WO1997023595A1 - Verfahren zum herstellen granularer wasch- und/oder reinigungsmittel und zur durchführung geeignete vorrichtung - Google Patents

Verfahren zum herstellen granularer wasch- und/oder reinigungsmittel und zur durchführung geeignete vorrichtung Download PDF

Info

Publication number
WO1997023595A1
WO1997023595A1 PCT/EP1996/005604 EP9605604W WO9723595A1 WO 1997023595 A1 WO1997023595 A1 WO 1997023595A1 EP 9605604 W EP9605604 W EP 9605604W WO 9723595 A1 WO9723595 A1 WO 9723595A1
Authority
WO
WIPO (PCT)
Prior art keywords
process step
mixer
mixing
weight
mixing chamber
Prior art date
Application number
PCT/EP1996/005604
Other languages
English (en)
French (fr)
Inventor
Hans-Friedrich Kruse
Hans-Josef Beaujean
Volker Bauer
Dieter Jung
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Publication of WO1997023595A1 publication Critical patent/WO1997023595A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/10Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in stationary drums or troughs, provided with kneading or mixing appliances
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads

Definitions

  • the invention relates to a method for producing detergents and / or cleaning agents by granulating particulate solids with a liquid granulating aid in one or more mixers, each with a shaft rotating therein, with mixing tools attached therein, the first step being the particulate solid material and produces a granulate to the liquid granulation aid and, in the second process step, adds a dry powdery solid to the granulate obtained from the first process step.
  • granules consisting of detergent components and obtained by spray drying are introduced into a high-speed mixer / granulator and pulverized there at high speed by the mixing tools and the knife.
  • the mixer then runs at a lower speed for the mixing tools and the knife, during which the granulation aid water is sprayed on.
  • the mixer runs at an average speed of mixing tools and knives in order to form granules from the solid and liquid components.
  • a fine amorphous sodium aluminum silicate is added to the mixer, the mixer also a relatively low speed of the mixing tools and the knife is operated.
  • the known method is carried out batchwise in only one mixer.
  • a disadvantage of this known method lies in the discontinuous implementation, which is necessary due to the mixer speeds changing in each process step.
  • EP 351 937 describes a method for producing a detergent composition with increased bulk density. The granulation and compaction is carried out in a high-speed mixer. After completion of the granulation, it is possible to add 0.2 to 5% by weight of amorphous or 3 to 12% by weight of crystalline aluminum silicate at a low mixer speed in order to improve the flowability. No further granulation occurs. Similar processes, but with different detergent compositions, are described in EP 340 013. A disadvantage of these known processes is, in particular, the discontinuous process procedure which is associated with increased effort in industrial practice.
  • a finished, that is no longer moist, granulate is produced in the first process step, which can then be powdered off with a flow aid.
  • the addition of the flow aid is not necessary, but only optional.
  • Another granulating process for producing granular detergents and cleaners with a high bulk density is known from international patent application WO 93/23523.
  • two-stage granulation is carried out in two mixers / granulators connected in series.
  • the first, slow-running mixer contains 40 to 100% by weight, based on the total amount of the solid and liquid constituents used, of the solid and liquid Ingredients pre-granulated.
  • the pre-granulate from the first process stage is optionally mixed with the remaining solid and / or liquid constituents and transferred into the finished granulate.
  • This two-stage process like the process according to the European patent applications mentioned above, works with different mixer speeds in the two process stages, so that two mixers are required to carry out the process.
  • Another method for producing granulated detergents and cleaning agents is known from DE 43 04 475 A1. This process is also carried out in two stages. In contrast to the processes already mentioned, in the first process stage there is no granulation or agglomeration, but only a mixing and loading of the added powder. In a second process stage, the starting materials from the first process stage are transferred to a second mixer, where the powdery starting materials are compacted by energy input and the resulting granules are rolled against one another in a compacting manner. To cancel the build-up roll granulation taking place here, a finely divided powder, for example zeolite powder, e.g. B. Zeolite NaA added to abruptly end the rolling process in this way.
  • zeolite powder e.g. B. Zeolite NaA
  • the invention has for its object to provide a particularly simple and economical continuous granulating process for the manufacture of detergents and / or cleaning agents in the form of granules with a spherical shape and with particularly high bulk densities, the two process steps in the process mentioned at the beginning with approximately same speeds of the mixer or mixers used are to be carried out.
  • This object is achieved according to the invention in a method according to the preamble of claim 1 in that the method is carried out continuously while the mixer (s) is running slowly and both method steps are carried out in separate mixing chambers, in the first method step a moist granulate with a Produces liquid content of 1 to 65 wt .-% and interrupts the discharge from the second mixing chamber periodically for a predetermined time.
  • the granules with particularly high proportions of free water contain correspondingly high proportions of solid components which are particularly suitable for absorbing liquid.
  • the granulation can also be carried out with non-aqueous liquids, e.g. B. liquid surfactants, with solutions or with several different liquids.
  • slow-running mixer is understood to mean mixers with peripheral speeds of the mixing tools of approximately 1 to less than 10 m / s, preferably from 2 to 7 m / s and in particular with peripheral speeds of 4 m / s to 5 m / s .
  • the particulate solid used in the first process step can be a powder or a granulate which has been produced, for example, by spray drying.
  • the end product is produced in the first process step, except for the powdering, the compression and the rounding. Both process steps can be carried out with slow-running mixers. A strong rounding and homogenization of the granules and an increased bulk density can be achieved despite the continuous implementation of the second process step, too, by starting with moist granules in the second process step, adding a dry powdery solid and discharging the end product interrupts the second mixing chamber periodically for a predetermined time.
  • This intermittent opening and closing of the discharge opening enables the residence time spectrum to be shifted to higher values and thus a significantly smaller proportion with low residence times despite the continuous implementation of this process step, although continuous process operations with apparatuses designed for batch processes usually have too wide residence time spectra significant proportions with very short residence times.
  • the same mixer speed provided according to the invention in both process stages enables this process to be carried out particularly economically by carrying out the entire two-stage process in a single mixer with only one mixer shaft and separate mixing chambers, a first mixing chamber for the first process step and a second mixing chamber for the second Method step is provided.
  • the mixing chamber within the granulator can be divided into the two mixing chambers by a weir.
  • a predetermined throughput of moist granules passes from the first mixing chamber into the second mixing chamber via the weir opening, which is preferably adjustable in position and cross section.
  • the discharge of the product from the second mixing chamber is interrupted for 5 to 120 seconds, in particular 10 to 30 seconds.
  • This firing time of the discharge opening determines the shift in the residence time spectrum with respect to the second mixing chamber. Compliance with this process parameter is particularly important in the process according to the invention and leads to compaction and rounding, so that a high bulk density and an approximately spherical shape of the granules are obtained.
  • the amount of powdery solid added in the second process step is 0.1 to 15% by weight, in particular 0.5 to 5% by weight, of the wet granules produced in the first process step .
  • the flowability of the already dry granules can be further improved if the granules obtained are further dried in a fluidized bed.
  • An extremely free-flowing and very compact granulate with a very high bulk density of about 900 g / l is obtained.
  • the first method step is preferably carried out in a first mixing chamber, the volume of which is 2 to 10 times, in particular approximately 4 times as large as the volume of the second mixing chamber.
  • the intermittent opening and closing of the discharge opening of the second chamber allows a reduction in the volume of this chamber and thus advantageously saves space without ignoring the requirement for a significant reduction in the shares with low residence times.
  • the method according to the invention can advantageously be carried out in an elongated, essentially horizontally arranged mixer with a rotating shaft arranged in the longitudinal axis.
  • mixer constructions are also suitable for carrying out the method according to the invention.
  • a mixer with a horizontal shaft can only be used for the first process step and a rounder for the second process step.
  • a suitable rounding agent is, for example, the apparatus from Elanco known under the brand "Marumerizer (R)".
  • the pulverulent solid to be processed in the first process step is fed in at one end of the elongated mixer and the finished product from the mixer is cyclically opened at the other end by a control device and removes the closed discharge opening.
  • the transfer of the moist granules from the first to the second mixer chamber can be carried out in different ways, for example over a weir with an adjustable opening.
  • a mean residence time of the starting product in the first process step of 1 to 5 minutes has proven to be particularly advantageous.
  • the average residence time in the first chamber can be determined in a simple manner from the quotient of the chamber filling and the throughput (volume per unit of time).
  • the degree of filling in the first chamber can be adjusted by the size and position of the opening of a weir arranged between the two chambers.
  • the granulate produced in the first process step preferably has a liquid content, in particular free water, of 4 to 25% by weight.
  • the content of anionic and nonionic surfactants in the granules is preferably 10 to 40% by weight and in particular 15 to 30% by weight, in each case based on the finished granules, and preferably 20 to 60% by weight and in particular 25 to 55% by weight, based on the finished granulate and calculated as an anhydrous active substance, of builder substances.
  • the finished granules have a content of 3 to 15% by weight of nonionic surfactants and 0 to 20% by weight, preferably 0 to 10% by weight, of free, that is to say neither chemically nor physically bound, water.
  • the dry powdery solid used in the second process step is preferably an amorphous sodium aluminum silicate suitable as a builder, in particular zeolite NaA in detergent quality.
  • a granulating liquid which either consists only of pure liquid constituents or mixtures thereof or which contains the solid constituents in dissolved and / or suspended form.
  • the granulating liquid is preferably used in amounts of 5 to 30% by weight, based on the total amount of the constituents used.
  • the solid constituents can be introduced into the process as powders or granules which have been obtained by granulation or spray drying and have a bulk density of, for example, 200 to 600 g / l.
  • the powders are usually individual components, for example zeolite, sodium carbonate, tripolyphosphate, water glass or sodium sulfate, while the granules preferably contain several components, mostly also small components and liquid feedstocks. Powder alone or granules alone can be used.
  • solid ingredients of detergents and / or cleaning agents can be used as solid constituents.
  • Preferred solid constituents are anionic surfactants, builder substances, alkaline and neutral salts, bleaching agents and graying inhibitors.
  • Suitable surfactants of the sulfonate type are preferably Cg-Cg-alkyl benzene sulfonates come, Olefinsuifonate, ie mixtures of alkene and hydroxyalkane sulfonates, and the disulfonates obtained, for example, from C ⁇ -C- j g monoolefins with a terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation products.
  • alkanesulfonates obtained from C 12 -C 18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • Preferred anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 1 -C 6 -fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which are nonionic surfactants in themselves.
  • sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a restricted homolog distribution, particularly preferred.
  • esters of ⁇ -sulfo fatty acids e.g. the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
  • Suitable surfactants of the sulfate type are the sulfuric acid monoesters from primary alcohols of natural and synthetic origin, in particular from fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, oleyl alcohol, lauryl, myristyl, cetyl or stearyl alcohol, or the like and that those secondary alcohols of this chain length.
  • the sulfuric acid monoesters of the alcohols ethoxylated with 1 to 6 mol of ethylene oxide, such as 2-methyl-branched C 1 -C 4 -alcohols with an average of 3.5 mol of ethylene oxide, are also suitable.
  • Fatty alcohol mixtures which may additionally contain proportions of unsaturated alcohols, for example oleyl alcohol, are also preferred.
  • Suitable anionic surfactants are, in particular, soaps, preferably in amounts of 0.5 to 8% by weight.
  • Saturated fatty acid soaps such as the salts of lauric acid, myristic acid, palmitic acid or stearic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • those soap mixtures are preferred which are composed of 50 to 100% by weight of saturated C 1 -C 4 fatty acid soaps and 0 to 50% by weight of oleic acid soap.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the anionic surfactants are preferably used in amounts of 3 to 20% by weight, based on the sum of the constituents used. However, their content can also exceed 20% by weight.
  • Preferred anionic surfactants are fatty alkyl sulfates, alkylbenzenesulfonates, sulfosuccinates and mixtures thereof, such as mixtures of fatty alkyl sulfates and sulfosuccinates or fatty alkyl sulfates and fatty alkylbenzenesulfonates, especially in combination with soap. It is particularly preferred that at least some of the sulfonate and / or sulfate surfactants are used as a component of the granulating liquid, not as a solid component, but in liquid form.
  • the known zeolites, silicates and phosphates, in particular tripolyphosphates, are particularly suitable as builder substances.
  • Their content is preferably 20 to 60% by weight, in particular 20 to 50% by weight, in each case based on the sum of the constituents used and calculated as an anhydrous active substance.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite NaA in detergent quality. It is preferably used as a spray-dried powder.
  • Preferred zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 20 to 22% by weight of bound water.
  • Usable organic builders are, for example, the polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid, succinic acid, glutaric acid, adipic acid, tartaric acid and nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons, and mixtures of these.
  • polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid, succinic acid, glutaric acid, adipic acid, tartaric acid and nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons, and mixtures of these.
  • Polymeric polycarboxylates come into consideration as further organic builder substances.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid, which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid, have proven to be particularly suitable. Copolymers in which 60 to 85% by weight of acrylic acid and 40 to 15% by weight of maleic acid are present are particularly preferred.
  • Their relative molecular weight, based on free acids is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 8% by weight.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application 280 223.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the preferred alkaline salts include water-soluble inorganic salts such as bicarbonates, carbonates, silicates or mixtures of these; alkali carbonate and alkali silicate, especially sodium silicate with a molar ratio of 1: 1 to 1: 4.5, are used in particular.
  • the content of sodium carbonate in the compositions is preferably up to 20% by weight, advantageously inevitably between 1 and 15% by weight.
  • the content of sodium silicate in the agents, for example amorphous or crystalline sodium disilicate, is generally up to 10% by weight and preferably between 2 and 8% by weight.
  • sulfates are used, this is preferably done in amounts between 15 and 40% by weight, based on the finished granulate. However, methods are preferred in which no sulfate is used.
  • bleaching agents that can be used are, for example, sodium percarbonates, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -containing peracidic salts or peracids such as perbenzoates, peroxaphthalates, diperazelaic acid or diperdodecanedioic acid.
  • the bleach content of the agents is preferably 5 to 25% by weight and in particular 10 to 20% by weight, based on the finished granules.
  • the bleaching agents can be added either in the granulation process according to the invention or in a subsequent processing step.
  • Graying inhibitors have the task of keeping the dirt detached from the fibers suspended in the liquor and thus preventing graying.
  • water-soluble colloids of mostly organic nature are suitable, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches, etc.
  • the granulating liquid preferably consists of liquid constituents of washing and / or cleaning agents or of water, of aqueous solutions and / or of mixtures which contain aqueous constituents which are solid constituents and liquid constituents of washing and / or cleaning agents.
  • water, aqueous solutions, non-ionic surfactants and / or mixtures of aqueous solutions and non-ionic surfactants preferably a mixture of an aqueous anionic surfactant solution and non-ionic surfactants, be used as the granulating liquid, at the process temperature in liquid form, the mixture has a pH of at least 7.0.
  • the liquid constituents of detergents and / or cleaning agents include, in particular, nonionic surfactants which are in liquid, ie pumpable and flowable form at the process temperature.
  • nonionic surfactants preferably include addition products of 1 to 12 moles of ethylene oxide with primary C 12 -co fatty alcohols and their mixtures such as coconut oil, tallow oil or oleyl alcohol, or with primary alcohols branched in the 2-position methyl (oxo alcohols).
  • C 12 -C 14 alcohols with 3 EO or 4 EO Cg- C 1 ⁇ alcohol with 7 EO, C 13 -C 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 ⁇ C Alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12 -C 14 alcohol with 3 EO and C 12 -C 1 g alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a restricted homolog distribution (narrow range ethoxylates, NRE).
  • the content of the ethoxylated fatty alcohols in the finished granules is preferably 5 to 15% by weight.
  • the liquid nonionic surfactants are used in a mixture with lower polyalkylene glycols which are derived from straight-chain or branched glycols having 2 to 6 carbon atoms.
  • Preferred lower polyalkylene glycols are Polyethylene glycols or polypropylene glycols, which have a relative molecular mass between 200 and 12000, in particular between 200 and 4000, for example up to 2000.
  • the weight ratio of liquid nonionic surfactant to lower polyalkylene glycol in these mixtures is preferably 10: 1 to 1: 1.
  • the preferred aqueous mixtures also include aqueous alkyl glycoside pastes in which alkyl glycosides of the general formula RO (G) ⁇ are used, in which R is a primary straight-chain or aliphatic radical with 8 to 22, preferably 12 to, branched methyl 18 C atoms means and G is the symbol which stands for a glycose unit with 5 or 6 C atoms, preferably for glycose.
  • the degree of oligomerization X which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10 and is preferably 1.2 to 1.4.
  • the preferred aqueous solutions also include the solutions of (co) polymeric polycarboxylates already mentioned.
  • aqueous suspensions of zeolites which preferably contain stabilizers for these suspensions, can also be used in the first process step.
  • concentrated aqueous anionic surfactant solutions and anionic surfactant pastes are also particularly preferred. These are preferably produced by neutralizing the anionic surfactants in their acid form with highly concentrated aqueous alkalis, for example a 45 to 55% strength by weight sodium hydroxide solution, in a commercially available rotor-stator machine, for example a Supraton ′′, or a stirred kettle.
  • nonionic surfactants are particularly preferred, the nonionic surfactants preferably being used in amounts such that the viscosity of the anionic surfactant pastes is reduced and thus their processability, in particular pumpability and flowability, is improved.
  • These mixtures have a pH of at least 7.0, preferably from 7.5 to 12, and form part of the granulating liquid.
  • the amount of water tolerable without drying depends heavily on the overall composition. However, the subsequent drying step is preferred. In particular, this drying is carried out in the fluidized bed at supply air temperatures below 180 ° C.
  • the granulating liquid preferably contains only so much water that under these conditions a maximum of 15% by weight, based on the total amount of the constituents used, of water evaporate.
  • the degree of filling of the first mixing chamber is set to 10 to 80%, preferably 30 to 60%, in order to obtain a particularly uniform granulate. With such a degree of filling, a very uniform distribution of the liquid components in the first mixing chamber is obtained. The longer residence time corresponding to a higher degree of filling and the resulting lower consumption of granulating liquid, on the other hand, leads to less uniform granules.
  • Existing coarse-grained fractions that is to say granules with a diameter above 2 mm, in particular with a diameter above 1.6 mm, are preferably screened off after drying and can advantageously, after being comminuted, which can be carried out, for example, in a mill, into the continuous production process to be led back. It is preferred to return the crushed coarse particles to the sieve and thus to feed further finished granules. It is possible to recycle crushed coarse particles or fine particles, i.e. granules with a diameter below 0.1 mm. Sieving and recycling of fine particles is also possible.
  • the granules obtained by the process according to the invention can be used directly as detergents and / or cleaning agents and / or they are mixed with further amounts, preferably small amounts, for example in the range from 2 to 10% by weight, based on the total amount of the constituents used , sprayed on liquid nonionic surfactants or nonionic surfactant mixtures in a manner known per se and / or in a preparation step they are mixed with further constituents. parts, preferably granular and in particular granular and compacted components of detergents and cleaning agents mixed.
  • the other granular constituents include, for example, compacted bleaching agent or bleach activator granules, enzyme granules, foam inhibitor granules, preferably concentrated foam inhibitor granules and granular carriers for colorants and fragrances.
  • Bleach activators used are, for example, N-acyl or O-acyl compounds which form organic peracids with H 2 O 2 , preferably N, N'-tetraacyated diamines, furthermore carboxylic acid anhydrides and esters of polyols such as glucose pentaacetate.
  • the bleach activators contain bleach activators in the usual range, preferably between 1 and 10% by weight and in particular between 2 and 8% by weight.
  • Particularly preferred bleach activators are N, N, N ', N'-tetraacetylethylene diamine (TAED) and 1,5-diacetyl-2,4-dioxo-hexahydro-1,3,5-triazine (DADHT).
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used. Their proportion can be about 0.2 to about 2% by weight. The enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • Suitable stabilizers are, for example, the salts of polyphosphonic acids, in particular 1-hydroxyethane-1,1-diphosphonic acid (HEDP).
  • HEDP 1-hydroxyethane-1,1-diphosphonic acid
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopoly siloxanes and their mixtures with microfine, possibly silanized silica as well as paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica. Mixtures of various foam inhibitors are also advantageously used, for example those made of silicones, paraffins or waxes.
  • the other constituents of detergents also include optical brighteners.
  • the agents can contain, as optical brighteners, derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are for example salts of 4,4-bis (2-anilino-4-morpholino-1, 3,5-triazin-6-ylamino) stilbene-2,2-disulfonic acid or compounds of similar composition which, instead of Morpholino group carry a diethanolamino group, a methylamino group, anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted 4,4'-distyryl-di-phenyl type may also be present, for example the compound 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl. Mixtures of the aforementioned brighteners can also be used. Particularly uniform white granules are obtained if, apart from the customary brighteners, the agents are used in customary amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0.3%
  • _5 contains around 10% by weight of a blue dye.
  • a particularly preferred dye is Tinolux ⁇ '(commercial product from Ciba-Geigy).
  • optical brighteners or the mixtures of optical brighteners and dye are preferably dissolved in ethoxylated nonionic surfactants and sprayed onto the granules produced by the process according to the invention in a known manner.
  • the invention also includes a new device which is particularly suitable for carrying out the method according to the invention. It consists of a mixing device with separate, interconnected mixing chambers, with one or more shafts arranged therein with mixing tools attached to it, with a controllable discharge flap and a control device for cyclically opening and closing the discharge flap.
  • a new device which is particularly suitable for carrying out the method according to the invention. It consists of a mixing device with separate, interconnected mixing chambers, with one or more shafts arranged therein with mixing tools attached to it, with a controllable discharge flap and a control device for cyclically opening and closing the discharge flap.
  • the experiments were carried out using a modified KM-DW-300 continuous mixer from Gebrüder Lödige.
  • a shaft lying in its longitudinal axis rotates with ploughshare-shaped mixing elements, which are not shown in FIG. 1 for the sake of clarity.
  • a weir 1 divides the interior of the mixer into a first chamber 2, which takes up approximately 80% of the total volume, and into a second chamber 3.
  • the granulation components are introduced into the first mixing chamber 2 via an inlet 4 and there to moist granules processed.
  • the finished but still moist granules reach the second mixing chamber 3, where powdery fine components, for example amorphous sodium aluminum silicate, are mixed in via a funnel 5 and a screw conveyor 6.
  • the inlet into the second mixing chamber 3 represents a modification of the commercially available mixer.
  • the outlet 7 from the second mixing chamber 3 is opened and closed in cycles according to the invention, so that a desired dwell time or dwell time distribution can be set in this chamber.
  • Results of tests for the production of a universal detergent with high surfactant contents are shown in Table 1 below.
  • the composition of the granulating liquid, the z. T. consisted of alkylbenzenesulfonic acid obtained by neutralization, the so-called “neutralizate”, and the composition of the solid spray-dried granulation components, the “tower powder", given in the first chamber, is given below.
  • the Wessalith P (R) added to the second chamber is a commercial product from Degussa, Germany, and consists of water-containing zeolite NaA. With “ABS” alkylbenzenesulfonate and with “Nio.” Abbreviated nonionic surfactant.
  • Granulation components 1. 2. 3.
  • the opening time of the discharge flap of about 1 to 5 s was such that the second chamber was almost completely emptied.
  • the bottom line of Table 1 shows that when the discharge flap is opened and closed in cycles according to the invention at the outlet of the second mixing chamber 3 with the simultaneous addition of a powdery solid into this mixing chamber, particularly high bulk densities are achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Detergent Compositions (AREA)

Abstract

Das kontinuierliche Verfahren zum Herstellen von Wasch- und/oder Reinigungsmitteln durch Granulieren teilchenförmiger Feststoffe mit einem flüssigen Granulierhilfsmittel wird in einem langsam laufenden Mischer mit jeweils einer darin rotierenden Welle mit daran angebrachten Mischwerkzeugen durchgeführt. Man stellt in einem ersten Verfahrensschritt aus dem teilchenförmigen Feststoff und dem flüssigen Granulierhilfsmittel ein Granulat her und fügt im zweiten Verfahrensschritt einen trockenen pulverförmigen Feststoff dem Granulat zu. Man führt beide Verfahrensschrite in separaten Mischkammern durch, stellt im ersten Verfahrensschritt ein feuchtes Granulat mit einem Gehalt an freiem Wasser von 1 bis 65 Gew.-% her und unterbricht das Austragen aus der zweiten Mischkammer periodisch für eine vorgegebene Zeit. Das wirtschaftliche Verfahren ermöglicht die Herstellung kugelförmiger Granulate mit hohem Schüttgewicht.

Description

Verfahren zum Herstellen granulärer Wasch- und/oder Reinigungsmittel und zur
Durchführung geeignete Vorrichtung
Die Erfindung betrifft ein Verfahren zum Herstellen von Wasch- und/oder Reinigungsmitteln durch Granulieren teilchenförmiger Feststoffe mit einem flüssi¬ gen Granulierhilfsmittel in einem oder mehreren Mischern mit jeweils einer darin rotierenden Welle mit darin angebrachten Mischwerkzeugen, wobei man in einem ersten Verfahrensschritt aus dem teilchenförmigen Festetoff und dem flüssigen Granulierhilfsmittel ein Granulat herstellt und im zweiten Verfahrensschritt einen trockenen pulverförmigen Feststoff dem aus dem ersten Verfahrensschritt erhaltenen Granulat zufügt.
Ein derartiges Verfahren ist aus Beispiel 1 der EP 0 339 996 A1 bekannt. Die Umfangsgeschwindigkeiten der Mischwerkzeuge werden in diesem Dokument nicht angegeben.
In dem Verfahren nach der EP 0 339 996 A1 wird ein aus Waschmittelkompo¬ nenten bestehendes, durch Sprühtrocknung erhaltenes Granulat in einen Hoch- geschwindigkeits-Mischer/Granulator eingeführt und dort bei hoher Geschwindig¬ keit der Mischwerkzeuge sowie des Messers pulverisiert. Danach läuft der Mischer mit einer geringeren Geschwindigkeit der Mischwerkzeuge und des Messers, währenddessen das Granulierhilfsmittel Wasser aufgesprüht wird. Nach dem Aufsprühen läuft der Mischer mit einer mittleren Geschwindigkeit von Misch¬ werkzeugen und Messer, um aus den festen und flüssigen Bestandteilen ein Granulat zu bilden. Nach der Beendigung der Granulation wird ein feines amor¬ phes Natrium-Aluminium-Silicat in den Mischer gegeben, wobei der Mischer mit einer relativ niedrigen Geschwindigkeit der Mischwerkzeuge und des Messers betrieben wird.
Das bekannte Verfahren wird diskontinuierlich in nur einem Mischer durchgeführt. Ein Nachteil dieses bekannten Verfahrens liegt in der diskontinuierlichen Durchführung, welche durch die in jedem Verfahrensschritt wechselnden Mischergeschwindigkeiten notwendig ist.
Weitere diskontinuierliche Verfahren zum Herstellen granulärer Wasch- und/oder Reinigungsmittel mit erhöhten Schüttgewichten sind aus den europäischen Patentanmeldungen 351 937 und 340 013 bekannt. Die EP 351 937 beschreibt ein Verfahren zum Herstellen einer Waschmittelzusammensetzung erhöhten Schüttgewichtes. Dabei wird die Granulierung und die Verdichtung in einem Hochgeschwindigkeitsmischer durchgeführt. Nach Abschluß der Granulierung ist es möglich, 0,2 bis 5 Gew.-% amorphes oder 3 bis 12 Gew.-% kristallines Aluminiumsilikat bei niedriger Mischergeschwindigkeit zuzugeben, um die Flie߬ fähigkeit zu verbessern. Dabei tritt keine weitere Granulierung auf. Ähnliche Ver¬ fahren, aber mit anderen Zusammensetzungen des Waschmittels werden in der EP 340 013 beschrieben. Nachteilig in diesen bekannten Verfahren ist insbeson¬ dere auch hier die in der industriellen Praxis mit erhöhtem Aufwand verbundene diskontinuierliche Verfahrensführung.
In den bekannten Granulierverfahren wird bereits im ersten Verfahrensschritt ein fertiges, also nicht mehr feuchtes Granulat hergestellt, das anschließend mit einem Fließhilfsmittel abgepudert werden kann. Die Zugabe des Fließhilfsmittels ist nicht notwendig, sondern nur optional.
Ein weiteres Granulierverfahren zum Herstellen granulärer Wasch- und Reini¬ gungsmittel mit hohem Schüttgewicht ist aus der internationalen Patentanmeldung WO 93/23523 bekannt. Hier wird eine zweistufige Granulierung in zwei hinter¬ einander geschalteten Mischern/Granulatoren durchgeführt. Im ersten, langsam laufenden Mischer werden 40 bis 100 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten festen und flüssigen Bestandteile, der festen und flüssigen Bestandteile vorgranuliert. In einem zweiten, hochtourig laufenden Mischer wird das Vorgranulat aus der ersten Verfahrensstufe gegebenenfalls mit den restlichen festen und/oder flüssigen Bestandteilen vermischt und in das fertige Granulat überführt.
Dieses zweistufige Verfahren arbeitet ebenso wie die Verfahren nach den oben genannten europäischen Patentanmeldungen mit unterschiedlichen Mischer¬ geschwindigkeiten in den beiden Verfahrensstufen, so daß zur Durchführung des Verfahrens zwei Mischer erforderlich sind.
Ein anderes Verfahren zum Herstellen granulierter Wasch- und Reinigungsmittel ist aus der DE 43 04 475 A1 bekannt. Dieses Verfahren wird ebenfalls in zwei Stufen durchgeführt. In der ersten Verfahrensstufe findet im Gegensatz zu den bereits genannten Verfahren keine Granulierung oder Agglomerierung, sondern nur eine Mischung und Beaufschlagung des zugegebenen Pulvers statt. In einer zweiten Verfahrensstufe werden die Ausgangsstoffe aus der ersten Verfahrens¬ stufe in einen zweiten Mischer überführt, wo die pulverförmigen Ausgangsstoffe durch Energieeintrag verdichtet und die entstehenden Granulate dabei verdich¬ tend gegeneinander gerollt werden. Zum Abbruch der hier stattfindenden Aufbau¬ rollgranulation wird ein feinteiliges Pulver, zum Beispiel Zeolithpulver, z. B. Zeolith NaA zugegeben, um den Rollvorgang auf diese Weise abrupt zu beenden.
Der Erfindung liegt die Aufgabe zugrunde, ein besonders einfaches und wirt¬ schaftlich arbeitendes kontinuierliches Granulierverfahren zum Herstellen von Wasch- und/oder Reinigungsmitteln in Form von Granulaten mit kugelförmiger Gestalt und mit besonders hohen Schüttgewichten bereitzustellen, wobei die beiden Verfahrensschritte im eingangs genannten Verfahren mit etwa gleichen Drehzahlen des bzw. der eingesetzten Mischer durchgeführt werden sollen.
Diese Aufgabe wird erfindungsgemäß bei einem Verfahren nach dem Oberbegriff des Anspruchs 1 dadurch gelöst, daß man das Verfahren kontinuierlich bei lang¬ sam laufendem/n Mischer/n und beide Verfahrensschritte in separaten Misch¬ kammern durchführt, im ersten Verfahrensschritt ein feuchtes Granulat mit einem Gehalt an Flüssigkeit von 1 bis 65 Gew.-% herstellt und das Austragen aus der zweiten Mischkammer periodisch für eine vorgegebene Zeit unterbricht. Dabei enthalten die Granulate mit besonders hohen Anteilen an freiem Wasser ent¬ sprechend hohe Anteile an festen Komponenten, die zur Aufnahme von Flüssig¬ keit besonders geeignet sind. Die Granulation kann auch mit nichtwäßrigen Flüssigkeiten, z. B. flüssigen Tensiden, mit Lösungen oder mit mehreren unter¬ schiedlichen Flüssigkeiten erfolgen.
Unter dem Begriff "langsam laufende Mischer" werden Mischer mit Umfangs¬ geschwindigkeiten der Mischwerkzeuge von etwa 1 bis weniger als 10 m/s, vorzugsweise von 2 bis 7 m/s und insbesondere mit Umfangsgeschwindigkeiten von 4 m/s bis 5 m/s verstanden.
Bei dem im ersten Verfahrensschritt eingesetzten teilchenförmigen Feststoff kann es sich um ein Pulver oder um ein Granulat handeln, das beispielsweise durch Sprühtrocknen hergestellt worden ist.
Erfindungsgemäß erfolgt die Herstellung des Endproduktes bis auf die Abpu- derung, die Verdichtung und Verrundung bereits im ersten Verfahrensschritt. Beide Verfahrensschritte lassen sich mit langsam laufenden Mischern durch¬ führen. Eine starke Verrundung und Vergleichmäßigung der Granulate sowie ein erhöhtes Schüttgewicht lassen sich trotz der kontinuierlichen Durchführung auch des zweiten Verfahrensschritts dadurch erreichen, daß man im zweiten Ver¬ fahrensschritt von einem feuchten Granulat ausgeht, einen trockenen pulver¬ förmigen Feststoff zugibt und das Austragen des Endproduktes aus der zweiten Mischkammer periodisch für eine vorgegebene Zeit unterbricht. Dieses taktweise öffnen und Schließen der Austragsöffnung ermöglicht das Verschieben des Ver- weilzeitspektrums zu höheren Werten und damit einen deutlich geringeren Anteil bei niedrigen Verweilzeiten trotz der kontinuierlichen Durchführung dieses Ver¬ fahrensschrittes, obwohl kontinuierliche Verfahrensführungen mit für Batch- prozesse ausgelegten Apparaten üblicherweise zu breiten Verweilzeitspektren mit erheblichen Anteilen mit sehr niedrigen Verweilzeiten neigen. Die erfindungsgemäß vorgesehene gleiche Mischergeschwindigkeit in beiden Verfahrensstufen ermöglicht eine besonders wirtschaftliche Durchführung dieses Verfahren, indem man das gesamte zweistufige Verfahren in einem einzigen Mischer mit nur einer Mischerwelle und separaten Mischkammern durchführt, wobei eine erste Mischkammer für den ersten Verfahrensschritt und eine zweite Mischkammer für den zweiten Verfahrensschritt vorgesehen ist. Dabei kann der Mischraum innerhalb des Granulators durch ein Wehr in die beiden Misch¬ kammern abgeteilt sein. Im kontinuierlichen Verfahren gelangt ein vorgegebener Durchsatz an feuchtem Granulat aus der ersten Mischkammer über die in der Lage und im Querschnitt vorzugsweise einstellbare Wehröffnung in die zweite Mischkammer.
Das Durchführen des Verfahrens in nur einem Mischer ist in der Erfindung jedoch nicht notwendig. Es liegt ebenfalls im Rahmen der Erfindung, mehrere hinter- einandergeschaltete Mischer einzusetzen, deren Wellen aufgrund der gleichen Mischergeschwindigkeit mechanisch aneinandergekoppelt und von nur einem Motor angetrieben werden können.
Als besonders vorteilhaft hat es sich herausgestellt, wenn man das Austragen des Produktes aus der zweiten Mischkammer jeweils für 5 bis 120 Sekunden, ins¬ besondere 10 bis 30 Sekunden unterbricht. Diese Schtießdauer der Austrags- öffnung bestimmt die Verschiebung des Verweilzeitspektrums bezüglich der zweiten Mischkammer. Das Einhalten dieses Verfahrensparameters ist besonders wichtig im erfindungsgemäßen Verfahren und führt zu einer Kompaktierung und Verrundung, so daß man ein hohes Schüttgewicht und eine annähernd kugel¬ förmige Gestalt der Granulate erhält.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird vorgeschlagen, daß die im zweiten Verfahrensschritt zugegebene Menge an pulverförmigen Feststoff 0,1 bis 15 Gew.-%, insbesondere 0,5 bis 5 Gew.-%, des im ersten Ver¬ fahrensschritt hergestellten Feuchtgranulats beträgt. Die Rieselfähigkeit der bereits trockenen Granulate läßt sich noch weiter ver¬ bessern, wenn man das erhaltene Granulat in einer Wirbelschicht weiter auf¬ trocknet. Man erhält ein ausgesprochen gut rieselfähiges und sehr kompaktes Granulat mit einem sehr hohen Schüttgewicht von etwa 900 g/l.
Vorzugsweise führt man den ersten Verfahrensschritt in einer ersten Mischkam¬ mer durch, deren Volumen 2 bis 10 mal, insbesondere etwa 4 mal so groß wie das Volumen der zweiten Mischkammer ist. Das taktweise öffnen und Schließen der Austragsöffnung der zweiten Kammer erlaubt nämlich eine Verkleinerung des Volumens dieser Kammer und damit in vorteilhafter Weise eine Platzersparnis, ohne daß die Forderung nach einer deutlichen Reduzierung der Anteile mit niedrigen Verweilzeiten mißachtet würde.
Das erfindungsgemäße Verfahren kann mit Vorteil in einem langgestreckten, im wesentlichen horizontal angeordneten Mischer mit einer in der Längsachse ange¬ ordneten rotierenden Welle durchgeführt werden. Aber auch andere Mischer¬ konstruktionen sind zur Durchführung des erfindungsgemäßen Verfahrens geeig¬ net.
So kann ein Mischer mit einer horizontalen Welle nur für den ersten Verfahrens¬ schritt und ein Verrunder für den zweiten Verfahrensschritt eingesetzt werden. Als Verrunder geeignet ist zum Beispiel der unter der Marke "Marumerizer(R)" bekannte Apparat der Firma Elanco.
Im Falle des genannten horizontal angeordneten Mischers ist es vorteilhaft, wenn man den im ersten Verfahrensschritt zu verarbeitenden pulverförmigen Feststoff an dem einen Ende des langgestreckten Mischers zuführt und das fertige Produkt aus dem Mischer über eine am anderen Ende vorgesehene, von einer Steuerein¬ richtung taktweise geöffnete und geschlossene Austragsöffnung entnimmt. Die Überführung der feuchten Granulate aus der ersten in die zweite Mischerkammer kann auf unterschiedliche Weise, zum Beispiel über ein Wehr mit einer einstell¬ baren Öffnung vorgenommen werden. Als besonders vorteilhaft hat sich eine mittlere Verweilzeit des Ausgangs¬ produktes im ersten Verfahrensschritt von 1 bis 5 min herausgestellt. Die mittlere Verweilzeit in der ersten Kammer kann auf einfache Weise aus dem Quotienten der Kammerfüllung und des Durchsatzes (Volumen pro Zeiteinheit) bestimmt werden.
Der Füllgrad in der ersten Kammer kann durch die Größe und Lage der Öffnung eines zwischen beiden Kammern angeordneten Wehrs eingestellt werden.
Das im ersten Verfahrensschritt hergestellte Granulat hat vorzugsweise einen Gehalt an Flüssigkeit, insbesondere an freiem Wasser, von 4 bis 25 Gew.-%.
Der Gehalt der Granulate an anionischen und nichtionischen Tensiden beträgt vorzugsweise 10 bis 40 Gew.-% und insbesondere 15 bis 30 Gew.-%, jeweils bezogen auf das fertige Granulat, und vorzugsweise 20 bis 60 Gew.-% und ins¬ besondere 25 bis 55 Gew.-%, jeweils bezogen auf das fertige Granulat und berechnet als wasserfreie Aktivsubstanz, an Buildersubstanzen. Insbesondere weisen die fertigen Granulate einen Gehalt von 3 bis 15 Gew.-% an nichtionischen Tensiden und 0 bis 20 Gew.-%, vorzugsweise 0 bis 10 Gew -%, an freiem, das heißt weder chemisch noch physikalisch gebundenem Wasser auf.
Der im zweiten Verfahrensschritt eingesetzte trockene pulverförmige Feststoff ist vorzugsweise ein als Builder geeignetes amorphes Natriumaluminiumsilikat, ins¬ besondere Zeolith NaA in Waschmittelqualität.
Zum Granulieren der festen Bestandteile wird eine Granulierflüssigkeit verwendet, die entweder nur aus reinen flüssigen Bestandteilen oder Mischungen aus diesen besteht oder die feste Bestandteile in gelöster und/oder suspendierter Form ent¬ hält. Die Granulierflüssigkeit wird vorzugsweise in Mengen von 5 bis 30 Gew.-%, bezogen die auf die Gesamtmenge der eingesetzten Bestandteile, eingesetzt.
Im folgenden werden die chemische Natur sowie die Anteile der festen und flüssi¬ gen Bestandteile der erfindungsgemäß hergestellten Granulate näher erläutert. Die festen Bestandteile können als Pulver oder Granulate, die durch Granulierung oder Sprühtrocknung gewonnen wurden und ein Schüttgewicht von beispiels¬ weise 200 bis 600 g/1 aufweisen, in das Verfahren eingebracht werden. Bei den Pulvern handelt es sich üblicherweise um Einzelkomponenten, beispielsweise Zeolith, Natriumcarbonat, Tripolyphosphat, Wasserglas oder Natriumsulfat, während die Granulate vorzugsweise mehrere Komponenten, zumeist auch Klein¬ komponenten und flüssige Einsatzstoffe, enthalten. Es können allein Pulver oder auch allein Granulate zum Einsatz kommen.
Als feste Bestandteile können im Prinzip alle bekannten festen Inhaltsstoffe von Wasch- und/oder Reinigungsmitteln eingesetzt werden. Bevorzugte feste Bestandteile sind dabei Aniontenside, Buildersubstanzen, alkalische und neutrale Salze, Bleichmittel und Vergrauungsinhibitoren.
Als Tenside vom Sulfonat-Typ kommen vorzugsweise Cg-C.g-Alkylbenzol- sulfonate, Olefinsuifonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C^-C-jg-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließender alkalischer oder saurer Hydrolyse der Sul- fonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-C18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden.
Bevorzugte Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vor¬ zugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C«- bis C^g-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeschränkter Homologenverteilung ableiten, besonders bevorzugt.
Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α- sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren.
Geeignete Tenside vom Sulfat-Typ sind die Schwefelsäuremonoester aus primären Alkoholen natürlichen und synthetischen Ursprungs, insbesondere aus Fettalkoholen, z.B. aus Kokosfettalkohol, Taigfettalkohol, Oleylalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol, oder den und die¬ jenigen sekundärer Alkohole dieser Kettenlänge. Auch die Schwefelsäure¬ monoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten Alkohole, wie 2-Methyl- verzweigte Cg-C^ -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid, sind geeig¬ net. Auch Fettalkoholgemische, die zusätzlich noch Anteile an ungesättigten Alkoholen, z.B. an Oleylalkohol, enthalten können, sind bevorzugt. Eine bevor¬ zugte Verwendung finden dabei Gemische, in denen der Anteil der Alkylreste zu 30 bis 60 Gew.-% auf C18, zu 15 bis 40 Gew.-% auf C12, zu 15 bis 25 Gew.-% auf Cjg, 5 bis 15 Gew.-% auf C14 und unter 1 Gew.-% auf C1 Q verteilt sind.
Als weitere anionische Tenside kommen insbesondere Seifen, vorzugsweise in Mengen von 0,5 bis 8 Gew.-% in Betracht. Geeignet sind gesättigte Fettsäure¬ seifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure oder Stearin¬ säure, sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern¬ oder Taigfettsäuren, abgeleitete Seifengemische. Insbesondere sind solche Seifengemische bevorzugt, die zu 50 bis 100 Gew.-% aus gesättigten C^-C.. «- Fettsäureseifen und zu 0 bis 50 Gew.-% aus Ölsäureseife zusammengesetzt sind.
Die anionischen Tenside können in Form ihrer Natrium-, Kalium- oder Ammoni¬ umsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor. Die Aniontenside werden vorzugsweise in Mengen von 3 bis 20 Gew.-%, bezogen auf die Summe der eingesetzten Bestandteile, eingesetzt. Ihr Gehalt kann jedoch auch über 20 Gew.-% hinausgehen. Bevorzugte Aniontenside sind Fettalkyl- sulfate, Alkylbenzolsulfonate, Sulfosuccinate sowie Mischungen aus diesen, wie Mischungen aus Fettalkylsulfaten und Sulfosuccinaten oder Fettalkylsulfaten und Fettalkylbenzolsulfonaten, insbesondere in Kombination mit Seife. Dabei ist es insbesondere bevorzugt, daß wenigstens ein Teil der Sulfonat- und/oder Sulfat- Tenside nicht als fester Bestandteil, sondern in flüssiger Form als Bestandteil der Granulierflüssigkeit eingesetzt wird.
Als Buildersubstanzen kommen vor allem die bekannten Zeolithe, Silikate sowie Phosphate, insbesondere Tripolyphosphate, in Betracht. Ihr Gehalt beträgt vor¬ zugsweise 20 bis 60 Gew.-%, insbesondere 20 bis 50 Gew.-%, jeweils bezogen auf die Summe der eingesetzten Bestandteile und berechnet als wasserfreie Ak¬ tivsubstanz.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith NaA in Waschmittelqualität. Er kommt vorzugs¬ weise als sprühgetrocknetes Pulver zum Einsatz. Bevorzugte Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 20 bis 22 Gew.-% an gebundenem Wasser.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsauren, wie Citronensaure, Bernsteinsäure, Glutarsaure, Adipinsäure, Weinsäure und Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu bean¬ standen ist, sowie Mischungen aus diesen.
Als weitere organische Buildersubstanzen kommen polymere Polycarboxylate in Betracht. Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsaure mit Methacrylsaure und der Acrylsaure oder Methacrylsaure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsaure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsaure und 50 bis 10 Gew.-% Maleinsäure enthalten. Besonders bevorzugt sind solche Copolymere, in denen 60 bis 85 Gew.-% Acrylsaure und 40 bis 15 Gew.-% Maleinsäure vorliegen. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000.
Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 8 Gew.-%.
Dabei ist es insbesondere bevorzugt, daß wenigstens ein Teil, vorzugsweise 20 bis 100 Gew.-% der eingesetzten (co-)polymeren Polycarboxylate nicht als fester Bestandteil, sondern in Form einer etwa 20 bis 55 Gew.-%igen wäßrigen Lösung als Bestandteil der Granulierflüssigkeit eingesetzt wird.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung 280 223 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Zu den bevorzugt eingesetzten alkalischen Salzen gehören wasserlösliche an¬ organische Salze wie Bicarbonate, Carbonate, Silikate oder Mischungen aus diesen; insbesondere werden Alkaiicarbonat und Alkaiisilikat, vor allem Natrium¬ silikat mit einem molaren Verhältnis von 1:1 bis 1:4,5, eingesetzt. Der Gehalt der Mittel an Natriumcarbonat beträgt dabei vorzugsweise bis zu 20 Gew.-%, vorteil- hafterweise zwischen 1 und 15 Gew.-%. Der Gehalt der Mittel an Natriumsilikat, beispielsweise an amorphem oder kristallinem Natriumdisilikat, beträgt im allge¬ meinen bis zu 10 Gew.-% und vorzugsweise zwischen 2 und 8 Gew.-%.
Falls Sulfate eingesetzt werden, so geschieht dies vorzugsweise in Mengen zwischen 15 und 40 Gew.-%, bezogen auf das fertige Granulat. Es sind jedoch Verfahren bevorzugt, in denen kein Sulfat eingesetzt wird.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonate, Peroxypyrophosphate, Citratperhydrate sowie H2O2 lie¬ fernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxaphthalate, Diperazelainsäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleich¬ mitteln beträgt vorzugsweise 5 bis 25 Gew.-% und insbesondere 10 bis 20 Gew.- %, bezogen auf das fertige Granulat. Die Zugabe der Bleichmittel kann entweder in dem erfindungsgemäßen Granulierverfahren oder in einem nachgeschalteten Aufbereitungsschritt erfolgen.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Vergrauen zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispiels¬ weise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehyd¬ stärken usw. Bevorzugt werden jedoch Carboxymethylcellulose, Methylcellulose, Methylhydroxyethylcellulose und deren Gemische sowie Polyvinylpyrrolidon ggf. in Mischungen mit den Cellulose-Derivaten vorzugsweise in Mengen zwischen 0,1 und 5 Gew.-%, insbesondere bis 3 Gew.-% eingesetzt. Die Granulierflüssigkeit besteht vorzugsweise aus flüssigen Bestandteilen von Wasch- und/oder Reinigungsmitteln oder aus Wasser, aus wäßrigen Lösungen und/oder aus Mischungen, die wäßrige Lösungen an sich fester Bestandteile und flüssige Bestandteile von Wasch- und/oder Reinigungsmitteln enthalten. So wird vorgeschlagen, daß als Granulierflüssigkeit Wasser, wäßrige Lösungen, bei der Verfahrenstemperatur in flüssiger Form vorliegende nichtionische Tenside und/oder Mischungen aus wäßrigen Lösungen und nichtionischen Tensiden, vor¬ zugsweise eine Mischung aus einer wäßrigen Aniontensidlösung und nicht¬ ionischen Tensiden, wobei die Mischung einen pH-Wert von mindestens 7,0 auf¬ weist, eingesetzt werden.
Zu den flüssigen Bestandteilen von Wasch- und/oder Reinigungsmitteln gehören insbesondere nichtionische Tenside, die bei der Verfahrenstemperatur in flüssi¬ ger, d.h. pumpbarer und fließfähiger Form vorliegen. Zu diesen nichtionischen Tensiden gehören vorzugsweise Anlagerungsprodukte von 1 bis 12 Mol Ethylen¬ oxid an primäre C12-C.o-Fettalkohole und deren Gemische wie Kokos-, Talgfett- oder Oleylalkohol, oder an in 2-Stellung methylverzweigte primäre Alkohole (Oxoalkohole). Insbesondere werden C12-C14-Alkohole mit 3 EO oder 4 EO, Cg- C1 ^Alkohol mit 7 EO, C13-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12~ C. «-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-C1 g-Alkohol mit 5 EO eingesetzt.
Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeschränkte Homologenverteilung auf (narrow ränge ethoxylates, NRE).
Der Gehalt der ethoxylierten Fettalkohole in den fertigen Granulaten beträgt vor¬ zugsweise 5 bis 15 Gew.-%. In einer bevorzugten Ausführungsform werden dabei die flüssigen nichtionischen Tenside in Mischung mit niederen Polyalkylenglyko- len, die sich von geradkettigen oder verzweigten Glykolen mit 2 bis 6 Kohlen¬ stoffatomen ableiten, eingesetzt. Bevorzugte niedere Polyalkylenglykole sind Polyethylenglykole oder Polypropylenglykole, die eine relative Molekülmasse zwischen 200 und 12000, insbesondere zwischen 200 und 4000, beispielsweise bis 2000, aufweisen. Das Gewichtsverhältnis flüssiges Niotensid zu niederem Polyalkylenglykol in diesen Mischungen beträgt dabei vorzugsweise 10 : 1 bis 1 : 1.
Zu den bevorzugten wäßrigen Mischungen gehören auch wäßrige Alkylglykosid- Pasten, in denen Alkylglykoside der allgemeinen Formel RO(G)χ eingesetzt werden, in der R einen primären geradkettigen oder in 2-Stellung methylver¬ zweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C- Atomen, vorzugsweise für Glykose, steht. Der Oligomerisierungsgrad X, der die Verteilung von Monoglykosiden und Oiigoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10 und liegt vorzugsweise bei 1 ,2 bis 1 ,4.
Weiterhin gehören zu den bevorzugten wäßrigen Lösungen die bereits genannten Lösungen von (co-)polymeren Polycarboxylaten.
Pumpfähige, wäßrige Suspensionen von Zeolithen, welche vorzugsweise Stabili¬ satoren für diese Suspensionen enthalten, lassen sich ebenfalls in der ersten Verfahrensstufe einsetzen. Besonders bevorzugt ist auch der Einsatz konzen¬ trierter wäßriger Aniontensid-Lösungen und Aniontensid-Pasten. Diese werden vorzugsweise durch Neutralisation der Aniontenside in ihrer Säureform mit hoch¬ konzentrierten wäßrigen Laugen, beispielsweise einer 45 bis 55 Gew.-%igen Natronlauge, in einer handelsüblichen Rotor-Stator-Maschine, beispielsweise einem Supraton' ', oder einem Rührkessel hergestellt. Besonders bevorzugt ist dabei die zusätzliche Mitverwendung nichtionischer Tenside, wobei die nicht¬ ionischen Tenside vorzugsweise in solchen Mengen eingesetzt werden, daß die Viskosität der Aniontensid-Pasten gesenkt und damit deren Verarbeitbarkeit, ins¬ besondere Pumpbarkeit und Fließfähigkeit, verbessert wird. Diese Mischungen besitzen einen pH-Wert von mindestens 7,0, vorzugsweise von 7,5 bis 12, und bilden einen Bestandteil der Granulierflüssigkeit. Die ohne Trocknung tolerierbare Menge Wasser ist dabei stark von der jeweiligen Gesamtzusammensetzung abhängig. Der nachfolgende Trocknungsschritt ist allerdings bevorzugt. Insbesondere wird diese Trocknung in der Wirbelschicht bei Zulufttemperaturen unterhalb 180 °C durchgeführt. Vorzugsweise enthält die Granulierflüssigkeit nur soviel Wasser, daß unter diesen Bedingungen maximal 15 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, an Wasser verdampfen.
Bevorzugt ist außerdem, daß man im ersten Verfahrensschritt den Füllgrad der ersten Mischkammer auf 10 bis 80 %, vorzugsweise auf 30 bis 60 % einstellt, um ein besonders gleichmäßiges Granulat zu erhalten. Bei einem solchen Füllgrad erhält man nämlich eine sehr gleichförmige Verteilung der flüssigen Komponenten in der ersten Mischkammer. Die einem höheren Füllgrad entsprechende längere Verweilzeit und der daraus resultierende geringere Verbrauch an Granulier¬ flüssigkeit führt dagegen zu weniger gleichmäßigen Granulaten.
Vorhandene Grobkornanteile, also Granulate mit einem Durchmesser oberhalb 2 mm, insbesondere mit einem Durchmesser oberhalb 1 ,6 mm, werden nach dem Trocknen vorzugsweise abgesiebt und können vorteilhafterweise nach der Zer¬ kleinerung, die beispielsweise in einer Mühle durchgeführt werden kann, in das kontinuierliche Herstellungsverfahren zurückgeführt werden. Dabei ist es bevor¬ zugt, die zerkleinerten Grobkornanteile auf das Sieb zurückzuführen und somit weiteren fertigen Granulaten zuzuführen. Eine Rückführung von zerkleinerten Grobkornanteilen oder auch von Feinkornanteilen, also Granulaten mit einem Durchmesser unterhalb 0,1 mm, ist möglich. Ein Absieben und Rückführen von Feinanteilen ist ebenfalls möglich.
Die nach dem erfindungsgemäßen Verfahren erhaltenen Granulate können direkt als Wasch- und/oder Reinigungsmittel eingesetzt werden und/oder sie werden mit weiteren Mengen, vorzugsweise kleinen Mengen, beispielsweise im Bereich von 2 bis 10 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, an flüssigen Niotensiden oder Niotensid-Mischungen in an sich bekannter Weise besprüht und/oder sie werden in einem Aufbereitungsschritt mit weiteren Bestand- teilen, vorzugsweise granulären und insbesondere granulären und verdichteten Bestandteilen von Wasch- und Reinigungsmitteln vermischt. Zu den weiteren granulären Bestandteilen gehören beispielsweise kompaktierte Bleichmittel- bzw. Bleichaktivatorgranulate, Enzym-Granulate, Schauminhibitor-Granulate, vor¬ zugsweise konzentrierte Schauminhibitor-Granulate sowie granuläre Träger für Färb- und Duftstoffe.
Als Bleichaktivatoren dienen beispielsweise mit H2O2 organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise N,N'-tetraacyiierte Diamine, ferner Carbonsäureanhydride und Ester von Polyolen wie Glucose- pentaacetat. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew -% und ins¬ besondere zwischen 2 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N',N'-Tetraacetylethylendiamin (TAED) und 1 ,5-Diacetyl-2,4-dioxo- hexahydro-1 ,3,5-triazin (DADHT).
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis etwa 2 Gew.-% betragen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen.
Als Stabilisatoren insbesondere für Perverbindungen und Enzyme kommen bei¬ spielsweise die Salze von Polyphosphonsäuren, insbesondere 1-Hydroxyethan- 1 ,1-diphosphonsäure (HEDP) in Betracht.
Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthe¬ tischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopoly- siloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure. Mit Vorteil werden auch Gemische aus verschiedenen Schaum¬ inhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen.
Zu den weiteren Bestandteilen von Waschmitteln gehören auch optische Auf¬ heller. Die Mittel können als optische Aufheller Derivate der Diaminostilbendisul- fonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4,-Bis(2-anilino-4-morpholino-1 ,3,5-triazin-6-yl-amino)stilben-2,2,-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ des substituierten 4,4'-Distyryl-di-phenyls anwesend sein, z.B. die Verbindung 4,4'-Bis(4-chlor-3-sulfostyryl)diphenyl. Auch Gemische der vorgenannten Aufheller können verwendet werden. Besonders einheitlich weiße Granulate werden erhalten, wenn die Mittel außer den üblichen Aufhellern in üblichen Mengen, bei¬ spielsweise zwischen 0,1 und 0,5 Gew.-%, vorzugsweise zwischen 0,1 und 0,3 fi "λ
Gew.-%, auch geringe Mengen, beispielsweise 10 bis 10 Gew.-%, vorzugs-
_5 weise um 10 Gew.-%, eines blauen Farbstoffs enthält. Ein besonders bevor¬ zugter Farbstoff ist Tinolux^ ' (Handelsprodukt der Ciba-Geigy).
Die optischen Aufheller bzw. die Mischungen aus optischem Aufheller und Farb¬ stoff werden vorzugsweise in ethoxylierten Niotensiden gelöst und in bekannter Weise auf die nach dem erfindungsgemäßen Verfahren hergestellten Granulate aufgesprüht.
Dier Erfindung umfaßt auch eine neue, zum Durchführen des erfindungsgemäßen Verfahrens besonders gut geeignete Vorrichtung. Sie besteht aus einer Misch¬ einrichtung mit separaten, miteinander verbundenen Mischkammern, mit einer oder mehreren darin angeordneten Wellen mit daran angebrachten Mischwerk¬ zeugen, mit einer ansteuerbaren Austragsklappe sowie einer Steuereinrichtung zum taktweisen öffnen und Schließen der Austragsklappe. Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der einzigen Zeichnung (Figur 1) näher erläutert.
Die Versuche wurden mit einem modifizierten kontinuierlich arbeitenden Mischer der Firma Gebrüder Lödige des Typs KM-DW-300 durchgeführt. Im zylinder¬ förmigen, horizontal liegenden, langgestreckten Mischer rotiert eine in seiner Längsachse liegende Welle mit pfiugscharförmigen Mischelementen, die in Figur 1 der Deutlichkeit halber nicht dargestellt sind. Ein Wehr 1 unterteilt den Innen¬ raum des Mischers in eine erste Kammer 2, die etwa 80 % des gesamten Volumens einnimmt, und in eine zweite Kammer 3. Die Granulationskomponenten werden über einen Einlaß 4 in die erste Mischkammer 2 gegeben und dort zu feuchtem Granulat verarbeitet. Über das verstellbare Wehr 1 gelangen die fertig¬ gestellten, aber noch feuchten Granulate in die zweite Mischkammer 3, wo über einen Trichter 5 und einen Schneckenförderer 6 pulverige Feinkomponenten, zum Beispiel amorphes Natriumaluminiumsilikat zugemischt werden. Der Einlaß in die zweite Mischkammer 3 stellt eine Abänderung des handelsüblichen Mischers dar. Der Auslaß 7 aus der zweiten Mischkammer 3 wird erfindungsgemäß taktweise geöffnet und geschlossen, so daß eine gewünschte Verweilzeit bzw. Verweilzeit¬ verteilung in dieser Kammer eingestellt werden kann.
Ergebnisse von Versuchen zur Herstellung eines Universalwaschmittels mit hohen Tensidanteilen sind in der nachfolgenden Tabelle 1 dargestellt. Die Zusammensetzung der Granulierflüssigkeit, die z. T. aus durch Neutralisieren erhaltener Alkylbenzolsulfonsäure, dem sogenannten "Neutralisat", bestand, und die Zusammensetzung der in die erste Kammer gegebenen festen sprühgetrock¬ neten Granulationskomponenten, des "Turmpulvers", ist nachfolgend angegeben.
Granulierflüssigkeit ("Neutralisan
31 ,14 Gew.-% Ci2-Ci8'Fettalkohol mit 5 EO
55,66 Gew.-% Cg-Ci3-Alkylbenzolsulfonat
Rest Wasser
Figure imgf000021_0001
25 Gew.-% Cg-C-|3-Alkylbenzolsulfonat, Natriumsalz
2,5 Gew.-% Ci2-Ci4-Fettalkohol mit 5 EO
2,7 Gew.-% C-12-C -J4- Fettsäureseife, Natriumsalz
40 Gew.-% Natriumcarbonat
6,66 Gew.-% Natriumsilikat, Na2θ:Siθ2 1: 2,0
10 Gew -% Polyacrylat, Natriumsalz (Sokalan CP5 (R))
Rest Wasser, Farbstoff, optischer Aufheller
Das in die zweite Kammer zugegebene Wessalith P(R) ist ein Handelsprodukt der Firma Degussa, Deutschland, und besteht aus wasserhaltigem Zeolith NaA. Mit "ABS" wurde Alkylbenzolsulfonat und mit "Nio." Niotensid abgekürzt.
Tabelle 1
Granulationskomponenten: 1. 2. 3.
Turmpulver (TP) Gew.- % 37,9 37,9 37,9
Wessalith P(R) Gew.- % 45,4 45,4 47,4
Neutralisat Gew - % 14,7 14,7 14,7
Zugabe von Wessalith P(R)ι in die zweite Mischkammer 3 Gew.- % 2,0 2,0
Gehalt des Granulats an:
ABS aus TP Gew.- % 9,5 9,5 9,5
ABS aus Neutralisat Gew.- % 8,2 8,2 8,2
Nio. aus TP Gew.- % 0,95 0,95 0,95
Nio. aus Neutralisat Gew.- % 4,6 4,6 4,6
Verweilzeit in der ersten Misch¬ kammer 2 min 4 4 5,5
Verweilzeit in der zweiten Misch¬ kammer 3 s 20 5 5
Schließdauer der Austragsklappe der zweiten Mischkammer 3 s 20 0 0
Schüttgewicht nach Trocknung g/l 860 820 750
Die Öffnungsdauer der Austragsklappe von etwa 1 bis 5 s war so bemessen, daß eine nahezu vollständige Entleerung der zweiten Kammer erreicht wurde.
Bei Einsatz eines Verrunders nach dem Lödige-Mischer wurde im Fall des 1. Ver¬ suches ein Litergewicht von 900 g/l erreicht. Im oberen Teil der Tabelle 1 ist die Zusammensetzung des fertigen Granulats an¬ gegeben.
Im zweiten Teil der Tabelle 1 sind die Anteile von ABS bzw. Niotensid am Turm¬ pulver sowie am Neutralisat angegeben.
Die unterste Zeile von Tabelle 1 zeigt, daß beim erfindungsgemäßen taktweisen Öffnen und Schließen der Austragsklappe am Auslaß der zweiten Mischkammer 3 unter gleichzeitiger Zugabe eines pulvrigen Feststoffes in diese Mischkammer be¬ sonders hohe Schüttgewichte erreicht werden.
Bezugszeichenliste
Wehr erste Kammer zweite Kammer
Einlaß
Trichter
Schneckenförderer
Auslaß

Claims

Patentansprüche
1. Verfahren zum Herstellen von Wasch- und/oder Reinigungsmitteln durch Granulieren teilchenförmiger Feststoffe mit einem flüssigen Granulierhilfs¬ mittel in einem oder mehreren Mischern mit jeweils einer darin rotierenden Welle mit daran angebrachten Mischwerkzeugen, wobei man in einem ersten Verfahrensschritt aus dem teilchenförmigen Feststoff und dem flüssigen Granulierhilfsmittel ein Granulat herstellt und im zweiten Ver¬ fahrensschritt einen trockenen pulverförmigen Feststoff dem aus dem ersten Verfahrensschritt erhaltenen Granulat zufügt, dadurch gekennzeichnet, daß man das Verfahren kontinuierlich bei langsam laufendem/n Mischer/n und beide Verfahrensschritte in separaten Mischkammern durchführt, im ersten Verfahrensschritt ein feuchtes Granulat mit einem Gehalt an Flüssigkeit von 1 bis 65 Gew.-% herstellt und das Austragen aus der zweiten Mischkammer periodisch für eine vorgegebene Zeit unterbricht.
2. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die Mischwerkzeuge mit Umfangsgeschwindigkeiten von 2 bis 7 m/s und insbesondere von 4 bis 5 m/s umlaufen.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man das gesamte Verfahren in nur einem Mischer mit nur einer Mischerwelle und separaten Mischkammern durchführt, wobei eine erste Mischkammer (2) für den ersten Verfahrensschritt und eine zweite Misch¬ kammer (3) für den zweiten Verfahrensschritt vorgesehen ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man das Austragen des Produktes aus der zweiten Mischkammer jeweils für 5 bis 120 Sekunden, insbesondere 10 bis 30 Sekunden unter¬ bricht.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die im zweiten Verfahrensschritt zugegebene Menge an pulver¬ förmigen Feststoff 0,1 bis 15 Gew.-%, insbesondere 0,5 bis 5 Gew.-%, des im ersten Verfahrensschritt hergestellten Feuchtgranulats beträgt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man das erhaltene Granulat in einer Wirbelschicht weiter auftrocknet.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man den ersten Verfahrensschritt in einer ersten Mischkammer durchführt, deren Volumen 2 bis 10 mal, insbesondere etwa 4 mal, so groß wie das Volumen der zweiten Mischkammer ist.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man das Verfahren in einem langgestreckten, im wesentlichen horizontal angeordneten Mischer mit einer in der Längsachse angeord¬ neten rotierenden Welle durchführt.
9. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß man den im ersten Verfahrensschritt zu verarbeitenden pulverförmigen Feststoff an dem einen Ende des langgestreckten Mischers zuführt und das fertige Produkt aus dem Mischer über eine am anderen Ende vorgesehene, von einer Steuereinrichtung taktweise geöffnete und geschlossene Austragsöffnung entnimmt.
10. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine mittlere Verweilzeit des Ausgangsproduktes im ersten Verfahrens¬ schritt von 1 bis 5 min.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das im ersten Verfahrensschritt hergestellte Granulat einen Gehalt an Flüssigkeit, insbesondere an freiem Wasser, von 4 bis 25 Gew.-% hat.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Wasch- und/oder Reinigungsmittel 10 bis 40 Gew.-% und insbe¬ sondere 15 bis 30 Gew.-%, jeweils bezogen auf das fertige Granulat, an anionischen und nichtionischen Tensiden und 20 bis 60 Gew.-% und ins¬ besondere 25 bis 55 Gew.-%, bezogen auf das fertige Granulat und berechnet als wasserfreie Aktivsubstanz, an Buildersubstanzen enthält.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das fertige Granulat 3 bis 15 Gew.-% an nichtionischen Tensiden und 0 bis 20 Gew.-%, vorzugsweise 0 bis 10 Gew.-%, an freiem Wasser enthält.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der im zweiten Verfahrensschritt eingesetzte trockene pulverförmige Feststoff ein als Builder geeignetes amorphes Natriumaluminiumsilikat, insbesondere Zeolith NaA, ist.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die im ersten Verfahrensschritt verwendete Granulierflüssigkeit, die gegebenenfalls feste Bestandteile in gelöster und/oder suspendierter Form enthält, in Mengen von 5 bis 30 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, eingesetzt wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Granulierflüssigkeit Wasser, wäßrige Lösungen, bei der Ver¬ fahrenstemperatur in flüssiger Form vorliegende nichtionische Tenside und/oder Mischungen aus wäßrigen Lösungen und nichtionischen Tensiden, vorzugsweise eine Mischung aus einer wäßrigen Aniontensid- lösung und nichtionischen Tensiden, wobei die Mischung einen pH-Wert von mindestens 7,0 aufweist, eingesetzt werden.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man den Füllgrad der ersten Mischkammer auf 10 bis 80 %, vorzugs¬ weise auf 30 bis 60 %, einstellt.
18. Vorrichtung zum Durchführen des Verfahrens nach einem der vorher¬ gehenden Ansprüche, gekennzeichnet durch eine Mischeinrichtung mit separaten, miteinander verbundenen Misch¬ kammern, mit einer oder mehreren darin angeordneten Wellen mit daran angebrachten Mischwerkzeugen, mit einer ansteuerbaren Austragsklappe sowie einer Steuereinrichtung zum taktweisen öffnen und Schließen der Austragsklappe.
PCT/EP1996/005604 1995-12-22 1996-12-13 Verfahren zum herstellen granularer wasch- und/oder reinigungsmittel und zur durchführung geeignete vorrichtung WO1997023595A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1995148346 DE19548346A1 (de) 1995-12-22 1995-12-22 Verfahren zum Herstellen granularer Wasch- und/oder Reinigungsmittel und zur Durchführung geeignete Vorrichtung
DE19548346.4 1995-12-22

Publications (1)

Publication Number Publication Date
WO1997023595A1 true WO1997023595A1 (de) 1997-07-03

Family

ID=7781164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/005604 WO1997023595A1 (de) 1995-12-22 1996-12-13 Verfahren zum herstellen granularer wasch- und/oder reinigungsmittel und zur durchführung geeignete vorrichtung

Country Status (2)

Country Link
DE (1) DE19548346A1 (de)
WO (1) WO1997023595A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818966A1 (de) * 1998-04-28 1999-11-04 Henkel Kgaa Verfahren zur Herstellung von wasch- oder reinigungsaktiver Granulate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726908A (en) * 1985-02-11 1988-02-23 Henkel Kommanditgesellschaft Auf Aktien Agglomeration process including a heating step for making a free-flowing granulate
EP0513824A2 (de) * 1991-05-17 1992-11-19 Kao Corporation Verfahren zur Herstellung von nichtionischen Detergenskörnchen
WO1993023523A1 (de) * 1992-05-21 1993-11-25 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels
WO1993025378A1 (en) * 1992-06-15 1993-12-23 The Procter & Gamble Company Process for making compact detergent compositions
DE4304475A1 (de) * 1992-12-15 1994-06-16 Henkel Kgaa Granuliertes Wasch- und Reinigungsmittel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726908A (en) * 1985-02-11 1988-02-23 Henkel Kommanditgesellschaft Auf Aktien Agglomeration process including a heating step for making a free-flowing granulate
EP0513824A2 (de) * 1991-05-17 1992-11-19 Kao Corporation Verfahren zur Herstellung von nichtionischen Detergenskörnchen
WO1993023523A1 (de) * 1992-05-21 1993-11-25 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels
WO1993025378A1 (en) * 1992-06-15 1993-12-23 The Procter & Gamble Company Process for making compact detergent compositions
DE4304475A1 (de) * 1992-12-15 1994-06-16 Henkel Kgaa Granuliertes Wasch- und Reinigungsmittel

Also Published As

Publication number Publication date
DE19548346A1 (de) 1997-06-26

Similar Documents

Publication Publication Date Title
EP0642576B1 (de) Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels
DE69019574T2 (de) Detergens-Zusammensetzungen und Verfahren zu ihrer Herstellung.
EP0337330B1 (de) Verfahren zur Erhöhung der Dichte sprühgetrockneter, phosphatreduzierter Waschmittel
EP0777721B1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten
DE4124701A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
DE19533790A1 (de) Verfahren zur Herstellung eines amorphen Alkalisilikats mit Imprägnierung
DE4203031A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
EP0663005B1 (de) Verfahren zur herstellung von tensidgranulaten
EP0683814B1 (de) Verfahren zur herstellung von tensidgranulaten
DE19501269A1 (de) Amorphes Alkalisilikat-Compound
EP0560802B2 (de) Verfahren zur herstellung von zeolith-granulaten
EP0839178B1 (de) Amorphes alkalisilicat-compound
EP0327963A2 (de) Verfahren zur Erhöhung der Dichte sprühgetrockneter Waschmittel
WO1994014946A1 (de) Granulare wasch- und/oder reinigungsmittel
EP0635049B1 (de) Verfahren zur erhöhung des schüttgewichts sprühgetrockneter waschmittel
WO1997023595A1 (de) Verfahren zum herstellen granularer wasch- und/oder reinigungsmittel und zur durchführung geeignete vorrichtung
EP0605436B1 (de) Verfahren zur herstellung von zeolith-granulaten
EP0880580A1 (de) Verfahren zur herstellung von granularen wasch- oder reinigungsmitteln bzw. komponenten hierfür
EP0804535A1 (de) Bleichendes wasch- und reinigungsmittel in granulatform
EP0674703B1 (de) Verfahren zur herstellung eines granulierten wasch- und reinigungsmittels
DE4304475A1 (de) Granuliertes Wasch- und Reinigungsmittel
DE19542570A1 (de) Verfahren zur Herstellung von granularen Wasch- oder Reinigungsmitteln oder Komponenten hierfür
DE19546465A1 (de) Verfahren zur Herstellung von granularen Wasch- oder Reinigungsmitteln oder Komponenten hierfür

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97523271

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase