WO2017154804A1 - 超音波集塵装置 - Google Patents

超音波集塵装置 Download PDF

Info

Publication number
WO2017154804A1
WO2017154804A1 PCT/JP2017/008655 JP2017008655W WO2017154804A1 WO 2017154804 A1 WO2017154804 A1 WO 2017154804A1 JP 2017008655 W JP2017008655 W JP 2017008655W WO 2017154804 A1 WO2017154804 A1 WO 2017154804A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
reflector
ultrasonic
dust collector
standing wave
Prior art date
Application number
PCT/JP2017/008655
Other languages
English (en)
French (fr)
Inventor
剛士 植田
英雄 長浜
斐 劉
田米 正樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018504460A priority Critical patent/JPWO2017154804A1/ja
Publication of WO2017154804A1 publication Critical patent/WO2017154804A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/02Amassing the particles, e.g. by flocculation
    • B01D51/06Amassing the particles, e.g. by flocculation by varying the pressure of the gas or vapour
    • B01D51/08Amassing the particles, e.g. by flocculation by varying the pressure of the gas or vapour by sound or ultrasonics

Definitions

  • the present invention relates to an ultrasonic dust collector that collects fine particles in the air.
  • Patent Document 1 discloses an ultrasonic aggregating apparatus (ultrasonic dust collecting apparatus) that aggregates and removes suspended particles in the air by irradiating ultrasonic waves with an ultrasonic vibrator.
  • the present invention provides a dust collector capable of efficiently agglomerating fine particles.
  • An ultrasonic dust collector is an ultrasonic dust collector that agglomerates fine particles in the air by ultrasonic waves, and is disposed opposite to each other in a flow path in which air flows in a first direction.
  • a first super-wave that generates a first standing wave between the first diaphragm and the first reflector by vibrating the first diaphragm and the first reflector with ultrasonic waves.
  • a second vibration plate and a second reflection plate disposed opposite to each other downstream of the first vibration plate and the first reflection plate in the flow path, and the second vibration by ultrasonic waves.
  • a second ultrasonic transmitter for generating a second standing wave between the second diaphragm and the second reflector by vibrating the plate, when viewed from the first direction,
  • the arrangement of nodes included in the first standing wave is different from the arrangement of nodes included in the second standing wave.
  • the ultrasonic dust collector of the present invention can agglomerate fine particles efficiently.
  • FIG. 1 is a schematic diagram of an ultrasonic dust collector according to Embodiment 1.
  • FIG. FIG. 2 is a diagram illustrating an example of a specific aspect of the first ultrasonic transmitter.
  • FIG. 3 is a schematic diagram showing the size of the diaphragm.
  • FIG. 4 is a diagram illustrating an example of a structure for one first ultrasonic transmitter to vibrate a plurality of first diaphragms at once.
  • FIG. 5 is a schematic diagram of an ultrasonic dust collector according to the second embodiment.
  • FIG. 6 is an external view of the air cleaning device.
  • FIG. 7 is an external view of the electric vacuum cleaner.
  • FIG. 8 is an external view of the air conditioner.
  • the Z-axis direction is, for example, the vertical direction.
  • the X-axis direction and the Y-axis direction are directions orthogonal to each other on a plane (horizontal plane) perpendicular to the Z-axis.
  • the Y-axis direction is an example of the first direction
  • the Z-axis direction is an example of the second direction
  • the X-axis direction is an example of the third direction.
  • FIG. 1 is a schematic diagram of an ultrasonic dust collector according to Embodiment 1.
  • FIG. 1 is a schematic diagram of an ultrasonic dust collector according to Embodiment 1.
  • the ultrasonic dust collector 10 includes a tube 60, an airflow forming unit 50, a filter 40, a first ultrasonic transmitter 110, and a first diaphragm 11. And a first reflector 12, a second ultrasonic transmitter 120, a second diaphragm 21, and a second reflector 22.
  • the ultrasonic dust collector 10 is a device that agglomerates fine particles (dust etc.) contained in the air by using vibration of air by ultrasonic waves.
  • the ultrasonic dust collector 10 is applied to, for example, a vacuum cleaner or an air cleaner.
  • the fine particles (dust etc.) are, for example, powders, aggregates of compounds, molecules, atoms, particulate matter (PM), and the like.
  • the pipe 60 is a structure (duct) that forms a flow path of air (dust-containing airflow) containing fine particles.
  • the tube 60 is a rectangular tube, but may be a circular tube.
  • the shape of the tube 60 is not particularly limited.
  • the tube 60 is formed of, for example, a metal such as aluminum, stainless steel, or titanium, or a resin such as an acrylic resin.
  • the thickness of the tube wall of the tube 60 is 3 mm, for example. In FIG. 1, two opposing pipe wall 60a and pipe wall 60b are shown, and the other pipe walls are not shown.
  • the air flow forming unit 50 is a mechanism that introduces air into the tube 60, that is, a mechanism that forms an air flow inside the tube 60.
  • the airflow forming unit 50 is, for example, a fan that rotates blades.
  • the airflow forming unit 50 is attached in the vicinity of the exhaust port of the tube 60 and takes air into the tube 60 through the intake port by sucking air.
  • the airflow forming unit 50 discharges the air whose dust is reduced by the ultrasonic waves to the outside of the pipe 60.
  • air in the pipe 60 (in the flow path)
  • the first direction is the Y-axis direction.
  • the flow rate of air is, for example, not less than 0.1 m / s and not more than 1 m / s.
  • the filter 40 is an air filter for removing fine particles (dust etc.) from the air.
  • the filter 40 is, for example, a HEPA filter (High Efficiency Particulate Air Filter). Since the fine particles are collected by the filter 40, the amount of fine particles per unit volume is smaller on the right side (downstream side) than on the left side (upstream side) of the filter 40 in FIG.
  • the concentration of fine particles in the air introduced into the tube 60 is, for example, not less than 55,000 / L (liter) and not more than 15,000 / L, and the concentration of fine particles downstream of the filter 40 is 0.00. Less than 50,000 pieces / L.
  • the filter 40 is not an essential component. If the fine particles are sufficiently aggregated by ultrasonic waves, the aggregated fine particles fall in the tube 60. For this reason, the filter 40 may be unnecessary. Further, the ultrasonic dust collector 10 is an electric dust collector including a discharge electrode for charging fine particles and a dust collection electrode for collecting charged fine particles instead of or in addition to the filter 40. May be provided.
  • the first diaphragm 11 and the first reflector 12 are disposed in a flow path in which air containing fine particles flows in the first direction. Specifically, the first diaphragm 11 and the first reflector 12 are arranged so as to sandwich at least a part of the air flow path in the tube 60. Specifically, the first diaphragm 11 and the first reflector 12 are arranged to face each other in a second direction (Z-axis direction) orthogonal to the first direction. The first diaphragm 11 and the first reflector 12 are parallel.
  • Each of the first diaphragm 11 and the first reflector 12 is, for example, a separate body from the tube 60 and is disposed in the tube 60. However, each of the first diaphragm 11 and the first reflector 12 may constitute a part of the tube wall of the tube 60. One of the first diaphragm 11 and the first reflector 12 may be a separate body from the tube 60, and the other may constitute a part of the tube wall of the tube 60.
  • the first diaphragm 11 and the first reflector 12 are made of metal such as aluminum, stainless steel, or titanium, but may be made of resin such as acrylic resin. Further, the shape of the first diaphragm 11 and the first reflector 12 is not particularly limited as long as it is plate-shaped. The thickness of the first diaphragm 11 and the first reflector 12 is, for example, 3 mm.
  • the first ultrasonic transmitter 110 is a device that vibrates the first diaphragm 11 with ultrasonic waves.
  • FIG. 2 is a diagram illustrating an example of a specific aspect of the first ultrasonic transmitter 110.
  • the first ultrasonic transmitter 110 includes a vibrator (ultrasonic vibrator) 111 mainly made of a piezoelectric element such as ceramic.
  • a voltage is applied to the vibrator 111 by the control unit 113.
  • the control unit is realized by, for example, a processor, a microcomputer, or a dedicated circuit.
  • the first ultrasonic transmitter 110 vibrates the first diaphragm 11 via the amplification horn 112, for example.
  • the amplification horn 112 is a resonator (resonator) connected by connecting one end of the amplification horn 112 to the vibrator 111 with a bolt or the like. The other end of the amplification horn 112 is connected to the first diaphragm 11.
  • the amplification horn 112 is made of a metal such as stainless steel, aluminum alloy, or titanium alloy.
  • the shape of the amplifying horn 112 is a rotating body such as a cone or a cylinder, or a rotating body having an exponential curve, a hyperbola, a parabola, or the like as a generating line.
  • the length of the rotating body in the central axis direction (the length from one end to the other end) is an integral multiple of the half wavelength of the ultrasonic wave in order to efficiently propagate the vibration energy of the vibrator 111 that generates the vibration related to the ultrasonic wave. It is.
  • the first ultrasonic transmitter 110 generates the first standing wave 13 between the first diaphragm 11 and the first reflector 12 by vibrating the first diaphragm 11 with ultrasonic waves.
  • the frequency of the first ultrasonic transmitter 110 is adjusted so that the first standing wave 13 is generated between the first diaphragm 11 and the first reflector 12.
  • the first standing wave 13 is schematically illustrated.
  • the first standing wave 13 When the first standing wave 13 is generated between the first diaphragm 11 and the first reflecting plate 12, one or more nodes of the first standing wave 13 among the fine particles in the air guided to the tube 60. Particles that pass in the vicinity of are somewhat attracted to that node. That is, fine particles in the air are aggregated at the position of the node of the first standing wave 13.
  • the second diaphragm 21 and the second reflector 22 are disposed downstream of the first diaphragm 11 and the first reflector 12 in the flow path through which air containing fine particles flows in the first direction.
  • the second diaphragm 21 and the second reflector 22 are disposed so as to sandwich at least a part of the air flow path in the tube 60.
  • the second diaphragm 21 and the second reflecting plate 22 are arranged to face each other in the second direction (Z-axis direction).
  • the second diaphragm 21 and the second reflector 22 are parallel.
  • the interval between the first diaphragm 11 and the first reflector 12 and the interval between the second diaphragm 21 and the second reflector 22 are the same.
  • the center P1 of the first diaphragm 11 and the first reflector 12 and the center P2 of the second diaphragm 21 and the second reflector 22 are the same in the second direction.
  • the center is, for example, the midpoint of a line segment indicating the distance from the diaphragm to the reflector.
  • Each of the second diaphragm 21 and the second reflector 22 is, for example, a separate body from the tube 60 and is disposed in the tube 60. However, each of the second diaphragm 21 and the second reflector 22 may constitute a part of the tube wall of the tube 60. One of the second diaphragm 21 and the second reflector 22 may be a separate body from the tube 60, and the other may constitute a part of the tube wall of the tube 60.
  • the second diaphragm 21 and the second reflector 22 are made of metal such as aluminum, stainless steel, or titanium, but may be made of resin such as acrylic resin.
  • the shape of the second diaphragm 21 and the second reflector 22 is not particularly limited as long as it is plate-shaped.
  • the thickness of the 2nd diaphragm 21 and the 2nd reflecting plate 22 is 3 mm, for example.
  • the second ultrasonic transmitter 120 is a device that vibrates the second diaphragm 21 with ultrasonic waves.
  • the specific mode of the second ultrasonic transmitter 120 is the same as that of the first ultrasonic transmitter 110.
  • the second ultrasonic transmitter 120 generates the second standing wave 23 between the second diaphragm 21 and the second reflector 22 by vibrating the second diaphragm 21 with ultrasonic waves.
  • the frequency of the second ultrasonic transmitter 120 is adjusted so that the second standing wave 23 is generated between the second diaphragm 21 and the second reflector 22.
  • the second standing wave 23 is schematically illustrated.
  • the frequency of the second ultrasonic transmitter 120 is different from the frequency of the first ultrasonic transmitter 110.
  • the frequency of the second ultrasonic transmitter 120 is higher than the frequency of the first ultrasonic transmitter 110, but the frequency of the second ultrasonic transmitter 120 is lower than the frequency of the first ultrasonic transmitter 110. May be.
  • the wavelength ⁇ 1 of the first standing wave is different from the wavelength ⁇ 2 of the second standing wave.
  • the wavelength ⁇ 1 is, for example, an integral multiple of the wavelength ⁇ 2.
  • the wavelength ⁇ 2 is an integral multiple of the wavelength ⁇ 1, for example.
  • the position of the node 14a of the first standing wave 13, and the nodes 24a, 24b, 24c, and 24d of the second standing wave 23 are shown. Does not overlap with each position.
  • the position of the node 14 a of the first standing wave 13 overlaps the position of the antinode of the second standing wave 23.
  • the position of the node 14b of the first standing wave 13 and the positions of the nodes 24a, 24b, 24c, and 24d of the second standing wave 23 do not overlap.
  • the position of the node 14 b of the first standing wave 13 overlaps the position of the antinode of the second standing wave 23.
  • the arrangement of the nodes included in the first standing wave 13 in the second direction is different from the arrangement of the nodes included in the second standing wave 23 in the second direction.
  • the fine particles in the air usually travel straight along the first direction in the flow path. Assuming that the arrangement of the nodes of the first standing wave 13 and the arrangement of the nodes of the second standing wave 23 are the same when viewed from the first direction in the ultrasonic dust collector 10, the first constant wave. The fine particles passing through the antinodes of the standing wave 13 pass through the antinodes of the second standing wave 23. Since such fine particles do not pass near the position of the node, they enter the filter 40 without being aggregated. That is, when viewed from the first direction, if the arrangement of the nodes of the first standing wave 13 and the arrangement of the nodes of the second standing wave 23 are the same, the aggregation of the fine particles is not efficiently performed. .
  • the ultrasonic dust collector 10 when viewed from the first direction, the arrangement of the nodes of the first standing wave 13 and the arrangement of the nodes of the second standing wave 23 are different. Even fine particles that pass through the position of the antinode of the first standing wave 13 may pass through the vicinity of the position of the node of the second standing wave 23. Then, the fine particles that have not been aggregated by the first standing wave 13 are aggregated by the second standing wave 23. That is, the ultrasonic dust collector 10 can efficiently aggregate fine particles in the air.
  • the ultrasonic dust collector 10 includes a filter 40 downstream of the second diaphragm 21 and the second reflector 22.
  • the ultrasonic dust collector 10 when viewed from the first direction, if the arrangement of the nodes of the first standing wave 13 and the arrangement of the nodes of the second standing wave 23 are the same, the aggregated particles Intensively enter the same position in the filter 40, and the location where the particulates are deposited in the filter 40 is biased. If it does so, the lifetime of the filter 40 will fall.
  • the arrangement of the nodes of the first standing wave 13 and the arrangement of the nodes of the second standing wave 23 are different when viewed from the first direction.
  • the locations where fine particles accumulate within 40 can be dispersed. That is, the lifetime of the filter 40 can be improved.
  • the position of one node included in the first standing wave 13 is the position of all nodes included in the second standing wave 23. And different. With such a configuration, fine particles are aggregated more efficiently.
  • the nodes included in the first standing wave 13 do not overlap with the nodes included in the second standing wave 23 when viewed from the first direction. There should be at least one.
  • at least one of the nodes included in the second standing wave 23 does not overlap with the node included in the first standing wave 13 when viewed from the first direction. You only have to.
  • the frequency of the 1st ultrasonic transmitter 110 should just differ from the frequency of the 2nd ultrasonic transmitter 120.
  • the frequency of the first ultrasonic transmitter 110 located upstream of the second ultrasonic transmitter 120 is lower than the frequency of the second ultrasonic transmitter 120, the ultrasonic dust collector 10 is in the air. The fine particles can be aggregated more efficiently.
  • the number of nodes increases as the frequency of the ultrasonic transmitter increases. More specifically, the higher the frequency of the ultrasonic transmitter, the greater the number of nodes per unit area (per unit length) when viewed from the first direction. That is, fine particles can be collected finely. On the other hand, when the number of nodes increases, the energy for collecting fine particles in one node decreases.
  • the first standing wave 13 with a small number of nodes upstream collects particles having a large mass with strong energy. can do.
  • fine particles having a small mass that have not been aggregated in the upstream can be finely collected by the second standing wave 23 having a large number of nodes.
  • the ultrasonic dust collector 10 when the frequency of the first ultrasonic transmitter 110 is lower than the frequency of the second ultrasonic transmitter 120, the ultrasonic dust collector 10 more efficiently aggregates fine particles in the air. be able to.
  • the size of the diaphragm (area of the main surface of the diaphragm) may be changed according to the frequency. Specifically, the size of the diaphragm that is vibrated at a higher frequency is preferably smaller.
  • FIG. 3 is a schematic diagram showing the size of the diaphragm.
  • the diaphragm In order to collect dust over a wide range, the diaphragm should be as large as possible. However, if a large diaphragm is connected to an ultrasonic transmitter with a high frequency, the vibration of the diaphragm (frequency ) May not be maintained.
  • the frequency of the first ultrasonic transmitter 110 is lower than the frequency of the second ultrasonic transmitter 120.
  • the size of the first diaphragm 11 should be larger than the size of the second diaphragm 21.
  • the ultrasonic dust collector 10 can appropriately vibrate the first diaphragm 11 and the second diaphragm 21.
  • the size of the reflecting plate is also changed corresponding to the size of the diaphragm.
  • the interval between the first diaphragm 11 and the first reflector 12 and the interval between the second diaphragm 21 and the second reflector 22 are the same, but may be different.
  • first diaphragm 11 and the first reflector 12, and the second diaphragm 21 and the second reflector 22 are all opposed in the second direction.
  • first diaphragm 11 and the first reflector 12 face each other in the second direction
  • second diaphragm 21 and the second reflector 22 are in the first direction (Y-axis direction).
  • the ultrasonic dust collector 10 may include three or more sets of diaphragms, reflectors, and ultrasonic transmitters. In this case, if the frequency of the ultrasonic transmitter is set in order from the upstream, for example, 20 kHz, 40 kHz, 100 kHz,..., The ultrasonic dust collector 10 more efficiently aggregates fine particles in the air. Can be done.
  • the ultrasonic dust collector 10 may include a plurality of first diaphragms 11.
  • the plurality of first diaphragms 11 may be arranged in a comb shape, and one first ultrasonic transmitter 110 may vibrate (collectively) the plurality of first diaphragms 11 together.
  • FIG. 4 is a diagram (side view) showing an example of a structure for causing one first ultrasonic transmitter 110 to vibrate a plurality of first diaphragms 11 at once.
  • each of the four first diaphragms 11 has an end connected to the support member 15.
  • the support member 15 is formed of a metal such as aluminum, stainless steel, or titanium, for example, but may be formed of a resin such as an acrylic resin.
  • the support member 15 may be integrally formed with the four first diaphragms 11.
  • the four first diaphragms 11 are arranged so as to be parallel to each other.
  • a first reflector 12 is disposed between one first diaphragm 11 and another first diaphragm 11. Three first reflectors 12 are arranged.
  • the support member 15 is connected to the first ultrasonic transmitter 110.
  • the first ultrasonic transmitter 110 causes the plurality of first diaphragms 11 to vibrate collectively with ultrasonic waves via the support member 15.
  • first ultrasonic transmitter 110 By connecting a plurality of first diaphragms to one first ultrasonic transmitter 110, the number of first ultrasonic transmitters 110 relative to the number of first diaphragms 11 can be reduced. . Then, power consumption is reduced.
  • each of the plurality of first diaphragms 11 is supported by the support member 15 only on one side.
  • the first standing wave 13 can be efficiently generated by the flexural vibration of the first diaphragm 11.
  • first diaphragm 11 positioned between the two first reflectors 12 can generate the first standing wave 13 using each of the two principal surfaces facing backward.
  • the specifications such as the number of first diaphragms 11, the number of first reflectors 12, and the distance between the first diaphragm 11 and the first reflector 12 shown in FIG. 4 are examples. Such specifications may be appropriately determined empirically or experimentally. Further, the structure shown in FIG. 4 may be employed in the plurality of second diaphragms 21, the plurality of second reflectors 22, and the second ultrasonic transmitter 120.
  • the ultrasonic dust collector 10 is an ultrasonic dust collector that agglomerates fine particles in the air using ultrasonic waves, and is disposed opposite to each other in the flow path in which air flows in the first direction.
  • a diaphragm 11 and a first reflector 12 are provided.
  • the ultrasonic dust collector 10 generates a first standing wave 13 between the first diaphragm 11 and the first reflector 12 by vibrating the first diaphragm 11 with ultrasonic waves.
  • a transmitter 110 is provided.
  • the ultrasonic dust collector 10 includes a second diaphragm 21 and a second reflector 22 that are disposed to face each other downstream of the first diaphragm 11 and the first reflector 12 in the flow path.
  • the ultrasonic dust collector 10 vibrates the second diaphragm 21 with ultrasonic waves, thereby generating a second standing wave 23 between the second diaphragm 21 and the second reflector 22.
  • a transmitter 120 is provided.
  • the arrangement of the nodes for example, the nodes 14a and 14b included in the first standing wave 13 and the nodes (the nodes 24a, 24b, 24b) included in the second standing wave 23 are included. This is different from the arrangement of 24c and nodes 24d).
  • the ultrasonic dust collector 10 can efficiently aggregate fine particles in the air.
  • the frequency of the first ultrasonic transmitter 110 and the frequency of the second ultrasonic transmitter 120 may be different.
  • the ultrasonic dust collector 10 operates the first ultrasonic transmitter 110 and the second ultrasonic transmitter 120 at different frequencies, so that the first standing wave when viewed from the first direction is used.
  • the arrangement of the nodes included in 13 and the arrangement of the nodes included in the second standing wave 23 can be made different.
  • the frequency of the first ultrasonic transmitter 110 may be lower than the frequency of the second ultrasonic transmitter 120.
  • fine particles having a large mass can be collected with strong energy by the first standing wave 13 having a small number of nodes upstream.
  • fine particles having a small mass that have not been aggregated in the upstream can be finely collected by the second standing wave 23 having a large number of nodes. That is, the ultrasonic dust collector 10 can more efficiently aggregate fine particles in the air.
  • the size of the first diaphragm 11 may be larger than the size of the second diaphragm 21.
  • the ultrasonic dust collector 10 can appropriately vibrate the first diaphragm 11 and the second diaphragm 21.
  • the interval between the first diaphragm 11 and the first reflector 12 and the interval between the second diaphragm 21 and the second reflector 22 may be the same.
  • the ultrasonic dust collector 10 maintains the same distance between the first diaphragm 11 and the first reflector 12 and the second diaphragm 21 and the second reflector 22 while maintaining the same distance.
  • the arrangement of nodes included in the first standing wave 13 and the arrangement of nodes included in the second standing wave 23 when viewed from one direction can be made different.
  • first diaphragm 11 and the first reflector 12 are disposed to face each other in a second direction orthogonal to the first direction
  • second diaphragm 21 and the second reflector 22 are disposed to face each other in the second direction.
  • the center P1 of the first diaphragm 11 and the first reflector 12 and the center P2 of the second diaphragm 21 and the second reflector 22 may be the same position in the second direction.
  • the ultrasonic dust collector 10 can generate the first standing wave 13 and the second standing wave 23 in the second direction orthogonal to the first direction.
  • the ultrasonic dust collector 10 includes a plurality of first diaphragms 11 and a support member 15 to which the respective end portions of the plurality of first diaphragms 11 are connected. Also good.
  • the first ultrasonic transmitter 110 may cause the plurality of first diaphragms 11 to vibrate collectively with ultrasonic waves via the support member 15.
  • Embodiment 2 [Constitution] In Embodiment 1, it is included in the first standing wave 13 when viewed from the first direction by making the frequency of the first ultrasonic transmitter 110 different from the frequency of the second ultrasonic transmitter 120.
  • the arrangement of nodes and the arrangement of nodes included in the second standing wave 23 have been changed.
  • the method of changing the arrangement of the nodes included in the first standing wave 13 and the arrangement of the nodes included in the second standing wave 23 when viewed from the first direction is not particularly limited. Such a method may be used.
  • the arrangement of nodes included in the first standing wave 13 and the arrangement of nodes included in the second standing wave 23 are the first diaphragm 11, the first reflector 12, the second diaphragm 21, and It can be changed depending on the arrangement of the second reflector 22.
  • the distance between the first diaphragm 11 and the first reflector 12 and the second By changing the distance between the diaphragm 21 and the second reflecting plate 22, the arrangement of the nodes when viewed from the first direction can be changed.
  • FIG. 5 is a schematic diagram of an ultrasonic dust collector according to the second embodiment.
  • the description is focused on the differences from the first embodiment, and the description of the matters already described in the first embodiment is omitted.
  • the frequency of the first ultrasonic transmitter 110 and the frequency of the second ultrasonic transmitter 120 are the same. Further, the interval between the first diaphragm 11 and the first reflector 12 and the interval between the second diaphragm 21 and the second reflector 22 are the same.
  • the first diaphragm 11 and the first reflector 12 are arranged to face each other in a second direction orthogonal to the first direction, and the second diaphragm 21 and the second reflector 22 are arranged to face each other in the second direction.
  • the positions of the second diaphragm 21 and the second reflector 22 are shifted from the positions of the first diaphragm 11 and the first reflector 12.
  • the center P1 of the first diaphragm 11 and the first reflector 12 is different from the center P2 of the second diaphragm 21 and the second reflector 22 in the second direction.
  • the arrangement of nodes included in the first standing wave 13 is different from the arrangement of nodes included in the second standing wave 23a.
  • the position of the node 14a of the first standing wave 13 and the positions of the nodes 25a and 25b of the second standing wave 23a do not overlap. Further, the position of the node 14b of the first standing wave 13 does not overlap with the positions of the nodes 25a and 25b of the second standing wave 23a.
  • the ultrasonic dust collector 10a can efficiently agglomerate fine particles in the air and improve the life of the filter 40.
  • the ultrasonic dust collector 10a is a relative position in the second direction of the center P2 of the second diaphragm 21 and the second reflector 22 with respect to the center P1 of the first diaphragm 11 and the first reflector 12.
  • the mechanism 70a and the mechanism 70b which are the mechanisms for changing are provided.
  • the mechanism 70a is a mechanism for adjusting the position of the second reflector 22 in the second direction
  • the mechanism 70b is a mechanism for adjusting the position of the second diaphragm 21 in the second direction.
  • the positions of the first diaphragm 11 and the first reflector 12 are fixed.
  • the mechanism 70a and the mechanism 70b the relative position of the center P2 with respect to the center P1 in the second direction can be arbitrarily changed.
  • the mechanism 70a and the mechanism 70b are, for example, screw-type position adjustment mechanisms, but specific modes of the mechanism 70a and the mechanism 70b are not particularly limited.
  • the mechanism 70a and the mechanism 70b may be mechanisms that are manually operated by a user, or may be mechanisms that are controlled by a control device (not shown).
  • the mechanism 70a and the mechanism 70b are the relative positions in the second direction of the center P2 of the second diaphragm 21 and the second reflector 22 with respect to the center P1 of the first diaphragm 11 and the first reflector 12. It only has to be changed. Therefore, for example, the mechanism 70a and the mechanism 70b change the positions of the first diaphragm 11 and the first reflector 12 in the second direction, and the positions of the second diaphragm 21 and the second reflector 22 are fixed. Also good.
  • the node 14b shown in FIG. 5 is generated at a position away from the first diaphragm 11 by a half of the wavelength of the first standing wave 13.
  • the position adjustment amount by the mechanism 70a may be limited to be within the half wavelength range of the second standing wave 23a (that is, within the half wavelength range of the first standing wave 13). The same applies to the position adjustment amount by the mechanism 70b.
  • the ultrasonic dust collector 10a further includes a sensor (for example, a fine differential pressure sensor) that measures the pressure loss in the filter 40, and changes the relative position of the center P2 to the center P1 according to the sensing result of the sensor. May be. Thereby, when the pressure loss in the filter 40 becomes large, that is, when the filter 40 is clogged, control is performed so as to change the place where the particulates accumulate in the filter 40.
  • a sensor for example, a fine differential pressure sensor
  • the frequency of the first ultrasonic transmitter 110 and the frequency of the second ultrasonic transmitter 120 are the same, and the first diaphragm 11 and the first reflection are the same.
  • the interval between the plates 12 and the interval between the second diaphragm 21 and the second reflector 22 are the same.
  • the first diaphragm 11 and the first reflector 12 are disposed to face each other in a second direction orthogonal to the first direction, and the second diaphragm 21 and the second reflector 22 are , Oppositely arranged in the second direction.
  • the center P1 of the first diaphragm 11 and the first reflector 12 and the center P2 of the second diaphragm 21 and the second reflector 22 are different in the second direction.
  • the ultrasonic dust collector 10a disposes the nodes included in the first standing wave 13 when viewed from the first direction by changing the positions of the center P1 and the center P2 in the second direction. And the arrangement of nodes included in the second standing wave 23 can be made different.
  • the ultrasonic dust collector 10a further includes a relative relationship between the center P2 of the second diaphragm 21 and the second reflector 22 in the second direction with respect to the center P1 of the first diaphragm 11 and the first reflector 12.
  • a mechanism for changing the position may be provided.
  • dust collection is performed on air, but dust collection may be performed on gas other than air.
  • the present invention may be realized as an air cleaning device including the ultrasonic dust collector according to the embodiment.
  • FIG. 6 is an external view of the air cleaning device.
  • the air cleaning device may be for industrial use or for home use.
  • the present invention may be realized as a vacuum cleaner including the ultrasonic dust collector according to the above embodiment.
  • FIG. 7 is an external view of the electric vacuum cleaner.
  • the present invention may be realized as an air conditioner (heat exchange air conditioner) including the ultrasonic dust collector according to the above embodiment.
  • FIG. 8 is an external view of the air conditioner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

超音波集塵装置(10)は、第1振動板(11)と第1反射板(12)との間に第1定在波(13)を発生させる第1超音波発信器(110)と、第2振動板(21)と第2反射板(22)との間に第2定在波(23)を発生させる第2超音波発信器(120)とを備える。第1方向から見た場合に、第1定在波(13)に含まれる節の配置と、第2定在波(23)に含まれる節の配置とは異なる。

Description

超音波集塵装置
 本発明は、空気中の微粒子を集める超音波集塵装置に関する。
 従来、超音波により空気中の微粒子を集める技術が知られている。例えば、特許文献1には、超音波振動子により超音波を照射することにより空気中の浮遊粒子を凝集除去する超音波凝集装置(超音波集塵装置)が開示されている。
特開2005-118706号公報
 超音波集塵装置においては、効率的に微粒子を凝集することが課題となる。
 本発明は、効率的に微粒子を凝集することができる集塵装置を提供する。
 本発明の一態様に係る超音波集塵装置は、空気中の微粒子を超音波により凝集する超音波集塵装置であって、空気が第1方向に流れる流路に、互いに対向配置される第1振動板及び第1反射板と、超音波により前記第1振動板を振動させることによって、前記第1振動板と前記第1反射板との間に第1定在波を発生させる第1超音波発信器と、前記流路のうち、前記第1振動板及び前記第1反射板よりも下流に、互いに対向配置される第2振動板及び第2反射板と、超音波により前記第2振動板を振動させることによって、前記第2振動板と前記第2反射板との間に第2定在波を発生させる第2超音波発信器とを備え、前記第1方向から見た場合に、前記第1定在波に含まれる節の配置と、前記第2定在波に含まれる節の配置とは異なる。
 本発明の超音波集塵装置は、効率的に微粒子を凝集することができる。
図1は、実施の形態1に係る超音波集塵装置の概略図である。 図2は、第1超音波発信器の具体的態様の一例を示す図である。 図3は、振動板の大きさを示す模式図である。 図4は、1つの第1超音波発信器が、複数の第1振動板を一括して振動させるための構造の一例を示す図である。 図5は、実施の形態2に係る超音波集塵装置の概略図である。 図6は、空気清浄装置の外観図である。 図7は、電気掃除機の外観図である。 図8は、空気調和装置の外観図である。
 以下、実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。
 また、以下の実施の形態において、Z軸方向は、例えば鉛直方向である。また、X軸方向及びY軸方向は、Z軸に垂直な平面(水平面)上において、互いに直交する方向である。以下の実施の形態では、Y軸方向は、第1方向の一例であり、Z軸方向は、第2方向の一例であり、X軸方向は、第3方向の一例である。
 (実施の形態1)
 [構成]
 まず、実施の形態1に係る超音波集塵装置の構成について説明する。図1は、実施の形態1に係る超音波集塵装置の概略図である。
 図1に示されるように、実施の形態1に係る超音波集塵装置10は、管60と、気流形成部50と、フィルタ40と、第1超音波発信器110と、第1振動板11と、第1反射板12と、第2超音波発信器120と、第2振動板21と、第2反射板22とを備える。
 超音波集塵装置10は、超音波による空気の振動を用いて、空気中に含まれる微粒子(塵埃など)の凝集を行う装置である。超音波集塵装置10は、例えば、電気掃除機または空気清浄機等に適用される。微粒子(塵埃等)は、例えば、粉粒体、化合物の集合体、分子、原子、粒子状物質(PM:Particulate Matter)等である。
 管60は、微粒子を含む空気(含塵気流)の流路を形成する構造体(ダクト)である。管60は、実施の形態1では、角管状であるが、円管状であってもよい。管60の形状は、特に限定されない。管60は、例えば、アルミ、ステンレス、もしくはチタン等の金属、または、アクリル樹脂などの樹脂によって形成される。管60の管壁の厚みは、例えば、3mmである。図1では、対向する2つの管壁60a及び管壁60bが図示され、他の管壁は、図示が省略されている。
 気流形成部50は、管60に空気を導入する機構、つまり管60の内部に空気の流れを形成する機構である。気流形成部50は、例えば、羽根を回転させるファンである。気流形成部50は、管60の排気口付近に取り付けられ、空気の吸引を行うことにより、吸気口を通じて管60内に空気を取り込む。また、気流形成部50は、超音波によって塵が低減された空気を管60の外部に排出する。これにより、つまり、管60内(流路内)においては、空気が第1方向に流れる。第1方向は、言い換えれば、Y軸方向である。空気の流速は、例えば0.1m/s以上1m/s以下である。
 フィルタ40は、空気から微粒子(塵埃等)を取り除くためのエアフィルタである。フィルタ40は、例えば、HEPAフィルタ(High Efficiency Particulate Air Filter)である。フィルタ40によって微粒子が捕集されるため、図1においてフィルタ40の左側(上流側)に比べて右側(下流側)においては、単位体積あたりの微粒子の量が少なくなる。管60に導入される空気中における微粒子の濃度は、例えば、0.5万個/L(リットル)以上1.5万個/L以下であり、フィルタ40の下流における微粒子の濃度は、0.5万個/L未満である。
 なお、フィルタ40は、必須の構成要素ではない。超音波による微粒子の凝集が十分に行われれば、凝集された微粒子は管60内で落下する。このため、フィルタ40が不要となる場合がある。また、超音波集塵装置10は、フィルタ40に代えて、または、フィルタ40に加えて、微粒子を帯電させる放電電極と、帯電された微粒子を捕集する集塵電極とを備える電気集塵装置を備えてもよい。
 第1振動板11及び第1反射板12は、微粒子を含む空気が第1方向に流れる流路に配置される。第1振動板11及び第1反射板12は、具体的には、管60内の空気の流路の少なくとも一部を挟むように配置される。第1振動板11及び第1反射板12は、具体的には、第1方向と直交する第2方向(Z軸方向)において互いに対向配置される。第1振動板11と第1反射板12とは平行である。
 第1振動板11及び第1反射板12のそれぞれは、例えば、管60と別体であって、管60内に配置される。しかしながら、第1振動板11及び第1反射板12のそれぞれは、管60の管壁の一部分を構成してもよい。また、第1振動板11及び第1反射板12の一方が管60とは別体であって、他方が管60の管壁の一部分を構成してもよい。
 第1振動板11及び第1反射板12は、例えば、アルミ、ステンレス、または、チタンなどの金属により形成されるが、アクリル樹脂等の樹脂によって形成されてもよい。また、第1振動板11及び第1反射板12は、板状であれば形状は特に限定されない。第1振動板11及び第1反射板12の厚みは、例えば3mmである。
 第1超音波発信器110は、超音波により第1振動板11を振動させる装置である。図2は、第1超音波発信器110の具体的態様の一例を示す図である。
 第1超音波発信器110は、主としてセラミック等の圧電素子(piezoelectric element)からなる振動子(超音波振動子)111を備える。振動子111には、制御部113によって電圧が印加される。制御部は、例えば、プロセッサ、マイクロコンピュータ、または専用回路などによって実現される。
 第1超音波発信器110は、例えば、増幅ホーン112を介して第1振動板11を振動させる。増幅ホーン112は、当該増幅ホーン112の一端が振動子111とボルト等で締めて連結されることで接続された共鳴体(共振体)である。増幅ホーン112の他端は、第1振動板11と接続されている。増幅ホーン112は、ステンレス、アルミ合金、または、チタン合金等の金属で形成される。増幅ホーン112の形状は、円錐もしくは円柱などの回転体、または、指数曲線、双曲線、放物線等を母線とする回転体等である。回転体の中心軸方向の長さ(一端から他端までの長さ)は、超音波に係る振動を生じる振動子111の振動エネルギーを効率的に伝搬するために超音波の半波長の整数倍である。
 第1超音波発信器110は、超音波により第1振動板11を振動させることにより、第1振動板11と第1反射板12との間に第1定在波13を発生させる。言い換えれば、第1超音波発信器110の周波数は、第1振動板11と第1反射板12との間で第1定在波13が生じるように調整されている。なお、図1では、第1定在波13は模式的に図示されている。
 第1振動板11と第1反射板12との間で第1定在波13が生じると、管60に導かれた空気中の微粒子のうち、第1定在波13の1以上の各節の近傍を通過する微粒子は、幾分かその節に引き寄せられる。つまり、第1定在波13の節の位置においては、空気中の微粒子が凝集される。
 第2振動板21及び第2反射板22は、微粒子を含む空気が第1方向に流れる流路のうち、第1振動板11及び第1反射板12よりも下流に配置される。第2振動板21及び第2反射板22は、具体的には、管60の中の空気の流路の少なくとも一部を挟むように配置される。第2振動板21及び第2反射板22は、具体的には、第2方向(Z軸方向)において互いに対向配置される。第2振動板21と第2反射板22とは平行である。
 なお、第1振動板11及び第1反射板12の間隔と、第2振動板21及び第2反射板22の間隔とは同一である。また、第1振動板11及び第1反射板12の中心P1と、第2振動板21及び第2反射板22の中心P2とは、第2方向における位置が同一である。中心とは、例えば、振動板から反射板までの距離を示す線分の中点である。
 第2振動板21及び第2反射板22のそれぞれは、例えば、管60と別体であって、管60内に配置される。しかしながら、第2振動板21及び第2反射板22のそれぞれは、管60の管壁の一部分を構成してもよい。第2振動板21及び第2反射板22の一方が管60とは別体であって、他方が管60の管壁の一部分を構成してもよい。
 第2振動板21及び第2反射板22は、例えば、アルミ、ステンレス、またはチタンなどの金属により形成されるが、アクリル樹脂等の樹脂によって形成されてもよい。また、第2振動板21及び第2反射板22は、板状であれば形状は特に限定されない。第2振動板21及び第2反射板22の厚みは、例えば3mmである。
 第2超音波発信器120は、超音波により第2振動板21を振動させる装置である。第2超音波発信器120の具体的態様は、第1超音波発信器110と同様である。
 第2超音波発信器120は、超音波により第2振動板21を振動させることによって、第2振動板21と第2反射板22との間に第2定在波23を発生させる。言い換えれば、第2超音波発信器120の周波数は、第2振動板21と第2反射板22との間で第2定在波23が生じるように調整されている。なお、図1では、第2定在波23は模式的に図示されている。
 第2超音波発信器120の周波数は、第1超音波発信器110の周波数とは異なる。例えば、第2超音波発信器120の周波数は、第1超音波発信器110の周波数よりも高いが、第2超音波発信器120の周波数は、第1超音波発信器110の周波数よりも低くてもよい。
 第2振動板21と第2反射板22との間で第2定在波23が生じると、管60に導かれた空気中の微粒子のうち、第2定在波23の1以上の各節の近傍を通過する微粒子は、幾分かその節に引き寄せられる。つまり、第2定在波23の節の位置においては、空気中の微粒子が凝集される。
 なお、上記のように第1超音波発信器110の周波数が、第2超音波発信器120の周波数と異なれば、第1定在波の波長λ1は、第2定在波の波長λ2と異なる。第1超音波発信器110の周波数が、第2超音波発信器120の周波数よりも大きいときには、波長λ1>波長λ2となる。このとき、波長λ1は、例えば、波長λ2の整数倍となる。一方、第1超音波発信器110の周波数が、第2超音波発信器120の周波数よりも小さいときには、波長λ1<波長λ2となる。このとき、波長λ2は、例えば、波長λ1の整数倍となる。
 [定在波に含まれる節の配置]
 以上説明した超音波集塵装置10においては、第1振動板11及び第1反射板12の間隔と、第2振動板21及び第2反射板22の間隔とは同一であるが、第1超音波発信器110の周波数と、第2超音波発信器120の周波数とが異なる。したがって、第1定在波13の節の配置と、第2定在波23の節の配置とが異なる。
 具体的には、第1方向(Y方向)から見た場合に、第1定在波13の節14aの位置と、第2定在波23の節24a、節24b、節24c、及び節24dの各位置とは重ならない。第1方向から見た場合に、第1定在波13の節14aの位置は、第2定在波23の腹の位置と重なる。
 また、第1定在波13の節14bの位置と、第2定在波23の節24a、節24b、節24c、及び節24dの各位置とは重ならない。第1方向から見た場合に、第1定在波13の節14bの位置は、第2定在波23の腹の位置と重なる。
 このように、第1定在波13に含まれる節の、第2方向における配置と、第2定在波23に含まれる節の、第2方向における配置とは異なる。
 空気中の微粒子は、通常、流路を第1方向に沿って直進する。超音波集塵装置10において第1方向から見た場合に、第1定在波13の節の配置と、第2定在波23の節の配置とが同じであると仮定すると、第1定在波13の腹の位置を通った微粒子は、第2定在波23の腹の位置を通ることになる。このような微粒子は、節の位置近傍を通らないため、凝集されずにフィルタ40に入ることになる。つまり、第1方向から見た場合に、第1定在波13の節の配置と、第2定在波23の節の配置とが同じであると、微粒子の凝集が効率的に行われない。
 これに対し、超音波集塵装置10においては、第1方向から見た場合に、第1定在波13の節の配置と、第2定在波23の節の配置とが異なるため、第1定在波13の腹の位置を通った微粒子であっても、第2定在波23の節の位置近傍を通る場合がある。そうすると、第1定在波13によって凝集されなかった微粒子が、第2定在波23によって凝集される。つまり、超音波集塵装置10は、空気中の微粒子の凝集を効率的に行うことができる。
 また、超音波集塵装置10は、第2振動板21及び第2反射板22よりも下流にフィルタ40を備える。超音波集塵装置10において、第1方向から見た場合に、第1定在波13の節の配置と、第2定在波23の節の配置とが同じであると、凝集された粒子がフィルタ40内の同じ位置に集中的に入るため、フィルタ40内で微粒子が堆積する場所が偏る。そうすると、フィルタ40の寿命が低下する。
 これに対し、超音波集塵装置10においては、第1方向から見た場合に、第1定在波13の節の配置と、第2定在波23の節の配置とが異なるため、フィルタ40内で微粒子が堆積する場所を分散させることができる。つまり、フィルタ40の寿命を向上することができる。
 なお、超音波集塵装置10においては、第1方向から見た場合に、第1定在波13に含まれる1つの節の位置は、第2定在波23に含まれる全ての節の位置と異なる。このような構成により、微粒子の凝集がより効率的に行われる。しかしながら、超音波集塵装置10においては、第1定在波13に含まれる節の中に、第2定在波23に含まれる節と第1方向から見た場合の位置が重ならないものが少なくとも1つあればよい。超音波集塵装置10においては、第2定在波23に含まれる節の中に、第1定在波13に含まれる節と第1方向から見た場合の位置が重ならないものが少なくとも1つあればよい。
 [定在波に含まれる節の数]
 ところで、超音波集塵装置10においては、第1超音波発信器110の周波数が、第2超音波発信器120の周波数と異なればよい。しかしながら、第2超音波発信器120よりも上流に位置する第1超音波発信器110の周波数が、第2超音波発信器120の周波数よりも低ければ、超音波集塵装置10は、空気中の微粒子の凝集をより効率的に行うことができる。
 図1に示されるように、振動板と反射板との間隔が同じ場合には、超音波発信器の周波数が高いほど、節の数が増える。より詳細には、超音波発信器の周波数が高いほど、第1方向から見たときの単位面積当たり(単位長さ当たり)の節の数が増える。つまり、微粒子をきめ細かく捕集することができる。一方で、節の数が増えると、1つの節において微粒子を捕集するエネルギーは低下する。
 第1超音波発信器110の周波数が、第2超音波発信器120の周波数よりも低ければ、上流においては節の数の少ない第1定在波13によって強いエネルギーで質量の大きい微粒子を捕集することができる。下流においては、上流で凝集されなかった質量の小さい微粒子を節の数の多い第2定在波23によってきめ細かく捕集することができる。定在波を網に例えると、下流に行くほど定在波の節の数が増える構成は、微粒子を捕集する網の目が下流に行くほど徐々に細かくなる構成に例えられる。
 このように、第1超音波発信器110の周波数が、第2超音波発信器120の周波数よりも低ければ、超音波集塵装置10は、より効率的に、空気中の微粒子の凝集を行うことができる。
 [振動板の大きさ]
 超音波集塵装置10において、振動板の大きさ(振動板の主面の面積)は、周波数に応じて変更されてもよい。具体的には、高い周波数で振動される振動板ほど、大きさが小さいとよい。図3は、振動板の大きさを示す模式図である。
 広範囲で集塵を行うためには、振動板は、なるべく大きいほうがよいが、周波数が高い超音波発信器に大きい振動板が接続されると、振動板のたわみなどにより、振動板の変位(周波数)を維持できない場合がある。
 上述のように、第1超音波発信器110の周波数は、第2超音波発信器120の周波数よりも低い。このような場合、図3に示されるように、第1振動板11の大きさは、第2振動板21の大きさよりも大きいほうがよい。
 これにより、超音波集塵装置10は、適切に第1振動板11及び第2振動板21を振動させることができる。なお、図3の例では、振動板の大きさに対応して反射板の大きさも変更されている。
 [実施の形態1の変形例1]
 上記実施の形態1で説明された、第1振動板11、第1反射板12、第2振動板21、及び第2反射板22の配置は一例である。
 超音波集塵装置10では、第1振動板11及び第1反射板12の間隔と、第2振動板21及び第2反射板22の間隔とは同一であったが、異なってもよい。
 また、第1振動板11及び第1反射板12と、第2振動板21及び第2反射板22とは、いずれも第2方向において対向した。しかしながら、このような配置は一例であり、第1振動板11及び第1反射板12が第2方向において対向し、第2振動板21及び第2反射板22が第1方向(Y軸方向)及び第2方向(Z軸方向)のいずれの方向とも直交する第3方向(X軸方向)において対向してもよい。
 また、超音波集塵装置10は、振動板、反射板、及び、超音波発信器の組を3組以上備えてもよい。この場合、超音波発信器の周波数が、上流から順に、例えば、20kHz、40kHz、100kHz・・のように設定されれば、超音波集塵装置10は、空気中の微粒子の凝集をより効率的に行うことができる。
 [実施の形態1の変形例2]
 また、超音波集塵装置10は、複数の第1振動板11を備えてもよい。このとき、複数の第1振動板11は、櫛状に配置され、1つの第1超音波発信器110は、複数の第1振動板11を一括して(まとめて)振動してもよい。図4は、1つの第1超音波発信器110が、複数の第1振動板11を一括して振動させるための構造の一例を示す図(側面図)である。
 図4に示される構造では、4つの第1振動板11のそれぞれは、端部が支持部材15に接続されている。支持部材15は、例えば、アルミ、ステンレス、またはチタンなどの金属により形成されるが、アクリル樹脂等の樹脂によって形成されてもよい。支持部材15は、4つの第1振動板11と一体形成されてもよい。
 4つの第1振動板11は、互いに平行になるように配置されている。一の第1振動板11と他の第1振動板11との間には、第1反射板12が配置される。第1反射板12は、3つ配置される。
 支持部材15は、第1超音波発信器110に接続される。第1超音波発信器110は、支持部材15を介して、複数の第1振動板11を超音波により一括して振動させる。
 このように、1つの第1超音波発信器110に複数の第1振動板が接続されることによって、第1振動板11の数に対する第1超音波発信器110の数を低減することができる。そうすると、消費電力が削減される。
 また、複数の第1振動板11のそれぞれは、片側のみが支持部材15によって支持される。このような構成により、第1振動板11のたわみ振動によって効率的に第1定在波13を発生させることができる。
 また、2つの第1反射板12の間に位置する第1振動板11は、背向する2つの主面のそれぞれを用いて第1定在波13を発生させることができる。
 なお、図4に示される第1振動板11の数、第1反射板12の数、第1振動板11と第1反射板12との間隔などの仕様は一例である。このような仕様は、経験的または実験的に適宜定められればよい。また、図4に示される構造は、複数の第2振動板21、複数の第2反射板22、及び、第2超音波発信器120に採用されてもよい。
 [実施の形態1の効果等]
 以上説明したように、超音波集塵装置10は、空気中の微粒子を超音波により凝集する超音波集塵装置であって、空気が第1方向に流れる流路に、互いに対向配置される第1振動板11及び第1反射板12を備える。超音波集塵装置10は、超音波により第1振動板11を振動させることによって、第1振動板11と第1反射板12との間に第1定在波13を発生させる第1超音波発信器110を備える。超音波集塵装置10は、流路のうち、第1振動板11及び第1反射板12よりも下流に、互いに対向配置される第2振動板21及び第2反射板22を備える。超音波集塵装置10は、超音波により第2振動板21を振動させることによって、第2振動板21と第2反射板22との間に第2定在波23を発生させる第2超音波発信器120を備える。第1方向から見た場合に、第1定在波13に含まれる節(例えば、節14a及び節14b)の配置と、第2定在波23に含まれる節(節24a、節24b、節24c、及び節24d)の配置とは異なる。
 これにより、第1定在波13によって凝集されなかった微粒子が、第2定在波23によって凝集される確率が高まる。よって、超音波集塵装置10は、空気中の微粒子の凝集を効率的に行うことができる。
 また、第1超音波発信器110の周波数と、第2超音波発信器120の周波数とは異なってもよい。
 このように、超音波集塵装置10は、第1超音波発信器110及び第2超音波発信器120を異なる周波数で動作させることにより、第1方向から見た場合の、第1定在波13に含まれる節の配置と、第2定在波23に含まれる節の配置とを異ならせることができる。
 また、第1超音波発信器110の周波数は、第2超音波発信器120の周波数よりも低くてもよい。
 これにより、上流においては節の数の少ない第1定在波13によって強いエネルギーで質量の大きい微粒子を捕集することができる。下流においては、上流で凝集されなかった質量の小さい微粒子を節の数の多い第2定在波23によってきめ細かく捕集することができる。つまり、超音波集塵装置10は、空気中の微粒子の凝集をより効率的に行うことができる。
 また、第1振動板11の大きさは、第2振動板21の大きさよりも大きくてもよい。
 これにより、超音波集塵装置10は、第1振動板11及び第2振動板21を適切に振動させることができる。
 また、第1振動板11及び第1反射板12の間隔と、第2振動板21及び第2反射板22の間隔とは同一であってもよい。
 このように、超音波集塵装置10は、第1振動板11及び第1反射板12の間隔と、第2振動板21及び第2反射板22の間隔とを同じ間隔に維持したまま、第1方向から見た場合の、第1定在波13に含まれる節の配置と、第2定在波23に含まれる節の配置とを異ならせることができる。
 また、第1振動板11及び第1反射板12は、第1方向と直交する第2方向において対向配置され、第2振動板21及び第2反射板22は、第2方向において対向配置されてもよい。第1振動板11及び第1反射板12の中心P1と、第2振動板21及び第2反射板22の中心P2とは、第2方向における位置が同一であってもよい。
 これにより、超音波集塵装置10は、第1方向に直交する第2方向に第1定在波13及び第2定在波23を発生させることができる。
 また、図4に示されるように、超音波集塵装置10は、複数の第1振動板11と、複数の第1振動板11のそれぞれの端部が接続された支持部材15とを備えてもよい。第1超音波発信器110は、支持部材15を介して、複数の第1振動板11を超音波により一括して振動させてもよい。
 これにより、第1振動板11の数に対する第1超音波発信器110の数が低減されるため、消費電力が削減される。
 (実施の形態2)
 [構成]
 実施の形態1では、第1超音波発信器110の周波数と、第2超音波発信器120の周波数とを異ならせることにより、第1方向から見た場合の、第1定在波13に含まれる節の配置と、第2定在波23に含まれる節の配置とが変更された。しかしながら、第1方向から見た場合の、第1定在波13に含まれる節の配置と、第2定在波23に含まれる節の配置とを変更する方法は、特に限定されず、どのような方法であってもよい。例えば、第1定在波13に含まれる節の配置と、第2定在波23に含まれる節の配置とは、第1振動板11、第1反射板12、第2振動板21、及び第2反射板22の配置によっても変更可能である。
 具体的には、第1超音波発信器110の周波数と、第2超音波発信器120の周波数とが同一であっても、第1振動板11及び第1反射板12の間隔と、第2振動板21及び第2反射板22の間隔を異ならせることにより、第1方向から見た場合の節の配置の変更が可能である。
 また、例えば、第1超音波発信器110の周波数と、第2超音波発信器120の周波数とが同一であり、かつ、第1振動板11及び第1反射板12の間隔と、第2振動板21及び第2反射板22の間隔とが同一であっても、第1方向から見た場合の節の配置の変更は可能である。実施の形態2では、このような超音波集塵装置について説明する。図5は、実施の形態2に係る超音波集塵装置の概略図である。なお、実施の形態2では、実施の形態1との相違点を中心に説明が行われ、実施の形態1で既に説明された事項については、説明が省略される。
 図5に示される超音波集塵装置10aにおいては、第1超音波発信器110の周波数と、第2超音波発信器120の周波数とは同一である。また、第1振動板11及び第1反射板12の間隔と、第2振動板21及び第2反射板22の間隔とは同一である。第1振動板11及び第1反射板12は、第1方向と直交する第2方向において対向配置され、第2振動板21及び第2反射板22は、第2方向において対向配置される。
 ここで、超音波集塵装置10aにおいては、第2振動板21及び第2反射板22の位置が、第1振動板11及び第1反射板12の位置に対してずれている。言い換えれば、第1振動板11及び第1反射板12の中心P1と、第2振動板21及び第2反射板22の中心P2とは、第2方向における位置が異なる。これにより、第1方向から見た場合に、第1定在波13に含まれる節の配置と、第2定在波23aに含まれる節の配置とは異なる。
 具体的には、第1方向から見た場合に、第1定在波13の節14aの位置と、第2定在波23aの節25a及び節25bの各位置とは重ならない。また、第1定在波13の節14bの位置と、第2定在波23aの節25a及び節25bの各位置とは重ならない。
 これにより、超音波集塵装置10aは、超音波集塵装置10と同様に、空気中の微粒子の凝集を効率的に行うことができ、かつ、フィルタ40の寿命を向上することができる。
 ところで、超音波集塵装置10aは、第1振動板11及び第1反射板12の中心P1に対する、第2振動板21及び第2反射板22の中心P2の、第2方向における相対的な位置を変更するための機構である機構70a及び機構70bを備える。
 機構70aは、第2反射板22の第2方向における位置を調整するための機構であり、機構70bは、第2振動板21の第2方向における位置を調整するための機構である。第1振動板11及び第1反射板12の位置は固定されている。このため、機構70a及び機構70bによれば、第2方向における、中心P2の中心P1に対する相対位置を任意に変更することができる。また、機構70a及び機構70bによれば、第2振動板21と第2反射板22との間隔を変更することも可能である。
 機構70a及び機構70bは、例えば、ネジ式の位置調整機構であるが、機構70a及び機構70bの具体的な態様は、特に限定されない。機構70a及び機構70bは、ユーザが手動で操作する機構であってもよいし、制御装置(図示せず)によって制御される機構であってもよい。
 なお、機構70a及び機構70bは、第1振動板11及び第1反射板12の中心P1に対する、第2振動板21及び第2反射板22の中心P2の、第2方向における相対的な位置を変更できればよい。したがって、機構70a及び機構70bは、例えば、第1振動板11及び第1反射板12の第2方向における位置を変更し、第2振動板21及び第2反射板22の位置が固定されていてもよい。
 ところで、図5に示される節14bは、第1振動板11から第1定在波13の波長の2分の1だけ離れた位置に生じる。ここで、中心P2を中心P1に対して大きくずらすと、節14bの近傍で凝集された微粒子が第2振動板21に衝突してしまう可能性がある。そこで、機構70aによる位置調整量は、第2定在波23aの半波長の範囲内(つまり、第1定在波13の半波長の範囲内)に制限されるとよい。機構70bによる位置調整量についても同様である。
 また、機構70a及び機構70bが制御装置によって制御される場合、制御装置は、中心P2の中心P1に対する相対位置を時間の経過に応じて変更することにより、フィルタ40内で微粒子が堆積する場所を分散させてもよい。これにより、フィルタ40の寿命を向上することができる。また、超音波集塵装置10aは、さらに、フィルタ40における圧力損失を計測するセンサ(例えば、微差圧センサ)を備え、センサのセンシング結果に応じて中心P2の中心P1に対する相対位置を変更してもよい。これにより、フィルタ40における圧力損失が大きくなったとき、つまり、フィルタ40が目詰まりしたときに、フィルタ40内で微粒子が堆積する場所を変更するような制御が実現される。
 [実施の形態2の効果等]
 以上説明したように、超音波集塵装置10aにおいては、第1超音波発信器110の周波数と、第2超音波発信器120の周波数とは同一であり、第1振動板11及び第1反射板12の間隔と、第2振動板21及び第2反射板22の間隔とは同一である。また、超音波集塵装置10aにおいては、第1振動板11及び第1反射板12は、第1方向と直交する第2方向において対向配置され、第2振動板21及び第2反射板22は、第2方向において対向配置される。超音波集塵装置10aにおいては、第1振動板11及び第1反射板12の中心P1と、第2振動板21及び第2反射板22の中心P2とは、第2方向における位置が異なる。
 このように、超音波集塵装置10aは、中心P1と中心P2の第2方向における位置を異ならせることにより、第1方向から見た場合の、第1定在波13に含まれる節の配置と、第2定在波23に含まれる節の配置とを異ならせることができる。
 また、超音波集塵装置10aは、さらに、第1振動板11及び第1反射板12の中心P1に対する、第2振動板21及び第2反射板22の中心P2の、第2方向における相対的な位置を変更するための機構を備えてもよい。
 これにより、中心P1に対する中心P2の第2方向における位置が変更可能となる。
 (その他の実施の形態)
 以上、実施の形態に係る超音波集塵装置について、実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態では、空気を対象として集塵が行われたが、空気以外の気体を対象として集塵が行われてもよい。
 また、本発明の全般的または具体的な態様は、特に限定されない。本発明は、実施の形態に係る超音波集塵装置を備える空気清浄装置として実現されてもよい。図6は、空気清浄装置の外観図である。なお、空気清浄装置は、産業用であってもよいし、家庭用であってもよい。
 また、本発明は、上記実施の形態に係る超音波集塵装置を備える電気掃除機として実現されてもよい。図7は、電気掃除機の外観図である。本発明は、上記実施の形態に係る超音波集塵装置を備える空気調和装置(熱交換空気調和装置)として実現されてもよい。図8は、空気調和装置の外観図である。
 その他、実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 10、10a 超音波集塵装置
 11 第1振動板
 12 第1反射板
 13 第1定在波
 14a、14b、24a、24b、24c、24d、25a、25b 節
 15 支持部材
 21 第2振動板
 22 第2反射板
 23、23a 第2定在波
 70a、70b 機構
 110 第1超音波発信器
 120 第2超音波発信器

Claims (9)

  1.  空気中の微粒子を超音波により凝集する超音波集塵装置であって、
     空気が第1方向に流れる流路に、互いに対向配置される第1振動板及び第1反射板と、
     超音波により前記第1振動板を振動させることによって、前記第1振動板と前記第1反射板との間に第1定在波を発生させる第1超音波発信器と、
     前記流路のうち、前記第1振動板及び前記第1反射板よりも下流に、互いに対向配置される第2振動板及び第2反射板と、
     超音波により前記第2振動板を振動させることによって、前記第2振動板と前記第2反射板との間に第2定在波を発生させる第2超音波発信器とを備え、
     前記第1方向から見た場合に、前記第1定在波に含まれる節の配置と、前記第2定在波に含まれる節の配置とは異なる
     超音波集塵装置。
  2.  前記第1超音波発信器の周波数と、前記第2超音波発信器の周波数とは異なる
     請求項1に記載の超音波集塵装置。
  3.  前記第1超音波発信器の周波数は、前記第2超音波発信器の周波数よりも低い
     請求項2に記載の超音波集塵装置。
  4.  前記第1振動板の大きさは、前記第2振動板の大きさよりも大きい
     請求項3に記載の超音波集塵装置。
  5.  前記第1振動板及び前記第1反射板の間隔と、前記第2振動板及び前記第2反射板の間隔とは同一である
     請求項1~4のいずれか1項に記載の超音波集塵装置。
  6.  前記第1振動板及び前記第1反射板は、前記第1方向と直交する第2方向において対向配置され、
     前記第2振動板及び前記第2反射板は、前記第2方向において対向配置され、
     前記第1振動板及び前記第1反射板の中心と、前記第2振動板及び前記第2反射板の中心とは、前記第2方向における位置が同一である
     請求項1~5のいずれか1項に記載の超音波集塵装置。
  7.  前記第1超音波発信器の周波数と、前記第2超音波発信器の周波数とは同一であり、
     前記第1振動板及び前記第1反射板の間隔と、前記第2振動板及び前記第2反射板の間隔とは同一であり、
     前記第1振動板及び前記第1反射板は、前記第1方向と直交する第2方向において対向配置され、
     前記第2振動板及び前記第2反射板は、前記第2方向において対向配置され、
     前記第1振動板及び前記第1反射板の中心と、前記第2振動板及び前記第2反射板の中心とは、前記第2方向における位置が異なる
     請求項1に記載の超音波集塵装置。
  8.  さらに、前記第1振動板及び前記第1反射板の中心に対する、前記第2振動板及び前記第2反射板の中心の、前記第2方向における相対的な位置を変更するための機構を備える
     請求項7に記載の超音波集塵装置。
  9.  前記超音波集塵装置は、
     複数の前記第1振動板と、
     複数の前記第1振動板のそれぞれの端部が接続された支持部材とを備え、
     前記第1超音波発信器は、前記支持部材を介して、複数の前記第1振動板を超音波により一括して振動させる
     請求項1~8のいずれか1項に記載の超音波集塵装置。
PCT/JP2017/008655 2016-03-11 2017-03-06 超音波集塵装置 WO2017154804A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018504460A JPWO2017154804A1 (ja) 2016-03-11 2017-03-06 超音波集塵装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016048825 2016-03-11
JP2016-048825 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017154804A1 true WO2017154804A1 (ja) 2017-09-14

Family

ID=59789306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008655 WO2017154804A1 (ja) 2016-03-11 2017-03-06 超音波集塵装置

Country Status (2)

Country Link
JP (1) JPWO2017154804A1 (ja)
WO (1) WO2017154804A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108771938A (zh) * 2018-04-18 2018-11-09 北京理工大学 一种超声波空气净化方法及系统
WO2020078577A1 (de) * 2018-10-18 2020-04-23 Smart Material Printing B.V. Partikelfilter mit ultraschallvorrichtung
KR20200105314A (ko) * 2019-02-28 2020-09-07 한국생산기술연구원 멀티 어쿠스틱 액추에이터 시스템
KR20210001669A (ko) * 2019-06-28 2021-01-06 한국생산기술연구원 미세입자 응집 방법 및 장치
KR20210002790A (ko) * 2019-07-01 2021-01-11 한국생산기술연구원 미세입자 응집 제거 장치 및 방법
KR20210013820A (ko) * 2019-07-29 2021-02-08 한국생산기술연구원 다중 주파수 음파를 이용한 미세입자 응집 제거 시스템
KR20210013823A (ko) * 2019-07-29 2021-02-08 한국생산기술연구원 다중 주파수 음파를 이용한 미세입자 응집 제거 방법
US11291939B1 (en) 2021-07-13 2022-04-05 Smart Material Printing B.V. Ultra-fine particle aggregation, neutralization and filtration
KR20230081790A (ko) * 2021-11-29 2023-06-08 한국생산기술연구원 미세입자 저감을 위한 공기 진동 미세입자 응집 포집 하이브리드 시스템 및 미세입자 하이브리드 응집 포집 방법
KR20230081815A (ko) * 2021-11-29 2023-06-08 한국생산기술연구원 음파 파동을 이용한 시정장애입자 제거 장치 및 제거 방법
US11938421B2 (en) 2016-03-06 2024-03-26 WindplusSonne GmbH Method and device for separating and/or cleaning aerosols and solid material particles and fibers from gases as well as solid material particles and fibers from liquid materials by acoustophoresis
US12005388B2 (en) 2022-07-26 2024-06-11 Smart Material Printing B.V. Apparatus and methods for air filtration of HVAC systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984605B (zh) * 2021-10-12 2023-12-26 北京雷米特文化科技有限公司 一种烟气超低排放微尘检测系统
CN114159918A (zh) * 2021-12-09 2022-03-11 武汉钢铁有限公司 转炉一次烟气细颗粒物声波团聚高效除尘系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857279A (ja) * 1971-11-19 1973-08-11
JPS4864074U (ja) * 1971-11-19 1973-08-14
JP2003190838A (ja) * 2001-12-28 2003-07-08 Kawasaki Heavy Ind Ltd サイクロン式微粉捕集装置
JP2003314843A (ja) * 2002-04-22 2003-11-06 Daikin Ind Ltd 空気調和装置
JP2004261761A (ja) * 2003-03-04 2004-09-24 Port & Airport Research Institute アクティブストレーナーを用いるスラリー処理システム
US20060037915A1 (en) * 2002-06-04 2006-02-23 Protasis Corporation Method and device for ultrasonically manipulating particles within a fluid
WO2011152796A1 (en) * 2010-06-04 2011-12-08 Empire Technology Development Llc Acoustically driven nanoparticle concentrator
JP2014151260A (ja) * 2013-02-07 2014-08-25 Ihi Corp 固液分離方法及び装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857279A (ja) * 1971-11-19 1973-08-11
JPS4864074U (ja) * 1971-11-19 1973-08-14
JP2003190838A (ja) * 2001-12-28 2003-07-08 Kawasaki Heavy Ind Ltd サイクロン式微粉捕集装置
JP2003314843A (ja) * 2002-04-22 2003-11-06 Daikin Ind Ltd 空気調和装置
US20060037915A1 (en) * 2002-06-04 2006-02-23 Protasis Corporation Method and device for ultrasonically manipulating particles within a fluid
JP2004261761A (ja) * 2003-03-04 2004-09-24 Port & Airport Research Institute アクティブストレーナーを用いるスラリー処理システム
WO2011152796A1 (en) * 2010-06-04 2011-12-08 Empire Technology Development Llc Acoustically driven nanoparticle concentrator
JP2014151260A (ja) * 2013-02-07 2014-08-25 Ihi Corp 固液分離方法及び装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11938421B2 (en) 2016-03-06 2024-03-26 WindplusSonne GmbH Method and device for separating and/or cleaning aerosols and solid material particles and fibers from gases as well as solid material particles and fibers from liquid materials by acoustophoresis
CN108771938A (zh) * 2018-04-18 2018-11-09 北京理工大学 一种超声波空气净化方法及系统
CN113226514A (zh) * 2018-10-18 2021-08-06 智能材料印刷有限公司 具有超声波装置的颗粒过滤器
WO2020078577A1 (de) * 2018-10-18 2020-04-23 Smart Material Printing B.V. Partikelfilter mit ultraschallvorrichtung
US20210341370A1 (en) * 2018-10-18 2021-11-04 Smart Material Printing B.V. Particle filter with ultrasound device
KR20200105314A (ko) * 2019-02-28 2020-09-07 한국생산기술연구원 멀티 어쿠스틱 액추에이터 시스템
KR102201708B1 (ko) 2019-02-28 2021-01-12 한국생산기술연구원 멀티 어쿠스틱 액추에이터 시스템
KR20210001669A (ko) * 2019-06-28 2021-01-06 한국생산기술연구원 미세입자 응집 방법 및 장치
KR102201712B1 (ko) 2019-06-28 2021-01-12 한국생산기술연구원 미세입자 응집 방법 및 장치
KR20210002790A (ko) * 2019-07-01 2021-01-11 한국생산기술연구원 미세입자 응집 제거 장치 및 방법
KR102201714B1 (ko) 2019-07-01 2021-01-12 한국생산기술연구원 미세입자 응집 제거 장치 및 방법
KR102264464B1 (ko) 2019-07-29 2021-06-15 한국생산기술연구원 다중 주파수 음파를 이용한 미세입자 응집 제거 시스템
KR102264465B1 (ko) 2019-07-29 2021-06-15 한국생산기술연구원 다중 주파수 음파를 이용한 미세입자 응집 제거 방법
KR20210013823A (ko) * 2019-07-29 2021-02-08 한국생산기술연구원 다중 주파수 음파를 이용한 미세입자 응집 제거 방법
KR20210013820A (ko) * 2019-07-29 2021-02-08 한국생산기술연구원 다중 주파수 음파를 이용한 미세입자 응집 제거 시스템
US11291939B1 (en) 2021-07-13 2022-04-05 Smart Material Printing B.V. Ultra-fine particle aggregation, neutralization and filtration
US11478742B1 (en) 2021-07-13 2022-10-25 Smart Material Printing B.V. Ultra-fine particle aggregation, neutralization and filtration
KR20230081790A (ko) * 2021-11-29 2023-06-08 한국생산기술연구원 미세입자 저감을 위한 공기 진동 미세입자 응집 포집 하이브리드 시스템 및 미세입자 하이브리드 응집 포집 방법
KR20230081815A (ko) * 2021-11-29 2023-06-08 한국생산기술연구원 음파 파동을 이용한 시정장애입자 제거 장치 및 제거 방법
KR102616931B1 (ko) * 2021-11-29 2023-12-28 한국생산기술연구원 음파 파동을 이용한 시정장애입자 제거 장치 및 제거 방법
KR102616956B1 (ko) * 2021-11-29 2023-12-28 한국생산기술연구원 미세입자 저감을 위한 공기 진동 미세입자 응집 포집 하이브리드 시스템 및 미세입자 하이브리드 응집 포집 방법
US12005388B2 (en) 2022-07-26 2024-06-11 Smart Material Printing B.V. Apparatus and methods for air filtration of HVAC systems

Also Published As

Publication number Publication date
JPWO2017154804A1 (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2017154804A1 (ja) 超音波集塵装置
KR102495003B1 (ko) 분말층 3차원 프린터기용 개선된 미세분말 분배시스템 및 집진시스템 및 관련 방법
US9079127B2 (en) Acoustically driven nanoparticle concentrator
US9403114B2 (en) Air purification system and method using an ultrasonic wave
US20160325206A1 (en) Acoustic pre-conditioner
US20160059206A1 (en) Acoustically driven nanoparticle concentrator
JP2000508964A (ja) ガス洗浄装置の運転制御システム
JP2013533414A (ja) フィルターからろ過残渣を除去する方法及びシステム
CN1720109A (zh) 筛分装置
JPH0647346A (ja) 超音波発生源およびこれを用いた浮遊粒子収集装置
IE913839A1 (en) An acoustic chamber for the aerosol treatment of exhaust¹gases
JP2020202893A (ja) 集塵装置、掃除機、及び自走式掃除機
RU2447926C2 (ru) Способ коагуляции инородных частиц в газовых потоках
JP3471536B2 (ja) 浮遊粒子の超音波収集方法とその装置
JP2017140588A (ja) 集塵装置
CN107204561B (zh) 闭环放电激励脉冲重频气体激光器及其运行方法
JP2018134612A (ja) 粒子分離装置
JP5235999B2 (ja) 超音波発生装置及びそれを搭載した設備機器
KR101623015B1 (ko) 재사용 효율이 높은 필터 시스템
EP3644308B1 (en) Sound insulation system
KR102274772B1 (ko) 음향진동시스템을 포함하는 배출가스 미세입자 응집처리장치
KR20030057582A (ko) 초음파를 이용한 유해 배기가스 및 매연 집진장치
JP3499389B2 (ja) 浮遊粒子の収集装置
JP2017131875A (ja) 電気集塵装置
JP2017140587A (ja) 集塵装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763144

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763144

Country of ref document: EP

Kind code of ref document: A1