JP5688451B2 - 音響的に駆動されるナノ粒子コンセントレータ - Google Patents

音響的に駆動されるナノ粒子コンセントレータ Download PDF

Info

Publication number
JP5688451B2
JP5688451B2 JP2013513141A JP2013513141A JP5688451B2 JP 5688451 B2 JP5688451 B2 JP 5688451B2 JP 2013513141 A JP2013513141 A JP 2013513141A JP 2013513141 A JP2013513141 A JP 2013513141A JP 5688451 B2 JP5688451 B2 JP 5688451B2
Authority
JP
Japan
Prior art keywords
fluid cavity
particles
acoustic
particle
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013513141A
Other languages
English (en)
Other versions
JP2013533107A (ja
Inventor
チェン,スンーウェイ
ボム,エドゥアルド
ロス ガーランド ラニオン,サミュエル
ロス ガーランド ラニオン,サミュエル
エリオット,スチュアート
オールマン,リチャード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Empire Technology Development LLC
Original Assignee
Empire Technology Development LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Empire Technology Development LLC filed Critical Empire Technology Development LLC
Publication of JP2013533107A publication Critical patent/JP2013533107A/ja
Application granted granted Critical
Publication of JP5688451B2 publication Critical patent/JP5688451B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • B01D21/283Settling tanks provided with vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D43/00Separating particles from liquids, or liquids from solids, otherwise than by sedimentation or filtration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

以下の説明は読者の理解を助けるために提供される。提供される情報または引用される文献は従来技術とは認められない。
人工および天然由来のおよそ数百ナノメートルまたはそれ以下のナノ粒子物質は、近代製造業、一般消費者向け電子製品の普及および医療用途において大幅に増加している。従来、粒子は物理的フィルタリングシステムを使用して流体から除去される。たとえば、暖房換気および空調(HVAC)システムでは、ファイバーグラスまたはスパンボンドフィルタ、帯電板または流体の流れの中に置いたセラミックビーズを使用して、粒子を除去することができる。液体の流体では、さまざまな機械的フィルタを使用して粒子を液体から除去することができる。しかし、物理的フィルタリングシステムは流体の流れを制限し、流体を動かすための高いエネルギーコストおよび頻繁な保守が必要となる。さらに、物理的フィルタリングシステムは塞がり易いことがある。
液相の流体で効率的に粒子を集中させるために、音響エネルギー、特に超音波エネルギーの使用が注目されている。流体における超音波エネルギーの概念は、フローサイトメトリー、マイクロ流体工学および他の液相用途に適用することができる。超音波エネルギーは、およそ数ミリメートルの液体で満たされたキャビティを使用して、細胞などのミクロンサイズの生物学的分子を分離するために使用することができる。
例示的な装置は、流体キャビティの少なくとも一部分に音響的に関連付けられるように構成された音響振動子を含む。流体キャビティは共振器として構成される。音響振動子は、流体キャビティの少なくとも一部分に音波を形成するように構成されている。音波は流体キャビティ内の位置で少なくとも1つの粒子の濃度を増加させるように選択される。
例示的な方法は、流体キャビティの少なくとも一部分に音波を形成することを含む。流体キャビティは共振器として構成される。音波は、流体キャビティ内の位置で流体キャビティ内の少なくとも1つの粒子を集中させるように選択される。音波は流体キャビティの少なくとも一部分で共振する。
上記の概要は例示的なものにすぎず、どのようにも限定するものではない。上記の例示的な態様、実施形態および特徴に加えて、他の態様、実施形態および特徴が、以下の図面および詳細な説明を参照することによって明らかになるであろう。
本開示の前述および他の特徴は、添付の図面と併せて、以下の説明および添付の特許請求の範囲を読めば、より十分に明らかになるであろう。これらの図面は本開示によるいくつかの実施形態を示しているにすぎず、したがってその範囲を制限すると見なされるべきではないことを理解した上で、本開示は、添付の図面の使用を通して追加の専門性および詳細とともに説明される。
例示的な実施形態による音響粒子コンセントレータの概略的な前面図である。 例示的な実施形態による、図1の音響粒子コンセントレータの概略的な側面図である。 例示的な実施形態による、円形断面を有する音響粒子コンセントレータの概略的な側面図である。 例示的な実施形態による、インピーダンス材料を含む音響粒子コンセントレータの概略的な前面図である。 例示的な実施形態による、図4のインピーダンス材料を含む音響粒子コンセントレータの概略的な側面図である。 例示的な実施形態による、円形断面を有するインピーダンス材料を含む音響粒子コンセントレータの概略的な側面図である。 例示的な実施形態による、音響粒子コンセントレータシステムの概略的な前面図である。 例示的な実施形態に従って音響的に粒子を集中させるように実施されるオペレーションを示すフロー図である。
以下の詳細な説明では、本明細書の一部を形成する添付の図面を参照する。図面では、別段の記載がない限り、同様の記号は一般に同様の構成部品を示す。詳細な説明、図面および特許請求の範囲で説明される例示的な実施形態は、制限的な意味を有するものではない。本明細書に示された主題の趣旨または範囲から逸脱することなく、他の実施形態を使用することもでき、他の変更を行うこともできる。本明細書で一般に説明され、図において例示される本開示の態様は、多種多様な異なる構成に配置し、置換し、組み合わせ、設計することができ、それらはすべて明示的に企図され、本開示の一部を形成することができることが容易に理解されよう。
本明細書には、音響粒子コンセントレータのための例示的なシステム、方法、コンピュータ読取可能な媒体などが記載される。たとえば、流体キャビティなどの多層共振構造によって、4分の1波長共振モードの音波が生成され、流れ構造においてナノ粒子汚染物質を集中させるために使用される。音波は、流体キャビティに取り付けられた音響振動子によって生成することができる。これらの音波は広い範囲、特に可聴範囲の周波数で動作する。ナノ粒子は流れにおいて収集され、分析、改善、分離または他の使用のために転用することができる。可聴および近可聴音響信号を使用して、たとえば標準的な排気ダクト内で、共振を音響的に駆動することができる。
図1を参照すると、例示的な実施形態による音響粒子コンセントレータ100の概略的な前面図が示されている。音響粒子コンセントレータ100は、流体キャビティ110および音響振動子120を含む。流体キャビティ110は、限定はされないが気体などの流体を少なくとも部分的または完全に含む、どのような筐体または筐体の一部とすることもできる。流体は、加えられたせん断応力のもとで連続的に変形する(流れる)物質である。流体は、液体、気体、または液体と気体を合わせたものとすることができる。液体の例は水、グリコール、油などである。気体の例は空気、窒素、蒸気などである。流体は、液相または気相の状態にあるどのような温度、圧力、または密度のものとすることもできる。
流体キャビティ110は、たとえば、ダクト、パイプ、専用の気体室、筐体またはサイクロンとすることができる。たとえば、流体キャビティ110は、HVACダクトとすることができる。流体キャビティ110は、金属、プラスチックまたは繊維をもとにした材料から作製することができる。たとえば、流体キャビティ110は、鋼材、亜鉛めっき鋼、ステンレス鋼、アルミニウム、チタンまたは他のどのような金属から作製することもできる。あるいは、流体キャビティ110は、ポリ塩化ビニル(PVC)、アクリロニトリルブタジエンスチレン(ABS)、ポリカーボネートまたは他のどのようなプラスチックから作製することもできる。流体キャビティ110は、数平方センチメートルより大きい断面を有することができる。たとえば、流体キャビティ110は、約45平方センチメートルの断面を有する3インチダクトとすることができる。流体キャビティ110は、45平方センチメートルの断面を有する3インチ円形ダクトとすることができる。流体キャビティ110は、約33300平方センチメートルの断面を有する6フィート×6フィートの矩形ダクトとすることができる。あるいは、流体キャビティ110は、約0.4平方センチメートルの断面を有する0.25インチ円形ダクトとすることもできる。流体キャビティ110は、どのような形状およびサイズとすることもできる。例示的な実施形態では、流体キャビティ110は約25平方センチメートルから約900平方センチメートルの断面を有する。
音響振動子120は、音波を生成するデバイスとすることができる。たとえば、音響振動子120は、スピーカ、ラウドスピーカ、磁気誘導装置、圧電スピーカまたは他のどのような音生成デバイスとすることもできる。音響振動子120は、流体キャビティ110の少なくとも一部分130に音響的に関連付けられている。音響的に関連付けられたとは、第1の物体および第2の物体が、第1の物体から、第2の物体までおよび/または第2の物体を通って、最小限の減衰(たとえば、約50%未満)で、音波(すなわち音響エネルギー)を伝達することができるように構成されていることを示している。流体キャビティ110の一部分130は、流体キャビティ110の区画とすることができる。流体キャビティ110の一部分130は、流体キャビティ110の長さに関連付けられた上面、底面、第1の側面および第2の側面を含むことができる。たとえば、数百フィートの9”×16”配管を含むダクトシステムでは、流体キャビティ110の一部分130は、配管の3フィート区画とすることができる。
1つの例示的な実施形態では、音響振動子120は、音響振動子120によって生成された音が流体キャビティ110の一部分130の内側に伝達されるように、流体キャビティ110の一部分130に直接取り付けられている。別の例示的な実施形態では、流体キャビティ110の一部分130自体が音響振動子120の一部である。たとえば、圧電物質が暖房ダクトに取り付けられているとき、暖房ダクトの材料は音響振動子のダイヤフラムとして作用する。あるいは、音響振動子は流体キャビティ内に組み込むこともできる。
音響振動子120は、単一の音響周波数または複数の音響周波数を連続して、または同時に生成することができる。周波数は、以下でより詳細に説明するように、特定の粒子に影響を与えるように選択することができる。音響振動子120はまた、音楽を生成することもできる。音楽は、特定の出力レベルで特定の周波数を含むように選択することができる。たとえば、周波数は0Hz〜60kHzの範囲内とすることができ、出力レベルは、0デシベル〜200デシベルの範囲内とすることができる。
1つまたは複数の音響振動子を、流体キャビティ110の一部分130に沿って置くことができる。たとえば、音響振動子を、矩形ダクトのそれぞれの側面に置くことができる。別の例では、音響振動子を、円形ダクトの外面の周りに置くことができる。それぞれの音響振動子は、異なる周波数範囲または同じ周波数範囲もしくはそれらの組み合わせで設計することができる。別の例示的な実施形態では、流体キャビティ110全体を1つまたは複数の音響振動子に音響的に関連付けることができる。
流体キャビティ110の一部分130は共振器として構成することができる。1つの例示的な実施形態では、流体キャビティ110の一部分130は4分の1波長共振器とすることができる。流体キャビティ110の一部分130の第1の側面140および流体キャビティ110の一部分130の第2の側面150は、4分の1波長(λ/4)互いに離間して置かれている。音響振動子120は第1の側面140上に置かれている。したがって、音響振動子120が波長λの音波を形成するとき、4分の1波長の定在波160が流体キャビティ110の一部分130内に形成される。4分の1波長の定在波160は、第1の側面140の波節162および第2の側面150の波腹166を含む。波節162では音響力は最小であり、波腹166では音響力は最大である。
別の例示的な実施形態では、流体キャビティ110の一部分130は2分の1波長共振器とすることができる。流体キャビティ110の一部分130の第1の側面140および流体キャビティ110の一部分130の第2の側面150は、2分の1波長(λ/2)互いに離間して置かれている。例示された実施形態では、音響振動子120は第1の側面140上に置かれている。したがって、音響振動子120が波長λの音波を形成するとき、2分の1波長の定在波170が流体キャビティ110の一部分130内に形成される。2分の1波長の定在波170は、第1の側面140および第2の側面150の波節(172、174)および第1の側面140と第2の側面150との中間の波腹176を含む。波節(172、174)では音響力は最小であり、波腹176では音響力は最大である。
あるいは、流体キャビティ110の一部分130は、他の分数の定在波を形成することができるように、構成することができる。流体キャビティ110の一部分130は、流体キャビティ110の一部分130のさまざまな領域が異なる波長に基づいた定在波を生成することができるように、設計することができる。さらに、流体キャビティ110の一部分130は、二次元定在波を生成するように構成することができる。たとえば、二次元定在波は、各次元に振動子を使用して、一方の次元に振動子および他方の次元に反射器を使用して、または三次元であり進行波シーケンスが共振構造に合わせて二次元または三次元定在波を生成するように設計されている一時的音響励起を使用して、生成することができる。振動子を制御するように適合されたコンピュータを使用して、二次元および三次元定在波を生成し、制御することもできる。
流体キャビティ110は、流体180を方向付けすること、閉じ込めること、または含むことができる。流体180は、たとえば気体または液体とすることができる。流体180は、流体180内に分散した材料を加熱し、冷却し、または移動するためのものとすることができる。1つの例示的な実施形態では、気体は周囲空気、暖房空気、空調空気、加湿空気または冷房空気とすることができる。別の例示的な実施形態では、気体は、工業用ガス、医療用ガスまたは精製された窒素、酸素、アルゴンまたは二酸化炭素などの特殊な気体とすることができる。1つの例示的な実施形態では、液体は、冷却液、加熱液もしくは水、グリコールまたはアンモニアなどの材料を移動するための液体とすることができる。
流体180は粒子185を含む。粒子185は、さまざまなサイズ、形状、重量、密度および材料の粒子を含むことができる。たとえば、粒子185は、限定はされないが、ナノ粒子、塵、細菌、微生物、ウイルス、胞子、分子または高分子を含むことができる。粒子185はどのようなサイズとすることもできるが、一般的に直径約0.01〜10ミクロンである。粒子185はまた、直径約10〜25ミクロン、または直径約25〜50ミクロンとすることもできる。粒子の例は、塵、埃および飛散灰を含むことができる。ナノ粒子は、直径約0.1〜0.5ミクロンのあらゆる粒子と見なすことができる。ナノ粒子はまた、直径約0.5〜1ミクロン、または直径約1〜5ミクロンのあらゆる粒子を含むこともできる。ナノ粒子の例は、塵、埃、ナノテクノロジー製造プロセスからの廃棄物、廃棄物として生成された粒子、または化学反応による生成物、化学物質、他の空中汚染物質を含むことができる。1つの例示的な実施形態では、流体180は、矢印190の方向に沿って流れる。
音響振動子120が起動されると、音波が生成される。音響振動子120はスイッチ、検出器によって手動で、または自動制御システムによって起動することができる。音波は、粒子185を第2の側面150に向かって移動させることができる。したがって、矢印195によって表される音響力が生成される。音波は、流体キャビティ110内の位置で粒子185の濃度を増加させるように選択される。流体キャビティ110の一部分130が4分の1波長共振器であるとき、流体キャビティ110内の位置は第2の側面150の波腹166である。4分の1波長は、室の上面付近または上面に最大エネルギーの波節を形成するので、音波エネルギーは、流れの上面へと差動的にナノ粒子を駆動する。流体キャビティ110の一部分130が2分の1波長共振器であるとき、流体キャビティ110内の位置は流体キャビティ110の中間の波腹176である。2分の1波長共振が可能な共振構造を使用することによって、流体キャビティの中間位置に粒子を集めることができる。したがって、さまざまな粒子収集位置のためのさまざまな粒子収集構成が可能である。
気体中の粒子にかかる音響力(Fac)は粒子半径の3乗に比例し、次の式で表される:
Figure 0005688451


式中、Rは粒子半径、ρは粒子密度、Φは音響コントラスト、kは波長数、εは時間平均した音波のエネルギー密度、u(x)は音響速度場、p(x)は圧力場、cは粒子の音速、cは流体の音速、ρは流体の密度である。
1つの例示的な実施形態では、ナノ粒子の半径(たとえば、半径約10nm)は、気体分子の半径(たとえば、約100オングストローム)と約2桁異なる。流れ中の粒子によってかかる力はその半径の3乗に比例して異なるため、これはナノ粒子が気体分子に対して、10以上の差動的な力を受けることを示唆している。したがって、比較的大きいナノ粒子を気体から効果的に分離することができる。音響粒子コンセントレータは、限定はされないが、周囲空気、暖房空気、空調空気、加湿空気、冷房空気、工業用ガス、医療用ガスもしくは精製された窒素、酸素、アルゴンまたは二酸化炭素などの特殊な気体を含む、ほぼあらゆる担体気体で動作することができる。気体およびナノ粒子の半径は一般に少なくとも1桁異なり、十分な差動的な力が可能である。音波の音響力は手動で選択することができる。実際には、最適な音響力は、流体キャビティの一部分、粒子濃度などの共振の効率に依存しうる。音波の音響力は、たとえば0dB(1mW)〜160dB(10,000W)の範囲とすることができる。
有利には、粒子を簡単に除去し、または方向を変えることができ、それにより主要な流体の流れを浄化する。たとえば、上記の波節または波腹に対応する収集位置へと、粒子を方向転換することができる。収集位置では、粒子を別のダクトへと方向転換し、または濾過することができる。有利には、音響粒子コンセントレータは主要な流体の流れに対して邪魔にならない。
図2を参照すると、例示的な実施形態による図1の音響粒子コンセントレータ100の概略的な側面図が示されている。音響粒子コンセントレータ100は、上記のように流体キャビティ110および音響振動子120を含む。流体キャビティ110の断面は長方形とすることができるが、他のどのような形状も可能である。流体キャビティ110は、第1の側面140、第2の側面150、第3の側面142および第4の側面147によって画成することができる。第1の側面140は第2の側面150の反対側とすることができる。
図3を参照すると、別の例示的な実施形態による円形断面を有する音響粒子コンセントレータの概略的な側面図が示されている。円形断面を有する音響粒子コンセントレータは、上記のように流体キャビティ310および音響振動子320を含む。流体キャビティ310の断面は円形とすることができるが、他のどのような形状も可能である。流体キャビティ310は、第1の側面340および第2の側面350によって画成することができる。
図4を参照すると、さらに別の例示的な実施形態によるインピーダンス材料を含む音響粒子コンセントレータ400の概略的な前面図が示されている。インピーダンス材料を含む音響粒子コンセントレータ400は、流体キャビティ410および音響振動子420を含む。流体キャビティ410は上記のように、ダクト、パイプ、筐体またはサイクロンとすることができる。
音響振動子420は、スピーカ、ラウドスピーカ、磁気誘導装置、圧電スピーカまたは他のどのような音生成デバイスとすることもできる。音響振動子420は、流体キャビティ430の一部分に音響的に関連付けられる。1つの例示的な実施形態では、音響振動子420は、音響振動子420によって生成された音が流体キャビティ410の一部分430の内側に伝達されるように、流体キャビティ410に直接取り付けられている。音響振動子420は、ねじ、リベット、ストラップ、接着剤または他のあらゆる種類の締結具を使用して、流体キャビティ410の一部分430に取り付けることができる。別の例示的な実施形態では、流体キャビティ410の一部分430自体が音響振動子420の一部である。たとえば、圧電素子が暖房ダクトに取り付けられているとき、暖房ダクトの材料は音響振動子のダイヤフラムとして作用する。あるいは、音響振動子は流体キャビティ内に組み込むこともできる。
音響振動子420は、単一の音響周波数または複数の音響周波数を連続して、または同時に生成することができる。音響振動子420はまた、音楽を生成することもできる。音楽は、以下でより詳細に説明するように、特定の出力レベルで特定の周波数を含むように選択することができる。
1つまたは複数の音響振動子を、流体キャビティ410の少なくとも一部分430に沿って置くことができる。たとえば、音響振動子を、矩形ダクトのそれぞれの側面に置くことができる。別の例では、音響振動子を、円形ダクトの外面の周りに置くことができる。それぞれの音響振動子は、異なる周波数範囲で設計することができる。別の例示的な実施形態では、流体キャビティ410全体を音響振動子に音響的に関連付けることができる。
流体キャビティ410の一部分430は共振器として構成することができる。1つの例示的な実施形態では、流体キャビティ410の一部分430は4分の1波長共振器とすることができる。流体キャビティ410の一部分430の第1の側面440および流体キャビティ410の一部分430の第2の側面450は、4分の1波長(λ/4)互いに離間して置かれている。音響振動子420は第1の側面440上に置かれている。したがって、音響振動子420が波長λの音波を形成するとき、4分の1波長の定在波460が流体キャビティ410の一部分430内に形成される。4分の1波長の定在波460は、第1の側面440の波節462および第2の側面450の波腹466を含む。波節462では音響力は最小であり、波腹466では音響力は最大である。
別の例示的な実施形態では、流体キャビティ410の一部分430は2分の1波長共振器とすることができる。流体キャビティ410の一部分430の第1の側面440および流体キャビティ410の一部分430の第2の側面450は、2分の1波長(λ/2)互いに離間して置かれている。音響振動子420は第1の側面440上に置かれている。したがって、音響振動子420が波長λの音波を形成するとき、2分の1波長の定在波470が流体キャビティ410の一部分430内に形成される。2分の1波長の定在波470は、第1の側面440および第2の側面450の波節(472、474)および第1の側面440と第2の側面450との中間の波腹476を含む。波節(472、474)では音響力は最小であり、波腹476では音響力は最大である。
あるいは、流体キャビティ410の一部分430は、他の分数の定在波を形成することができるように、構成することができる。流体キャビティ410の一部分430は、流体キャビティ410の一部分430のさまざまな領域が異なる波長に基づいた定在波を生成することができるように、設計することができる。さらに、流体キャビティ410の一部分430は、二次元定在波を生成するように構成することができる。
さらに、流体キャビティ410の一部分430は、音響振動子420によって生成される音波の生成および効果が増加するように選択される音響インピーダンス材料を含むことができる。材料の音響インピーダンスは、音が材料を通って移動する速度および材料によって吸収される音響エネルギーの量によって決定される。たとえば、発泡体は、音が発泡体を通って移動しにくく、発泡体が音響エネルギーを吸収するので、高い音響インピーダンスを有する。反対に、金属は、音が金属を通って移動しやすく、金属が音響エネルギーを伝達しやすい傾向にあるので、低い音響インピーダンスを有する。
第1の側面440はインピーダンスマッチング材料412を含むことができる。インピーダンスマッチング材料412は、音響振動子420によって生成される音波を、最小限の減衰で流体キャビティ410の一部分430を通過させることができる。インピーダンスマッチング材料412は、亜鉛めっき金属板など、金属または最小限の減衰で音波を伝達する他のどのような材料とすることもできる。1つの例示的な実施形態では、流体キャビティ410自体を、インピーダンスマッチング材料で作製することができる。別の例示的な実施形態では、インピーダンスマッチング材料は高音速、すなわち毎秒343メートル超を有することができる。
第2の側面450は反射材料416を含むことができる。反射材料416は、音響振動子420によって生成される音波を、第2の側面450から再び流体キャビティ430へと反射させることができ、それにより定在波を促す。反射材料416はどのような材料とすることもできる。たとえば、以下で説明するように扱いやすい厚さになるコルク、合成ゴムまたはブナゴムなどの材料とすることができる。反射材料416は低音速、すなわち毎秒343メートル未満を有することができる。第2の側面450に対する反射材料416の厚さは、以下でより詳細に説明するように、選択された音波の波長に基づいて選択される。
音響振動子420が音波を形成するとき、音波は、インピーダンスマッチング材料412の第1の側面440を通って流体キャビティ430内へと移動する。音波は流体キャビティ410の一部分430を通って移動する。音波が第2の側面450に到達すると、反射材料416は音波を再び第1の側面440に向かって反射し、それにより流体キャビティ410の一部分430に定在波を生成する。
流体キャビティ410は、流体480を方向付けること、閉じ込めること、または含むことができる。流体480は、たとえば気体または液体とすることができる。1つの例示的な実施形態では、気体は周囲空気である。流体480は粒子485を含む。粒子485は、さまざまなサイズ、形状、重量、密度および材料の粒子を含むことができる。たとえば、粒子485は、ナノ粒子、塵、細菌、微生物、ウイルス、胞子、分子または高分子を含むことができる。粒子485はどのようなサイズとすることもできるが、一般的に直径約0.01〜10ミクロンである。粒子485はまた、直径約10〜25ミクロン、または直径約25〜50ミクロンとすることもできる。粒子の例は、塵、埃および飛散灰を含むことができる。ナノ粒子は、直径約0.1〜0.5ミクロンのあらゆる粒子と見なすことができる。ナノ粒子はまた、直径約0.5〜1ミクロン、または直径約1〜5ミクロンのあらゆる粒子を含むこともできる。ナノ粒子の例は、塵、埃、ナノテクノロジー製造プロセスからの廃棄物を含むことができる。1つの例示的な実施形態では、流体480は、矢印490の方向に沿って流れる。
音響振動子420が起動されると、音波が生成される。音響振動子420はスイッチ、検出器によって手動で、または自動制御システムによって起動することができる。音波は、粒子485を第2の側面に向かって移動させることができる。したがって、矢印495によって表される音響力が生成される。音波は、流体キャビティ410内の位置で粒子485の濃度を増加させるように選択される。流体キャビティ410の一部分430が4分の1波長共振器であるとき、流体キャビティ410内の位置は第2の側面450の波腹466である。4分の1波長は、室の上面付近または上面に最大エネルギーの波節を形成するので、音波エネルギーは、流れの上面へと差動的にナノ粒子を駆動する。流体キャビティ410の一部分430が2分の1波長共振器であるとき、流体キャビティ410内の位置は流体キャビティ410の中間の波腹476である。2分の1波長共振が可能な共振構造を使用することによって、流体キャビティの中間位置に粒子を集めることができる。
図5を参照すると、例示的な実施形態による図4のインピーダンス材料を含む音響粒子コンセントレータ400の概略的な側面図が示されている。インピーダンス材料を含む音響粒子コンセントレータ400は、上記のように流体キャビティ410および音響振動子420を含む。流体キャビティ410の断面は長方形とすることができるが、他のどのような形状も可能である。流体キャビティ410は、第1の側面440、第2の側面450、第3の側面442および第4の側面447によって画成することができる。第1の側面440は第2の側面450の反対側とすることができる。第1の側面440はインピーダンスマッチング材料412を含む。第2の側面450は反射材料416を含む。
図6を参照すると、別の例示的な実施形態による円形断面を有するインピーダンス材料を含む音響粒子コンセントレータの概略的な側面図が示されている。円形断面を有する音響粒子コンセントレータは、上記のように流体キャビティ610および音響振動子620を含む。流体キャビティ610の断面は円形とすることができるが、他のどのような形状も可能である。流体キャビティ610は、第1の側面640、第2の側面650によって画成することができる。第1の側面640はインピーダンスマッチング材料612を含む。第2の側面650は反射材料616を含む。
インピーダンス材料を含む音響粒子コンセントレータは、4分の1波長の流体キャビティおよび(反射器材料内での波の伝播の適正な速度に合わせた縮尺にした)2分の1波長の反射器材料の厚さを有することができ、次の式で表される:
Figure 0005688451

式中、cは反射器内の音の速度、cは気体中の音の速度、fは音波の周波数、tは反射器の厚さ、tは流体キャビティの距離である。
たとえば、高さ10cmの換気ダクトがあると仮定する。共振構造は、ダクトの周りに設置し、音響振動子、インピーダンスマッチング材料(ダクトの鋼材)、流体キャビティ(ダクトの内部)、およびダクトの音響振動子の反対側に取り付けられた反射材料(コルク)から構成することができる。この場合、換気ダクトは流体キャビティの代わりであり、波長40cmおよび周波数858Hzを示唆し、次の式で表される:
Figure 0005688451

式中、υは4分の1波長周波数、vは流体キャビティ内の媒体における音速、λは4分の1波長に関連付けられた波長である。
効果的な反射器材料は、反射器の厚さを最小限にするように、流体キャビティ内の流体(この場合は、空気)に近い、またはそれより低い音速を有する。コルクおよびゴムの音速は150m/s〜400m/sの範囲である。速度300m/sの音速を有するコルクを使用すると、コルクから作製された反射器の厚さは次の通りである:
Figure 0005688451

対照的に、(約6,000m/sの音速を有する)鋼材などの材料を使用すると、反射器の厚さは約20倍増加し、反射器がおよそ数メートルの厚さになる。
この例では、ダクト自体がインピーダンスマッチング材料として作用し(多くの場合、インピーダンスマッチング媒体を流体キャビティに含むこともできる)、858Hzは可聴範囲内であるので、簡易ラウドスピーカを使用することができる。音響エネルギーの伝達は、構成部品を固く結合することによって最適化することができる。たとえば、音響エネルギーが流体キャビティに伝達されるように、音響振動子を流体キャビティにしっかりと固定することができる。この場合、ナノ粒子が、4分の1波長共振によって換気の流れの上面へと駆動され、収集または下流への方向転換をすることができる。たとえば、音響振動子の下流で換気の流れの上面にフィルタを置くことができる。換気の流れの上面でナノ粒子が集まると、ナノ粒子はフィルタによって換気の流れからすくい取られる。
858Hzでは、音波の選択された周波数は、Aフラット/Gシャープの音に非常に近い。したがって、Aフラット/Gシャープの音の音楽を使用して、音響振動子を駆動することができる。たとえば、ピンクフロイドの1987年のアルバム「A Momentary Lapse of Reason」の3番目の曲「Dogs of War」には、Aフラット/Gシャープの音が非常に多いので、「Dogs of War」によって流体キャビティの一部分に共振を駆動することができる。同様に、他の曲を使用することもできる。したがって、音楽が建物配管を通して流される場合、音響粒子コンセントレータを建物の音楽システムの一部として使用することができる。
図7を参照すると、例示的な実施形態による音響粒子コンセントレータシステム700の概略的な前面図が示されている。音響粒子コンセントレータシステム700は、流体キャビティ710および音響振動子720を含む。音響振動子720は流体キャビティ730の一部分に音響的に関連付けられている。流体キャビティ710は、第1の側面740および第2の側面750によって画成することができる。第1の側面740はインピーダンスマッチング材料712を含む。第2の側面750は反射材料716を含む。インピーダンスマッチング材料712および反射材料716は、流体キャビティ730の一部分または流体キャビティ710全体に沿って置くことができる。
流体キャビティ710は、流体780を方向付けること、閉じ込めること、または含むことができる。流体780は、たとえば気体または液体とすることができる。1つの例示的な実施形態では、気体は周囲空気である。流体780は粒子785を含む。粒子785は、さまざまなサイズ、形状、重量、密度および材料の粒子を含むことができる。たとえば、粒子785は、ナノ粒子、塵、細菌、微生物、ウイルス、胞子、分子または高分子を含むことができる。粒子785はどのようなサイズとすることもできるが、一般的に直径約0.01〜10ミクロンである。粒子785はまた、直径約10〜25ミクロン、または直径約25〜50ミクロンとすることもできる。粒子の例は、塵、埃および飛散灰を含むことができる。ナノ粒子は、直径約0.1〜0.5ミクロンのあらゆる粒子と見なすことができる。ナノ粒子はまた、直径約0.5〜1ミクロン、または直径約1〜5ミクロンのあらゆる粒子を含むこともできる。ナノ粒子の例は、塵、埃、ナノテクノロジー製造プロセスからの廃棄物を含むことができる。1つの例示的な実施形態では、流体780は、矢印790の方向に沿って流れることができる。
1つの例示的な実施形態では、流体キャビティ730の一部分は、上記のように4分の1波長共振器として構成することができる。収集器798を、4分の1波長共振器の波腹の位置に置くことができる。たとえば、収集器798は、流体キャビティ730の一部分の第2の側面750上に置くことができる。収集器798は、粒子785を捕捉し、濾過し、濃縮し、移動し、方向転換し、および/または除去することができる。たとえば、収集器798は、流体の流れの一部分を除去することによって粒子785を方向転換する第2の流体キャビティまたはダクトとすることができる。収集器798は、集められた粒子785を選び取ることができるように配置することができ、すなわち、収集器798は粒子の流れの中に配置することができる。収集器798はまた、フィルタを含むこともでき、任意で、収集器798へと方向転換された流体を、流体キャビティ710内の流体780と後で再混合することもできる。あるいは、音波は、粒子を流体キャビティ710の側面に沿って置かれた開口へと向かわせる(すなわち、押す)ことができる。あるいは、複数の収集器を、流体キャビティ730の一部分の内部のさまざまな位置または段に配置することができる。それぞれの収集器は、異なる種類、サイズおよび/または密度の粒子を収集するように構成することができる。
音響振動子720が起動されると、音波が生成される。音波は粒子785を、収集器798を置くことができる第2の側面750に向かって移動させることができる。したがって、矢印795によって表される音響力が生成される。音波は、粒子785を収集器798に向かって移動させることによって、収集器798の位置で粒子785の濃度を増加させるように選択される。
音響粒子コンセントレータシステム700は、任意で、第1のセンサー791、第2のセンサー792および制御装置793の1つまたは複数も含む。第1のセンサー791および第2のセンサー792は、流体780内の粒子785の濃度を測定することができる。流体キャビティ730の一部分に流入する流体780内の粒子785の濃度を測定するために、流体キャビティ730の一部分の吸気口に第1のセンサー791を置くことができる。粒子分離の効果を判断することができるように、流体キャビティ730の一部分から流出する流体780内の粒子785の濃度を測定するために、流体キャビティ730の一部分の排気口に第2のセンサー792を置くことができる。第1のセンサー791および第2のセンサー792は、たとえば、熱泳動式のセンサーとすることができるが、他の粒子濃度センサーを使用することもできる。さらに、粒子785および流体780の温度、速度およびタイプを判断するために、他のセンサーを使用することもできる。他のセンサーの例には、限定はされないが、ピトー管、温度計および分光計、反射検出器、散乱検出器、化学検出器、電気検出器、磁気検出器および/または核センサーを含む。電気化学的反応、インピーダンス法、核磁気共鳴(NMR)、シンチレーション検出などによって、検出を判断することができる。
第1のセンサー791および第2のセンサー792は、制御装置793と通信可能に接続されている。制御装置793は音響粒子コンセントレータシステム700の動作を制御する。特に、制御装置793は音響振動子720を駆動する。制御装置793は、回路、プログラム可能な論理コンピュータ、デスクトップコンピュータ、ラップトップコンピュータまたは当業者には既知の他のタイプの演算デバイスとすることができる。制御装置793は、粒子分析器ソフトウェア721、音声発生器および増幅器722、周波数選択器ソフトウェア723、プロセッサ724、メモリ725、ディスプレイ726およびユーザインターフェース727の1つまたは複数を含む。代替実施形態では、制御装置793は、より少ない、追加の、および/または異なる構成部品を含むことができる。当業者にとって既知のあらゆるタイプの固定または着脱可能コンピュータメモリとすることができるメモリ725は、コンピュータ読取可能な記憶媒体とすることができる。メモリ725は、粒子分析器ソフトウェア721、周波数選択器ソフトウェア723、粒子分析器ソフトウェア721を実行するように構成されたアプリケーション、周波数選択器ソフトウェア723を実行するように構成されたアプリケーション、第1のセンサー791および第2のセンサー792から得られたデータおよび/または当業者にとって既知の他の情報およびアプリケーションを保存するように構成されている。制御装置793はまた、指示を受け取り、補助デバイスを制御し、データを報告するように、通信モジュールを含むこともできる。あるいは、音響粒子コンセントレータシステム700の動作は、クラウドコンピューティングネットワークを通して制御することができる。
粒子分析器ソフトウェア721は、第1のセンサー791および第2のセンサー792からのデータを分析するように構成されている。メモリ725に保存されるように構成されたコンピュータ読取可能な指示として実行することができる粒子分析器ソフトウェア721は、第1のセンサー791からのデータを分析して、流体780の成分を判断することができる。制御装置793のそれぞれの構成部品と電気的に通信することができるプロセッサ724を使用して、アプリケーションを実行し、粒子分析器ソフトウェア721の指示を実行することができる。当業者にとって既知のあらゆるタイプのコンピュータプロセッサを使用することができる。たとえば、粒子分析器ソフトウェア721は、流体780内の粒子785の濃度および流体780内の粒子785の種類を判断することができる。たとえば、粒子分析器ソフトウェア721は、粒子785の成分の種類、密度、重量および運動エネルギーを判断することができる。さらに、粒子分析器ソフトウェア721は、流体キャビティ710内にどのような種類の気体があるかを判断することができる。粒子分析器ソフトウェア721はまた、第2のセンサー792からのデータを使用して、粒子分離の効果を判断することもできる。任意で、粒子分離の効果を、音波の周波数を制御するフィードバックとして使用することができる。任意で、1つまたは複数の粒子またはある種類の粒子の存在の検出を、音波の周波数を制御するフィードバックとして使用することができる。いくつかの実施形態では、フィードバックは音波のオン・オフを指示することができる。
周波数選択器ソフトウェア723は、音響振動子720を駆動する1つまたは複数の周波数を選択するように構成されている。メモリ725に保存されるように構成されたコンピュータ読取可能な指示として実行することができる周波数選択器ソフトウェア723は、上記のように流体キャビティ730の一部分の高さ、流体780の成分、インピーダンスマッチング材料712および反射材料716など、流体キャビティ730の一部分の特性に基づいて、1つまたは複数の周波数を決定することができる。制御装置793のそれぞれの構成部品と電気的に通信することができるプロセッサ724を使用して、アプリケーションを実行し、周波数選択器ソフトウェア723の指示を実行することができる。当業者にとって既知のあらゆるタイプのコンピュータプロセッサを使用することができる。
いくつかの実施形態では、周波数選択器ソフトウェア723は、粒子785の特定の複数の材料を標的とする複数の周波数を選択することができる。たとえば、粒子785は第1の粒子および第2の粒子を含むことができ、第1の粒子の第1の密度は第2の粒子の第2の密度より大きい。周波数選択器ソフトウェア723は、上記で詳しく説明した次の式に基づいて、流体キャビティ内の第1の位置で第1の粒子の濃度を増加させる第1の周波数および流体キャビティ内の第2の位置で第2の粒子の濃度を増加させる第2の周波数を選択することができる:
(Fac)=4πεkRΦ(β,ρ)sin(2ky)
したがって、第1の粒子および第2の粒子を、流体キャビティ730の一部分の異なる部分の収集器へと向かわせることができる。しかし、いくつかの選択された周波数は、特定の流体キャビティの特定の寸法および材料により、十分に共振することができない。周波数は1Hz〜約5000Hzの範囲とすることができるが、どのような周波数を使用することもできる。周波数選択器ソフトウェア723はまた、周波数が生成される音響力を選択することもできる。
あるいは、周波数選択器ソフトウェア723は、1つの特定の種類の粒子を標的とするように1つの周波数を選択することができる。次いで、周波数を使用して、上記のように、共振構造の理想的な寸法を計算することができる。次いで、制御装置793によって、流体キャビティ730の一部分の形状を変えることができる。たとえば、第2の側面750を第1の側面740に近付け、または遠ざけるように動かし、それにより、流体キャビティ730の一部分の共振周波数を変えることができる。
音声発生器および増幅器722は、周波数選択器ソフトウェア723によって選択された1つまたは複数の周波数を使用して、音響振動子720を駆動する。音声発生器および増幅器722は、選択された周波数を形成し、選択された周波数を増幅し、音響振動子720を駆動する。あるいは、音声発生器および増幅器722は、周波数選択器ソフトウェア723によって選択された1つまたは複数の周波数を含む曲を選択することができる。たとえば、選択された周波数が858Hzであるとき、音声発生器および増幅器722は、ピンクフロイドの「Dogs of War」を用いて音響振動子720を駆動することができる。
粒子分析器ソフトウェア721が、流体780内の粒子785の濃度が閾値を超えていると判断したとき、粒子分析器ソフトウェア721は、制御装置793に、音声発生器および増幅器722を起動するように指示することができる。あるいは、制御装置793は音響振動子720を、連続的、間欠的またはタイマーで駆動することができる。音響振動子720はまた、手動で起動することもできる。
ディスプレイ726を使用して、上記のように流体キャビティ730の一部分の高さ、流体780の成分、インピーダンスマッチング材料712および反射材料716を含む流体キャビティ730の一部分の特性など、音響粒子コンセントレータシステム700のパラメータを表示することができる。ディスプレイ726は、液晶ディスプレイ、ブラウン管ディスプレイまたは当業者にとって既知の他のタイプのディスプレイとすることができる。
ユーザインターフェース727によって、ユーザは、制御装置793と交信し、情報をユーザインターフェースウィンドウへと入力することができる。ユーザインターフェース727は、マウス、キーボード、タッチスクリーン、タッチパネルなどを含むことができる。ユーザは、ユーザインターフェース727を使用して、上記のように流体キャビティ730の一部分の高さ、流体780の成分、インピーダンスマッチング材料712および反射材料716を含む流体キャビティ730の一部分の特性など、音響粒子コンセントレータシステム700のパラメータを入力または制御することができる。
図8を参照すると、例示的な実施形態に従って音響的に粒子を集中させるように実施されるオペレーションを示すフロー図が示されている。代替実施形態では、より少ない、追加の、および/または異なるオペレーションを実施することができる。オペレーション810では、流体キャビティ(たとえば、710)内の粒子および流体が、たとえばセンサー(たとえば、791または792)によって感知される。センサーは、流体キャビティ内の流体の粒子の濃度および他の特性を測定することができる。センサーはまた、流体の特性を測定することもできる。
オペレーション820では、粒子および流体の特性が判断される。たとえば、粒子分析器(たとえば、712)によって、流体キャビティ内の流体の粒子の濃度および粒子の種類を判断することができる。粒子分析器は、センサーからの測定値に基づいて、粒子の成分の種類、密度、重量および温度を判断することができる。
オペレーション830では、1つまたは複数の周波数が選択される。周波数は1Hz〜約5000Hzの範囲内または任意の可聴周波数とすることができるが、どのような周波数を選択することもできる。たとえば、周波数選択器(たとえば、723)は、音響振動子(たとえば、720)を駆動する1つまたは複数の周波数を選択することができる。1つまたは複数の周波数は、上記のように流体キャビティの一部分の高さ、流体の成分、流体キャビティの一部分のインピーダンスマッチング材料および流体キャビティの一部分の反射材料716など、流体キャビティの一部分の特性に基づいて、選択することができる。1つの例示的な実施形態では、一部には、流体キャビティ内で共振するように、1つまたは複数の周波数を選択することができる。あるいは、特定の種類の粒子を標的とするように、1つまたは複数の周波数を選択することもできる。
オペレーション840では、流体キャビティの一部分に音波を生成することができる。あるいは、流体キャビティの全体に音波を生成することができる。音波は、選択された1つまたは複数の周波数に基づいて形成される。流体キャビティは共振器として構成することができる。したがって、音波は流体キャビティ内で共振することができる。音波は、流体キャビティ内の位置で流体キャビティ内の粒子を集中させることができる。1つの例示的な実施形態では、流体キャビティは、4分の1波長共振器である。別の例示的な実施形態では、流体キャビティは、2分の1波長共振器である。流体キャビティ内の位置は、流体キャビティ共振器の定在波の波腹とすることができる。別の例示的な実施形態では、第1の粒子および第2の粒子は、第1の周波数および第2の周波数を含む音波によって、流体キャビティの異なる位置で集中させられる。
オペレーション850では、流体キャビティ内の位置で粒子を収集することができる。たとえば、収集器(たとえば、798)を、流体キャビティ共振器内の音波によって形成される定在波の波腹の位置に置くことができる。収集器は、粒子を捕捉し、濾過し、方向転換し、および/または除去することができる。あるいは、複数の収集器を、流体キャビティの一部分の内部のさまざまな位置または段に配置することができる。それぞれの収集器は、異なる種類、サイズおよび/または密度の粒子を集めるように構成することができる。
有利には、ナノ粒子を分離するために真空または濾過を使用する他の方法と異なり、音響粒子コンセントレータは比較的非侵襲的であり、設置および実行が簡単であり(可動部品がない)、粒子半径の3乗に基づいて高い分離可能性を利用する。有利には、音響粒子コンセントレータの共振構造を既存または標準サイズの排気システムの周りに設置し、組み込みおよび据え付け機構を単純にすることができる。
本明細書では、1つまたは複数のフロー図を使用することができる。フロー図の使用は、実施されるオペレーションの順序に関して限定的な意味を有するものではない。本明細書に記載された主題は、さまざまなコンポーネントをしばしば例示しており、これらのコンポーネントは、他のさまざまなコンポーネントに包含されるか、または他のさまざまなコンポーネントに接続される。そのように図示されたアーキテクチャは、単に例示にすぎず、実際には、同じ機能を実現する多くの他のアーキテクチャが実装可能であることが理解されよう。概念的な意味で、同じ機能を実現するコンポーネントの任意の構成は、所望の機能が実現されるように効果的に「関連付け」される。したがって、特定の機能を実現するために組み合わされた、本明細書における任意の2つのコンポーネントは、アーキテクチャまたは中間のコンポーネントにかかわらず、所望の機能が実現されるように、お互いに「関連付け」されていると見ることができる。同様に、そのように関連付けされた任意の2つのコンポーネントは、所望の機能を実現するために、互いに「動作可能に接続」または「動作可能に結合」されていると見なすこともでき、そのように関連付け可能な任意の2つのコンポーネントは、所望の機能を実現するために、互いに「動作可能に結合できる」と見なすこともできる。動作可能に結合できる場合の具体例には、物理的にかみ合わせ可能な、および/もしくは物理的に相互作用するコンポーネント、ならびに/またはワイヤレスに相互作用可能な、および/もしくはワイヤレスに相互作用するコンポーネント、ならびに/または論理的に相互作用する、および/もしくは論理的に相互作用可能なコンポーネントが含まれるが、それらに限定されない。
本明細書における実質的にすべての複数形および/または単数形の用語の使用に対して、当業者は、状況および/または用途に適切なように、複数形から単数形に、および/または単数形から複数形に変換することができる。さまざまな単数形/複数形の置き換えは、理解しやすいように、本明細書で明確に説明することができる。
通常、本明細書において、特に添付の特許請求の範囲(たとえば、添付の特許請求の範囲の本体部)において使用される用語は、全体を通じて「オープンな(open)」用語として意図されていることが、当業者には理解されよう(たとえば、用語「含む(including)」は、「含むがそれに限定されない(including but not limited to)」と解釈されるべきであり、用語「有する(having)」は、「少なくとも有する(having at least)」と解釈されるべきであり、用語「含む(includes)」は、「含むがそれに限定されない(includes but is not limited to)」と解釈されるべきである、など)。導入される請求項で具体的な数の記載が意図される場合、そのような意図は、当該請求項において明示的に記載されることになり、そのような記載がない場合、そのような意図は存在しないことが、当業者にはさらに理解されよう。たとえば、理解の一助として、添付の特許請求の範囲は、導入句「少なくとも1つの(at least one)」および「1つまたは複数の(one or more)」を使用して請求項の記載を導くことを含む場合がある。しかし、そのような句の使用は、同一の請求項が、導入句「1つまたは複数の」または「少なくとも1つの」および「a」または「an」などの不定冠詞を含む場合であっても、不定冠詞「a」または「an」による請求項の記載の導入が、そのように導入される請求項の記載を含む任意の特定の請求項を、単に1つのそのような記載を含む発明に限定する、ということを示唆していると解釈されるべきではない(たとえば、「a」および/または「an」は、通常、「少なくとも1つの」または「1つまたは複数の」を意味すると解釈されるべきである)。同じことが、請求項の記載を導入するのに使用される定冠詞の使用にも当てはまる。また、導入される請求項の記載で具体的な数が明示的に記載されている場合でも、そのような記載は、通常、少なくとも記載された数を意味すると解釈されるべきであることが、当業者には理解されよう(たとえば、他の修飾語なしでの「2つの記載(two recitations)」の単なる記載は、通常、少なくとも2つの記載、または2つ以上の記載を意味する)。さらに、「A、BおよびC、などの少なくとも1つ」に類似の慣例表現が使用されている事例では、通常、そのような構文は、当業者がその慣例表現を理解するであろう意味で意図されている(たとえば、「A、B、およびCの少なくとも1つを有するシステム」は、Aのみ、Bのみ、Cのみ、AおよびBを共に、AおよびCを共に、BおよびCを共に、ならびに/またはA、B、およびCを共に、などを有するシステムを含むが、それに限定されない)。「A、B、またはC、などの少なくとも1つ」に類似の慣例表現が使用されている事例では、通常、そのような構文は、当業者がその慣例表現を理解するであろう意味で意図されている(たとえば、「A、B、またはCの少なくとも1つを有するシステム」は、Aのみ、Bのみ、Cのみ、AおよびBを共に、AおよびCを共に、BおよびCを共に、ならびに/またはA、B、およびCを共に、などを有するシステムを含むが、それに限定されない)。2つ以上の代替用語を提示する事実上いかなる離接する語および/または句も、明細書、特許請求の範囲、または図面のどこにあっても、当該用語の一方(one of the terms)、当該用語のいずれか(either of the terms)、または両方の用語(both terms)を含む可能性を企図すると理解されるべきであることが、当業者にはさらに理解されよう。たとえば、句「AまたはB」は、「A」または「B」あるいは「AおよびB」の可能性を含むことが理解されよう。
例示的な実施形態の上記の説明は、例示および説明のために記載されている。これは開示された詳細な形態について包括的または制限的なものではなく、修正および変形が上記の教示に照らして可能であり、または開示された実施形態の実施から取得することができる。本発明の範囲は、添付の特許請求の範囲およびそれらの均等物によって定義されるものである。

Claims (23)

  1. 共振器として構成された流体キャビティの少なくとも一部分に音響的に関連付けられるように構成された音響振動子であって、前記流体キャビティの少なくとも一部分に音波を形成するように構成された音響振動子と
    前記流体キャビティに配置され、第1の粒子の第1の密度又は第2の粒子の第2の密度を測定するように構成された少なくとも一つのセンサと、
    前記少なくとも一つのセンサと通信可能に接続され、前記少なくとも一つのセンサによって測定された前記第1の密度又は前記第2の密度に従って、前記流体キャビティの第1の位置で前記第1の粒子の濃度を増加させるように第1の周波数を選択し、又は前記流体キャビティの第2の位置で前記第2の粒子の濃度を増加させるように第2の周波数を選択するように構成された制御装置と、
    を備える装置。
  2. 前記流体キャビティに関連付けられ、前記第1の粒子又は前記第2の粒子を収集するように構成された収集デバイスをさらに含む、請求項1に記載の装置。
  3. 前記収集デバイスが前記音波の波腹または波節の位置にある、請求項2に記載の装置。
  4. 前記流体キャビティが流れる気体を含むように構成され、前記第1の粒子又は前記第2の粒子が前記気体中に浮遊している、請求項1又は請求項2に記載の装置。
  5. 前記第1の粒子又は前記第2の粒子がナノ粒子を含む、請求項1乃至請求項4のうち何れか1項に記載の装置。
  6. 前記流体キャビティの少なくとも一部分が、前記流体キャビティの少なくとも一部分の一方の側面にインピーダンスマッチング材料を含む、請求項1乃至請求項5のうち何れか1項に記載の装置。
  7. 前記インピーダンスマッチング材料が金属である、請求項6に記載の装置。
  8. 前記流体キャビティの少なくとも一部分が、前記流体キャビティの少なくとも一部分の他方の側面に反射材料を含む、請求項6に記載の装置。
  9. 前記反射材料がコルク、ゴムおよび発泡体の少なくとも1つを含む、請求項8に記載の装置。
  10. 前記流体キャビティの少なくとも一部分が4分の1波長共振器であり、前記インピーダンスマッチング材料および前記反射材料が前記4分の1波長共振器の対向する端部に置かれている、請求項8に記載の装置。
  11. 前記流体キャビティの少なくとも一部分が2分の1波長共振器であり、前記インピーダンスマッチング材料および前記反射材料が前記2分の1波長共振器の対向する端部に置かれており、収集デバイスが前記流体キャビティの少なくとも一部分の中間に置かれている、請求項8に記載の装置。
  12. 前記少なくとも一つのセンサは、前記流体キャビティの少なくとも一部分の吸気口または排気口に配置されている、請求項1乃至請求項11のうち何れか1項に記載の装置。
  13. 共振器として構成された流体キャビティの少なくとも一部分に音波を形成することを含み、前記音波は、第1の周波数及び第2の周波数を含み、
    前記第1の周波数は、前記流体キャビティの第1の位置で第1の粒子の濃度を増加させるように選択され、又は前記第2の周波数は、前記流体キャビティの第2の位置で第2の粒子の濃度を増加させるように選択される、方法。
  14. 前記流体キャビティ内の位置に前記第1の粒子又は前記第2の粒子を収集することをさらに含む、請求項13に記載の方法。
  15. 前記流体キャビティ内の位置が前記音波の波腹または波節の位置にある、請求項14に記載の方法。
  16. 前記流体キャビティが流れる気体を含むように構成され、前記第1の粒子又は前記第2の粒子が前記気体中に浮遊している、請求項13乃至請求項15のうち何れか1項に記載の方法。
  17. 前記第1の粒子又は前記第2の粒子がナノ粒子を含む、請求項13乃至請求項16のうち何れか1項に記載の方法。
  18. 前記流体キャビティの少なくとも一部分がインピーダンスマッチング材料を含む、請求項13乃至請求項17のうち何れか1項に記載の方法。
  19. 前記流体キャビティの少なくとも一部分が反射材料を含む、請求項13乃至請求項18のうち何れか1項に記載の方法。
  20. 前記流体キャビティの少なくとも一部分が4分の1波長共振器であり、前記インピーダンスマッチング材料および前記反射材料が前記4分の1波長共振器の対向する端部に置かれている、請求項19に記載の方法。
  21. 前記音波が1Hz〜5000Hzの範囲の周波数を有する、請求項13乃至請求項20のうち何れか1項に記載の方法。
  22. 前記音波を形成することが、前記第1の粒子又は前記第2の粒子の閾値濃度を感知した後に起きる、請求項13乃至請求項21のうち何れか1項に記載の方法。
  23. 前記第1の粒子の第1の密度は、前記第2の粒子の第2の密度より大きい、請求項13乃至請求項22のうち何れか1項に記載の方法。
JP2013513141A 2010-06-04 2010-06-04 音響的に駆動されるナノ粒子コンセントレータ Expired - Fee Related JP5688451B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SG2010/000213 WO2011152796A1 (en) 2010-06-04 2010-06-04 Acoustically driven nanoparticle concentrator

Publications (2)

Publication Number Publication Date
JP2013533107A JP2013533107A (ja) 2013-08-22
JP5688451B2 true JP5688451B2 (ja) 2015-03-25

Family

ID=45066986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013513141A Expired - Fee Related JP5688451B2 (ja) 2010-06-04 2010-06-04 音響的に駆動されるナノ粒子コンセントレータ

Country Status (4)

Country Link
US (1) US9079127B2 (ja)
JP (1) JP5688451B2 (ja)
CN (1) CN102933280B (ja)
WO (1) WO2011152796A1 (ja)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691145B2 (en) 2009-11-16 2014-04-08 Flodesign Sonics, Inc. Ultrasound and acoustophoresis for water purification
US9079127B2 (en) 2010-06-04 2015-07-14 Empire Technology Development Llc Acoustically driven nanoparticle concentrator
EP2582631A4 (en) 2010-06-16 2016-05-25 Flodesign Sonics Inc PHONONIC CRYSTAL DESALINATION SYSTEM AND METHOD OF USE
US9421553B2 (en) 2010-08-23 2016-08-23 Flodesign Sonics, Inc. High-volume fast separation of multi-phase components in fluid suspensions
FR2979256B1 (fr) * 2011-08-30 2014-09-26 Centre Nat Rech Scient Dispositif de manipulation d'objets par champs de force acoustique
US10370635B2 (en) 2012-03-15 2019-08-06 Flodesign Sonics, Inc. Acoustic separation of T cells
US10689609B2 (en) 2012-03-15 2020-06-23 Flodesign Sonics, Inc. Acoustic bioreactor processes
US9422328B2 (en) * 2012-03-15 2016-08-23 Flodesign Sonics, Inc. Acoustic bioreactor processes
US9272234B2 (en) 2012-03-15 2016-03-01 Flodesign Sonics, Inc. Separation of multi-component fluid through ultrasonic acoustophoresis
US10953436B2 (en) 2012-03-15 2021-03-23 Flodesign Sonics, Inc. Acoustophoretic device with piezoelectric transducer array
US10967298B2 (en) 2012-03-15 2021-04-06 Flodesign Sonics, Inc. Driver and control for variable impedence load
US9796956B2 (en) 2013-11-06 2017-10-24 Flodesign Sonics, Inc. Multi-stage acoustophoresis device
US9950282B2 (en) 2012-03-15 2018-04-24 Flodesign Sonics, Inc. Electronic configuration and control for acoustic standing wave generation
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
US9752113B2 (en) 2012-03-15 2017-09-05 Flodesign Sonics, Inc. Acoustic perfusion devices
US9567559B2 (en) 2012-03-15 2017-02-14 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US9783775B2 (en) 2012-03-15 2017-10-10 Flodesign Sonics, Inc. Bioreactor using acoustic standing waves
US9752114B2 (en) 2012-03-15 2017-09-05 Flodesign Sonics, Inc Bioreactor using acoustic standing waves
US9458450B2 (en) 2012-03-15 2016-10-04 Flodesign Sonics, Inc. Acoustophoretic separation technology using multi-dimensional standing waves
US9688958B2 (en) 2012-03-15 2017-06-27 Flodesign Sonics, Inc. Acoustic bioreactor processes
US10322949B2 (en) 2012-03-15 2019-06-18 Flodesign Sonics, Inc. Transducer and reflector configurations for an acoustophoretic device
US9745548B2 (en) 2012-03-15 2017-08-29 Flodesign Sonics, Inc. Acoustic perfusion devices
US10737953B2 (en) 2012-04-20 2020-08-11 Flodesign Sonics, Inc. Acoustophoretic method for use in bioreactors
US11324873B2 (en) 2012-04-20 2022-05-10 Flodesign Sonics, Inc. Acoustic blood separation processes and devices
US9764304B2 (en) 2012-05-14 2017-09-19 Empire Technology Development Llc Acoustically driven nanoparticle concentrator
US9744495B2 (en) 2012-09-10 2017-08-29 Nanjing University Devices and methods for removing nano-particulates from gases
JP6064640B2 (ja) * 2013-02-07 2017-01-25 株式会社Ihi 固液分離方法及び装置
US9440263B2 (en) * 2013-02-21 2016-09-13 Spencer Allen Miller Material separation and conveyance using tuned waves
US9745569B2 (en) 2013-09-13 2017-08-29 Flodesign Sonics, Inc. System for generating high concentration factors for low cell density suspensions
CA2935960C (en) 2014-01-08 2023-01-10 Bart Lipkens Acoustophoresis device with dual acoustophoretic chamber
CN103864173B (zh) * 2014-02-26 2015-10-28 南京航空航天大学 一种在多个位置上同时聚集微/纳颗粒的方法及其装置
CN103877824B (zh) * 2014-04-10 2015-12-09 中国人民解放军国防科学技术大学 基于声凝聚原理的燃烧能源系统细颗粒物减排装置
US9744483B2 (en) 2014-07-02 2017-08-29 Flodesign Sonics, Inc. Large scale acoustic separation device
CN106999796B (zh) 2014-10-24 2020-09-25 生命科技股份有限公司 以声学方式沉淀的液-液样品纯化系统
CN104722170A (zh) * 2015-02-27 2015-06-24 广东电网有限责任公司电力科学研究院 声、雾结合促进pm2.5长大的方法及专用装置
US10106770B2 (en) 2015-03-24 2018-10-23 Flodesign Sonics, Inc. Methods and apparatus for particle aggregation using acoustic standing waves
US11021699B2 (en) 2015-04-29 2021-06-01 FioDesign Sonics, Inc. Separation using angled acoustic waves
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
EP3288660A1 (en) 2015-04-29 2018-03-07 Flodesign Sonics Inc. Acoustophoretic device for angled wave particle deflection
RU2708048C2 (ru) 2015-05-20 2019-12-03 Флодизайн Соникс, Инк. Способ акустического манипулирования частицами в полях стоячих волн
WO2016201385A2 (en) 2015-06-11 2016-12-15 Flodesign Sonics, Inc. Acoustic methods for separation cells and pathogens
US9663756B1 (en) 2016-02-25 2017-05-30 Flodesign Sonics, Inc. Acoustic separation of cellular supporting materials from cultured cells
CN108025333B (zh) 2015-07-09 2020-10-02 弗洛设计声能学公司 非平面和非对称压电晶体及反射器
US11459540B2 (en) 2015-07-28 2022-10-04 Flodesign Sonics, Inc. Expanded bed affinity selection
US11474085B2 (en) 2015-07-28 2022-10-18 Flodesign Sonics, Inc. Expanded bed affinity selection
JP6554045B2 (ja) * 2016-02-25 2019-07-31 東芝メモリ株式会社 集塵装置および基板処理システム
WO2017153038A2 (de) 2016-03-06 2017-09-14 WindplusSonne GmbH Verfahren und vorrichtung zur abscheidung und/oder reinigung von aerosolen und feststoffpartikeln und -fasern aus gasen sowie von feststoffpartikeln und -fasern aus flüssigkeiten durch akustophorese
WO2017154804A1 (ja) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 超音波集塵装置
CN105890926B (zh) * 2016-04-01 2018-10-30 李志生 利用声动力分选富集空气悬浮颗粒物的装置及其方法
CN109310933B (zh) * 2016-04-24 2021-08-10 弗洛设计声能学公司 用于产生声驻波的电子构型和控制
US10710006B2 (en) 2016-04-25 2020-07-14 Flodesign Sonics, Inc. Piezoelectric transducer for generation of an acoustic standing wave
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
CN109715124B (zh) 2016-05-03 2022-04-22 弗洛设计声能学公司 利用声泳的治疗细胞洗涤、浓缩和分离
US11085035B2 (en) 2016-05-03 2021-08-10 Flodesign Sonics, Inc. Therapeutic cell washing, concentration, and separation utilizing acoustophoresis
JP2020513248A (ja) 2016-10-19 2020-05-14 フロデザイン ソニックス, インク.Flodesign Sonics, Inc. 音響による親和性細胞抽出
BR112020009889A2 (pt) 2017-12-14 2020-11-03 Flodesign Sonics, Inc. acionador e controlador de transdutor acústico
MX2020010385A (es) 2018-04-04 2021-01-08 Jody G Robbins Separación de minerales por gravedad específica.
DE102018008259A1 (de) * 2018-10-18 2020-04-23 Smart Material Printing B.V. Filteranlagen für Schwebstoffe mit Teilchengrößen von 400 pm bis ≤500 μm und ihre Verwendung
CN111346292B (zh) * 2018-12-21 2022-02-22 深圳先进技术研究院 微流体系统及其操作方法
CN111175377B (zh) * 2020-01-06 2021-05-25 中国地质大学(北京) 岩体表面超声波测量换能器的定位装置
WO2021143608A1 (zh) * 2020-01-13 2021-07-22 南京常荣声学股份有限公司 一种转炉一次烟气声波团聚除尘装置
CN111495098A (zh) * 2020-01-22 2020-08-07 广东工业大学 一种微米颗粒二维聚集方法和聚集装置
AT523735B1 (de) * 2020-11-10 2021-11-15 Ac2T Res Gmbh Hocheffektive Akustische Abschirmvorrichtung für Aerosole im Hinblick auf Atem- und Hautschutz
US11291939B1 (en) 2021-07-13 2022-04-05 Smart Material Printing B.V. Ultra-fine particle aggregation, neutralization and filtration

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475921A (en) 1982-03-24 1984-10-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Acoustic agglomeration methods and apparatus
US4759775A (en) * 1986-02-21 1988-07-26 Utah Bioresearch, Inc. Methods and apparatus for moving and separating materials exhibiting different physical properties
AT389235B (de) * 1987-05-19 1989-11-10 Stuckart Wolfgang Verfahren zur reinigung von fluessigkeiten mittels ultraschall und vorrichtungen zur durchfuehrung dieses verfahrens
LU87850A1 (de) 1990-11-27 1992-08-25 Euratom Akustische kammer fuer die aerosolbehandlung von abgasen
US5626767A (en) 1993-07-02 1997-05-06 Sonosep Biotech Inc. Acoustic filter for separating and recycling suspended particles
US5419877A (en) 1993-09-17 1995-05-30 General Atomics Acoustic barrier separator
JP3487699B2 (ja) * 1995-11-08 2004-01-19 株式会社日立製作所 超音波処理方法および装置
US5748758A (en) 1996-01-25 1998-05-05 Menasco, Jr.; Lawrence C. Acoustic audio transducer with aerogel diaphragm
US6280388B1 (en) 1997-11-19 2001-08-28 Boston Scientific Technology, Inc. Aerogel backed ultrasound transducer
US6106474A (en) 1997-11-19 2000-08-22 Scimed Life Systems, Inc. Aerogel backed ultrasound transducer
US6603241B1 (en) 2000-05-23 2003-08-05 Agere Systems, Inc. Acoustic mirror materials for acoustic devices
US6467350B1 (en) 2001-03-15 2002-10-22 The Regents Of The University Of California Cylindrical acoustic levitator/concentrator
US6969420B2 (en) 2003-12-04 2005-11-29 Industrial Technology Research Institute Method of collecting nanoparticles by using a cyclone and method of designing the cyclone
US7340957B2 (en) 2004-07-29 2008-03-11 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
WO2006032048A2 (en) 2004-09-15 2006-03-23 The Board Of Trustees Of The Leland Stanford Junior University Separation of particle types using a non-uniform acoustic field
JP5137609B2 (ja) 2007-03-20 2013-02-06 アズビル株式会社 集音器
US7837040B2 (en) * 2007-04-09 2010-11-23 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US9079127B2 (en) 2010-06-04 2015-07-14 Empire Technology Development Llc Acoustically driven nanoparticle concentrator

Also Published As

Publication number Publication date
US20120267288A1 (en) 2012-10-25
US9079127B2 (en) 2015-07-14
WO2011152796A1 (en) 2011-12-08
JP2013533107A (ja) 2013-08-22
CN102933280B (zh) 2016-11-02
CN102933280A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5688451B2 (ja) 音響的に駆動されるナノ粒子コンセントレータ
US9764304B2 (en) Acoustically driven nanoparticle concentrator
US7837040B2 (en) Acoustic concentration of particles in fluid flow
CN105143835B (zh) 使用多维驻波的声泳分离技术
CN100368050C (zh) 用于引导流体中的颗粒的设备
EP2748110B1 (en) High-volume fast separation of multi-phase components in fluid suspensions
CN100350234C (zh) 用于光声传感器的测量容腔
US9993828B2 (en) Particle precipitator
JP6356603B2 (ja) 音響力場を用いて対象物をハンドリングするための装置
US20140377834A1 (en) Fluid dynamic sonic separator
WO2019099570A1 (en) Thermophoretic particle concentrator
JP2015514516A5 (ja)
Hawkes et al. Acoustofluidics 22: Multi-wavelength resonators, applications and considerations
US20180223439A1 (en) Particle-particle interaction using acoustic waves
Grossner et al. Transport analysis and model for the performance of an ultrasonically enhanced filtration process
JPH10511305A (ja) 定在音波を発生させる方法、定在音波を用いた超音波処理の方法、および定在音波ソニケータ
Glynne-Jones et al. Robust acoustic particle manipulation: A thin-reflector design for moving particles to a surface
Harris et al. A dual frequency, ultrasonic, microengineered particle manipulator
Trivedi et al. Simulation of a Love wave device with ZnO nanorods for high mass sensitivity
Binkley et al. Design, modeling, and experimental validation of an acoustofluidic platform for nanoscale molecular synthesis and detection
Brodeur Acoustic separation in a laminar flow
Anderson et al. Use of acoustic radiation pressure to concentrate small particles in an air flow
Argo et al. Size selection of levitated aerosol particulate in an ultrasonic field
CN106076053A (zh) 基于共振腔的分离式声团聚悬浮细颗粒减排系统
Budwig et al. Ultrasonic particle size fractionation in a moving air stream

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5688451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees