EP0337330A2 - Verfahren zur Erhöhung der Dichte sprühgetrockneter, phosphatreduzierter Waschmittel - Google Patents

Verfahren zur Erhöhung der Dichte sprühgetrockneter, phosphatreduzierter Waschmittel Download PDF

Info

Publication number
EP0337330A2
EP0337330A2 EP89106222A EP89106222A EP0337330A2 EP 0337330 A2 EP0337330 A2 EP 0337330A2 EP 89106222 A EP89106222 A EP 89106222A EP 89106222 A EP89106222 A EP 89106222A EP 0337330 A2 EP0337330 A2 EP 0337330A2
Authority
EP
European Patent Office
Prior art keywords
powder
weight
spray
mixer
nonionic surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89106222A
Other languages
English (en)
French (fr)
Other versions
EP0337330A3 (en
EP0337330B1 (de
Inventor
Jochen Dr. Jacobs
Ulrich Dr. Jahnke
Dieter Dr. Jung
Rudolf Löffelmann
Wilfried Dr. Adler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0337330A2 publication Critical patent/EP0337330A2/de
Publication of EP0337330A3 publication Critical patent/EP0337330A3/de
Application granted granted Critical
Publication of EP0337330B1 publication Critical patent/EP0337330B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/02Preparation in the form of powder by spray drying
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • Spray-dried detergents of conventional compositions generally have bulk densities of 250 to 450 g / l (grams per liter) and, depending on the composition and method of operation, and only in exceptional cases of 480 g / l.
  • powders with higher bulk densities for example from 550 to 750 g / l, have been of increasing interest since they require less packaging material and thus enable raw material to be saved and waste to be reduced.
  • DE-A-25 48 639 teaches a process for increasing the bulk density of granulated or spray-dried detergents in a device which is known in the art under the name "Marumerizer” and is normally used to round off extruded particles of irregular shape.
  • This device consists of a vertical cylinder with smooth side walls and a surface roughened turntable that rotates in the lower area of the cylinder.
  • the device is primarily intended for intermittent operation.
  • the largest available systems of this type with a diameter of the turntable of approx. 1 m can only take a batch of a maximum of 45 to 50 kg of tower powder.
  • the compositions contain 4 to 20, preferably 5 to 15% by weight of at least one anionic surfactant from the class of soaps, sulfonates and sulfates.
  • Suitable soaps are derived from natural or synthetic, saturated or monounsaturated fatty acids with 12 to 22 carbon atoms. Are particularly suitable from natural fatty acids such. B. coconut, palm kernel or tallow fatty acid derived soap mixtures. Preferred are those which are composed of 50 to 100% of saturated C12-18 fatty acid soaps and 0 to 50% of oleic acid soap. Their proportion is preferably 8 to 15% by weight, based on the composition.
  • Usable surfactants of the sulfonate type are linear alkylbenzenesulfonates (C9 ⁇ 13-alkyl) and olefin sulfonates, ie mixtures of alkene and hydroxylalkanesulfonates as well as disulfonates, as can be obtained, for example, from C12 ⁇ 1inen monoolefins with a terminal or internal double bond by sulfonating with gaseous sulfur trioxide and subsequent receives alkaline hydrolysis of the sulfonation products.
  • alkanesulfonates which can be obtained from C12 ⁇ 18 alkanes by sulfochlorination or sulfoxidation and subsequent hydrolysis or neutralization, and also alpha sulfonated hydrogenated coconut, palm kernel or tallow fatty acids and their methyl or ethyl esters and mixtures thereof.
  • Suitable sulfate-type surfactants are the sulfuric acid monoesters from primary alcohols of natural and synthetic origin, i.e. from fatty alcohols, e.g. Coconut fatty alcohols, tallow fatty alcohols, oleyl alcohol, lauryl, myristyl, palmityl or stearyl alcohol, or the C10 ⁇ 18 oxo alcohols and the sulfuric acid esters of secondary alcohols of this chain length.
  • the sulfuric acid monoesters of the primary alcohols or alkylphenols ethoxylated with 1 to 3 mol of ethylene oxide are also suitable.
  • Sulfated fatty acid alkanolamides and sulfated fatty acid monoglycerides are also suitable.
  • Surfactants containing sulfonate groups are preferred, and among these in turn the alkylbenzenesulfonates, alpha-sulfofatty acid ester salts and the alpha-sulfofatty acid ester disalts.
  • the anionic surfactants are usually in the form of their sodium salts. Their proportion, based on the composition, is preferably 5 to 15% by weight.
  • nonionic surfactants additive products of 2 to 20, preferably 3 to 15 moles of ethylene oxide (EO) with 1 mole of a compound having essentially 10 to 20, in particular 12 to 18, carbon atoms from the group of alcohols can be used as nonionic surfactants (component B).
  • Suitable nonionic surfactants are derived from primary alcohols, for example coconut oil or tallow fatty alcohol, oleyl alcohol, oxo alcohol, or from secondary alcohols having 8 to 18, preferably 12 to 18, carbon atoms.
  • Combinations of water-soluble nonionic surfactants (component B1) and water-insoluble or water-dispersible nonionic surfactants (component B2) are preferred used.
  • Component B1 includes those with 6 to 15 EO and an HLB value of more than 11, component B2 those with 2 to 6 EO and an HLB value of 11 or less. It has proven to be advantageous to mix component B2 completely into the already spray-dried powder in the mixer. Component B1 can be sprayed in whole or in part, or can be added in whole or in part in the mixer.
  • the nonionic surfactants can also have propylene glycol ether groups (PO). These can be arranged at the end or distributed statistically with the EO groups.
  • Preferred compounds of this class are those of the type R- (PO) x - (EO) y , in which R is the hydrophobic radical, x are numbers from 0.5 to 3 and y numbers from 3 to 20.
  • nonionic surfactants are ethoxylates of alkylphenols, 1,2-diols, fatty acids and fatty acid amides, and block polymers of polypropylene glycol and polyethylene glycol or alkoxylated alkylenediamines (Pluronics and Tetronics type). Furthermore, the above-described nonionic surfactants of the EO type can be partially replaced by alkyl polyglycosides. Suitable alkyl polyglycosides have, for example, a C8 ⁇ 16 alkyl radical and an oligomeric glycoside radical with 1.5 to 6 glucose groups. Alkyl glycoside type surfactants are preferably incorporated in the spray dried powder.
  • the content of the agents in nonionic surfactants or nonionic surfactant mixtures is 2 to 15% by weight, preferably 3 to 12% by weight and in particular 4 to 10% by weight.
  • Component (C) consists of finely crystalline, synthetic, water-containing zeolites of the NaA type, which have a calcium binding capacity in the range from 100 to 200 mg CaO / g (according to the information in DE 22 24 837). Their particle size is usually in the range from 1 to 10 ⁇ m.
  • the content of these zeolites in the compositions is 10 to 40, preferably 15 to 35,% by weight. Most or all of the zeolite can be incorporated and sprayed into the spray mixture. It is more advantageous if part of it is added in powder form during the mixing process. This proportion can be up to 5% by weight, based on the composition. It is preferably 1 to 4% by weight. This procedure leads to a further increase in bulk density and at the same time improves the flow behavior of the agent.
  • the zeolite is preferably used together with polyanionic co-builders. These include compounds from the class of polyphosphonic acids and homo- or copolymeric polycarboxylic acids, derived from acrylic acid, methacrylic acid, maleic acid and olefinic unsaturated, copolymerizable compounds.
  • the preferred phosphonic acids or phosphonic acid salts are 1-hydroxyethane-1,1-diphosphonate, ethylenediaminetetramethylenephosphonate (EDTMP) and diethylenetriamine-pentamethylenephosphonate, mostly in the form of their sodium salts and their mixtures.
  • the amounts used, calculated as free acid, are usually up to 1.5% by weight, based on the composition, preferably 0.1 to 0.8% by weight.
  • aminopolycarboxylic acids in particular nitrilotriacetic acid, furthermore ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid and their higher homologues. They are generally in the form of sodium salts. Their proportion can be up to 2% by weight, in the case of nitrilotriacetic acid up to 10% by weight.
  • co-builders are homopolymers of acrylic acid and methacrylic acid, copolymers of acrylic acid with methacrylic acid and copolymers of acrylic acid, methacrylic acid or maleic acid with vinyl ethers, such as vinyl methyl ether or vinyl ethyl ether, furthermore with vinyl esters, such as vinyl acetate or vinyl propionate, acrylamide, methacrylamide and with ethylene, Propylene or styrene.
  • vinyl ethers such as vinyl methyl ether or vinyl ethyl ether
  • vinyl esters such as vinyl acetate or vinyl propionate
  • acrylamide, methacrylamide and with ethylene, Propylene or styrene are particularly useful co-builders.
  • the proportion thereof in the interest of sufficient water solubility is not more than 70 mole percent, preferably less than 60 mole percent.
  • Copolymers of acrylic acid or methacrylic acid with maleic acid as are characterized, for example, in EP 25 551-B 1, have proven to be particularly suitable. These are copolymers which contain 50 to 90 percent by weight of acrylic acid. Copolymers in which 60 to 85 percent by weight acrylic acid and 40 to 15 percent by weight maleic acid are present and which have a molecular weight between 30,000 and 120,000 are particularly preferred.
  • polyacetal carboxylic acids as described, for example, in US Pat. Nos. 4,144,226 and 4,146,495, which are obtained by polymerizing esters of glycolic acid, introducing stable terminal end groups, and saponifying to give the sodium or potassium salts.
  • polymeric acids which are obtained by polymerizing acrolein and disproportionating the polymer according to Canizzaro using strong alkalis. You are essentially out Acrylic acid units and vinyl alcohol units or acrolein units built.
  • the proportion of the (co) polymeric carboxylic acids or their salts, based on acid can be up to 8% by weight, preferably 1 to 6% by weight.
  • the co-builders mentioned prevent the formation of fiber incrustations due to their complexing and retarding properties (so-called threshold effect) and improve the dirt-dissolving and dirt-dispersing properties of the agents.
  • the agents are preferably phosphate-free.
  • part of the zeolite and part of the co-builders can also be replaced by polyphosphates, in particular sodium tripolyphosphate (Na-TPP).
  • Na-TPP sodium tripolyphosphate
  • the content of Na-TPP should not be more than 25% by weight, preferably less than 20% by weight and in particular 0 to at most 5% by weight.
  • the Na-TPP can also be sprayed via the spray mixture, partial hydrolysis to pyrophosphate and orthophosphate generally occurring. It may therefore be advantageous to add it in powder form to the mixer together with the sprayed powder and to process it together with it.
  • the sodium silicate improves grain stability and Grain structure of the powdery or granular agents and has a favorable effect on the induction and dissolving behavior of the agents when entering washing machines. It also has an anti-corrosive effect and improves washability.
  • Sodium carbonate the proportion of which is up to 15% by weight, preferably 2 to 12% by weight and in particular 5 to 10% by weight, is also suitable as further washing alkalis (component D).
  • the total amount of sodium silicate and sodium carbonate is 4 to 20% by weight, preferably 5 to 10% by weight and in particular 7 to 12% by weight.
  • the other constituents (component E), the proportion of which is 0 to 30% by weight, preferably 1 to 25% by weight, include graying inhibitors (dirt carriers), textile-softening substances, colorants and fragrances, and neutral salts, such as sodium sulfate and water.
  • the agents can contain graying inhibitors which keep the dirt detached from the fibers suspended in the liquor and thus prevent graying.
  • Cellulose ethers such as carboxymethyl cellulose, methyl cellulose, hydroxyalkyl celluloses and mixed ethers such as methyl hydroxyethyl cellulose are suitable. Methyl hydroxypropyl cellulose and methyl carboxymethyl cellulose. Mixtures of different cellulose ethers are also suitable, in particular mixtures of carboxymethyl cellulose and methyl cellulose or methyl hydroxyethyl cellulose. Their proportion is preferably 0.3 to 3% by weight.
  • Suitable optical brighteners are alkali metal salts of 4,4-bis- (2 ⁇ -anilino-4 ⁇ -morpholino-1,3,4-triazinyl-6 ⁇ amino) -stilbene-2,2′-disulfonic acid or compounds of the same structure which wear a diethanolamino group instead of the morpholino group.
  • Brighteners of the substituted diphenylstyryl type may also be used, e.g.
  • synthetic layered silicates which, after suspension in water (16 ° dH, room temperature), have a swelling capacity - determined as the quotient of the sediment volume (V s ) / total volume (V) after previous treatment with excess soda solution, careful washing and 20 hours after slurrying in 9 parts by weight of water / one part by weight of layered silicate - of V s / V less than 0.6, in particular less than 0.4, as well as synthetic layered silicates, which are mixed crystalline and have structure-determining saponite and / or hectorite-like crystal phases, which are interspersed in an irregular arrangement with crystalline alkali polysilicate.
  • Layered silicates of this type are characterized in more detail in DE 35 26 405.
  • the layered silicate content can be, for example, 5 to 20% by weight.
  • softening additives are long-chain fatty acid alkanolamides or dialkanolamides and reaction products of fatty acids or fatty acid diglycerides with 2-hydroxyethyl-ethylenediamine and quaternary ammonium salts, the 1 to 2 alkyl chains with 12-18 C atoms and 2 short-chain alkyl radicals or hydroxyalkyl radicals, preferably methyl radicals , contain.
  • These softening additives are preferably added to the powder together with the nonionic surfactants in the mixer, for example in proportions of up to 10% by weight, preferably 0.5 to 5% by weight, based on the composition.
  • the spray drying of the powders to be processed is carried out in a manner known per se by spraying a slurry under high pressure by means of nozzles and counter-sliding hot combustion gases in a drying tower.
  • the spray-dried powder leaving the drying tower should have an initial density (liter weight) of at least 350 g / l in the interest of a desired high final density.
  • the density of the is preferably Tower powder at least 400 g / l.
  • Specifically light tower powders for example those containing zeolite, can be more densely compressed than those which already have a higher initial density, but overall they have a lower final weight than relatively heavy tower powders.
  • the process can be used to process powders with a broad and narrow grain spectrum. It is also not necessary to previously screen out coarse fractions from the tower powder, as is the case with conventional powders. Rather, the process means that coarse parts are crushed, loose, voluminous components are compacted, irregularly shaped parts are rounded off and very fine parts are compacted. Overall, the process reduces the average grain size.
  • the powders leaving the tower can be processed immediately in the manner according to the invention.
  • the temperature of the powder is not critical per se, especially when it has dried thoroughly, ie when its water content corresponds to or is below the theoretical water-binding capacity.
  • plastic in particular water-rich powders, however, it should not exceed 50 ° C., preferably 40 ° C., as is generally the case when the powder is conveyed pneumatically.
  • the powder can also be stored for any length of time, but this generally only plays a role in the event of production interruptions.
  • a continuous flow of material is always advantageous, for which the method according to the invention is particularly suitable due to the continuous mode of operation.
  • the powder should be free-flowing and not sticky.
  • Suitable salts are e.g. Sodium sulfate, soda or phosphates or polyphosphates, which can be mixed in proportions of up to 20% by weight, preferably up to 10% by weight.
  • Suitable adsorbents are zeolite and finely divided silica. Preference is given to finely divided, i.e. zeolite NaA having a particle size of at most 10 ⁇ m is added in proportions of up to 4% by weight, preferably 0.5 to 3% by weight.
  • the mixing device used to carry out the method consists of an elongated mixing drum of essentially cylindrical shape, which is mounted horizontally or moderately descending against the horizontal and is equipped with at least one filler neck or funnel and a discharge opening. Inside, there is a central, rotatable shaft that carries several radially aligned striking tools. When rotating, these should be at a certain distance from the smooth inner wall of the drum. The length of the striking tools should be 80% to 98%, preferably 85% to 95% of the inner radius of the mixing drum.
  • the shape of the striking tools can be of any type, ie they can be straight or angled, of uniform cross-section or pointed, rounded or widened at their ends. Their cross-section can be circular or angular with rounded edges. Different shaped tools can also be combined. Those with a drop to wedge-shaped cross-section have proven successful, with a flat or rounded surface in the Direction of rotation points, since with such tools the compaction effect outweighs the crushing effect.
  • the tools can be attached diametrically in pairs or in a star shape to the shaft to avoid imbalances. A spiral arrangement has proven to be advantageous. The number of tools is not critical, but it is advisable to arrange them at a distance of 5 to 25 cm in the interest of high efficiency.
  • the conveying of the mixed material in the mixer can also be accomplished or accelerated by means of additional conveyor blades.
  • These conveyor blades can be arranged individually or in pairs between the mixing tools.
  • the degree of delivery can be regulated by the angle of attack of the blades.
  • the inner radius of the mixer is, depending on the desired throughput, advantageously 10 to 60, preferably 15 to 50 cm, its inner length 70 to 400 cm, preferably 80 to 300 cm and the ratio of inner length to inner radius 4: 1 to 15: 1, preferably 5: 1 to 10: 1.
  • the number of striking tools is usually 10 to 100, usually 20 to 80.
  • the inner wall of the cylinder should be bare in order to avoid undesired sticking of the powder.
  • the rotational speed of the shaft is lower than that Consideration of the Froude number above 800 rpm (revolutions per minute), usually between 1,000 and 3,000 rpm. With larger mixers it can be reduced accordingly.
  • the residence time of the powder in the mixer depends on the performance of the system and the size of the desired effect. It should not be less than 10 seconds and not more than 60 seconds. It is preferably 20 to 50 seconds. It can be influenced by the inclination of the mixer, by the shape and arrangement of the striking and conveying tools and, to a certain extent, also by the amount of the powder supplied and removed. By reducing the initial cross-section, a certain back pressure and thus an increase in the residence time in the mixer can be achieved.
  • the mixer should be operated in such a way that a constant powder throughput takes place after the start-up time, i.e. that the amount of powder fed in and taken out is the same and constant at all times.
  • the Froude number should be 50 to 1,200, preferably 100 to 800 and in particular 250 to 500.
  • the powder may heat up slightly as a result of mechanical processing. However, additional cooling is generally unnecessary or is only required if the supplied Powder tends to stick at elevated temperature. However, this problem can advantageously be solved by cooling the tower powder sufficiently beforehand, for example in the case of pneumatic conveying.
  • the nonionic surfactant is fed into the mixer in the area in which intensive mechanical processing of the powder takes place. It has proven to be advantageous to arrange the feeds in the mixer wall.
  • the otherwise generally customary arrangement of short spray nozzles in the hollow rotating shaft makes it necessary to use spray nozzles at low rotational speeds which work with excess pressure or are operated according to the principle of the perfume atomizer with compressed air. This method of operation also requires expenditure for pressure pumps or dust extraction systems for the compressed air discharged from the mixer.
  • the arrangement in the mixer wall does not require comparable investments.
  • the supplied nonionic surfactant can spread on the inner wall and is constantly absorbed, distributed and adsorbed by the powder hitting the wall.
  • the outlet nozzles arranged on the hollow shaft are advantageously extended to such an extent that they protrude into the powder stream. Due to the increased centrifugal forces, this enables compressed air-free conveying and atomization of the nonionic surfactant, which is then distributed and absorbed by the powder stream.
  • the number of feeds is expediently from 1 to 10, with an arrangement in the cylinder wall preferably being arranged laterally in the region of the rising powder stream. If there are several feeders arranged one behind the other, the last one should be installed so far in front of the outlet opening that the emerging nonionic surfactant is still homogeneously distributed.
  • the nonionic surfactant is supplied in liquid form. High-melting compounds are melted beforehand and fed in at temperatures above the melting point.
  • the moving powder also expediently has a minimum temperature which is in the range of the melting point of the nonionic surfactant or above. This temperature range can be easily adjusted by a suitable product guide after the spray drying.
  • the nonionic surfactant can be introduced into the powder in this way. It is also possible to add a part of it to the spray batch and only enter the rest via the mixer. Basically, however, surfactants with a low degree of ethoxylation (low HLB value corresponding to component B2) should only be incorporated via the mixer.
  • the proportion which is introduced via the tower spray powder should not exceed 50% by weight, based on nonionic surfactant.
  • 0.5 to 6% by weight, in particular 1 to 5% by weight, of the nonionic surfactant contained in the agent is introduced via the mixer.
  • the powder entered is taken away by the rotating striking tools and hits the inner wall of the mixer without sticking to it, even if it is in the meantime a thin film of nonionic surfactants is covered. This film is constantly removed by the lively powder and adsorbed on it. At most, a thin powder coating is formed, which is constantly renewed and the bare inner surface of the mixer can be seen again and again.
  • the powder particles thus describe a spiral movement from the mixer inlet to the mixer outlet. If the powder adheres to the inner wall for a long time, so that a layer of powder forms that has to be scraped off by the rotating tools, the powder is too moist or too sticky or too warm or the locally metered amount of nonionic surfactant is too high. This non-stationary condition causes the mix to heat up excessively and the mixer to settle. One can counteract the formation of such deposits by the described addition of adsorbents.
  • the products obtained have a bulk density increased by 50 to 200 g / l compared to the tower powder used, are extremely free-flowing and do not require any aftertreatment, in particular no post-drying and no sieving of enlarged or lumpy agglomerates. You can therefore immediately after leaving the mixer, if necessary after adding other powder components such as bleach (e.g. sodium perborate as monohydrate or tetrahydrate), bleach activators (e.g. granulated tetraacetylethylene diamine), enzyme granules, defoamers (e.g. silicone or paraffin defoamers applied to carrier material), be filled directly into the shipping container.
  • bleach e.g. sodium perborate as monohydrate or tetrahydrate
  • bleach activators e.g. granulated tetraacetylethylene diamine
  • enzyme granules e.g. silicone or paraffin defoamers applied to carrier material
  • a horizontally arranged mixer was used, the cylindrical interior of which had a radius of 15 cm and an inner length of 125 cm.
  • inlet area length 30 cm
  • several conveyor blades were arranged spirally on the inner shaft.
  • 5 tapered, angled at their ends and then 25 additional mixing tools were spirally attached to the inner shaft, the latter having a wedge-shaped cross-section with rounded corners.
  • the distance between the tools and the inside wall of the cylinder was 0.5 cm, which resulted in a ratio of tool length from the central axis to the inside wall of the mixer of 96.7% of the inside radius.
  • inclined conveying blades total number 10 were installed in a spiral arrangement between the mixing tools.
  • a total of 4 feeds (diameter approx. 10 mm) were arranged at a mutual distance of 10 cm in the first third of the mixing section laterally in the area of the rising powder stream, via which the nonionic component (b) was fed into the mixer.
  • the size of the outflow opening at the outlet end of the mixer could be regulated by means of a flap. In the following Examples 1 to 4, this flap was set so that a slight back pressure and thus a uniform filling state formed in the mixer during continuous operation.
  • the rotational speed was approximately 1,500 rpm and the average residence time was 20 to 60 seconds, on average 30 to 40 seconds spray-dried powder, which was transported via a pneumatic conveyor system after leaving the tower discharge and had a temperature of approx. 30 ° C or after an intermediate storage of 20 to 25 ° C.
  • composition of the powder, the Froude number and the throughput in tons per hour (t / h) as well as the liter weight before and after the treatment can be found in Table I.
  • Example 1 the components a and d - m as well as the water and the main part of the sodium sulfate (component n) were used for the tower spray powder.
  • the nonionic surfactant (component b) heated to 45 ° C., was introduced into the mixer by means of the side feeds.
  • a mixture of component b and the main amount (2% by weight) of component c was fed in in the same way.
  • the rest of component c (0.3% by weight) was contained in the tower powder.
  • the remainder of the sodium sulfate and the minor constituents served as a granulation base and as coating substances for the constituents listed under p to r. These were subsequently mixed with the perborate (which had been sprayed with the perfume) into the treated powder.
  • the bulk density of the finished mixture A obtained in this way is also given (in each case in g / liter).
  • Example 4 43 parts by weight of tower powder, comprising components a, c, d, g, h, i, k and l, as well as 52% of component e and 74% of component f with 2 parts by weight of component b im Mixer processed according to the manner given in Examples 1-3.
  • the remaining parts of components e and f and parts of component m sodium sulfate, water) were in the form of spray-dried granules which had been impregnated with the rest of component b.
  • This granulate 29 parts by weight
  • the result was a powder mixture with excellent pourability, which did not require any post-treatment (powdering) with finely divided zeolite.
  • the powders proved to be easy to pour, non-dusting and dissolved quickly when sprinkled in household washing machines, without lumps and without residue.
  • the powder components did not separate.

Abstract

Zwecks Erhöhung der Dichte eines phosphatreduzierten Waschmittels mit einem Gehalt an (A) 4 bis 20 Gew.-% mindestens eines anionaktiven Tensids, (B) 2 bis 20 Gew.-% mindestens eines nichtionischen Tensids, (C) 20 bis 50 Gew.-% mindestens einer Buildersubstanz, (D) 3 bis 25 Gew.-% Waschalkalien, (E) 0 bis 30 Gew.-% an sonstigen, der Heißsprühtrocknung zugänglichen Waschmittelbestandteilen, wird zunächst ein Pulver durch Sprühtrocknung hergestellt, das nur einen Teil, höchstens jedoch 5 Gew.-% des nichtionischen Tensids enthält und ein Schüttgewicht von wenigstens 350 g/Liter aufweist. Das Pulver wird anschließend kontinuierlich in eine zylindrische, horizontal angeordnete Mischtrommel einführt, in welcher axial eine Welle rotiert, die mit radial angeordneten Schlagwerkzeugen definierter Länge ausgestattet ist. Die Rotationsgeschwindigkeit der Welle wird so reguliert, daß bei einer mittleren Verweilzeit des Pulvers in der Trommel von 10 bis 60 sec. und konstantem Pulverdurchsatz die Froude-Zahl zwischen 50 und 1 000 liegt. Gleichzeitig wird das restliche nichtionische Tensid in flüssiger Form in den Mischer eingeführt.

Description

  • Sprühgetrocknete Waschmittel üblicher Zusammensetzung weisen, je nach Zusammensetzung und Arbeitsweise, im allgemeinen Schüttge­wichte von 250 bis 450 g/l (Gramm pro Liter) und nur in Ausnahme­fällen von 480 g/l auf. In neuerer Zeit haben Pulver mit höheren Schüttgewichten, beispielsweise von 550 bis 750 g/l in zunehmendem Maße an Interesse gefunden, da sie weniger Verpackungsmaterial erfordern und somit eine Rohstoffersparnis sowie eine Abfallredu­zierung ermöglichen.
  • Es sind darüberhinaus sprühgetrocknete Waschmittel mit Schüttge­wichten zwischen 550 und 900 g/l und Verfahren zu ihrer Herstel­lung bekannt, z. B. aus EP 120 492 (US 45 52 681) jedoch handelt es sich um spezielle, an nichtionischen Tensiden reiche Zusammen­setzungen. Ein Zusatz an anionischen Tensiden, insbesondere Sei­fen, bewirkt eine starke Abnahme des Schüttgewichts auf Werte un­ter 500 g/l. Auch eine Aufbau-Granulation einzelner Waschmittel­bestandteile unter Zusatz von Granulierflüssigkeiten, wie Wasser oder Alkalisilikat-Lösungen, begünstigt hohe Schüttgewichte. Die Granulierung mit Wasser erfordert aber in aller Regel die Anwe­senheit größerer Anteile an Kristallwasser bindenden Salzen, meist von Phosphaten wie Tripolyphosphat oder von Soda. Dies bedeutet jedoch ebenfalls eine Einschränkung hinsichtlich der Rezepturfreiheit und erschwert die Herstellung P-freier oder P-­armer Waschmittel. Auch das Aufsprühen von nichtionischen Tensiden auf sprühgetrocknete oder granulierte Pulver erhöht dessen Schüttgewicht, jedoch bleibt die Zunahme im allgemeinen gering. Sofern größere Anteile davon angewendet werden, besteht jedoch die Gefahr, daß die Granulate klebrig werden, sofern nicht speziell zusammengesetzte Basis-Pulver mit hoher Saugfähigkeit eingesetzt werden, was ebenfalls die Rezepturfreiheit einengt.
  • Die DE-A-25 48 639 lehrt ein Verfahren zur Schüttgewichtserhöhung von granulierten oder sprühgetrockneten Waschmitteln in einer Vorrichtung, die in der Fachwelt unter der Bezeichnung "Marumerizer" bekannt ist und normalerweise dafür verwendet wird, extrudierte Teilchen von unregelmäßiger Gestalt abzurunden. Dieses Gerät besteht aus einem senkrecht stehenden Zylinder mit glatten Seitenwänden und einem oberflächlich aufgerauhten Drehteller, der im unteren Bereich des Zylinders rotiert. Die Vorrichtung ist in erster Linie für intermittierenden Betrieb bestimmt. Die größten verfügbaren Anlagen dieser Art mit einem Durchmesser des Drehtel­lers von ca. 1 m vermögen nur eine Charge von maximal 45 bis 50 kg Turmpulver aufzunehmen. Bei einer Verweilzeit von ca. 10 Minuten des Pulvers in der Vorrichtung gemäß Beispiel 3 der zitierten DE-A ist der Durchsatz, bezogen auf eine durchschnittliche Stundenlei­stung eines mittleren Sprühturmes von 5 bis 25 t (Tonnen) viel zu gering, bzw. es bedürfte einer sehr großen Zahl von ständig in Betrieb befindlichen "Marumerizern", um mit der Turmleistung Schritt halten zu können. Andererseits ist es unökonomisch, den Turm einschließlich dem aufwendigen Beheizungssystems nur inter­mittierend zu betreiben und damit an die geringe Leistung des Granulators anzupassen. Es ist auch nicht zweckmäßig, den Turm nur sporadisch für die Produktion des Vorgranulates zu verwenden, dieses zu bevorraten und den Turm in der Zwischenzeit anderweitig zu nutzen. Die DE-A-25 48 639 lehrt nämlich, daß das Vorgranulat bzw. Sprühpulver kurzfristig, d. h. innerhalb weniger Minuten, im "Marumerizer" weiter verarbeitet werden muß, um eine nennenswerte Pulververdichtung zu erzielen.
  • Es bestand daher die Aufgabe, die geschilderten Nachteile zu ver­meiden und ein Verfahren zu entwickeln, das kontinuierlich arbei­tet, höhere Durchsatzmengen und kürzere Verweilzeiten erlaubt, eine größtmögliche Flexibilität hinsichtlich der Menge, der phy­sikalischen Beschaffenheit und der Zusammensetzung der Sprühpulver sowie des Produktionszeitpunktes gewährleistet sowie einen gerin­geren Investitions- und Energieaufwand erfordert.
  • Gegenstand der Erfindung, mit der diese Aufgaben gelöst werden, ist ein Verfahren zur Erhöhung der Dichte einer sprühgetrockneten, phosphatreduzierten Waschmittelkomponente mit einem Gehalt an
    • A) 4 bis 20 Gew.-% mindestens eines anionaktiven Tensids,
    • B) 2 bis 20 Gew.-% mindestens eines nichtionischen Tensids,
    • C) 20 bis 50 Gew.-% mindestens einer Buildersubstanz,
    • D) 3 bis 25 Gew.-% Waschalkalien,
    • E) 0 bis 30 Gew.-% an sonstigen, der Heißsprühtrocknung zugäng­lichen Waschmittelbestandteilen,
    dadurch gekennzeichnet, daß man das sprühgetrocknete, ein Schütt­gewicht von wenigstens 350 g/Liter aufweisende Pulver kontinuier­lich in eine zylindrische, horizontal angeordnete oder leicht ge­gen die Horizontale geneigte zylinderförmige Mischtrommel mit glatter Innenwand einführt, in welcher axial eine Welle rotiert, die mit radial angeordneten Schlagwerkzeugen ausgestattet ist, deren Länge (gerechnet von der Mittelachse) 80 % bis 98 % des In­nenradius der Trommel beträgt, und daß man die Rotationsgeschwindigkeit der Welle so reguliert, daß bei einer mittleren Verweilzeit des Pulvers in der Trommel von 10 bis 60 sec. und konstantem Pulverdurchsatz die Froude-Zahl zwischen 50 und 1 000 liegt, wobei man höchstens den halben Anteil des nicht­ionischen Tensids, höchstens jedoch 5 Gew.-% (auf das Mittel be­zogen) in dem sprühgetrockneten Pulver beläßt und den übrigen An­teil des nichtionischen Tensids in flüssiger Form in den Mischer einführt.
  • Die Mittel enthalten als Komponente (A) 4 bis 20, vorzugsweise 5 bis 15 Gew.-% mindestens eines anionischen Tensids aus der Klasse der Seifen, Sulfonate und Sulfate.
  • Geeignete Seifen leiten sich von natürlichen oder synthetischen, gesättigten oder einfach ungesättigten Fettsäuren mit 12 bis 22 C-Atomen ab. Geeignet sind insbesondere aus natürlichen Fettsäu­ren, z. B. Kokos-, Palmkern- oder Talgfettsäuren abgeleitete Sei­fengemische. Bevorzugt sind solche, die zu 50 bis 100 % aus ge­sättigten C₁₂-18-Fettsäureseifen und zu 0 bis 50 % aus Ölsäure­seife zusammengesetzt sind. Vorzugsweise beträgt ihr Anteil 8 bis 15 Gew.-%, bezogen auf das Mittel.
  • Brauchbare Tenside vom Sulfonattyp sind lineare Alkylbenzolsulfo­nate (C₉₋₁₃-Alkyl) und Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxylalkansulfonaten sowie Disulfonaten, wie man sie bei­spielsweise aus C₁₂₋₁₈-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische Hydrolyse der Sulfonierungsprodukte erhält. Geeignet sind auch Alkansulfonate, die aus C₁₂₋₁₈-Alkanen durch Sulfochlorierung oder Sulfoxydation und anschließende Hy­drolyse bzw. Neutralisation erhältlich sind, sowie alpha­ sulfonierte hydrierte Kokos-, Palmkern- oder Talgfettsäuren und deren Methyl- oder Ethylester sowie deren Gemische.
  • Geeignete Tenside vom Sulfattyp sind die Schwefelsäuremonoester aus primären Alkoholen natürlichen und synthetischen Ursprungs, d.h. aus Fettalkoholen, wie z.B. Kokosfettalkoholen, Talgfettal­koholen, Oleylalkohol, Lauryl-, Myristyl-, Palmityl- oder Stearyl­alkohol, oder den C₁₀₋₁₈-Oxoalkoholen sowie die Schwefelsäureester sekundärer Alkohole dieser Kettenlänge. Auch die Schwefelsäuremo­noester der mit 1 bis 3 Mol Ethylenoxid ethoxylierten primären Alkohole bzw. Alkylphenole sind geeignet. Ferner eignen sich sul­fatierte Fettsäurealkanolamide und sulfatierte Fettsäuremonogly­ceride.
  • Sulfonatgruppen enthaltende Tenside sind bevorzugt und unter die­sen wiederum die Alkylbenzolsulfonate, Alpha-Sulfofettsäureester­salze und die Alpha-Sulfofettsäureester-disalze. Die anionischen Tenside liegen üblicherweise in Form ihrer Natriumsalze vor. Ihr Anteil, bezogen auf das Mittel, beträgt vorzugsweise 5 bis 15 Gew.-%.
  • Als nichtionische Tenside (Komponente B) sind Anlagerungsprodukte von 2 bis 20, vorzugsweise 3 bis 15 Mol Ethylenoxid (EO) an 1 Mol einer Verbindung mit im wesentlichen 10 bis 20, insbesondere 12 bis 18 Kohlenstoffatomen aus der Gruppe der Alkohole verwendbar. Geeignete nichtionische Tenside leiten sich von primären Alkoholen ab, z.B. Kokos- oder Talgfettalkohol, Oleylalkohol, Oxoalkohol, oder von sekundären Alkoholen mit 8 bis 18, vorzugsweise 12 bis 18 C-Atomen. Bevorzugt werden Kombinationen von wasserlöslichen nichtionischen Tensiden (Komponente B1) und wasserunlöslichen bzw. in Wasser dispergierbaren nichtionischen Tensiden (Komponente B2) eingesetzt. Zur Komponente B1 zählen solche mit 6 bis 15 EO und einem HLB-Wert von mehr als 11, zur Komponente B2 solche mit 2 bis 6 EO und einem HLB-Wert von 11 oder weniger. Es hat sich als vor­teilhaft erwiesen, die Komponente B2 vollständig dem bereits sprühgetrockneten Pulver im Mischer zuzumischen. Die Komponente B1 kann sowohl ganz oder teilweise mitversprüht werden als auch gänzlich oder teilweise im Mischer zudosiert werden.
  • Die nichtionischen Tenside können auch Propylenglykolether-Gruppen (PO) aufweisen. Diese können endständig angeordnet oder stati­stisch mit den EO-Gruppen verteilt sein. Bevorzugte Verbindungen dieser Klasse sind solche vom Typ R-(PO)x-(EO)y , worin R für den hydrophoben Rest steht, x Zahlen von 0,5 bis 3 und y Zahlen von 3 bis 20 bedeuten.
  • Als nichtionische Tenside kommen gegebenenfalls auch Ethoxylate von Alkylphenolen, 1,2-Diolen, Fettsäuren und Fettsäureamiden so­wie Blockpolymere aus Polypropylenglykol und Polyethylenglykol bzw. alkoxylierte Alkylendiamine (Typ Pluronics und Tetronics) in Betracht. Weiterhin lassen sich die vorbeschriebenen nichtioni­schen Tenside vom EO-Typ teilweise durch Alkylpolyglycoside er­setzen. Geeignete Alkylpolyglycoside weisen beispielsweise einen C₈₋₁₆-Alkylrest und eine oligomeren Glycosidrest mit 1,5 bis 6 Glucosegruppen auf. Tenside vom Alkylglycosid-Typ sind vorzugs­weise in dem sprühgetrockneten Pulver inkorporiert.
  • Der Gehalt der Mittel an nichtionischen Tensiden bzw. nichtioni­schen Tensidgemischen beträgt 2 bis 15 Gew.-%, vorzugsweise 3 bis 12 Gew.-% und insbesondere 4 bis 10 Gew.-%.
  • Die Komponente (C) besteht aus feinkristallinen, synthetischen, wasserhaltigen Zeolithen vom Typ NaA, die ein Calciumbindevermögen im Bereich von 100 bis 200 mg CaO/g (gemäß den Angaben in DE 22 24 837) aufweisen. Ihre Teilchengröße liegt üblicherweise im Bereich von 1 bis 10 µm. Der Gehalt der Mittel an diesen Zeolithen beträgt 10 bis 40, vorzugsweise 15 bis 35 Gew.-%. Der Zeolith kann zum überwiegenden Teil oder auch vollständig in den Sprühansatz in­korporiert und mitversprüht werden. Vorteilhafter ist es, wenn ein Teil davon während des Mischprozesses in pulvriger Form zugesetzt wird. Dieser Anteil kann bis zu 5 Gew.-%, bezogen auf das Mittel, betragen. Vorzugsweise beträgt er 1 bis 4 Gew.-%. Diese Arbeits­weise führt zu einer weiteren Erhöhung des Schüttgewichtes und verbessert gleichzeitig das Rieselverhalten des Mittels.
  • Der Zeolith wird vorzugsweise zusammen mit polyanionischen Co-­Buildern verwendet. Hierzu zählen Verbindungen aus der Klasse der Polyphosphonsäuren sowie der homo- bzw. copolymeren Polycarbon­säuren, abgeleitet von Acrylsäure, Methacrylsäure, Maleinsäure und olefinischen ungesättigten, copolymerisierbaren Verbindungen.
  • Als bevorzugte Phosphonsäuren bzw. phosphonsaure Salze werden 1-­Hydroxyethan-1,1-diphosphonat, Ethylendiamintetramethylenphospho­nat (EDTMP) und Diethylentriamin-pentamethylenphosphonat, meist in Form ihrer Natriumsalze sowie ihre Gemische eingesetzt. Die ein­gesetzten Mengen, als freie Säure berechnet, betragen üblicher­weise bis 1,5 Gew.-%, bezogen auf die Mittel, vorzugsweise 0,1 bis 0,8 Gew.-%.
  • Weitere geeignete Co-Builder sind Aminopolycarbonsäuren, insbe­sondere Nitrilotriessigsäure, ferner Ethylendiamintetraessigsäure, Diethylentriaminpentaessigsäure sowie deren höhere Homologen. Sie liegen im allgemeinen in Form der Natriumsalze vor. Ihr Anteil kann bis zu 2 Gew.-%, im Falle der Nitrilotriessigsäure bis 10 Gew.-% betragen.
  • Weitere brauchbare Co-Builder sind Homopolymere der Acrylsäure und der Methacrylsäure, Copolymere der Acrylsäure mit Methacrylsäure und Copolymere der Acrylsäure, Methacrylsäure oder Maleinsäure mit Vinylethern, wie Vinylmethylether beziehungsweise Vinylethylether, ferner mit Vinylestern, wie Vinylacetat oder Vinylpropionat, Acrylamid, Methacrylamid sowie mit Ethylen, Propylen oder Styrol. In solchen copolymeren Säuren, in denen eine der Komponenten keine Säurefunktion aufweist, beträgt deren Anteil im Interesse einer ausreichenden Wasserlöslichkeit nicht mehr als 70 Molprozent, vorzugsweise weniger als 60 Molprozent. Als besonders geeignet haben sich Copolymere der Acrylsäure beziehungsweise Methacrylsäure mit Maleinsäure erwiesen, wie sie beispielsweise in EP 25 551-B 1 charakterisiert sind. Es handelt sich dabei um Copolymerisate, die 50 bis 90 Gewichtsprozent Acrylsäure enthal­ten. Besonders bevorzugt sind solche Copolymere, in denen 60 bis 85 Gewichtsprozent Acrylsäure und 40 bis 15 Gew.-% Maleinsäure vorliegen und die ein Molekulargewicht zwischen 30 000 und 120 000 aufweisen.
  • Brauchbar sind ferner Polyacetalcarbonsäuren, wie sie beispiels­weise in den US-Patentschriften 4 144 226 und 4 146 495 beschrie­ben sind und durch Polymerisation von Estern der Glykolsäure, Einführung stabiler terminaler Endgruppen und Verseifung zu den Natrium- oder Kaliumsalzen erhalten werden. Geeignet sind ferner polymere Säuren, die durch Polymerisation von Acrolein und Disproportionierung des Polymers nach Canizzaro mittels starker Alkalien erhalten werden. Sie sind im wesentlichen aus Acrylsäureeinheiten und Vinylakoholeinheiten bzw. Acroleinein­heiten aufgebaut.
  • Der Anteil der (co-)polymeren Carbonsäuren bzw. ihrer Salze kann, auf Säure bezogen, bis zu 8 Gew.-%, vorzugsweise 1 bis 6 Gew.-% betragen.
  • Die genannten Co-Builder verhindern aufgrund ihrer komplexierenden und fällungsverzögernden Eigenschaften (sogen. Threshold-Effekt) die Ausbildung von Faserinkrustationen und verbessern die schmutzlösenden und schmutzdispergierenden Eigenschaften der Mit­tel.
  • Die Mittel sind vorzugsweise phosphatfrei. In den Fällen, in denen dies aus ökologischen Gründen unbedenklich bzw. zulässig ist, kann jedoch ein Teil des Zeoliths und ein Teil der Co-Builder auch durch Polyphosphate, insbesondere Natriumtripolyphosphat (Na-TPP) ersetzt werden. Der Gehalt an Na-TPP soll jedoch nicht mehr als 25 Gew.-%, vorzugsweise weniger als 20 Gew.-% und insbesondere 0 bis höchstens 5 Gew.-% betragen. Das Na-TPP kann über den Sprühansatz mitversprüht werden, wobei in der Regel eine partielle Hydrolyse zu Pyrophosphat und Orthophosphat eintritt. Es kann daher vorteil­haft sein, es in pulvriger Form zusammen mit dem gesprühten Pulver in den Mischer einzugeben und zusammen mit diesem zu verarbeitet werden.
  • Geeignete Waschalkalien (Komponente D) sind Alkalimetallsilicate, insbesondere Natriumsilicate der Zusammensetzung Na₂O : SiO₂ = 1 : 1 bis 1 : 3,5, vorzugsweise 1 : 2 bis 1 : 3,35. Ihr Anteil in den Mitteln kann 0,5 bis 6 Gew.-%, insbesondere 1 bis 3 Gew.-% betra­gen. Das Natriumsilikat verbessert die Kornstabilität und die Kornstruktur der pulverförmigen bzw. granularen Mittel und wirkt sich günstig auf das Einspül- und Lösungsverhalten der Mittel bei Eingabe in Waschautomaten aus. Außerdem wirkt es antikorrosiv und verbessert das Waschvermögen. Zwar ist bekannt, daß größere An­teile, d.h. solche von mehr als 2 bis 3 Gew.-% an Alkalisilikaten in zeolithhaltigen Waschmitteln zu einem Agglomerieren der Zeo­lithpartikel führen, die sich auf den Textilien absetzen und deren Aschewert erhöhen und das Aussehen beeinträchtigen können. Bei Anwesenheit von Co-Buildern, insbesondere (co-)polymeren Carbon­säuren wird dieser nachteilige Einfluß jedoch weitgehend aufgeho­ben, und der aus den genannten Gründen erwünschte Gehalt an Na­triumsilikat kann ohne die genannten Nachteile angehoben werden.
  • Als weitere Waschalkalien (Komponente D) kommt ferner Natriumcar­bonat in Frage, dessen Anteil bis zu 15 Gew.-%, vorzugsweise 2 bis 12 Gew.-% und insbesondere 5 bis 10 Gew.-% beträgt. Die Gesamt­menge an Natriumsilikat und Natriumcarbonat beträgt 4 bis 20 Gew.-%, vorzugsweise 5 bis 10 Gew.-% und insbesondere 7 bis 12 Gew.-%.
  • Zu den sonstigen Bestandteilen (Komponente E), deren Anteil 0 bis 30 Gew.-%, vorzugsweise 1 bis 25 Gew.-% beträgt, zählen Vergrau­ungsinhibitoren (Schmutzträger), textilweichmachende Stoffe, Farb- und Duftstoffe sowie Neutralsalze, wie Natriumsulfat und Wasser.
  • Als Bestandteil dieser Komponente (E) können die Mittel Vergrau­ungsinhibitoren enthalten, die den von der Faser abgelösten Schmutz in der Flotte suspendiert halten und so das Vergrauen verhindern. Geeignet sind Celluloseether, wie Carboxymethylcellulose, Methylcellulose, Hydroxyalkylcellulosen und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose und Methylcarboxymethylcellulose. Geeignet sind ferner Gemische verschiedener Celluloseether, insbesondere Ge­mische aus Carboxymethylcellulose und Methylcellulose bzw. Methyl­hydroxyethylcellulose. Ihr Anteil beträgt vorzugsweise 0,3 bis 3 Gew.-%.
  • Geeignete optische Aufheller sind Alkalisalze der 4,4-Bis-(2˝-ani­lino-4˝-morpholino-1,3,4-triazinyl-6˝amino)-stilben-2,2′-disul­fonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholinogruppe eine Diethanolaminogruppe tragen. Weiterhin kommen Aufheller vom Typ der substituierten Diphenylstyryle in Frage, z.B. die Alkalisalze des 4,4′-Bis-(2-sulfostyryl)-diphe­nyls, 4,4′-Bis-(4-chlor-3-sulfostyryl)-diphenyls und 4-(4-Chlor­styryl-4′-(2-sulfostyryl)-diphenyls. Sie sind üblicherweise in Mengen von 0,1 bis 1 Gew.-% anwesend.
  • Als textilweichmachende Zusätze eignen sich Schichtsilikate aus der Klasse der Bentonite und Smectite, z.B. solche gemäß DE 23 34 899 und EP 26 529. Geeignet sind ferner synthetische feinteilige Schichtsilikate mit smectitähnlicher Kristallphase und verringer­tem Quellvermögen der Formel
    MgO(M₂O)a(Al₂O₃)b(SiO₂)c (H₂O)n
    mit M = Natrium, gegebenenfalls zusammen mit Lithium mit der Maß­gabe, daß das Molverhältnis Na/Li wenigstens 2 beträgt, a = 0,05 bis 0,4, b = 0 bis 0,3, c = 1,2 bis 2 und n = 0,3 bis 3, wobei (H₂0)n für das in der Kristallphase gebundene Wasser steht. Ge­eignet sind ferner synthetische Schichtsilikate, die nach Suspen­sion in Wasser (16 °dH, Raumtemperatur) ein Quellvermögen - be­stimmt als Quotient des Sedimentvolumens (Vs)/Gesamtvolumen (V) nach vorheriger Behandlung mit überschüssiger Sodalösung, sorg­fältigem Waschen und 20 Stunden nach Aufschlämmung in 9 Gewichts­teilen Wasser/ein Gewichtsteil Schichtsilikat - von Vs/V kleiner als 0,6, insbesondere kleiner als 0,4 besitzen, sowie synthetische Schichtsilikate, die mischkristallin ausgebildet sind und dabei strukturbestimmende saponit- und/oder hectoritähnliche Kristall­phasen aufweisen, welche in unregelmäßiger Anordnung mit kristal­linem Alkalipolysilikat durchsetzt sind. Derartige Schichtsilikate sind in DE 35 26 405 näher gekennzeichnet. Der Gehalt an Schicht­silikaten kann beispielsweise 5 bis 20 Gew.-% betragen.
  • Als weichmachende Zusätze eignen sich auch langkettige Fettsäure­alkanolamide bzw. -dialkanolamide sowie Umsetzungsprodukte von Fettsäuren oder Fettsäurediglyceriden mit 2-Hydroxyethyl-ethylen­diamin sowie quartäre Ammoniumsalze, die 1 bis 2 Alkylketten mit 12 - 18 C-Atomen und 2 kurzkettige Alkylreste bzw. Hydroxyalkyl­reste, vorzugsweise Methylreste, enthalten. Diese weichmachenden Zusätze werden dem Pulver vorzugsweise zusammen mit den nichtio­nischen Tensiden im Mischer zugesetzt, beispielsweise in Anteilen bis zu 10 Gew.-%, vorzugsweise 0,5 bis 5 Gew.-%, bezogen auf das Mittel.
  • Die Sprühtrocknung der zu verarbeitenden Pulver erfolgt in an sich bekannter Weise durch Versprühen eines Slurry unter hohem Druck mittels Düsen und Entgegenleiten heißer Verbrennungsgase in einem Trockenturm.
  • Das sprühgetrocknete, den Trockenturm verlassende Pulver (im fol­genden kurz als "Turmpulver" bezeichnet) soll im Interesse einer gewünschten hohen Enddichte eine Anfangsdichte (Litergewicht) von wenigstens 350 g/l aufweisen. Vorzugsweise beträgt die Dichte des Turmpulvers mindestens 400 g/l. Spezifisch leichte Turmpulver, beispielsweise solche mit einem Gehalt an Zeolith, lassen sich stärker verdichten als solche, die bereits eine höhere Anfangs­dichte aufweisen, jedoch erreichen sie insgesamt ein geringeres Endgewicht als relativ schwere Turmpulver.
  • Hinsichtlich der Korngröße bzw. des Kornspektrums des Turmpulvers bestehen keine besonderen Anforderungen. Vielmehr lassen sich nach dem Verfahren Pulver mit einem breiten wie mit engem Kornspektrum verarbeiten. Es ist auch nicht erforderlich, zuvor Grobanteile aus dem Turmpulver auszusieben, so wie dies bei konventionellen Pul­vern erforderlich ist. Das Verfahren bewirkt vielmehr, daß grobe Anteile zerkleinert, lockere voluminöse Bestandteile verdichtet, unregelmäßig geformte abgerundet und Feinstanteile kompaktiert werden. Insgesamt bewirkt das Verfahren eine Verringerung der mittleren Korngröße.
  • Die den Turm verlassenden Pulver können sofort in der erfindungs­gemäßen Weise verarbeitet werden. Die Temperatur des Pulvers ist an sich nicht kritisch, insbesondere dann nicht, wenn es gut durchgetrocknet ist, d.h. wenn sein Wassergehalt dem theoretischen Wasserverbindevermögen entspricht oder darunter liegt. Bei pla­stischen, insbesondere wasserreicheren Pulvern, sollte sie jedoch 50 °C, vorzugsweise 40 °C, nicht übersteigen, so wie sie sich im allgemeinen einstellt, wenn man das Pulver pneumatisch fördert. Das Pulver kann aber auch beliebig lange zwischengelagert werden, was aber im allgemeinen nur bei Produktionsunterbrechungen eine Rolle spielt. Vorteilhaft ist stets ein kontinuierlicher Materi­alfluß, wozu sich das erfindungsgemäße Verfahren auf Grund der kontinuierlichen Arbeitsweise besonders eignet.
  • Das Pulver soll rieselfähig sein und nicht kleben. Jedoch ist auch die Verarbeitung leicht klebender Pulver möglich, enn man gleich­zeitig wasserlösliche, Feuchtigkeit adsorbierende Salze oder ein feinteiliges Adsorptionsmaterial in den Mischer einführt. Geeig­nete Salze sind z.B. Natriumsulfat, Soda oder Phosphate bzw. Polyphosphate, die in Anteilen bis zu 20 Gew.-%, vorzugsweise bis zu 10 Gew.-% zugemischt werden können. Geeignete Adsorptionsmittel sind Zeolith und feinteilige Kieselsäure. Bevorzugt wird feintei­liger, d.h. eine Teilchengröße von maximal 10 µm aufweisender Zeolith NaA in Anteilen bis 4 Gew.-%, vorzugsweise 0,5 bis 3 Gew.-% zugesetzt.
  • Die für die Ausübung des Verfahrens verwendete Mischvorrichtung besteht aus einer länglichen Mischtrommel von im wesentlichen zy­lindrischer Gestalt, die horizontal oder mäßig absteigend gegen die Horizontale gelagert ist und mit mindestens einem Einfüll­stutzen bzw. -trichter sowie einer Austragsöffnung ausgestattet ist. Im Inneren ist eine zentrale, drehbare Welle angeordnet, die mehrere radial ausgerichtete Schlagwerkzeuge trägt. Diese sollen beim Rotieren einen gewissen Abstand von der glatten Innenwand der Trommel aufweisen. Die Länge der Schlagwerkzeuge soll 80 % bis 98 %, vorzugsweise 85 % bis 95 % des Innenradius der Mischtrommel betragen.
  • Die Form der Schlagwerkzeuge kann beliebig sein, d.h. sie können gerade oder abgewinkelt, von einheitlichem Querschnitt oder an ihren Enden zugespitzt, abgerundet oder verbreitert sein. Ihr Querschnitt kann kreisförmig oder eckig mit abgerundeten Kanten sein. Auch können verschieden geformte Werkzeuge kombiniert wer­den. Bewährt haben sich solche mit tropfen- bis keilförmigem Querschnitt, wobei eine flache, bzw. abgerundete Fläche in die Drehrichtung weist, da mit solchen Werkzeugen der Verdichtungsef­fekt gegenüber dem Zerkleinerungseffekt überwiegt. Die Werkzeuge können zwecks Vermeidung von Unwuchten diametral paarweise oder sternförmig an der Welle angebracht sein. Als vorteilhaft hat sich eine spiralförmige Anordnung erwiesen. Die Zahl der Werkzeuge ist nicht kritisch, jedoch empfiehlt es sich im Interesse eines hohen Wirkungsgrades sie im Abstand von 5 bis 25 cm anzuordnen. Weiter­hin ist es vorteilhaft, sie drehbar auf der Welle zu montieren, wodurch man die Möglichkeit hat, die horizontale Förderung des Mischgutes dadurch zu beeinflussen, daß man eine ebene Seitenflä­che der Werkzeuge unter einem schrägen Winkel in Richtung des Ma­terialflusses einstellt. Die Gestalt der Werkzeuge braucht auch nicht einheitlich zu sein, vielmehr ist es möglich, Werkzeuge mit mehr verdichtender und mehr fördernder Wirkung im Wechsel anzu­ordnen.
  • Das Fördern des Mischgutes im Mischer kann auch durch zusätzliche Förderschaufeln bewerkstelligt bzw. beschleunigt werden. Diese Förderschaufeln können einzeln oder paarweise zwischen den Misch­werkzeugen angeordnet sein. Der Grad der Förderung kann durch den Anstellwinkel der Schaufeln reguliert werden.
  • Der Innenradius des Mischers beträgt, in Abhängigkeit vom ge­wünschten Durchsatz, zweckmäßigerweise 10 bis 60, vorzugsweise 15 bis 50 cm, seine Innenlänge 70 bis 400 cm, vorzugsweise 80 bis 300 cm und das Verhältnis von Innenlänge zu Innenradius 4 : 1 bis 15 : 1, vorzugsweise 5 : 1 bis 10 : 1. Bei diesen Abmessungen beträgt die Zahl der Schlagwerkzeuge üblicherweise 10 bis 100, meist 20 bis 80. Die Innenwand des Zylinders soll blank sein, um ein uner­wünschtes Ankleben des Pulvers zu vermeiden. Bei kleineren Abmes­sungen liegt die Umdrehungsgeschwindigkeit der Welle unter der Berücksichtigung der Froude-Zahl oberhalb 800 Upm (Umdrehungen pro Minute), meist zwischen 1 000 und 3 000 Upm. Bei größeren Mischern kann sie entsprechend reduziert werden.
  • Die Verweilzeit des Pulvers im Mischer richtet sich nach der Lei­stungsfähigkeit der Anlage und nach der Größe des angestrebten Effektes. Sie soll nicht weniger als 10 sec und nicht mehr als 60 sec betragen. Vorzugsweise liegt sie bei 20 bis 50 sec. Sie läßt sich durch die Neigung des Mischers, durch die Form und Anordnung der Schlag- und Förderwerkzeuge und in gewissem Maße auch durch die Menge des zugeführten und entnommenen Pulvers beeinflussen. So läßt sich durch eine Verkleinerung des Ausgangsquerschnittes ein gewisser Rückstau und damit eine Verlängerung der Verweilzeit in dem Mischer bewirken. Der Mischer soll so betrieben werden, daß nach der Anlaufzeit ein konstanter Pulverdurchsatz erfolgt, d.h. daß die Menge des zugeführten und des entnommenen Pulvers jeder­zeit gleichgroß und konstant ist.
  • Ein wesentliches Maß für den Betrieb des Mischers ist die Froude-­Zahl, eine dimensionslose Zahl, die durch die Beziehung
    Figure imgb0001
    gegeben ist (w = Winkelgeschwindigkeit, r = Länge der Werkzeuge ab Mittelachse, g = Erdbeschleunigung). Die Froude-Zahl soll 50 bis 1 200, vorzugsweise 100 bis 800 und insbesondere 250 bis 500 be­tragen.
  • Als Folge der mechanischen Bearbeitung kann sich das Pulver ge­ringfügig erwärmen. Eine zusätzliche Kühlung ist jedoch im allge­meinen entbehrlich bzw. nur erforderlich, wenn das zugeführte Pulver bei erhöhter Temperatur zum Kleben neigt. Dieses Problem läßt sich jedoch vorteilhaft durch eine vorherige ausreichende Abküh­lung des Turmpulvers, beispielsweise bei der pneumatischen För­derung, lösen.
  • Die Zuführung des nichtionischen Tensides in den Mischer erfolgt in den Bereich, in dem eine intensive mechanische Bearbeitung des Pulvers stattfindet. Dabei hat es sich als vorteilhaft erwiesen, die Zuführungen in der Mischerwandung anzuordnen. Die sonst all­gemeine übliche Anordnung kurzer Sprühdüsen in der hohlen Dreh­welle macht bei niedrigen Rotationsgeschwindigkeiten den Einsatz von Sprühdüsen erforderlich, die mit Überdruck arbeiten bzw. nach dem Prinzip des Parfümzerstäubers mit Druckluft betrieben werden. Diese Arbeitsweise erfordert zusätzlich Aufwendungen für Druck­pumpen bzw. Entstaubungsanlagen für die aus dem Mischer abgeführte Druckluft. Die Anordnung in der Mischerwandung erfordert keine vergleichbaren Investitionen. Das zugeführte nichtionische Tensid kann sich auf der Innenwandung ausbreiten und wird ständig von dem auf die Wandung auftreffenden Pulver aufgenommen, verteilt und adsorbiert. Sofern aufgrund konstruktiver Gegebenheiten das nicht­ionische Tensid über die hohe Drehwelle zugeführt werden muß, wer­den die an der Hohlwelle angeordneten Austrittsdüsen vorteilhaft soweit verlängert, daß sie bis in den Pulverstrom hineinragen. Aufgrund der erhöhten Fliehkräfte wird hierdurch eine druckluft­freie Förderung und Zerstäubung des nichtionischen Tensid ermög­licht, das dann von dem Pulverstrom verteilt und aufgenommen wird. Die Zahl der Zuführungen beträgt zweckmäßigerweise 1 bis 10, wobei sie bei einer Anordnung in der Zylinderwandung vorzugsweise seit­lich im Bereich des aufsteigenden Pulverstromes angebracht sind. Bei mehreren hintereinander angeordneten Zuführungen sollte die letzte soweit vor der Auslaßöffnung installiert sein, daß das aus­tretende nichtionische Tensid noch homogen verteilt wird.
  • Das nichtionische Tensid wird in flüssiger Form zugeführt. Höher­schmelzende Verbindungen werden zuvor aufgeschmolzen und bei Tem­peraturen oberhalb des Schmelzpunktes zugeführt. Auch das bewegte Pulver weist zweckmäßigerweise eine Mindesttemperatur auf, die im Bereich des Schmelzpunktes des nichtionischen Tensids bzw. darüber liegt. Dieser Temperaturbereich ist durch eine geeignete Produkt­führung im Anschluß an die Sprühtrocknung leicht einstellbar.
  • Das nichtionische Tensid kann insgesamt auf diese Weise in das Pulver eingebracht werden. Es ist auch möglich, einen Teil davon dem Sprühansatz zuzusetzen und nur den Rest über den Mischer ein­zugeben. Grundsätzlich sollen jedoch Tenside mit einem niedrigen Ethoxylierungsgrad (niedrigem HLB-Wert entsprechend Komponente B2) ausschließlich über den Mischer eingearbeitet werden. Der Anteil der über das Turmsprühpulver eingebracht wird, soll höchstens 50 Gew.-%, bezogen auf nichtionisches Tensid, betragen. Zweckmäßi­gerweise werden 0,5 bis 6 Gew.-%, insbesondere 1 bis 5 Gew.-% des im Mittel enthaltenen nichtionischen Tensids über den Mischer eingebracht.
  • Werden die vorgenannten Bedingungen eingehalten, ist eine konti­nuierliche, störungsfreie Verfahrensdurchführung mit hohen Durch­sätzen möglich. Im Mischer läuft dabei ein Vorgang ab, der wie folgt beschrieben werden kann.
  • Das eingetragene Pulver wird von den rotierenden Schlagwerkzeugen mitgenommen und trifft auf die Mischerinnenwand, ohne an dieser jedoch haften zu bleiben, auch wenn dieser zwischenzeitlich mit einem dünnen Film von nichtionischen Tensiden belegt ist. Dieser Film wird ständig durch das lebhaft bewegte Pulver abgeführt und an diesem adsorbiert. Es bildet sich allenfalls kurzfristig ein dünner Pulverbelag, der sich jedoch ständig erneuert und immer wieder die blanke Innenfläche des Mischers zum Vorschein kommen läßt. Die Pulverpartikel beschreiben somit eine spiralförmige Be­wegung vom Mischereingang zum Mischerausgang. Sofern das Pulver längere Zeit an der Innenwand haftet, so daß sich eine Pulver­schicht ausbildet, die von den rotierenden Werkzeugen abgekratzt werden muß, ist das Pulver zu feucht bzw. zu klebrig oder auch zu warm bzw. die örtlich zudosierte Menge an nichtionischem Tensid ist zu hoch. Dieser nichtstationäre Zustand führt dazu, daß das Mischgut sich übermäßig erwärmt und der Mischer sich vollsetzt. Man kann der Entstehung solcher Beläge durch den beschriebenen Zusatz an Adsorptionsmitteln gegensteuern.
  • Die erhaltenen Produkte weisen gegenüber dem eingesetzten Turm­pulver ein um 50 bis 200 g/l erhöhtes Schüttgewicht auf, sind ausgezeichnet rieselfähig und bedürfen keiner Nachbehandlung, insbesondere keiner Nachtrocknung und keines Absiebens vergrößerter oder klumpiger Agglomerate. Sie können daher unmittelbar nach dem Verlassen des Mischers, ggf. nach Zumischen weiterer Pulverbe­standteile wie Bleichmittel (z.B. Natriumperborat als Monohydrat oder Tetrahydrat), Bleichaktivatoren (z.B. granuliertes Tetraace­tylethylendiamin), Enzymgranulate, Entschäumer (z.B. auf Träger­material aufgebrachte Silikon- oder Paraffin-Entschäumer), unmit­telbar in die Versandbehälter abgefüllt werden. Selbstverständlich ist es auch möglich, zwei oder mehrere getrennt hergestellte Turmpulver unterschiedlicher Zusammensetzung gemeinsam in dem Mischer zu behandeln oder nur eines davon zu verdichten und ein zweites nachträglich beizumischen.
  • Beispiele
  • Es wurde ein horizontal angeordneter Mischer verwendet, dessen zylindrischer Innenraum einen Radius von 15 cm und eine Innenlänge von 125 cm aufwies. Im Einlaufbereich (Länge 30 cm) waren an der Innenwelle mehrere Förderschaufeln spiralig angeordnet. In der anschließenden Mischstrecke zwischen Einlauf und Auslauf waren an der Innenwelle zunächst 5 zugespitzte, an ihren Enden abgewinkelte und anschließend 25 weitere Mischwerkzeuge spiralig angebracht, wobei letztere einen keilförmigen Querschnitt mit abgerundeten Ecken aufwiesen. Der Abstand der Werkzeuge zur Innenwand des Zy­linders betrug 0,5 cm, woraus sich ein Verhältnis von Werkzeug­länge ab Mittelachse zur Innenwand des Mischers von 96,7 % des Innenradius ergab. Um die Förderwirkung zu unterstützen, waren zwischen den Mischwerkzeugen schräg gestellte Förderschaufeln (Gesamtzahl 10) in spiraliger Anordnung angebracht. In der Wandung des Mischers waren im 1. Drittel der Mischstrecke seitlich im Be­reich des aufsteigenden Pulverstromes insgesamt 4 Zuführungen (Durchmesser ca. 10 mm) im gegenseitigen Abstand von 10 cm ange­ordnet, über welche das nichtionische Komponente (b) in den Mischer eingespeist wurde. Die Größe der Ausflußöffnung am Aus­trittsende des Mischers konnte mittels einer Klappe reguliert wer­den. In den folgenden Beispielen 1 bis 4 wurde diese Klappe so eingestellt, daß sich im kontinuierlichen Betrieb ein leichter Rückstau und damit ein gleichmäßiger Füllungszustand im Mischer bildete. In den Beispielen 1 bis 4 betrug die Rotationsgeschwin­digkeit ca. 1 500 Upm und die mittlere Verweilzeit betrug 20 bis 60 sec., im Durchschnitt 30 bis 40 sec. Der Mischer wurde mit sprühgetrockneten Pulver beschickt, das nach Verlassen des Turm­austrags über eine pneumatische Förderanlage transportiert wurde und eine Temperatur von ca. 30 °C bzw. nach einer Zwischenlagerung von 20 bis 25 °C aufwies.
  • Die Zusammensetzung der Pulver, die Froude-Zahl und der Durchsatz in Tonnen pro Stunde (t/h) sowie das Litergewicht vor und nach der Behandlung sind der Tabelle I zu entnehmen.
  • In den Beispielen 1 bis 3 entfielen die Bestandteile a und d - m sowie das Wasser und der Hauptanteil des Natriumsulfats (Bestand­teil n) auf das Turmsprühpulver. Das auf 45 °C erwärmte nichtio­nische Tensid (Bestandteil b) wurde mittels der seitlichen Zufüh­rungen in den Mischer eingeführt. In den Beispielen 1 und 2 wurde in gleicher Weise ein Gemisch aus Bestandteil b und der Hauptmenge (2 Gew.-%) des Bestandteils c eingespeist. Der Rest des Bestand­teils c (0,3 Gew.-%) war im Turmpulver enthalten. Der restliche Anteil des Natriumsulfats sowie die Minderbestandteile dienten als Granuliergrundlage und als Hüllsubstanzen für die unter p bis r aufgeführten Bestandteile. Diese wurden zusammen mit dem Perborat (das mit dem Parfüm besprüht worden war) nachträglich dem behan­delten Pulver zugemischt. Das dadurch erzielte Schüttgewicht des jeweiligen Fertiggemisches A ist ebenfalls angegeben (jeweils in g/Liter).
  • In einer weiteren Versuchsreihe wurden jeweils 2 % Zeolith aus der Turmpulver-Rezeptur eliminiert und statt dessen als Pulver während des Mischprozesses zugefügt. Es wurden Fertigprodukte B mit noch höherem Schüttgewicht erhalten.
  • Im Beispiel 4 wurden 43 Gewichtsteile Turmpulver, umfassend die Komponenten a, c, d, g, h, i, k und l sowie 52 % der Komponente e und 74 % der Komponente f mit 2 Gewichtsteilen der Komponente b im Mischer gemäß der in Beispiel 1 - 3 angegebenen Weise verarbeitet. Die übrigen Anteile der Komponenten e und f sowie Teile der Kom­ponente m (Natriumsulfat, Wasser) lagen als sprühgetrocknetes Granulat vor, das mit dem Rest der Komponente b imprägniert war. Dieses Granulat (29 Gewichtsteile) wurde zusammen mit den Kompo­nenten n bis s (28 Gewichtsteile), dem im Mischer behandelten Turmpulver (43 Gewichtsteile) nachträglich zugemischt. Es resul­tierte ein Pulvergemisch mit hervorragender Schüttfähigkeit, das keiner Nachbehandlung (Puderung) mit feinteiligem Zeolith be­durfte.
  • Die Abkürzungen bedeuten:
  • Na-ABS Natriumdodecylbenzolsulfonat (C₁₀₋₁₃)
    FA + x EO Fettalkohol + x Mol angelagertes Ethylenoxid
    STP Natrium-tripolyphosphat (wasserfrei)
    AA-MA Acrylsäure : Maleinsäure 3 : 1 (MG 70 000)
    Phosphonat Ethylendiamin-tetramethylenphosphonsäure-Na₆-Salz
    NTA Ntirilotriessigsäure-Na₃-Salz
    TAED Tetraacetylethylendiamin
  • Die Pulver erwiesen sich als gut schüttfähig, nicht staubend und lösten sich sowohl beim Einstreuen in Haushaltswaschmaschinen schnell, ohne Klumpenbildung und rückstandsfrei. Bei einem Rüttel­test, mit dem eine mechanische Belastung beim Transport der Packungen simuliert wurde, trat keine Entmischung der Pulverkompo­nenten ein.
    Figure imgb0002
    Figure imgb0003

Claims (8)

1. Verfahren zur Erhöhung der Dichte einer sprühgetrockneten, phosphatreduzierten Waschmittelkomponente mit einem Gehalt an
A) 4 bis 20 Gew.-% mindestens eines anionaktiven Tensids,
B) 2 bis 20 Gew.-% mindestens eines nichtionischen Tensides,
C) 20 bis 50 Gew.-% mindestens einer Buildersubstanz,
D) 3 bis 25 Gew.-% Waschalkalien,
E) 0 bis 30 Gew.-% an sonstigen, der Heißsprühtrocknung zugänglichen Waschmittelbestandteilen,
dadurch gekennzeichnet, daß man das sprühgetrocknete, ein Schüttgewicht von wenigstens 350 g/Liter aufweisende Pulver kontinuierlich in eine zylindrische, horizontale geneigte Mischtrommel mit glatter Innenwand einführt, in welcher axial eine Welle rotiert, die mit radial angeordneten Schlagwerk­zeugen ausgestattet ist, deren Länge (gerechnet von der Mit­telachse) 80 % bis 98 % des Innenradius der Trommel beträgt, und daß man die Rotationsgeschwindigkeit der Welle so regu­liert, daß bei einer mittleren Verweilzeit des Pulvers in der Trommel von 10 bis 60 sec. und konstantem Pulverdurchsatz die Froude-Zahl zwischen 50 und 1 000 liegt; wobei man höchstens den halben Anteil des nichtionischen Tensids, höchstens jedoch 5 Gew.-% (auf das Mittel bezogen) in dem sprühgetrockneten Pulver beläßt und den übrigen Anteil des nichtionischen Tensids in flüssiger Form in den Mischer einführt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Länge der rotierenden Werkzeuge 85 % bis 96 % des Innenradius der Trommel beträgt.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß das Schüttgewicht des zugeführten Turmpulvers mindestens 400 g/l beträgt.
4. Verfahren nach Anspruch 1 bis 3, daß die mittlere Verweilzeit des Pulvers 20 bis 50 sec. beträgt.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die Froude-Zahl 100 bis 1 000 beträgt.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die Temperatur des Pulvers 50 °C nicht überschreitet.
7. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß man dem Pulver 0,5 bis 3 Gew.-% an feinteiligem trockenem Zeo­lith zumischt.



9. Verfahren nach einem oder mehreren der vorhergehenden Ansprü­che, dadurch gekennzeichnet, daß man mehrere Pulverkomponenten gleichzeitig verarbeitet.
EP89106222A 1988-04-15 1989-04-08 Verfahren zur Erhöhung der Dichte sprühgetrockneter, phosphatreduzierter Waschmittel Expired - Lifetime EP0337330B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3812530A DE3812530A1 (de) 1988-04-15 1988-04-15 Verfahren zur erhoehung der dichte spruehgetrockneter, phosphatreduzierter waschmittel
DE3812530 1988-04-15

Publications (3)

Publication Number Publication Date
EP0337330A2 true EP0337330A2 (de) 1989-10-18
EP0337330A3 EP0337330A3 (en) 1990-04-11
EP0337330B1 EP0337330B1 (de) 1996-05-15

Family

ID=6352038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89106222A Expired - Lifetime EP0337330B1 (de) 1988-04-15 1989-04-08 Verfahren zur Erhöhung der Dichte sprühgetrockneter, phosphatreduzierter Waschmittel

Country Status (8)

Country Link
US (1) US5149455A (de)
EP (1) EP0337330B1 (de)
JP (1) JPH01311200A (de)
KR (1) KR890016160A (de)
AT (1) ATE138096T1 (de)
DE (2) DE3812530A1 (de)
DK (1) DK182389A (de)
ES (1) ES2086308T3 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160100A (ja) * 1989-10-27 1991-07-10 Unilever Nv 洗剤組成物
WO1993001268A1 (de) * 1991-07-12 1993-01-21 Henkel Kommanditgesellschaft Auf Aktien Waschaktive zubereitung mit verzögertem auflöseverhalten und verfahren zu ihrer herstellung
WO1993002176A1 (de) * 1991-07-25 1993-02-04 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung von waschmitteln mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
EP0544492A1 (de) * 1991-11-26 1993-06-02 Unilever Plc Teilchenförmige Waschmittelzusammensetzungen
WO1993021300A1 (de) * 1992-04-08 1993-10-28 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur erhöhung des schüttgewichts sprühgetrockneter waschmittel
WO1994001526A1 (de) * 1992-07-02 1994-01-20 Henkel Kommanditgesellschaft Auf Aktien Feste waschaktive zubereitung mit verbessertem einspülverhalten
FR2707662A1 (fr) * 1993-07-13 1995-01-20 Colgate Palmolive Co Procédé de préparation d'une composition détergente ayant une densité apparente élevée.
EP0926232A2 (de) * 1997-12-22 1999-06-30 Henkel KGaA Teilchenförmiges Wasch- und Reinigungsmittel
CN1079825C (zh) * 1994-03-28 2002-02-27 花王株式会社 高堆积密度洗涤剂颗粒的制造方法
WO2007077943A1 (en) * 2005-12-28 2007-07-12 Kao Corporation Method for producing detergent particles

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3905671C2 (de) * 1989-02-24 1999-02-04 Henkel Kgaa Zur Herstellung wäßriger Konzentrate geeignetes Waschmittelgranulat
GB9008013D0 (en) * 1990-04-09 1990-06-06 Unilever Plc High bulk density granular detergent compositions and process for preparing them
JP3192469B2 (ja) * 1991-05-17 2001-07-30 花王株式会社 ノニオン洗剤粒子の製造方法
TW240243B (de) * 1992-03-12 1995-02-11 Kao Corp
TR27586A (tr) * 1992-09-01 1995-06-13 Procter & Gamble Yüksek yogunlukla zerre deterjanin yapilmasi icin islem ve islem ile yapilan bilesimler.
ATE244061T1 (de) * 1993-01-26 2003-07-15 Nat Starch Chem Invest Multifunktionale maleat polymere
US5866012A (en) * 1993-01-26 1999-02-02 National Starch And Chemical Investment Holding Corporation Multifunctional maleate polymers
USH1604H (en) * 1993-06-25 1996-11-05 Welch; Robert G. Process for continuous production of high density detergent agglomerates in a single mixer/densifier
DE19500644B4 (de) * 1995-01-12 2010-09-09 Henkel Ag & Co. Kgaa Sprühgetrocknetes Waschmittel oder Komponente hierfür
US5757011A (en) * 1995-02-10 1998-05-26 Orbit Semiconductor, Inc. X-ray onset detector and method
US5547612A (en) 1995-02-17 1996-08-20 National Starch And Chemical Investment Holding Corporation Compositions of water soluble polymers containing allyloxybenzenesulfonic acid monomer and methallyl sulfonic acid monomer and methods for use in aqueous systems
US5565422A (en) * 1995-06-23 1996-10-15 The Procter & Gamble Company Process for preparing a free-flowing particulate detergent composition having improved solubility
US5733863A (en) * 1997-01-17 1998-03-31 The Procter & Gamble Company Process for making a free-flowing particule detergent admix containing nonionic surfactant
US5739094A (en) * 1997-01-17 1998-04-14 The Procter & Gamble Company Free-flowing particulate detergent admix composition containing nonionic surfactant
US7098177B1 (en) * 1998-10-16 2006-08-29 Kao Corporation Process for producing detergent particles
US20050203263A1 (en) * 2004-03-15 2005-09-15 Rodrigues Klein A. Aqueous treatment compositions and polymers for use therein
CN103119067B (zh) * 2010-09-22 2016-04-13 陶氏环球技术有限责任公司 使用二醛处理多糖

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360865A (en) * 1965-02-08 1968-01-02 Pillsbury Co Process and apparatus for agglomerating and drying flour
US4006110A (en) * 1971-11-30 1977-02-01 Colgate-Palmolive Company Manufacture of free-flowing particulate heavy duty synthetic detergent composition
US4320105A (en) * 1980-10-20 1982-03-16 Lithium Corporation Of America Pellitizing method
EP0120492A2 (de) * 1983-03-25 1984-10-03 Henkel Kommanditgesellschaft auf Aktien Körnige, freifliessende Waschmittelkomponente und Verfahren zu ihrer Herstellung

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886098A (en) * 1971-03-15 1975-05-27 Colgate Palmolive Co Manufacture of free flowing particulate detergent composition containing nonionic detergent
DE2224837C3 (de) * 1972-05-20 1986-05-07 Agfa-Gevaert Ag, 5090 Leverkusen Direktpositives photographisches Aufzeichnungsmaterial
ZA734721B (en) * 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
GB1455873A (en) * 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
GB1517713A (en) * 1974-10-31 1978-07-12 Unilever Ltd Preparation of detergent formulations
US4663194A (en) * 1976-12-02 1987-05-05 The Colgate-Palmolive Co. Phosphate-free concentrated particulate heavy duty laundry detergent
US4146495A (en) * 1977-08-22 1979-03-27 Monsanto Company Detergent compositions comprising polyacetal carboxylates
US4144226A (en) * 1977-08-22 1979-03-13 Monsanto Company Polymeric acetal carboxylates
EP0026529B2 (de) * 1979-09-29 1992-08-19 THE PROCTER & GAMBLE COMPANY Reinigungsmittelzusammensetzungen
GB8329880D0 (en) * 1983-11-09 1983-12-14 Unilever Plc Particulate adjuncts
US4552681A (en) * 1983-12-10 1985-11-12 Henkel Kommanditgesellschaft Auf Aktien Granular, free-flowing detergent component and method for its production
DE3424987A1 (de) * 1984-07-06 1986-02-06 Unilever N.V., Rotterdam Verfahren zur herstellung eines pulverfoermigen waschmittels mit erhoehtem schuettgewicht
JPH0672237B2 (ja) * 1984-09-14 1994-09-14 花王株式会社 流動性の改良された高密度の粒状洗剤の製法
JPH0680160B2 (ja) * 1984-09-14 1994-10-12 花王株式会社 流動性の改良された高密度の粒状洗剤の製法
JPH07122079B2 (ja) * 1984-09-14 1995-12-25 花王株式会社 流動性の改良された高密度の粒状洗剤の製法
JPS6169897A (ja) * 1984-09-14 1986-04-10 花王株式会社 流動性の改良された高密度の粒状洗剤の製法
DE3514364A1 (de) * 1985-04-20 1986-10-23 Henkel KGaA, 4000 Düsseldorf Koerniges waschmittel mit verbessertem reinigungsvermoegen
US4970017A (en) * 1985-04-25 1990-11-13 Lion Corporation Process for production of granular detergent composition having high bulk density
DE3545947A1 (de) * 1985-12-23 1987-07-02 Henkel Kgaa Phosphatfreies, granulares waschmittel
DE3768509D1 (de) * 1986-01-17 1991-04-18 Kao Corp Granuliertes reinigungsmittel von hoher dichte.
US4931203A (en) * 1987-06-05 1990-06-05 Colgate-Palmolive Company Method for making an automatic dishwashing detergent powder by spraying drying and post-adding nonionic detergent
US4992198A (en) * 1988-01-19 1991-02-12 Kao Corporation Detergent composition containing clathrate granules of a perfume-clathrate compound
JPH0633439B2 (ja) * 1988-07-28 1994-05-02 花王株式会社 高密度粒状濃縮洗剤組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360865A (en) * 1965-02-08 1968-01-02 Pillsbury Co Process and apparatus for agglomerating and drying flour
US4006110A (en) * 1971-11-30 1977-02-01 Colgate-Palmolive Company Manufacture of free-flowing particulate heavy duty synthetic detergent composition
US4320105A (en) * 1980-10-20 1982-03-16 Lithium Corporation Of America Pellitizing method
EP0120492A2 (de) * 1983-03-25 1984-10-03 Henkel Kommanditgesellschaft auf Aktien Körnige, freifliessende Waschmittelkomponente und Verfahren zu ihrer Herstellung

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160100A (ja) * 1989-10-27 1991-07-10 Unilever Nv 洗剤組成物
WO1993001268A1 (de) * 1991-07-12 1993-01-21 Henkel Kommanditgesellschaft Auf Aktien Waschaktive zubereitung mit verzögertem auflöseverhalten und verfahren zu ihrer herstellung
WO1993002176A1 (de) * 1991-07-25 1993-02-04 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung von waschmitteln mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
EP0544492A1 (de) * 1991-11-26 1993-06-02 Unilever Plc Teilchenförmige Waschmittelzusammensetzungen
US5501810A (en) * 1992-04-08 1996-03-26 Henkel Kommanditgesellschaft Auf Aktien Process for increasing the apparent density of spray-dried detergents
WO1993021300A1 (de) * 1992-04-08 1993-10-28 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur erhöhung des schüttgewichts sprühgetrockneter waschmittel
EP0814153A3 (de) * 1992-07-02 1999-05-06 Henkel Kommanditgesellschaft auf Aktien Feste waschaktive Zubereitung mit verbessertem Einspülverhalten
EP0814153A2 (de) * 1992-07-02 1997-12-29 Henkel Kommanditgesellschaft auf Aktien Feste waschaktive Zubereitung mit verbessertem Einspülverhalten
WO1994001526A1 (de) * 1992-07-02 1994-01-20 Henkel Kommanditgesellschaft Auf Aktien Feste waschaktive zubereitung mit verbessertem einspülverhalten
FR2707662A1 (fr) * 1993-07-13 1995-01-20 Colgate Palmolive Co Procédé de préparation d'une composition détergente ayant une densité apparente élevée.
CN1079825C (zh) * 1994-03-28 2002-02-27 花王株式会社 高堆积密度洗涤剂颗粒的制造方法
EP0926232A2 (de) * 1997-12-22 1999-06-30 Henkel KGaA Teilchenförmiges Wasch- und Reinigungsmittel
EP0926232A3 (de) * 1997-12-22 1999-08-25 Henkel KGaA Teilchenförmiges Wasch- und Reinigungsmittel
WO2007077943A1 (en) * 2005-12-28 2007-07-12 Kao Corporation Method for producing detergent particles

Also Published As

Publication number Publication date
US5149455A (en) 1992-09-22
EP0337330A3 (en) 1990-04-11
DK182389D0 (da) 1989-04-14
KR890016160A (ko) 1989-11-28
JPH01311200A (ja) 1989-12-15
DK182389A (da) 1989-10-16
ATE138096T1 (de) 1996-06-15
DE3812530A1 (de) 1989-10-26
DE58909678D1 (de) 1996-06-20
EP0337330B1 (de) 1996-05-15
ES2086308T3 (es) 1996-07-01

Similar Documents

Publication Publication Date Title
EP0337330B1 (de) Verfahren zur Erhöhung der Dichte sprühgetrockneter, phosphatreduzierter Waschmittel
EP0642576B1 (de) Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels
EP0859827B1 (de) Verfahren zur herstellung eines amorphen alkalisilikats mit imprägnierung
DE69332270T3 (de) Verfahren zum herstellen von kompakten waschmittelzusammensetzungen
WO1995022592A1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
DE4203031A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
DE3838086A1 (de) Verfahren zur herstellung zeolithhaltiger granulate hoher dichte
EP0804529B1 (de) Amorphes alkalisilikat-compound
DE4208773A1 (de) Verfahren zur trocknung von wertstoffen oder deren gemischen, die als netz-, wasch- und/oder reinigungsmittel geeignet sind
EP0635049B1 (de) Verfahren zur erhöhung des schüttgewichts sprühgetrockneter waschmittel
EP0560802B1 (de) Verfahren zur herstellung von zeolith-granulaten
EP0327963A2 (de) Verfahren zur Erhöhung der Dichte sprühgetrockneter Waschmittel
EP0839178B1 (de) Amorphes alkalisilicat-compound
DE2431529A1 (de) Verfahren zur herstellung spruehgetrockneter, nichtionische tenside enthaltender waschmittel
DE102004016497B4 (de) Verfahren zur Herstellung von Granulaten und deren Einsatz in Wasch- und/oder Reinigungsmitteln
WO1994014946A1 (de) Granulare wasch- und/oder reinigungsmittel
DE2519655A1 (de) Verfahren und vorrichtung zur herstellung spruehgetrockneter, nichtionische tenside enthaltender waschmittel
DE69632187T2 (de) Verfahren zur Konditionierung von Tensidpasten zwecks Bildung hochaktiver Tensidgranulate
EP0804535B1 (de) Bleichendes wasch- und reinigungsmittel in granulatform
EP0605436B1 (de) Verfahren zur herstellung von zeolith-granulaten
EP0874684B1 (de) Verfahren zur herstellung eines granularen additivs
EP0845028B1 (de) Verfahren zur herstellung eines amorphen alkalisilikats mit imprägnierung
WO1997023595A1 (de) Verfahren zum herstellen granularer wasch- und/oder reinigungsmittel und zur durchführung geeignete vorrichtung
EP0936267A2 (de) Alkalimetallsilicat/Niotensid-Compound
DE19542570A1 (de) Verfahren zur Herstellung von granularen Wasch- oder Reinigungsmitteln oder Komponenten hierfür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR IT LI NL

17P Request for examination filed

Effective date: 19900810

17Q First examination report despatched

Effective date: 19930805

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960515

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960515

Ref country code: BE

Effective date: 19960515

REF Corresponds to:

Ref document number: 138096

Country of ref document: AT

Date of ref document: 19960615

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58909678

Country of ref document: DE

Date of ref document: 19960620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2086308

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980428

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010409

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST