-05-18 | 2010-10-20 | 浙江大学 | 应用于液压系统的超声波在线除气装置 |
US20130206703A1 (en) * | 2010-05-25 | 2013-08-15 | High Power Ultrasonics Pty., Ltd. | Gravity sedimentation process and apparatus |
DE102010017137A1 (de) * | 2010-05-28 | 2011-12-01 | Rwth Aachen | Verfahren zum Trennen von Partikeln |
JP5688451B2 (ja) * | 2010-06-04 | 2015-03-25 | エンパイア テクノロジー ディベロップメント エルエルシー | 音響的に駆動されるナノ粒子コンセントレータ |
US8956538B2 (en) | 2010-06-16 | 2015-02-17 | Flodesign Sonics, Inc. | Phononic crystal desalination system and methods of use |
US9421553B2 (en) | 2010-08-23 | 2016-08-23 | Flodesign Sonics, Inc. | High-volume fast separation of multi-phase components in fluid suspensions |
US8679338B2 (en) | 2010-08-23 | 2014-03-25 | Flodesign Sonics, Inc. | Combined acoustic micro filtration and phononic crystal membrane particle separation |
US8592204B2 (en) * | 2010-08-23 | 2013-11-26 | Flodesign Sonics, Inc. | Ultrasound and acoustophoresis for collection and processing of oleaginous microorganisms |
US9695390B2 (en) | 2010-08-23 | 2017-07-04 | President And Fellows Of Harvard College | Acoustic waves in microfluidics |
US8454838B2 (en) | 2011-03-30 | 2013-06-04 | Crystal Lagoons (Curacao) B.V. | Method and system for the sustainable cooling of industrial processes |
JO3415B1 (ar) | 2011-03-30 | 2019-10-20 | Crystal Lagoons Tech Inc | نظام لمعالجة الماء المستخدم لأغراض صناعية |
US8465651B2 (en) | 2011-03-30 | 2013-06-18 | Crystal Lagoons (Curacao) B.V. | Sustainable method and system for treating water bodies affected by bacteria and microalgae at low cost |
CN102344217A (zh) * | 2011-07-02 | 2012-02-08 | 毛丙纯 | 等离子体和超声波集成污水处理装置 |
RU2477650C1 (ru) * | 2011-07-25 | 2013-03-20 | Андрей Александрович Геталов | Способ ультразвуковой кавитационной обработки жидких сред |
NL1039053C2 (en) * | 2011-09-19 | 2013-03-21 | Stichting Wetsus Ct Excellence Sustainable Water Technology | Device and method for a bioreactor, catalysis reactor or crystallizer without internals. |
US9266117B2 (en) * | 2011-09-20 | 2016-02-23 | Jo-Ann Reif | Process and system for treating particulate solids |
RU2487838C2 (ru) * | 2011-10-11 | 2013-07-20 | Сергей Алексеевич Бахарев | Способ очистки и обеззараживания воды |
US20130116459A1 (en) * | 2011-10-13 | 2013-05-09 | Los Alamos National Security, Llc | Method and apparatus for acoustically manipulating biological particles |
CN102527488A (zh) * | 2011-12-27 | 2012-07-04 | 中国矿业大学 | 一种微纳米颗粒超声分离装置 |
US9752114B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc | Bioreactor using acoustic standing waves |
US9950282B2 (en) | 2012-03-15 | 2018-04-24 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
US9688958B2 (en) | 2012-03-15 | 2017-06-27 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US9340435B2 (en) | 2012-03-15 | 2016-05-17 | Flodesign Sonics, Inc. | Separation of multi-component fluid through ultrasonic acoustophoresis |
US9416344B2 (en) | 2012-03-15 | 2016-08-16 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US10040011B2 (en) | 2012-03-15 | 2018-08-07 | Flodesign Sonics, Inc. | Acoustophoretic multi-component separation technology platform |
US10967298B2 (en) | 2012-03-15 | 2021-04-06 | Flodesign Sonics, Inc. | Driver and control for variable impedence load |
US9567559B2 (en) | 2012-03-15 | 2017-02-14 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9422328B2 (en) | 2012-03-15 | 2016-08-23 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US9745548B2 (en) | 2012-03-15 | 2017-08-29 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10689609B2 (en) | 2012-03-15 | 2020-06-23 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US9822333B2 (en) | 2012-03-15 | 2017-11-21 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10370635B2 (en) | 2012-03-15 | 2019-08-06 | Flodesign Sonics, Inc. | Acoustic separation of T cells |
US9752113B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9458450B2 (en) | 2012-03-15 | 2016-10-04 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
US9796956B2 (en) | 2013-11-06 | 2017-10-24 | Flodesign Sonics, Inc. | Multi-stage acoustophoresis device |
US9783775B2 (en) | 2012-03-15 | 2017-10-10 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9272234B2 (en) | 2012-03-15 | 2016-03-01 | Flodesign Sonics, Inc. | Separation of multi-component fluid through ultrasonic acoustophoresis |
US10322949B2 (en) | 2012-03-15 | 2019-06-18 | Flodesign Sonics, Inc. | Transducer and reflector configurations for an acoustophoretic device |
US10953436B2 (en) | 2012-03-15 | 2021-03-23 | Flodesign Sonics, Inc. | Acoustophoretic device with piezoelectric transducer array |
US9623348B2 (en) | 2012-03-15 | 2017-04-18 | Flodesign Sonics, Inc. | Reflector for an acoustophoretic device |
US10737953B2 (en) | 2012-04-20 | 2020-08-11 | Flodesign Sonics, Inc. | Acoustophoretic method for use in bioreactors |
US11324873B2 (en) | 2012-04-20 | 2022-05-10 | Flodesign Sonics, Inc. | Acoustic blood separation processes and devices |
US9718708B2 (en) | 2012-04-20 | 2017-08-01 | Flodesign Sonics Inc. | Acoustophoretic enhanced system for use in tanks |
CN106964010A (zh) * | 2012-04-20 | 2017-07-21 | 弗洛设计声能学公司 | 脂质颗粒与红血球的声电泳分离 |
WO2013172810A1 (fr) | 2012-05-14 | 2013-11-21 | Empire Technology Development Llc | Concentrateur de nanoparticules entraîné acoustiquement |
CN102698679B (zh) * | 2012-06-26 | 2014-04-16 | 南京航空航天大学 | 纳米物质操控方法 |
JP2014079748A (ja) * | 2012-09-26 | 2014-05-08 | Hitachi Ltd | 超音波を用いた懸濁液処理装置 |
RU2649051C2 (ru) * | 2012-10-02 | 2018-03-29 | Флоудизайн Соникс, Инк. | Технология сепарации с помощью акустофореза, использующая многомерные стоячие волны |
EP2953700B1 (fr) * | 2013-02-07 | 2021-04-07 | Flodesign Sonics Inc. | Bioréacteur utilisant des ondes acoustiques stationnaires |
DE102013209282A1 (de) * | 2013-05-21 | 2014-11-27 | Krones Ag | Sedimentationsvorrichtung zur Separation eines Materialgemischs und Verfahren zum Entfernen von Sediment aus einer Sedimentationsvorrichtung |
RU2531931C1 (ru) * | 2013-06-05 | 2014-10-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мурманский государственный технический университет" (ФГОУВПО "МГТУ") | Способ физико-химической очистки сточных вод |
KR101442486B1 (ko) * | 2013-06-07 | 2014-09-24 | 아이에스테크놀로지 주식회사 | 초음파를 이용한 유체내 불순물 분리장치 및 분리방법 |
WO2014210046A1 (fr) | 2013-06-24 | 2014-12-31 | Flodesign Sonics, Inc. | Séparateur sonique par la dynamique des fluides |
US9604860B2 (en) | 2013-08-22 | 2017-03-28 | Hitachi, Ltd. | Suspension processing device |
US9745569B2 (en) | 2013-09-13 | 2017-08-29 | Flodesign Sonics, Inc. | System for generating high concentration factors for low cell density suspensions |
WO2015069739A1 (fr) * | 2013-11-05 | 2015-05-14 | Flodesign Sonics, Inc. | Dispositif d'acoustophorèse à composants modulaires |
US9920498B2 (en) | 2013-11-05 | 2018-03-20 | Crystal Lagoons (Curacao) B.V. | Floating lake system and methods of treating water within a floating lake |
US9470008B2 (en) | 2013-12-12 | 2016-10-18 | Crystal Lagoons (Curacao) B.V. | System and method for maintaining water quality in large water bodies |
US20160312168A1 (en) * | 2013-12-30 | 2016-10-27 | Ge Healthcare Bio-Sciences Corp. | Apparatus for cell cultivation |
US9725710B2 (en) | 2014-01-08 | 2017-08-08 | Flodesign Sonics, Inc. | Acoustophoresis device with dual acoustophoretic chamber |
US20150210979A1 (en) * | 2014-01-27 | 2015-07-30 | Northrop Grumman Systems Corporation | Scaffold-free tissue engineering using field induced forces |
DE102014204645A1 (de) * | 2014-03-13 | 2015-09-17 | Siemens Aktiengesellschaft | Vorrichtung zur Behandlung einer Öltröpfchen enthaltenden Flüssigkeit |
DE102014206823A1 (de) * | 2014-04-09 | 2015-10-15 | Siemens Aktiengesellschaft | Vorrichtung zum Trennen einer Emulsion und/oder einer Suspension |
EP3140387A1 (fr) | 2014-05-08 | 2017-03-15 | Flodesign Sonics Inc. | Dispositif d'acoustophorèse comprenant un ensemble de transducteurs piézoélectriques |
US9744483B2 (en) | 2014-07-02 | 2017-08-29 | Flodesign Sonics, Inc. | Large scale acoustic separation device |
KR102487073B1 (ko) | 2014-07-02 | 2023-01-10 | 프로디자인 소닉스, 인크. | 일정한 유체 유동을 갖는 음파영동 장치 |
WO2016042832A1 (fr) * | 2014-09-16 | 2016-03-24 | 株式会社日立製作所 | Procédé de séparation d'émulsion, tuyauterie d'alimentation en émulsion, dispositif de séparation d'émulsion et système de séparation d'émulsion |
US9675906B2 (en) | 2014-09-30 | 2017-06-13 | Flodesign Sonics, Inc. | Acoustophoretic clarification of particle-laden non-flowing fluids |
LT3217854T (lt) | 2014-11-12 | 2019-06-10 | Crystal Lagoons (Curacao) B.V. | Siurbimo įrenginys dideliems dirbtiniams vandens telkiniams |
DE102015101542A1 (de) | 2015-02-03 | 2016-08-18 | ACO Severin Ahlmann GmbH & Co Kommanditgesellschaft | Verfahren und Vorrichtung zur Abtrennung von Stoffen |
US10106770B2 (en) | 2015-03-24 | 2018-10-23 | Flodesign Sonics, Inc. | Methods and apparatus for particle aggregation using acoustic standing waves |
US9533241B2 (en) * | 2015-03-24 | 2017-01-03 | Flodesign Sonics, Inc. | Methods and apparatus for particle aggregation using acoustic standing waves |
EP3075725A1 (fr) * | 2015-03-30 | 2016-10-05 | Casale SA | Sonication dans un processus de synthèse de l'urée ou la mélamine |
WO2016176663A1 (fr) | 2015-04-29 | 2016-11-03 | Flodesign Sonics, Inc. | Dispositif acoustophorétique pour déviation de particules à onde angulaire |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
US20160325206A1 (en) * | 2015-05-06 | 2016-11-10 | Flodesign Sonics, Inc. | Acoustic pre-conditioner |
BR112017024713B1 (pt) | 2015-05-20 | 2022-09-27 | Flodesign Sonics, Inc | Método para a separação de um segundo fluido ou um particulado de um fluido principal |
EP3302810A4 (fr) * | 2015-06-01 | 2018-12-19 | Cetamax Ventures Ltd. | Systèmes et procédés de traitement de fluides |
US10161926B2 (en) | 2015-06-11 | 2018-12-25 | Flodesign Sonics, Inc. | Acoustic methods for separation of cells and pathogens |
US9663756B1 (en) | 2016-02-25 | 2017-05-30 | Flodesign Sonics, Inc. | Acoustic separation of cellular supporting materials from cultured cells |
CN108025333B (zh) | 2015-07-09 | 2020-10-02 | 弗洛设计声能学公司 | 非平面和非对称压电晶体及反射器 |
US11459540B2 (en) | 2015-07-28 | 2022-10-04 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11474085B2 (en) | 2015-07-28 | 2022-10-18 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
LT3341116T (lt) | 2015-08-27 | 2022-05-25 | President And Fellows Of Harvard College | Rūšiavimo naudojant akustines bangas būdas |
EP3341102A1 (fr) * | 2015-08-28 | 2018-07-04 | Flodesign Sonics Inc. | Dispositif de séparation acoustique à grande échelle |
US11053788B2 (en) | 2015-12-16 | 2021-07-06 | Saudi Arabian Oil Company | Acoustic downhole oil-water separation |
US10428324B1 (en) * | 2016-01-08 | 2019-10-01 | Triad National Security, Llc | Acoustic manipulation of fluids based on eigenfrequency |
RU2617472C1 (ru) * | 2016-01-13 | 2017-04-25 | Сергей Алексеевич Бахарев | Способ безреагентной очистки оборотной воды от сапонитсодержащих шламовых частиц |
RU2628383C1 (ru) * | 2016-02-25 | 2017-08-16 | Сергей Алексеевич Бахарев | Способ безреагентной очистки сапонитсодержащей воды и уплотнения сапонитсодержащего осадка |
EP3426372A1 (fr) * | 2016-03-12 | 2019-01-16 | Flodesign Sonics, Inc. | Dispositif d'acoustophorèse à plusieurs étages |
CA3017528A1 (fr) * | 2016-04-14 | 2017-09-21 | Bart Lipkens | Dispositif d'acoustophorese a plusieurs etages |
US10710006B2 (en) | 2016-04-25 | 2020-07-14 | Flodesign Sonics, Inc. | Piezoelectric transducer for generation of an acoustic standing wave |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
US11085035B2 (en) | 2016-05-03 | 2021-08-10 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
CN114891635A (zh) | 2016-05-03 | 2022-08-12 | 弗洛设计声能学公司 | 利用声泳的治疗细胞洗涤、浓缩和分离 |
US11324105B2 (en) * | 2016-06-09 | 2022-05-03 | Charlies Bohdy | Nanoplasmoid suspensions and systems and devices for the generation thereof |
US10625182B2 (en) | 2016-06-14 | 2020-04-21 | Hitachi, Ltd. | Suspension flow-through separation apparatus, system and method |
RU2638370C1 (ru) * | 2016-06-28 | 2017-12-13 | Сергей Алексеевич Бахарев | Способ безреагентной очистки сапонитсодержащей воды и уплотнения сапонитсодержащего осадка |
WO2018075830A1 (fr) | 2016-10-19 | 2018-04-26 | Flodesign Sonics, Inc. | Extraction par affinité de cellules par un procédé acoustique |
JP6661512B2 (ja) * | 2016-10-26 | 2020-03-11 | 日立Geニュークリア・エナジー株式会社 | 懸濁液送液分離装置 |
WO2018094189A1 (fr) * | 2016-11-18 | 2018-05-24 | The Regents Of The University Of California | Agglomération de particules fondée sur des ondes acoustiques |
US11643342B2 (en) | 2017-03-09 | 2023-05-09 | B.G. Negev Technologies & Applications Ltd., At Ben-Gurion University | Process and apparatus for purifying liquid |
CN110998311A (zh) * | 2017-03-30 | 2020-04-10 | 弗洛设计声能学公司 | 采用成角度的声波的分离 |
CN107324446A (zh) * | 2017-09-04 | 2017-11-07 | 深圳市城道通环保科技有限公司 | 一种管形超声分离腔 |
CN107907373A (zh) * | 2017-11-29 | 2018-04-13 | 中国科学院声学研究所 | 一种颗粒物取样器及其系统 |
WO2019118921A1 (fr) | 2017-12-14 | 2019-06-20 | Flodesign Sonics, Inc. | Circuit d'excitation et circuit de commande de transducteur acoustique |
WO2019140484A1 (fr) * | 2018-01-16 | 2019-07-25 | Ozran Scientific Pty Ltd | Appareil et procédé pour agglomérer une matière particulaire |
CN108479660B (zh) * | 2018-04-09 | 2020-06-19 | 清华大学深圳研究生院 | 一种超声固液分离装置 |
WO2020013818A1 (fr) * | 2018-07-10 | 2020-01-16 | Vermeer Manufacturing Company | Systèmes et procédés de déshydrater des boues |
JP7122950B2 (ja) * | 2018-12-11 | 2022-08-22 | 株式会社日立製作所 | 分析試料前処理装置、分析試料前処理方法、及び分析試料前処理システム |
AT521789B1 (de) | 2019-05-16 | 2020-07-15 | Felix Trampler Dr | Vorrichtung zur erzeugung eines stehenden ultraschallfeldes |
US20220233992A1 (en) * | 2019-06-28 | 2022-07-28 | Korea Institute Of Industrial Technology | Fine particle aggregation method and apparatus |
US11701658B2 (en) | 2019-08-09 | 2023-07-18 | President And Fellows Of Harvard College | Systems and methods for microfluidic particle selection, encapsulation, and injection using surface acoustic waves |
RU2718539C1 (ru) * | 2019-09-25 | 2020-04-08 | Сергей Алексеевич Бахарев | Способ безреагентной очистки сапонитсодержащей воды и уплотнения сапонитсодержащего осадка |
CN111874990A (zh) * | 2020-08-03 | 2020-11-03 | 江苏江大五棵松生物科技有限公司 | 一种短柱状逆流发散式超声波设备 |
CN112870854B (zh) * | 2021-01-18 | 2022-04-08 | 南京航空航天大学 | 一种驻波切换型声流微操控筛选装置及其工作方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR828204A (fr) * | 1936-10-24 | 1938-05-12 | Procédé pour le traitement de corps en fusion et de liquides de toute nature par les sons et les ultra-sons | |
CH294746A (de) * | 1950-02-25 | 1953-11-30 | Fruengel Frank Ing Dr | Vorrichtung zur Beschallung strömender Flüssigkeiten. |
DE836640C (de) * | 1950-04-27 | 1952-04-15 | Dr Gerhard Dickel | Verfahren zur Stofftrennung in fluessiger Phase |
GB713272A (en) * | 1951-03-09 | 1954-08-11 | Clevite Corp | Apparatus and method for removing particles from a liquid |
US4055491A (en) * | 1976-06-02 | 1977-10-25 | Porath Furedi Asher | Apparatus and method for removing fine particles from a liquid medium by ultrasonic waves |
SU701670A1 (ru) * | 1978-05-26 | 1979-12-05 | Каунасский Политехнический Институт Им.Антанаса Снечкуса | Устройство дл очистки жидкости |
GB2098498B (en) * | 1980-10-27 | 1984-08-22 | Secr Defence | Separating particles from fluid |
US4358373A (en) * | 1980-12-08 | 1982-11-09 | Rock Oil Corporation | Continuous apparatus for separating hydrocarbon from earth particles and sand |
EP0147032B1 (fr) * | 1983-10-31 | 1990-02-07 | National Research Development Corporation | Manipulation de particules |
GB8417240D0 (en) * | 1984-07-06 | 1984-08-08 | Unilever Plc | Particle separation |
DE3505161A1 (de) * | 1985-02-15 | 1986-08-21 | GCA Corp., Bedford, Mass. | Verfahren und vorrichtung zur elektrofusion mit hilfe von schallwellen |
US4983189A (en) * | 1986-02-21 | 1991-01-08 | Technical Research Associates, Inc. | Methods and apparatus for moving and separating materials exhibiting different physical properties |
GB8612759D0 (en) * | 1986-05-27 | 1986-07-02 | Unilever Plc | Manipulating particulate matter |
GB8612760D0 (en) * | 1986-05-27 | 1986-07-02 | Unilever Plc | Ultrasonic field generation |
US4883532A (en) * | 1986-10-27 | 1989-11-28 | Bodine Albert G | Sonic method for facilitating the extraction of minerals from ore in a leachant |
US4885098A (en) * | 1986-10-27 | 1989-12-05 | Bodine Albert G | Sonic method for facilitating the removal of solid particles from a slurry |
US4830758A (en) * | 1986-12-03 | 1989-05-16 | Bodine Albert G | Sonic method and apparatus for winning minerals from liquid carriers |
SU1426950A1 (ru) * | 1987-03-25 | 1988-09-30 | Институт Горного Дела Дальневосточного Научного Центра | Аппарат дл осветлени суспензий |
GB8724067D0 (en) * | 1987-10-14 | 1987-11-18 | Unilever Plc | Manipulating particles |
US4854170A (en) * | 1988-10-12 | 1989-08-08 | Separation Technology, Inc. | Apparatus and method for using ultrasound to determine hematocrit |
US4944886A (en) * | 1988-11-23 | 1990-07-31 | Masri Saad A | Method of sewage treatment |
-
1987
- 1987-05-19 AT AT0126987A patent/AT389235B/de not_active IP Right Cessation
-
1988
- 1988-05-17 AT AT88890124T patent/ATE68369T1/de not_active IP Right Cessation
- 1988-05-17 RU SU884742379A patent/RU2067079C1/ru active
- 1988-05-17 JP JP88504049A patent/JPH02503528A/ja active Pending
- 1988-05-17 ES ES198888890124T patent/ES2027423T3/es not_active Expired - Lifetime
- 1988-05-17 DE DE8888890124T patent/DE3865526D1/de not_active Expired - Lifetime
- 1988-05-17 EP EP88890124A patent/EP0292470B1/fr not_active Expired - Lifetime
- 1988-05-17 AU AU17262/88A patent/AU1726288A/en not_active Abandoned
- 1988-05-17 WO PCT/AT1988/000034 patent/WO1988009210A1/fr not_active Application Discontinuation
- 1988-05-17 CA CA000567015A patent/CA1320151C/fr not_active Expired - Fee Related
- 1988-05-17 EP EP88904175A patent/EP0362233A1/fr active Pending
- 1988-05-17 US US07/455,442 patent/US5164094A/en not_active Expired - Fee Related
- 1988-05-18 PL PL1988272541A patent/PL160668B1/pl unknown
- 1988-11-18 CN CN88109220A patent/CN1037463A/zh active Pending
-
1989
- 1989-01-18 NO NO890219A patent/NO171539C/no unknown
-
1991
- 1991-12-30 GR GR91402202T patent/GR3003471T3/el unknown
Non-Patent Citations (1)
Title |
---|
See references of WO8809210A1 * |
Also Published As
Publication number | Publication date |
---|---|
PL272541A1 (en) | 1989-03-20 |
CA1320151C (fr) | 1993-07-13 |
CN1037463A (zh) | 1989-11-29 |
AT389235B (de) | 1989-11-10 |
NO171539B (no) | 1992-12-21 |
NO890219L (no) | 1989-01-18 |
JPH02503528A (ja) | 1990-10-25 |
US5164094A (en) | 1992-11-17 |
ATA126987A (de) | 1989-04-15 |
DE3865526D1 (de) | 1991-11-21 |
NO171539C (no) | 1993-03-31 |
ES2027423T3 (es) | 1992-06-01 |
WO1988009210A1 (fr) | 1988-12-01 |
EP0292470A1 (fr) | 1988-11-23 |
ATE68369T1 (de) | 1991-11-15 |
NO890219D0 (no) | 1989-01-18 |
GR3003471T3 (en) | 1993-02-17 |
PL160668B1 (pl) | 1993-04-30 |
EP0292470B1 (fr) | 1991-10-16 |
AU1726288A (en) | 1988-12-21 |
RU2067079C1 (ru) | 1996-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0362233A1 (fr) | Procede et dispositif de separation de substances contenues dans un liquide | |
AT390739B (de) | Verfahren und einrichtung zur separation von teilchen, welche in einem dispersionsmittel dispergiert sind | |
US10870593B2 (en) | Method for preventing scale deposits and removing contaminants from fluid columns | |
DE60014391T2 (de) | Beeinflussung von partikeln in flüssigen medien | |
EP3253472B1 (fr) | Procédé et dispositif de separation de matières de liquides par agglomeration au moyen d'ultrasons et par sédimentation | |
DE69420339T2 (de) | Verfahren zur Behandlung einer Flüssigkeit | |
US9718708B2 (en) | Acoustophoretic enhanced system for use in tanks | |
US9352336B2 (en) | Method and apparatus for treating fluid columns | |
DE102006037638A1 (de) | Verfahren und Vorrichtung zum Sieben, Klassieren, Filtern oder Sortieren trockener fester Stoffe oder fester Stoffe in Flüssigkeiten | |
EP0927579A2 (fr) | Procédé et dispositif pour extraire des solides d' un mélange solide- liquide | |
DE2331242A1 (de) | Kontinuierlich arbeitende emulsionstrennanlage mit vollstaendiger schlammaufbereitung | |
RU2745993C1 (ru) | Способ комбинированного обезвоживания стойких водонефтяных эмульсий | |
AT162580B (de) | Verfahren zum Abscheiden von Schwebeteilchen aus Gasen oder Flüssigkeiten mit Hilfe von stehenden Schallwellen | |
WO2015135764A1 (fr) | Dispositif et procédé de traitement d'un liquide contenant des gouttelettes d'huile | |
DE69315639T2 (de) | Verfahren zur reinigung einer nicht elektrisch leitenden flüssigkeit | |
CH200053A (de) | Verfahren zur Behandlung von flüssigen dispersen Systemen durch Einwirkung von Schall- und Ultraschallwellen. | |
CH223105A (de) | Einrichtung, bei welcher eine Flüssigkeit in Schall- oder Ultraschallschwingungen versetzt wird. | |
DE2039021A1 (de) | Zentrifuge zum Trennen von inhomogenen fluessigen Stoffgemischen | |
CH526981A (de) | Verfahren zum Filtrieren von Flüssigkeit und Einrichtung zur Durchführung des Verfahrens | |
KR20120113040A (ko) | 에멜젼 재생 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 19891117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
XX | Miscellaneous (additional remarks) |
Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 88890124.6/0292470 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 18.07.90. |