WO1993023523A1 - Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels - Google Patents

Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels Download PDF

Info

Publication number
WO1993023523A1
WO1993023523A1 PCT/EP1993/001191 EP9301191W WO9323523A1 WO 1993023523 A1 WO1993023523 A1 WO 1993023523A1 EP 9301191 W EP9301191 W EP 9301191W WO 9323523 A1 WO9323523 A1 WO 9323523A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
granules
granulator
mixer
constituents
Prior art date
Application number
PCT/EP1993/001191
Other languages
English (en)
French (fr)
Inventor
Hans-Friedrich Kruse
Hans-Josef Beaujean
Thomas Holderbaum
Jochen Jacobs
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to US08/335,810 priority Critical patent/US5616550A/en
Priority to EP93909975A priority patent/EP0642576B1/de
Priority to DE59303203T priority patent/DE59303203D1/de
Priority to JP51988593A priority patent/JP3488235B2/ja
Publication of WO1993023523A1 publication Critical patent/WO1993023523A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • C11D11/0088Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions

Definitions

  • the invention relates to a process for the continuous production of granular detergents and / or cleaning agents, non-dusting and non-greasing granules being obtained by suitably selected process conditions, which preferably have a bulk density of between 600 and 1000 g / l.
  • the prior art knows a number of proposals for the batchwise or continuous production of compacted granules.
  • granulations in a high-speed, high-speed mixer / granulator are disclosed in European patent applications 351 937 and 339996.
  • EP 390251 describes a two-stage granulation process in which 0.1 to 40% by weight of the solid starting material is added after the first granulation stage (high-speed mixer / granulator) and, if appropriate, during the second granulation stage (slow-running mixer / granulator).
  • a common feature of these known processes is that the granules obtained by them have a bulk density of between about 600 and 900 g / l, but tend to cake, stick together and become greasy if the processes are not almost anhydrous and / or essentially free of nonionic surfactants and / or be carried out in a certain temperature range.
  • the bulk density can only be set to a small extent in a targeted manner.
  • the object was therefore to provide a process for the continuous production of non-dusting and non-greasy granular detergents and / or cleaning agents which do not tend to caking and sticking and which contain substantial amounts of anionic surfactants and nonionic surfactants.
  • This method should also make it possible to set the bulk density of the granules in a targeted manner and to produce granules with a relatively low proportion of coarse particles.
  • the invention accordingly relates to a process for the continuous production of a granular washing and / or cleaning agent with a high bulk density by means of two-stage granulation in two consecutive mixers / granulators, 40 to 100% by weight in a first, low-speed mixer / granulator. %, based on the total amount of the solid and liquid constituents used, of the solid and liquid constituents pre-granulated and, in a second, high-speed mixer / granulator, the pre-granules from the first process stage are optionally mixed with the remaining solid and / or liquid constituents and is converted into granules, the proportion of the granules with a diameter above 2 mm being less than 25% by weight.
  • a special feature of the process according to the invention is that in the two-stage granulating process, in which a low-speed and a high-speed mixer / granulator are used, in contrast to the known processes of the prior art, the first part of the granulation in a low-speed mixer / Granulator and only the second part is carried out in a high-speed mixer / granulator, the process conditions in the high-speed mixer / granulator being adjusted depending on the requirements of the desired granulate so that the The first, low-speed mixer / granulator, the resulting granulate is not adhesive, but is nevertheless plastic to the extent that it can be deformed to compress it. As a result, the proportion of coarse-grain granules formed in the first low-speed mixer / granulator can be largely reduced without the coarse-grain fraction being ground or pulverized.
  • all mixers / granulators through which the product flows horizontally can be used in the first granulation stage, in which the product is moved in the mixer room by mixing tools.
  • the granulation can be accelerated by knife heads located in the lower part of the mixer drum.
  • the granulation in these mixers / granulators is possible at peripheral speeds of the mixing tools between 2 m / s and 7 m / s and is preferably carried out at peripheral speeds between 4 m / s and 5 m / s.
  • Low-speed mixers / granulators which are preferably used are, for example, the ploughshare mixers from Lödige (Federal Republic of Germany) and the intensive mixers from IMCATEC (Federal Republic of Germany).
  • the first granulation stage is preferably carried out in a time of 0.5 to 10 minutes, average residence times in the first granulation stage between 1 and 6 minutes being preferred.
  • the high-speed mixer / granulator used is mixers / granulators through which the mixture to be granulated flows vertically and whose mixing tools can be operated at peripheral speeds of at least about 8 m / s. It is preferred that the product is arranged in a spiral downward annular layer along the wall of the mixing chamber at a peripheral speed of the mixing tools due to a rapidly rotating shaft concentrically arranged in a cylindrical mixing chamber and on which the mixing tools are in the form of mixing knives or beaters from 8 m / s to 35 m / s, preferably at peripheral speeds of 12 m / s to 30 m / s, is transported to the mixer outlet.
  • a suitable high-speed mixer / granulator is, for example, the ring-layer mixer from Schugi (Netherlands).
  • the second stage of granulation is generally run through in a significantly shorter time than the first granulation stage, for example up to 30 seconds.
  • Preferred granulation times in the second granulation stage are 0.1 to 10 seconds and in particular 0.5 to 2 seconds.
  • the sequence of the granulation steps defined according to the invention makes it possible, by the choice of the process conditions and by the type of distribution of the liquid components, to almost any desired granulation level Set bulk density between 600 and 1100 g / 1.
  • the parameter of the first granule stage through the variation of which the bulk density can be influenced, is the energy input to the mixture to be granulated, a high energy input being achieved over long dwell times and over the number and speed of the cutter heads to be used. Heavy granules are obtained through high energy inputs.
  • the second pelletizing stage in which the peripheral speeds of the mixing tools and the energy input are increased by increasing the speeds of the mixer shaft, which leads to an increase in the bulk density in addition to the reduction of coarse particles.
  • Another parameter by means of which the bulk density can be changed at least slightly, for example by approximately 30 to 80 g / 1, in particular up to 60 g / 1, is the temperature of the pre-granulate (this is the granulate that is in the first Granulation stage was obtained) when entering the second granulation stage.
  • Temperatures of the pre-granules of at most 90 ° C., in particular from 30 to 60 ° C., are preferred, higher temperatures leading to lower bulk densities compared to lower temperatures in the order of magnitude specified above.
  • the most important parameter for setting the bulk density is the addition of the liquid constituents, which simultaneously serve as granulating liquid and which are added either only in the first, low-speed mixer / granulator or partly in the low-speed mixer / granulator and partly in the high-speed mixer / granulator can.
  • the general rule here is that by adding granulating liquids alone in the first, low-speed mixer / granulator, higher Bulk weights, for example between 800 and 950 g / 1, can be achieved, while for setting lower bulk weights, for example bulk weights between 600 and 800 g / 1, it is advisable to add part of the granulating liquid only in the second, high-speed mixer / granulator.
  • granules with a bulk density of about 850 g / l were obtained for a special recipe by adding the entire granulating liquid in the first mixer / granulator.
  • granules with a bulk density of 680 g / l were obtained for the same formulation.
  • granules with a bulk density of between 600 g / 1 and 570 g / 1 were obtained for the same recipe.
  • some of the solid components - either alone or in addition to the part of the granulating liquid - can only be used in the high-speed mixer / granulator.
  • the general rule here is that by adding solids, in particular finely divided solids such as zeolite powder, for example Wessalith p ( R ) (commercial product from Degussa, Federal Republic of Germany), sodium sulfate or sodium carbonate, in the second mixer / graphite nulator the bulk weight can be increased.
  • the addition of solids in the second granulation stage can also serve to improve the further processability of the granules and the flow properties of the finished granules.
  • the solid and liquid constituents are pregranulated in the first mixer / granulator and then with 0 to 60% by weight, preferably 5 to 40% by weight of remaining solid and / or liquid constituents are mixed in the second mixer / granulator and then transferred to the finished, but not yet dried and therefore possibly still moist granules.
  • the solid constituents can be introduced into the process as powders or granules which have been obtained by granulation or spray drying and have a bulk density of, for example, 200 to 600 g / l.
  • the powders are usually individual components, for example zeolite, sodium carbonate, tripolyphosphate, water glass or sodium sulfate, while the granules preferably contain several components, mostly also small components and liquid feedstocks. Powder alone or granules alone can be used.
  • the constituents used in the granulation in the first mixer / granulator preferably 10 to 100% by weight and in particular 40 to 100% by weight, in each case based on those in the first Solid components used in the mixer / granulator are used as granules.
  • solid ingredients of detergents and / or cleaning agents can be used as solid constituents.
  • Preferred solid constituents are anionic surfactants, builder substances, alkaline and neutral salts, bleaching agents and graying inhibitors.
  • Preferred surfactants of the sulfonate type are Cg-Ci3-alkylbenzenesulfonates, olefin sulfonates, i.e. Mixtures of alkene and hydroxyalkanesulfonates and disulfonates, such as those obtained, for example, from Ci2-Ci8 monoolefins with a terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation products. Also suitable are alkanesulfonates obtained from Ci2-8 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • Preferred anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters, and the monoesters and / or diesters of sulfosuccinic acid Alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C ⁇ to Ciß fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with restricted homolog distribution are particularly preferred.
  • esters of ⁇ -sulfo fatty acids e.g. the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
  • Suitable surfactants of the sulfate type are the sulfuric acid monoesters from primary alcohols of natural and synthetic origin, in particular from fatty alcohols, for example from coconut oil alcohol, tallow fatty alcohol, oleyl alcohol, lauryl, myristyl, cetyl or stearyl alcohol, or the CiQ-C20-0xoal alcohol alcohols, and those of secondary alcohols of this chain length.
  • Fatty alcohol mixtures which may additionally contain proportions of unsaturated alcohols, for example oleyl alcohol, are also preferred.
  • Suitable anionic surfactants are, in particular, soaps, preferably in amounts of 0.5 to 8% by weight.
  • Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid or stearic acid, and in particular soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the anionic surfactants can be present in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the anionic surfactants are preferably used in amounts of 3 to 25% by weight, in particular in amounts of 10 to 20% by weight, based in each case on the sum of the constituents used. However, their content can also exceed 15% by weight.
  • Preferred anionic surfactants are fatty alkyl sulfates, alkylbenzenesulfonates, sulfosuccinates and mixtures thereof, such as mixtures of fatty alkyl sulfates and sulfosuccinates or fatty alkyl sulfates and fatty alkylbenzenesulfonates, especially in combination with soap. It is particularly preferred that at least some of the sulfonate and / or sulfate surfactants are not used as a solid component, but in liquid form as a component of the granulating liquid.
  • the known zeolites and phosphates are particularly suitable as builder substances.
  • Their content is preferably 20 to 60% by weight, in particular 20 to 50% by weight, in each case based on the sum of the constituents used and calculated as an anhydrous active substance.
  • the fine crystalline, synthetic and bound water-containing zeolite used is preferably zeolite NaA in detergent quality. It is preferably used as a spray-dried powder.
  • Preferred zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 20 to 22% by weight of bound water.
  • Usable organic builders are, for example, the polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid, succinic acid, glutaric acid, adipic acid, tartaric acid and nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons, and mixtures of these.
  • Polymeric polycarboxylates come into consideration as further organic builder substances. _.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid).
  • Suitable copoly ere polycarboxylates are in particular those of acrylic acid with methacrylic acid and acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable. Copolymers in which 60 to 85% by weight of acrylic acid and 40 to 15% by weight of maleic acid are present are particularly preferred.
  • Their relative molecular weight, based on free acids is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000.
  • the content of (co) polymeric polycarboxyates in the agents is preferably 0.5 to 8% by weight.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application 280223.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the alkaline salts used with preference include water-soluble inorganic salts such as bicarbonates, carbonates, silicates or mixtures thereof; in particular, alkali carbonate and alkali silicate, especially sodium silicate with a molar ratio of 1: 1 to 1: 4.5, used.
  • the sodium carbonate content of the agents is preferably up to 20% by weight, advantageously between 1 and 15% by weight.
  • the content of sodium silicate in the agents, for example amorphous or crystalline sodium disilicate is generally up to 10% by weight and preferably between 2 and 8% by weight.
  • sulfates are used, this is preferably done in amounts between 15 and 40% by weight, based on the finished granulate. However, processes in which no sulfate is used are also preferred.
  • the sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further bleaching agents which can be used are, for example, sodium percarbonates, peroxypyrophosphates, citrate perhydrates and H2O2-providing peracidic salts or peracids such as perbenzoates, peroxaphthalates, diperazelaic acid or diperdodecanedioic acid.
  • the bleach content of the agents is preferably 5 to 25% by weight and in particular 10 to 20% by weight, based on the finished granules.
  • the bleaching agents can be added either in the granulation process according to the invention or in a subsequent processing step.
  • bleach preferably percarbonate and perborate
  • their addition is preferably carried out in the second granulation, the granule temperature to 70 ° C should not exceed. This can be achieved if appropriate by cooling.
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing graying.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches etc.
  • Carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose and mixtures thereof and polyvinylpyrrolidone are preferably used in amounts between 0.1 and 5% by weight, in particular up to 3% by weight.
  • a granulating liquid which either consists only of pure liquid constituents or mixtures thereof or which contains solid constituents in dissolved and / or suspended form.
  • the granulating liquid is preferably used in amounts of 5 to 30% by weight, based on the total amount of the constituents used. Overall, it can only be used in the first mixer / granulator or partly in the first mixer / granulator and partly in the second mixer / granulator. It is preferred that, depending on the desired bulk density, 0 to 20% by weight, preferably up to 10% by weight, based in each case on the total amount of the constituents used, of granulating liquid is added in the second, high-speed mixer / granulator .
  • the granulating liquid preferably consists of liquid constituents of washing and / or cleaning agents or of water, of aqueous solutions and / or of mixtures, the aqueous solutions per se solid constituents and liquid constituents of detergents and / or Detergents included.
  • the liquid constituents of detergents and / or cleaning agents include, in particular, nonionic surfactants which, at the process temperature, are in liquid, i.e. pumpable and flowable form.
  • nonionic surfactants preferably include addition products of 1 to 12 moles of ethylene oxide with primary Ci2-Ci8 fatty alcohols and their mixtures such as coconut, tallow or oleyl alcohol, or with primary alcohols branched in the 2-position methyl (oxo alcohols).
  • Ci2-Ci4 alcohols with 3 EO or 4 EO Cg-Cn alcohol with 7 EO
  • the degrees of ethoxylation given represent statistical mean values which, for a specific product, are an integer or a fraction can.
  • Preferred alcohol ethoxylates have a restricted homolog distribution (narrow range ethoxylates, NRE).
  • the content of the ethoxylated fatty alcohols in the finished granules is preferably 5 to 15% by weight.
  • the liquid nonionic surfactants are used in a mixture with lower polyalkylene glycols which are derived from straight-chain or branched glycols having 2 to 6 carbon atoms.
  • Preferred lower polyalkylene glycols are polyethylene glycols or polypropylene glycols which have a relative molecular mass between 200 and 12,000, in particular between 200 and 4,000, for example up to 2,000.
  • the weight ratio of liquid nonionic surfactant to lower polyalkylene glycol in these mixtures is preferably 10: 1 to 1: 1.
  • the preferred aqueous mixtures also include aqueous alkyl glycoside pastes in which alkyl glycosides of the general formula R0 (G) x are used, in which R is a primary straight-chain or aliphatic radical with 8 to 22, preferably 12 to 18 C, methyl-branched in the 2-position -Atoms means and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glycose.
  • the degree of oligomerization X which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10 and is preferably 1.2 to 1.4.
  • the preferred aqueous solutions include the solutions of (co) polymeric polycarboxylates already mentioned. They are preferably metered into the first, low-speed mixer / granulator in order to obtain heavy granules. A reduction in the bulk density can preferably be achieved by adding this solution in the second, high-speed mixer / granulator.
  • aqueous suspensions of zeolites which preferably contain stabilizers for these suspensions, can preferably be used in the first, low-speed mixer / granulator.
  • concentrated aqueous anionic surfactant solutions and anionic surfactant pastes is also particularly preferred. These are preferably by neutralizing the Anionic surfactants in their acid form with highly concentrated aqueous bases, for example a 45 to 55% by weight sodium hydroxide solution, are produced in a commercially available rotor-stator machine, for example a Supraton (R), or a stirred kettle.
  • nonionic surfactants are particularly preferred, the nonionic surfactants preferably being used in amounts such that the viscosity of the anionic surfactant pastes is reduced and thus their processability, in particular pumpability and flowability, is improved.
  • These mixtures have a pH of at least 7.0, preferably from 7.5 to 12, and are added as constituents of the granulating liquid either in the first or in the second mixer / granulator. It is preferred that 8 to 20% by weight, preferably 10 to 18% by weight, based in each case on the total amount of the constituents used, of these anionic surfactant / nonionic surfactant mixtures are added in particular in the first, low-speed mixer / granulator .
  • a drying stage can be added. This is not necessary if the granulating liquid contains no water, or is not absolutely necessary if the granulating liquid contains water only in small amounts, for example up to 12% by weight, based on the total amount of the constituents used. The amount of water tolerable without drying depends heavily on the overall composition. However, if the granulating liquid contains water, irrespective of the amount, the subsequent drying step is preferred. In particular, this drying is carried out in the fluidized bed at supply air temperatures below 180 ° C. The granulating liquid preferably contains only so much water that under these conditions a maximum of 15% by weight, based on the total amount of the constituents used, of water evaporate.
  • the continuous process according to the invention is not only distinguished by the fact that it enables the desired setting of a desired bulk density of the granules produced; granules are also obtained which are distinguished by a very homogeneous grain spectrum with small coarse grain fractions, the fraction of granules with a diameter above 2 mm and in particular above 1.6 mm being preferred is a maximum of 12% by weight and in particular a maximum of 10% by weight (sieve analysis).
  • Existing coarse-grained fractions that is to say granules with a diameter above 2 mm, preferably with a diameter above 1.6 mm, are preferably screened off and can advantageously be returned to the continuous production process after comminution, for example in a mill. It is preferred to return the comminuted coarse-grained fractions to the sieve and thus to feed further finished granules.
  • the granules obtained by the process according to the invention can be used directly as detergents and / or cleaning agents and / or they are mixed with further amounts, preferably small amounts; For example, in the range from 2 to 10% by weight, based on the total amount of the constituents used, of liquid nonionic surfactants or nonionic surfactant mixtures are sprayed in a manner known per se and / or they are mixed with further constituents, preferably granular and in particular, granular and compacted components of detergents and cleaning agents are mixed.
  • the other granular constituents include, for example, compacted bleach or bleach activator granules, enzyme granules, foam inhibitor granules, preferably concentrated foam inhibitor granules and granular carriers for colorants and fragrances.
  • Bleach activators used are, for example, N-acyl or O-acyl compounds which form organic peracids with H2O2, preferably N, N'-tetraacylated diamines, furthermore carboxylic acid anhydrides and esters of polyols such as glucose pentaacetate.
  • the bleach activator content of the bleach-containing agents is in the usual range, preferably between 1 and 10% by weight and in particular between 2 and 8% by weight.
  • Particularly preferred Bleach activators are N, N, N ', N'-tetraacetylethylene diamine (TAED) and 1,5-diacetyl-2,4-dioxo-hexahydro-1,3,5-triazine (DADHT).
  • Suitable enzymes are those from the class of proteases, lipases, aylases, cellulases or mixtures thereof. Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Strepto yces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used. Their proportion can be about 0.2 to about 2% by weight. The enzymes can be adsorbed on carriers and / or embedded in Hü11 substances to protect them against premature decomposition.
  • Suitable stabilizers in particular for per-compounds and enzymes, are, for example, the salts of polyphosphonic acids, in particular 1-hydroxyethane-l, l-diphosphonic acid (HEDP).
  • HEDP 1-hydroxyethane-l, l-diphosphonic acid
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of Ci8-C24 fatty acids.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, optionally silanized silica, and paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica. Mixtures of different foam inhibitors are also advantageously used, e.g. those made of silicones, paraffins or waxes. It is also possible for silicone oils and / or paraffin oils to be used in the two-stage granulation process according to the invention and preferably in the first, low-speed mixer / granulator.
  • the other constituents of detergents also include optical brighteners.
  • the agents can contain derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-l, 3,5-triazine-6-yl-amino) stilbene-2,2'-disulfonic acid or similarly structured ver ⁇ bonds that replace the morpholino group with a diethanolamino group, a methylamino group, an anilino group or a Wear 2-methoxyethylamino group.
  • Brighteners of the substituted 4,4'-distyryl-di-phenyl type may also be present, for example the compound 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl. Mixtures of the aforementioned brighteners can also be used. Particularly uniform white granules are obtained if, in addition to the usual brighteners, the agents are used in customary amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0.3% by weight, even small amounts. contains, for example, 10 ⁇ 6 to 10 ⁇ 3 % by weight, preferably around 10 "5% by weight, of a blue dye.
  • a particularly preferred dye is Tinolu ⁇ ( R ) (commercial product from Ciba-Geigy).
  • optical brighteners or the mixtures of optical brightener and dye are preferably dissolved in ethoxylated nonionic surfactants and sprayed onto the granules produced by the process according to the invention in a known manner.
  • the granular detergents and / or cleaning agents produced in this way and having advantages generally have a bulk density between 600 and 1100 g / 1, preferably between 700 and 950 g / 1 and, after the coarse grain portions have been sieved, preferably above 1.6 mm in particular between 750 and 850 g / l.
  • the granules are non-greasy, dust-free and, after drying, if appropriate, have a proportion of granules with a diameter above 1.6 mm of a maximum of 25% by weight, preferably a maximum of 20% by weight .-% and in particular from 6 to 12 wt .-%, which is screened and recycled.
  • the content of anionic and nonionic surfactants in the granules is preferably 10 to 40% by weight and in particular 15 to 30% by weight, in each case based on the finished granules, and 20 to 60% by weight, preferably 25 up to 55% by weight, based on the finished granulate and calculated as an anhydrous active substance, of builder substances.
  • the finished granules have a content of 7 to 15% by weight of nonionic surfactants and 0 to 20% by weight, preferably 0 to 10% by weight, of free, ie non-chemically or non-physically bound Water on. Examples
  • the fill level of this low-speed mixer was about 50%.
  • the residence time of the ingredients in this mixer was about 3 minutes.
  • the pre-granules were then granulated in a Schugi ring bed mixer for a maximum of 1 second at circumferential speeds of the ring bed of approximately 30 m / s and at temperatures of 35 ° C. and dried in a fluidized bed at supply air temperatures of 130 ° C.
  • the finished non-greasy, free-flowing and non-dusting granulate had a bulk density of 860 g / 1.
  • the proportion of the dried granules with a diameter above 1.6 mm was below 12% by weight before sieving.
  • the spray-dried granules used in the low-speed mixer / granulator had the following composition:
  • Example 1 was repeated. However, the pre-granulate was produced without the Sokalan C R ) CP 5 solution. The sokalan was added in the form of a 30% by weight aqueous solution via nozzles during the second granulation step. The bulk density of these granules after drying and after sieving was 720 g / l. The coarse grain fraction above 1.6 mm was 6% by weight.
  • Example 2 was repeated. However, the second granulation step was carried out at peripheral speeds of the annular layer of 17 m / s. The bulk density of these granules after drying and after sieving was 621 g / l. The coarse grain fraction above 1.6 m was 21% by weight.
  • Example 4
  • Example 1 was repeated.
  • the temperature of the pre-granulate was 48 ° C. when entering the second granulation stage.
  • the bulk density of these granules was 830 g / 1.
  • Example 1 was repeated.
  • the residence time in the first mixer was 4 minutes while simultaneously reducing the Sokalan ( R ) CP 5 solution to 6% by weight. After drying and sieving 23% by weight of coarse particles above 1.6 mm, a bulk density of 930 g / l was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Es sollten nicht-staubende, nicht-fettende und nicht zu Verbackungen und zu Verklebungen neigende granulare Wasch- und Reinigungsmittel mit hohem Schüttgewicht hergestellt werden, die Aniontenside und Niotenside in substantiellen Mengen enthalten. Dazu wird eine zweistufige Granulierung in zwei hintereinandergeschalteten Mischern/Granulatoren durchgeführt, wobei in einem ersten, niedertourigen Mischer/Granulator 40 bis 100 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten festen und flüssigen Bestandteile, der festen und flüssigen Bestandteile vorgranuliert und in einem zweiten, hochtourigen Mischer/Granulator das Vorgranulat aus der ersten Verfahrensstufe gegebenenfalls mit den restlichen festen und/oder flüssigen Bestandteilen vermischt und in ein Granulat überführt wird, wobei der Anteil der Granulate mit einem Durchmesser oberhalb 2 mm weniger als 25 Gew.-% beträgt. Es werden Granulate mit einem relativ geringen Grobkornanteil erhalten. Das Schüttgewicht der Granulate ist gezielt einstellbar.

Description

"Verfahren zur kontinuierlichen Herstellung eines granulären Wasch- . . und/oder Reinigungsmittels"
Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von granulären Wasch- und/oder Reinigungsmitteln, wobei durch geeignet ge¬ wählte Verfahrensbedingungen nicht-staubende und nicht-fettende Granulate erhalten werden, die vorzugsweise ein Schüttgewicht zwischen 600 und 1000 g/1 aufweisen.
Der Stand der Technik kennt eine Reihe von Vorschlägen zur batchweisen oder kontinuierlichen Herstellung von verdichteten Granulaten. Dabei wer¬ den entweder Schnellaufende, hochtourige Mischer/Granulatoren eingesetzt, oder es werden zwei Mischer/Granulatoren hintereinandergeschaltet, wobei der erste Mischer/Granulator ein schnellaufender, hochtouriger Mischer/ Granulator und der zweite Mischer/Granulator ein langsamlaufender, nie- dertouriger Mischer/Granulator ist. So werden Granulierungen in einem schneilaufenden, hochtourigen Mischer/Granulator beispielsweise in den europäischen Patentanmeldungen 351 937 und 339996 offenbart.
Verfahren, in denen ein Schnellaufender, hochtouriger und ein langsamlau¬ fender, niedertouriger Mischer/Granulator hintereinandergeschaltet werden, werden beispielsweise in der europäischen Patentanmeldung 420 317 und in der europäischen Patentanmeldung 390 251 beschrieben. Dabei erfolgt gemäß der Lehre der EP 420 317 in dem schnellaufenden Mischer/Granulator zu¬ nächst die Neutralisation von Aniontensiden in ihrer Säureform, die dann mit weiteren Bestandteilen in Granulate überführt werden. Diese Granulate liegen in einem plastischen Zustand vor und werden in dem langsamlaufenden Mischer/Granulator deformiert, wodurch eine Verdichtung eintritt. Den Ab¬ schluß des Verfahrens bildet ein Trocknungs- oder Kühlungsschritt. Die EP 390251 beschreibt ein zweistufiges Granulierverfahren, bei dem 0,1 bis 40 Gew.-% des festen Ausgangsmaterials nach der ersten Granulierstufe (schneilaufender Mischer/Granulator) und ggf. während der zweiten Granu¬ lierstufe (langsamlaufender Mischer/Granulator) zugesetzt wird. Diesen bekannten Verfahren ist gemeinsam, daß die nach ihnen erhaltenen Granulate zwar ein Schüttgewicht zwischen etwa 600 und 900 g/1 aufweisen, jedoch zum Verbacken, Verkleben und Verfetten neigen, wenn die Verfahren nicht nahezu wasserfrei und/oder im wesentlichen frei von nichtionischen Tensiden und/oder in einem bestimmten Temperaturbereich durchgeführt wer¬ den. Außerdem kann das Schüttgewicht nur in geringem Maße gezielt einge¬ stellt werden.
Es bestand daher die Aufgabe, ein Verfahren zur kontinuierlichen Herstel¬ lung nicht-staubender und nicht-fettender, nicht zu Verbackungen und zu Verklebungen neigender granulärer Wasch- und/oder Reinigungsmittel, welche Aniontenside und Niotenside in substantiellen Mengen enthalten, bereitzu¬ stellen. Dieses Verfahren sollte es außerdem erlauben, sowohl das Schütt¬ gewicht der Granulate gezielt einzustellen, als auch Granulate mit einem relativ geringen Grobkornanteil herzustellen.
Gegenstand der Erfindung ist dementsprechend ein Verfahren zur kontinu¬ ierlichen Herstellung eines granulären Wasch- und/oder Reinigungsmittels mit hohem Schüttgewicht durch eine zweistufige Granulierung in zwei hin- tereinandergeschalteten Mischern/Granulatoren, wobei in einem ersten, niedertourigen Mischer/Granulator 40 bis 100 Gew.-%, bezogen auf die Ge¬ samtmenge der eingesetzten festen und flüssigen Bestandteile, der festen und flüssigen Bestandteile vorgranuliert und in einem zweiten, hochtou- rigen Mischer/Granulator das Vorgranulat aus der ersten Verfahrensstufe gegebenenfalls mit den restlichen festen und/oder flüssigen Bestandteilen vermischt und in ein Granulat überführt wird, wobei der Anteil der Granu¬ late mit einem Durchmesser oberhalb 2 mm weniger als 25 Gew.-% beträgt.
Eine Besonderheit des erfindungsgemäßen Verfahrens besteht somit darin, daß in dem zweistufigen Granu ierverfahren, in dem ein niedertouriger und ein hochtouriger Mischer/Granulator eingesetzt werden, im Gegensatz zu den bekannten Verfahren des Standes der Technik der erste Teil der Granulie¬ rung in einem niedertourigen Mischer/Granulator und erst der zweite Teil in einem hochtourigen Mischer/Granulator durchgeführt wird, wobei die Verfahrensbedingungen in dem hochtourigen Mischer/Granulator je nach An¬ forderungen an das gewünschte Granulat so eingestellt werden, daß das im ersten, niedertourigen Mischer/Granulator entstandene Granulat zwar nicht klebend, aber dennoch in dem Umfang plastisch ist, daß es verdichtend verformbar ist. Dadurch kann der im ersten, niedertourigen Mischer/Granulator entstandene Anteil an Grobkorngranulaten weitgehend vermindert werden, ohne daß es zu einer Vermahlung bzw. Pulverisierung des Grobkornanteils kommt.
Als niedertouriger Mischer/Granulator können in der ersten Granulierstufe alle horizontal vom Produkt durchflossenen Mischer/Granulatoren eingesetzt werden, bei denen das Produkt im Mischerraum durch Mischwerkzeuge bewegt wird. Zusätzlich kann die Granulierung durch sich im unteren Teil der Mischertrommel befindliche Messerköpfe beschleunigt werden. Die Granula¬ tion in diesen Mischern/Granulatoren ist bei Umfangsgeschwindigkeiten der Mischwerkzeuge zwischen- 2 m/s und 7 m/s möglich und wird bevorzugt bei Umfangsgeschwindigkeiten zwischen 4 m/s und 5 m/s durchgeführt.
Bevorzugt eingesetzte niedertourige Mischer/Granulatoren sind beispiels¬ weise die Pflugscharmischer der Firma Lödige (Bundesrepublik Deutschland) und der Intensivmischer der Firma IMCATEC (Bundesrepublik Deutschland). Die erste Granulierstufe wird vorzugsweise in einer Zeit von 0,5 bis 10 Minuten durchgeführt, wobei mittlere Verweilzeiten in der ersten Granu¬ lierstufe zwischen 1 und 6 Minuten bevorzugt sind.
Als hochtouriger Mischer/Granulator werden in der zweiten Granulierstufe Mischer/Granulatoren eingesetzt, die von der zu granulierenden Mischung vertikal durchflössen werden und deren Mischwerkzeuge mit Umfangsge¬ schwindigkeiten von mindestens etwa 8 m/s betrieben werden können. Dabei ist es bevorzugt, daß durch eine konzentrisch in einer zylinderförmigen Mischkammer angeordneten und schnellrotierenden Welle, auf der sich die Mischwerkzeuge in Form von Mischmessern oder Schlägern befinden, das Pro¬ dukt in einer spiralförmig nach unten verlaufenden Ringschicht entlang der Mischerkammerwand bei einer Umfangsgeschwindigkeit der Mischwerkzeuge von 8 m/s bis 35 m/s, vorzugsweise mit Umfangsgeschwindigkeiten von 12 m/s bis 30 m/s, zum Mischeraustritt transportiert wird. Ein geeigneter hochtou¬ riger Mischer/Granulator ist beispielsweise der Ringschichtmischer der Firma Schugi (Niederlande). Die zweite Granulierstufe wird im allgemeinen in einer wesentlich kürzeren Zeit als die erste Granulierstufe, bei¬ spielsweise bis innerhalb 30 Sekunden, durchlaufen. Bevorzugte Granulier¬ zeiten in der zweiten Granulierstufe betragen 0,1 bis 10 Sekunden und insbesondere 0,5 bis 2 Sekunden.
Die erfindungsgemäß festgelegte Reihenfolge der Granulierschritte (zu¬ nächst Granulierung in einem niedertourigen Mischer/Granulator, dann in einem hochtourigen Mischer/Granulator) ermöglicht es, durch die Wahl der Verfahrensbedingungen und durch die Art der Aufteilung der Flüssigkompo¬ nenten auf beide Granulierstufen nahezu jedes gewünschte Schüttgewicht zwischen 600 und 1100 g/1 gezielt einzustellen. Der Parameter der ersten Granul erstufe, durch dessen Variation das Schüttgewicht beeinflußbar wird, ist der Energieeintrag auf die zu granulierende Mischung, wobei ein hoher Energieeintrag über lange Verweilzeiten und über die Anzahl und die Drehzahl der einzusetzenden Messerköpfe erzielt wird. Durch hohe Energie¬ einträge werden schwere Granulate erhalten. Ähnliches gilt für die zweite Granulierstufe, bei der durch Erhöhung der Drehzahlen der Mischerwelle die Umfangsgeschwindigkeiten der Mischwerkzeuge und der Energieeintrag erhöht werden, wobei dies zusätzlich zu dem Abbau von Grobkornanteilen zu einer Erhöhung des Schüttgewichts führt. Ein weiterer Parameter, über den sich das Schüttgewicht zumindest geringfügig, beispielsweise um ca. 30 bis 80 g/1, insbesondere bis 60 g/1, verändern läßt, ist die Temperatur des Vor¬ granulats (dies ist das Granulat, das in der ersten Granulierstufe erhal¬ ten wurde) beim Eintritt in die zweite Granulierstufe. Bevorzugt sind hierbei Temperaturen des Vorgranulats von maximal 90 °C, insbesondere von 30 bis 60 °C, wobei höhere Temperaturen gegenüber tieferen Temperaturen zu Verminderungen des Schüttgewichts in der oben angegebenen Größenordnung führen.
Der wesentlichste Parameter für die Einstellung des Schüttgewichts ist die Zugabe der flüssigen Bestandteile, welche gleichzeitig als Granulierflüs¬ sigkeit dienen und welche wahlweise nur in dem ersten, niedertourigen Mischer/Granulator oder teilweise im niedertourigen Mischer/ Granulator und teilweise im hochtourigen Mischer/Granulator zudosiert werden können. Dabei gilt im allgemeinen, daß durch die alleinige Zugabe von Granulier¬ flüssigkeiten im ersten, niedertourigen Mischer/Granulator höhere Schüttgewichte, .beispielsweise zwischen 800 und 950 g/1, erreicht werden, während es sich zur Einstellung niedrigerer Schüttgewichte, beispielsweise von Schüttgewichten zwischen 600 und 800 g/1, empfiehlt, einen Teil der Granulierflüssigkeit erst im zweiten, hochtourigen Mischer/Granulator hinzuzugeben. Beispielsweise wurden für eine spezielle Rezeptur durch Zu¬ gabe der gesamten Granulierflüssigkeit im ersten Mischer/Granulator Gra¬ nulate mit einem Schüttgewicht von etwa 850 g/1 erhalten. Durch Zugabe von 8 Gew.-% der Granulierflüssigkeit, bezogen auf die Gesamtmenge der einge¬ setzten Bestandteile, im zweiten, hochtourigen Mischer/Granulator wurden für dieselbe Rezeptur Granulate mit einem Schüttgewicht von 680 g/1 er¬ halten. Durch die Zugabe von 8,5 Gew.-% bis 10,5 Gew.-% der Granulier¬ flüssigkeit im zweiten Mischer wurden für dieselbe Rezeptur Granulate mit einem Schüttgewicht zwischen 600 g/1 und 570 g/1 erhalten.
Ebenso wie es möglich ist, einen Teil der flüssigen Bestandteile erst im hochtourigen Mischer/Granulator hinzuzugeben, kann auch ein Teil der fe¬ sten Bestandteile - entweder allein oder zusätzlich zu dem Teil der Gra¬ nulierflüssigkeit - erst im hochtourigen Mischer/Granulator eingesetzt werden. Dabei gilt im allgemeinen, daß durch die Zugabe von Feststoffen, insbesondere von feinteiligen Feststoffen wie Zeolith-Pulver, beispiels¬ weise Wessalith p(R) (Handelsprodukt der Firma Degussa, Bundesrepubl k Deutschland), Natriumsulfat oder Natriumcarbonat, im zweiten Mischer/Gra- nulator das Schüttgewicht erhöht werden kann. Die Zugabe von Feststoffen in der zweiten Granulierstufe kann außerdem dazu dienen, die Weiterver- arbeitbarkeit der Granulate und die Fließeigenschaften der fertigen Gra¬ nulate zu verbessern.
Insgesamt ist es bevorzugt, das 40 bis 100 Gew.-%, vorzugsweise 60 bis 100 Gew.-% und insbesondere bis 95 Gew.-% der festen und flüssigen Bestand¬ teile in dem ersten Mischer/Granulator vorgranuliert und anschließend mit 0 bis zu 60 Gew.-%, vorzugsweise 5 bis 40 Gew.-% restlichen festen und/oder flüssigen Bestandteilen im zweiten Mischer/Granulator vermischt und dann in das fertige, aber noch nicht getrocknete und daher ggf. noch feuchte Granulat überführt werden. Die festen Bestandteile können als Pulver oder Granulate, die durch Granulierung oder Sprühtrocknung gewonnen wurden und ein Schüttgewicht von beispielsweise 200 bis 600 g/1 aufweisen, in das Verfahren eingebracht werden. Bei den Pulvern handelt es sich üblicherweise um Einzelkomponen¬ ten, beispielsweise Zeolith, Natriumcarbonat, Tripolyphosphat, Wasserglas oder Natriumsulfat, während die Granulate vorzugsweise mehrere Komponen¬ ten, zumeist auch Kleinkomponenten und flüssige Einsatzstoffe, enthalten. Es können allein Pulver oder auch allein Granulate zum Einsatz kommen.
Dabei ist es jedoch bevorzugt, daß wenigstens ein Teil der bei der Gra¬ nulierung im ersten Mischer/Granulator eingesetzten Bestandteile, vor¬ zugsweise 10 bis 100 Gew.-% und insbesondere 40 bis 100 Gew.-%, jeweils bezogen auf die im ersten Mischer/Granulator eingesetzten festen Bestand¬ teile, als Granulat eingesetzt werden. Als besonders vorteilhaft hat sich der Einsatz von 10 bis 40 Gew.-%, insbesondere bis 30 Gew.-%, jeweils be¬ zogen auf die Gesamtrezeptur der Granulate, vorzugsweise sprühgetrockneter Granulate erwiesen.
Als feste Bestandteile können im Prinzip alle bekannten festen Inhalts¬ stoffe von Wasch- und/oder Reinigungsmitteln eingesetzt werden. Bevorzugte feste Bestandteile sind dabei Aniontenside, Buildersubstanzen, alkalische und neutrale Salze, Bleichmittel und Vergrauungsinhibitoren.
Als Tenside vom Sulfonat-Typ kommen vorzugsweise Cg-Ci3-Alkylbenzolsul- fonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfo- naten sowie Disulfonaten, wie man sie beispielsweise aus Ci2-Ci8-Monoole- finen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hy¬ drolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus Ci2- χ8-Alkanen beispielsweise durch Sulfochlor- ierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden.
Bevorzugte Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten Cß- bis Ciß-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit einge¬ schränkter HomologenVerteilung ableiten, besonders bevorzugt.
Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren.
Geeignete Tenside vom Sulfat-Typ sind die Schwefelsäuremonoester aus pri¬ mären Alkoholen natürlichen und synthetischen Ursprungs, insbesondere aus Fettalkoholen, z.B. aus Kokosfettalkohol, Taigfettalkohol, Oleylalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol, oder den CiQ-C20-0xoal- koholen, und diejenigen sekundärer Alkohole dieser Kettenlänge. Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten Al¬ kohole, wie 2-Methyl-verzweigte Cg-Cn-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid, sind geeignet. Auch Fettalkoholgemische, die zusätzlich noch Anteile an ungesättigten Alkoholen, z.B. an Oleylalkohol, enthalten können, sind bevorzugt. Eine bevorzugte Verwendung finden dabei Gemische, in denen der Anteil der Alkylreste zu 50 bis 70 Gew.-% auf Ci2r zu 18 b s 30 Gew.-% auf (44, zu 5 bis 15 Gew.-% auf Ciß, unter 3 Gew.-% auf ( 0 und unter 10 Gew.-% auf Ciβ verteilt sind.
Als weitere anionische Tenside kommen insbesondere Seifen, vorzugsweise in Mengen von 0,5 bis 8 Gew.-% in Betracht. Geeignet sind gesättigte Fett¬ säureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure oder Stearinsäure, sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische. Insbe¬ sondere sind solche Seifengemische bevorzugt, die zu 50 bis 100 Gew.-% aus gesättigten Ci2-Ci8-Fettsäureseifen und zu 0 bis 50 Gew.-% aus Ölsäure- seife zusammengesetzt sind. Die anionischen Tenside können in Form ihrer Natrium-, Kalium- oder Arnmo- niumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natrium¬ salze vor.
Die Aniontenside werden vorzugsweise in Mengen von 3 bis 25 Gew.-%, ins¬ besondere in Mengen von 10 bis 20 Gew.-%, jeweils bezogen auf die Summe der eingesetzten Bestandteile, eingesetzt. Ihr Gehalt kann jedoch auch über 15 Gew.-% hinausgehen. Bevorzugte Aniontenside sind Fettalkylsulfate, Alkylbenzolsulfonate, Sulfosuccinate sowie Mischungen aus diesen, wie Mi¬ schungen aus Fettalkylsulfaten und Sulfosuccinaten oder Fettalkylsulfaten und Fettalkylbenzolsulfonaten, insbesondere in Kombination mit Seife. Da¬ bei ist es insbesondere bevorzugt, daß wenigstens ein Teil der Sulfonat- und/oder Sulfat-Tenside nicht als fester Bestandteil, sondern in flüssiger Form als Bestandteil der Granulierflüssigkeit eingesetzt wird.
Als Buildersubstanzen kommen vor allem die bekannten Zeolithe sowie Phos¬ phate, insbesondere Tripolyphosphate, in Betracht. Ihr Gehalt beträgt vorzugsweise 20 bis 60 Gew.-%, insbesondere 20 bis 50 Gew.-%, jeweils be¬ zogen auf die Summe der eingesetzten Bestandteile und berechnet als wasserfreie Aktivsubstanz.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser ent¬ haltende Zeolith ist vorzugsweise Zeolith NaA in Waschmittelqualität. Er kommt vorzugsweise als sprühgetrocknetes Pulver zum Einsatz. Bevorzugte Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Vo¬ lumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugs¬ weise 20 bis 22 Gew.-% an gebundenem Wasser.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsäuren, wie Citronen- säure, Bernsteinsäure, Glutarsäure, Adipinsäure, Weinsäure und Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Als weitere organische Buildersubstanzen kommen polymere Polycarboxylate in Betrachts .1,. _ .
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen). Ge¬ eignete copoly ere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Malein¬ säure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Ma¬ leinsäure enthalten. Besonders bevorzugt sind solche Copolymere, in denen 60 bis 85 Gew.-% Acrylsäure und 40 bis 15 Gew.-% Maleinsäure vorliegen. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allge¬ meinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000.
Der Gehalt der Mittel an (co-)polymeren PolycarboxyTaten beträgt vorzugs¬ weise 0,5 bis 8 Gew.-%.
Dabei ist es insbesondere bevorzugt, daß wenigstens ein Teil, vorzugsweise 20 bis 100 Gew.-% der eingesetzten (co-)polymeren Polycarboxylate nicht als fester Bestandteil, sondern in Form einer etwa 20 bis 55 Gew.-%igen wäßrigen Lösung als Bestandteil der Granulierflüssigkeit eingesetzt wird.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umset¬ zung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der euro¬ päischen Patentanmeldung 280223 beschrieben, erhalten werden können. Be¬ vorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Zu den bevorzugt eingesetzten alkalischen Salzen gehören wasserlösliche anorganische Salze wie Bicarbonate, Carbonate, Silikate oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und Alkalisilikat, vor al¬ lem Natriumsilikat mit einem molaren Verhältnis von 1:1 bis 1:4,5, eingesetzt. Der Gehalt der Mittel an Natriumcarbonat beträgt dabei vor¬ zugsweise bis zu 20 Gew.-%, vorteilhafterweise zwischen 1 und 15 Gew.-%. Der Gehalt der Mittel an Natriumsilikat, beispielsweise an amorphem oder kristallinem Natriumdisilikat, beträgt im allgemeinen bis zu 10 Gew.-% und vorzugsweise zwischen 2 und 8 Gew.-%.
Falls Sulfate eingesetzt werden, so geschieht dies vorzugsweise in Mengen zwischen 15 und 40 Gew.-%, bezogen auf das fertige Granulat. Es sind je¬ doch auch Verfahren bevorzugt, in denen kein Sulfat eingesetzt wird.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbin¬ dungen haben das Natriumperborattetrahydrat- und das Natriumperboratmono- hydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind bei¬ spielsweise Natriumpercarbonate, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Per- oxaphthalate, Diperazelainsäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 5 bis 25 Gew.-% und insbe¬ sondere 10 bis 20 Gew.-%, bezogen auf das fertige Granulat. Die Zugabe der Bleichmittel kann entweder in dem erfindungsgemäßen Granulierverfahren oder in einem nachgeschalteten Aufbereitungsschritt erfolgen. Wenn Bleichmittel, vorzugsweise Perborate und Percarbonat, in dem erfindungsgemäßen zweistufigen Granulierverfahren "eingesetzt werden, dann erfolgt ihre Zugabe vorzugsweise in der zweiten Granulierstufe, wobei die Granulattemperatur 70 °C nicht überschreiten sollte. Dies kann gegebenen¬ falls durch Kühlung erreicht werden.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Vergrauen zu ver¬ hindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur ge¬ eignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Bevorzugt werden jedoch Carboxymethylcellulose, Methylcellulose, Methylhydroxyethylcellulose und deren Gemische sowie Polyvinylpyrrolidon ggf. in Mischungen mit den Cellulose-Derivaten vorzugsweise in Mengen zwischen 0,1 und 5 Gew.-%, insbesondere bis 3 Gew.-% eingesetzt.
Zur Granulierung der festen Bestandteile ist eine Granulierflüssigkeit erforderlich, die entweder nur aus reinen flüssigen Bestandteilen oder Mischungen aus diesen besteht oder die feste Bestandteile in gelöster und/oder suspendierter Form enthält. Die Granulierflüssigkeit wird vor¬ zugsweise in Mengen von 5 bis 30 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, eingesetzt. Sie kann insgesamt nur im ersten Mischer/Granulator oder teilweise im ersten Mischer/Granulator und teil¬ weise im zweiten Mischer/Granulator eingesetzt werden. Dabei ist es be¬ vorzugt, daß je nach erwünschtem Schüttgewicht 0 bis 20 Gew.-%, vorzugs¬ weise bis 10 Gew.-%, jeweils bezogen auf die Gesamtmenge der eingesetzten Bestandteile, an Granulierflüssigkeit im zweiten, hochtourigen Mischer/Granulator zugegeben werden. Die Granulierflüssigkeit besteht da¬ bei vorzugsweise aus flüssigen Bestandteilen von Wasch- und/oder Reini¬ gungsmitteln oder aus Wasser, aus wäßrigen Lösungen und/oder aus Mi¬ schungen, die wäßrige Lösungen an sich fester Bestandteile und flüssige Bestandteile von Wasch- und/oder Reinigungsmitteln enthalten.
Zu den flüssigen Bestandteilen von Wasch- und/oder Reinigungsmitteln ge¬ hören insbesondere nichtionische Tenside, die bei der Verfahrenstemperatur in flüssiger, d.h. pumpbarer und fließfähiger Form vorliegen. Zu diesen nichtionischen Tensiden gehören vorzugsweise Anlagerungsprodukte von 1 bis 12 Mol Ethylenoxid an primäre Ci2-Ci8-Fettalkohole und deren Gemische wie Kokos-, Taigfett- oder Oleylalkohol, oder an in 2-Stellung methylverzweigte primäre Alkohole (Oxoalkohole). Insbesondere werden Ci2-Ci4-Alkohole mit 3 EO oder 4 EO, Cg-Cn-Alkohol mit 7 EO, Ci3-Ci5-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Ci2-Cιs-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12- Ci4-Alkohol mit 3 EO und Ci2-Ci8-Alkohol mit 5 EO eingesetzt.
Die angegeben Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeschränkte Homolo¬ genverteilung, auf (narrow ränge ethoxylates, NRE).
Der Gehalt der ethoxylierten Fettalkohole in den fertigen Granulaten be¬ trägt vorzugsweise 5 bis 15 Gew.- . In einer bevorzugten Ausführungsform werden dabei die flüssigen nichtionischen Tenside in Mischung mit niederen Polyalkylenglykolen, die sich von geradkettigen oder verzweigten Glykolen mit 2 bis 6 KohlenStoffatomen ableiten, eingesetzt. Bevorzugte niedere Polyalkylenglykole sind Polyethylenglykole oder Polypropylenglykole, die eine relative Molekülmasse zwischen 200 und 12000, insbesondere zwischen 200 und 4000, beispielsweise bis 2000, aufweisen. Das Gewichtsverhältnis flüssiges Niotensid zu niederem Polyalkylenglykol in diesen Mischungen beträgt dabei vorzugsweise 10 : 1 bis 1 : 1.
Zu den bevorzugten wäßrigen Mischungen gehören auch wäßrige Alkylglykosid-Pasten, in denen Alkylglykoside der allgemeinen Formel R0(G)x eingesetzt werden, in der R einen primären geradkettigen oder in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykose- einheit mit 5 oder 6 C-Atomen, vorzugsweise für Glykose, steht. Der Oligomerisierungsgrad X, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10 und liegt vorzugsweise bei 1,2 bis 1,4.
Weiterhin gehören zu den bevorzugten wäßrigen Lösungen die bereits ge¬ nannten Lösungen von (co-)polymeren Polycarboxylaten. Sie werden vorzugs¬ weise im ersten, niedertourigen Mischer/Granulator zudosiert, um schwere Granulate zu erhalten. Eine Verringerung des Schüttgewichts läßt sich vorzugsweise durch die Zugabe dieser Lösung im zweiten, hochtourigen Mischer/Granulator erreichen.
Pumpfähige, wäßrige Suspensionen von Zeolithen, welche vorzugsweise Sta¬ bilisatoren für diese Suspensionen enthalten, lassen sich bevorzugt im ersten, niedertourigen Mischer/Granulator einsetzen. Besonders bevorzugt ist auch der Einsatz konzentrierter wäßriger Aniontensid-Lösungen und Aniontensid-Pasten. Diese werden vorzugsweise durch Neutralisation der Aniontenside in ihrer Säureform mit hochkonzentrierten wäßrigen Laugen, beispielsweise einer 45 bis 55 jSew.-%igen Natronlauge, in einer handels¬ üblichen Rotor-Stator-Maschine, beispielsweise einem Supraton (R), oder einem Rührkessel hergestellt. Besonders bevorzugt ist dabei die zusätz¬ liche Mitverwendung nichtionischer Tenside, wobei die nichtionischen Ten¬ side vorzugsweise in solchen Mengen eingesetzt werden, daß die Viskosität der Aniontensid-Pasten gesenkt und damit deren Verarbeitbarkeit, insbe¬ sondere Pumpbarkeit und Fließfähigkeit, verbessert wird. Diese Mischungen besitzen einen pH-Wert von mindestens 7,0, vorzugsweise von 7,5 bis 12, und werden als Bestandteile der Granulierflüssigkeit entweder im ersten oder im zweiten Mischer/Granulator zugegeben. Dabei ist es bevorzugt, daß 8 bis 20 Gew.-%, vorzugsweise 10 bis 18 Gew.-%, jeweils bezogen auf die Gesamtmenge der eingesetzten Bestandteile, dieser Aniontensid- Niotensid- Mischungen insbesondere im ersten, niedertourigen Mischer/Granulator zu¬ gegeben werden.
Im Anschluß an die zweistufige Granulierung kann eine Trocknungsstufe nachgeschaltet werden. Dies ist nicht erforderlich, wenn die Granulier¬ flüssigkeit kein Wasser enthält, oder nicht unbedingt erforderlich, wenn die Granulierflüssigkeit Wasser nur in geringen Mengen, beispielsweise bis 12 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, enthält. Die ohne Trocknung tolerierbare Menge Wasser ist dabei stark von der jeweiligen Gesamtzusammensetzung abhängig. Enthält die Granulierflüs¬ sigkeit jedoch Wasser, gleichgültig in welcher Menge, so ist der nachfol¬ gende Trocknungsschritt bevorzugt. Insbesondere wird diese Trocknung in der Wirbelschicht bei Zulufttemperaturen unterhalb 180 °C durchgeführt. Vorzugsweise enthält die Granulierflüssigkeit nur soviel Wasser, daß unter diesen Bedingungen maximal 15 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, an Wasser verdampfen.
Das erfindungsgemäße kontinuierliche Verfahren zeichnet sich nicht nur dadurch aus, daß es die gezielte Einstellung eines gewünschten Schüttge¬ wichts der hergestellten Granulate ermöglicht; es werden auch Granulate erhalten, die sich durch ein sehr homogenes Kornspektrum mit geringen Grobkornanteilen auszeichnen, wobei der Anteil von Granulaten mit einem Durchmesser oberhalb 2 mm und insbesondere oberhalb 1,6 mm vorzugsweise maximal 12 Gew.-% und insbesondere maximal 10 Gew.-% beträgt (Siebanaly¬ se). Diese herausragenden Eigenschaften werden insbesondere dann erzielt, wenn der Füllgrad des ersten Mischers/Granulators auf 10 bis 80 %, vor¬ zugsweise auf 20 bis 70 % eingestellt wird und der zweite Mischer/Granulator mit hohen Umfangsgeschwindigkeiten von etwa 25 m/s bis etwa 30 m/s betrieben wird.
Vorhandene Grobkornanteile, also Granulate mit einem Durchmesser oberhalb 2 mm, vorzugsweise mit einem Durchmesser oberhalb 1,6 mm, werden vorzugs¬ weise abgesiebt und können vorteilhafterweise nach Zerkleinerung, bei¬ spielsweise in einer Mühle, in das kontinuierliche Herstellungsverfahren zurückgeführt werden. Dabei ist es bevorzugt, die zerkleinerten Grobkorn¬ anteile auf das Sieb zurückzuführen und somit weiteren fertigen Granulaten zuzuführen. Eine Rückführung von zerkleinerten Grobkornante len oder auch von Feinkornanteilen, also Granulate mit einem Durchmesser unterhalb 0,1 mm, ist ebenfalls in jeder Granulierstufe möglich.
Die nach dem erfindungsgemäßen Verfahren erhaltenen Granulate können di¬ rekt als Wasch- und/oder Reinigungsmittel eingesetzt werden und/oder sie werden mit weiteren Mengen, vorzugsweise kleinen Mengen; beispielsweise im Bereich von 2 bis 10 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, an flüssigen Niotensiden oder Niotensid-Mischungen in an sich bekannter Weise besprüht und/oder sie werden in einem Aufbereitungs- schritt mit weiteren Bestandteilen, vorzugsweise granulären und insbeson¬ dere granulären und verdichteten Bestandteilen von Wasch- und Reinigungs¬ mitteln vermischt. Zu den weiteren granulären Bestandteilen gehören bei¬ spielsweise ko paktierte Bleichmittel- bzw. Bleichaktivatorgranulate, En¬ zym-Granulate, Schauminhibitor-Granulate, vorzugsweise konzentrierte Schauminhibitor-Granulate sowie granuläre Träger für Färb- und Duftstoffe.
Als Bleichaktivatoren dienen beispielsweise mit H2O2 organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise N,N'-tetraacy- lierte Diamine, ferner Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Der Gehalt der bleichmittelhaltigen Mittel an Bleich¬ aktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 2 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N' ,N'-Tetraacetylethylendiamin (TAED) und l,5-Diacetyl-2,4-dioxo-hexahydro-l,3,5-triazin (DADHT).
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, A ylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstä men oder Pilzen, wie Bacillus subtilis, Bacillus lichenifor- is und Strepto yces griseus gewonnene enzymatische Wirkstoffe. Vorzugs¬ weise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis etwa 2 Gew.-% betragen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hü11Substanzen eingebettet sein, um sie gegen vorzeitige Zer¬ setzung zu schützen.
Als Stabilisatoren insbesondere für Perverbindungen und Enzyme kommen beispielsweise die Salze von Polyphosphonsäuren, insbesondere 1- Hydroxyethan-l,l-diphosphonsäure (HEDP) in Betracht.
Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Ci8-C24-Fettsäuren auf¬ weisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Ge¬ mische mit silanierter Kieselsäure. Mit Vorteil werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Pa¬ raffinen oder Wachsen. Dabei ist es auch möglich, daß Silikonöle und/oder Paraffinöle in dem erfindungsgemäßen zweistufigen Granulierverfahren und vorzugsweise im ersten, niedertourigen Mischer/Granulator eingesetzt wer¬ den.
Zu den weiteren Bestandteilen von Waschmitteln gehören auch optische Auf¬ heller. Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Ge¬ eignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-l,3,5-triazin- -6-yl-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Ver¬ bindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ des substituierten 4,4'-Distyryl-di-phenyls anwesend sein, z.B. die Verbindung 4,4'-Bis(4-chlor-3-sulfostyryl)diphenyl. Auch Gemische der vorgenannten Aufheller können verwendet werden. Besonders einheitlich weiße Granulate werden erhalten, wenn die Mittel außer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vorzugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10~6 bis 10~3 Gew.-%, vorzugsweise um 10"5 Gew.-%, eines blauen Farbstoffs enthält. Ein besonders bevorzugter Farbstoff ist Tinoluχ(R) (Handelsprodukt der Ciba- Geigy).
Die optischen Aufheller bzw. die Mischungen aus optischem Aufheller und Farbstoff werden vorzugsweise in ethoxylierten Niotensiden gelöst und in bekannter Weise auf die nach dem erfindungsgemäßen Verfahren hergestellten Granulate aufgesprüht.
Die auf diese Art hergestellten und mit Vorteilen behafteten granulären Wasch- und/oder Reinigungsmittel weisen im allgemeinen nach dem Absieben der Grobkornanteile vorzugsweise von oberhalb 1,6 mm ein Schüttgewicht zwischen 600 und 1100 g/1, vorzugsweise zwischen 700 und 950 g/1 und ins¬ besondere zwischen 750 und 850 g/1 auf. Die Granulate sind trotz gegebe¬ nenfalls hoher Anteile an ethoxylierten Niotensiden nicht-fettend, staub¬ frei und besitzen nach der gegebenenfalls vorgenommenen Trocknung einen Anteil von Granulaten mit einem Durchmesser oberhalb 1,6 mm von maximal 25 Gew.-%, vorzugsweise maximal 20 Gew.-% und insbesondere von 6 bis 12 Gew.-%, der abgesiebt und rückgeführt wird.
Der Gehalt der Granulate an anionischen und nichtionischen Tensiden be¬ trägt vorzugsweise 10 bis 40 Gew.-% und insbesondere 15 bis 30 Gew.-%, jeweils bezogen auf das fertige Granulat, und 20 bis 60 Gew.-%, vorzugs¬ weise 25 bis 55 Gew.-%, jeweils bezogen auf das fertige Granulat und be¬ rechnet als wasserfreie Aktivsubstanz, an Buildersubstanzen. Insbesondere weisen die fertigen Granulate einen Gehalt von 7 bis 15 Gew.-% an nicht¬ ionischen Tensiden und 0 bis 20 Gew.-%, vorzugsweise 0 bis 10 Gew.-%, an freiem, d.h. nicht-chemisch oder nicht-physikalisch gebundenem Wasser auf. B e i s p i e l e
Beispiel 1 :
In einem Pflugscharmischer der Firma Lödige wurden bei Umfangsgeschwin¬ digkeiten der Werkzeuge von 4 m/s und bei einer Temperatur, welche 35 °C nicht überstieg, 41 Gew.-% wasserhaltiger Zeolith NaA (Wessalith P (R), Handelsprodukt der Firma Degussa, Bundesrepublik Deutschland), 7,01 Gew.-% Natriumcarbonat und 28,35 Gew.-% eines sprühgetrockneten Granulats der unten angegebenen Zusammensetzung homogenisiert und mit 7,07 Gew.-% einer 30 Gew.-%igen wäßrigen Lösung eines (co-)polymeren Polyacrylats (Sokalan CP5 (R), Handelsprodukt der Firma BASF, Bundesrepublik Deuschland) sowie mit 16,57 Gew.-% einer Mischung (Neutralisat) aus 8,18 Gew.-% Cg-Ci3-Alkylbenzolsulfonsäure, 2,32 Gew.-% einer 50 Gew.-%igen wäßrigen Natronlauge und 6,07 Gew.-% eines Cχ2-Ci8-Fettalkohols mit 5 Ethylenoxidgruppen (E0) besprüht. Der Füllgrad dieses niedertourigen Mischers betrug etwa 50 %. Die Verweilzeit der Bestandteile in diesem Mischer betrug etwa 3 Minuten. Das Vorgranulat wurde anschließend in einem Ringschicht-Mischer der Firma Schugi maximal 1 Sekunde bei Umfangsge¬ schwindigkeiten der Ringschicht von etwa 30 m/s und bei Temperaturen von 35 °C granuliert und in einer Wirbelschicht bei Zulufttemperaturen von 130 °C getrocknet. Das fertige nicht-fettende, rieselfähige und nicht-stau- bende Granulat besaß ein Schüttgewicht von 860 g/1. Der Anteil der ge¬ trockneten Granulate mit einem Durchmesser oberhalb 1,6 mm lag vor dem Sieben unter 12 Gew.-%.
Kornspektrum (Siebanalyse) in Gew.-% :
> 1,6 mm > 0,8 mm > 0,4 mm > 0,2 mm > 0,1 mm < 0,1 mm 9,1 28,7 32,9 26,6 2,7 Dieses Granulat wurde mit weiteren Bestandteilen von Wasch- und/oder Rei¬ nigungsmitteln wie Perborattetrahydrat, Bleichaktivator, Schauminhibitor¬ granulat, Enzym, Niotensid und optischem Aufheller vermischt.
Das im niedertourigen Mischer/Granulator eingesetzte sprühgetrocknete Granulat besaß folgende Zusammensetzung:
10 Gew.-% Cg-Ci3-Alkylbenzolsulfonat, Natriumsalz
4 Gew.-% Ci2-Ci4-Fettsäureseife, Natriumsalz
2,5 Gew.-% Cχ2-Ci8-Fettalkohol mit 5 EO
20,0 Gew.-% Polyacrylat, Natriumsalz, (Sokalan CP5 (R))
9,0 Gew.-% Natriumsilikat, Na20:Siθ21 : 2,0 (?)
42,5 Gew.-% Natriumcarbonat
2,0 Gew.-% l-Hydroxyethan-l,l-diphosphonat, Natriumsalz
Rest Wasser, Farbstoff, optischer Aufheller
Beispiel 2:
Beispiel 1 wurde wiederholt. Dabei wurde jedoch das Vorgranulat ohne die Sokalan CR) CP 5-Lösung hergestellt. Die Zugabe des Sokalans erfolgte in Form einer 30 Gew.-%igen wäßrigen Lösung über Düsen während des zweiten Granulierschrittes. Das Schüttgewicht dieser Granulate betrug nach der Trocknung und nach der Absiebung 720 g/1. Der Grobkornanteil oberhalb 1,6 mm betrug 6 Gew.-%.
Beispiel 3:
Beispiel 2 wurde wiederholt. Dabei wurde jedoch der zweite Granulier¬ schritt bei Umfangsgeschwindigkeiten der Ringschicht von 17 m/s durchge¬ führt. Das Schüttgewicht dieser Granulate betrug nach der Trocknung und nach der Absiebung 621 g/1. Der Grobkornanteil oberhalb 1,6 m betrug 21 Gew.-%. Beispiel 4:
Beispiel 1 wurde wiederholt. Dabei betrug die Temperatur des Vorgranulats beim Eintritt in die zweite Granulierstufe 48 °C. Das Schüttgewicht dieser Granulate betrug 830 g/1.
Beispiel 5:
Beispiel 1 wurde wiederholt. Dabei betrug die Verweilzeit im ersten Mischer bei gleichzeitiger Reduzierung der Sokalan (R) CP 5-Lösung auf 6 Gew.-% 4 Minuten. Nach Trocknung und Absiebung von 23 Gew.-% Grobkornan¬ teilen oberhalb 1,6 mm wurde ein Schüttgewicht von 930 g/1 erhalten.

Claims

Patentansprüche
1. Verfahren zur kontinuierlichen Herstellung eines granulären Wasch- und/oder Reinigungsmittels mit hohem Schüttgewicht durch eine zwei¬ stufige Granulierung in zwei hintereinandergeschalteten Mischern/ Granulatoren, dadurch gekennzeichnet, daß in einem ersten, niedertou¬ rigen Mischer/ Granulator 40 bis 100 Gew.-%, bezogen auf die Gesamt¬ menge der eingesetzten Bestandteile, der festen und flüssigen Be¬ standteile vorgranuliert und in einem zweiten, hochtourigen Mischer/ Granulator das Vorgranulat aus der ersten Verfahrensstufe gegebenen¬ falls mit den restlichen festen und/oder flüssigen Bestandteilen ver¬ mischt und in ein Granulat überführt wird, wobei der Anteil der Gra¬ nulate mit einem Durchmesser oberhalb 2 mm weniger als 25 Gew.-% be¬ trägt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Granulie¬ rung im ersten Mischer/Granulator bei Umfangsgeschwindigkeiten der Werkzeuge von 2 m/s bis 7 m/s in einer Zeit zwischen 0,5 und 10 Minu¬ ten und im zweiten Mischer/Granulator bei Umfangsgeschwindigkeiten von 8 m/s bis 35 m/s in einer Zeit zwischen 0,1 und 30 Sekunden, vorzugs¬ weise bis 10 Sekunden und insbesondere zwischen 0,5 und 2 Sekunden, durchgeführt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Temperatur des Vorgranulats beim Eintritt in die zweite Gra¬ nulierstufe zwischen 30 °C und 60 °C beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß wenigstens ein Teil der bei der Granulierung im ersten Mischer/ Granulator eingesetzten Bestandteile, vorzugsweise 10 bis 100 Gew.-%, bezogen auf die im ersten Mischer/Granulator eingesetzten festen Be¬ standteile, als Granulat eingesetzt wird, wobei der Anteil dieser Granulate, vorzugsweise sprühgetrockneter Granulate, insbesondere 10 bis 40 Gew.-%, bezogen auf die Gesamtrezeptur, beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, s ... daß 40 bis 100 Gew.-%, vorzugsweise 60 bis 100 Gew.-% und insbesondere bis 95 Gew.-% der festen und flüssigen Bestandteile in dem ersten Mischer/Granulator vorgranuliert und anschließend mit 0 bis 60 Gew.-%, vorzugsweise 5 bis 40 Gew.-% restlichen festen und/oder flüssigen Be¬ standteilen im zweiten Mischer/Granulator vermischt und in das gege¬ benenfalls noch feuchte Granulat überführt werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Granulierflüssigkeit, die gegebenenfalls feste Bestandteile in gelöster und/oder suspendierter Form enthält, in Mengen von 5 bis 30 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, eingesetzt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß als Granulier¬ flüssigkeit Wasser, wäßrige Lösungen, bei der Verfahrenstemperatur in flüssiger Form vorliegende nichtionische Tenside und/oder Mischungen aus wäßrigen Lösungen und nichtionischen Tensiden vorzugsweise eine Mischung aus einer wäßrigen Aniontensidlösung und nichtionischen Ten¬ siden, wobei die Mischung einen pH-Wert von mindestens 7,0 aufweist eingesetzt werden.
8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß 0 bis 20 Gew.-%, vorzugsweise bis 10 Gew.-%, jeweils bezogen auf die Gesamtmenge der eingesetzten Bestandteile, an Granulierflüssig¬ keit, vorzugsweise eine Mischung aus einer wäßrigen Aniontensidlösung und nichtionischen Tensiden und/oder einer wäßrigen polymeren Poly- carboxylat-Lösung im zweiten, hochtourigen Mischer/Granulator zuge¬ geben werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Füllgrad des ersten Mischers/Granulators auf 10 bis 80% ein¬ gestellt wird und der zweite Mischer/Granulator mit hohen Umfangsge¬ schwindigkeiten von etwa 25 m/s bis etwa 30 m/s betrieben wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß nach der zweistufigen Granulierung die Granulate getrocknet wer¬ den, wobei die Trocknung vorzugsweise in der Wirbelschicht bei Zu¬ lufttemperaturen unterhalb 180 C° durchgeführt wird und dabei maximal 15 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Bestandteile, an Wasser verdampfen.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die erhaltenen Granulate in einem Aufbereitungsschritt mit wei¬ teren Bestandteilen von Wasch- und/oder Reinigungsmitteln vermischt werden.
12. Granuläres Wasch- und/oder Reinigungsmittel, hergestellt nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß es ein Schüttge¬ wicht zwischen 600 und 1100 g/1, vorzugsweise zwischen 700 und 950 g/1 und insbesondere zwischen 750 und 850 g/1 aufweist, wobei nach der gegebenenfalls vorgenommenen Trocknung der Anteil der Granulate mit einem Durchmesser oberhalb 1,6 mm, der abgesiebt und rückgeführt wird, maximal 25 Gew.-%, vorzugsweise maximal 20 Gew.-% und insbesondere 6 bis 12 Gew.-% beträgt.
13. Granulat nach Anspruch 12, dadurch gekennzeichnet, daß es 15 bis 30 Gew.-%, bezogen auf das fertige Granulat, an anionischen und nicht¬ ionischen Tensiden und 20 bis 60 Gew.-%, bezogen auf das fertige Gra¬ nulat und berechnet als wasserfreie Aktivsubstanz, an Buildersubstan¬ zen enthält.
14. Granulat nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß es 7 bis 15 Gew.-%, bezogen auf das fertige Granulat, an nicht¬ ionischen Tensiden und 0 bis 20 Gew.-%, vorzugsweise bis 10 Gew.-%, an freiem Wasser enthält.
PCT/EP1993/001191 1992-05-21 1993-05-13 Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels WO1993023523A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/335,810 US5616550A (en) 1992-05-21 1993-05-13 Process for the continuous production of a granular detergent
EP93909975A EP0642576B1 (de) 1992-05-21 1993-05-13 Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels
DE59303203T DE59303203D1 (de) 1992-05-21 1993-05-13 Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels
JP51988593A JP3488235B2 (ja) 1992-05-21 1993-05-13 粒状の洗浄剤および/または清浄組成物の連続製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4216774A DE4216774A1 (de) 1992-05-21 1992-05-21 Verfahren zur kontinuierlichen Herstellung eines granularen Wasch und/oder Reinigungsmittels
DEP4216774.4 1992-05-21

Publications (1)

Publication Number Publication Date
WO1993023523A1 true WO1993023523A1 (de) 1993-11-25

Family

ID=6459386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/001191 WO1993023523A1 (de) 1992-05-21 1993-05-13 Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels

Country Status (7)

Country Link
US (1) US5616550A (de)
EP (1) EP0642576B1 (de)
JP (1) JP3488235B2 (de)
AT (1) ATE140264T1 (de)
DE (2) DE4216774A1 (de)
ES (1) ES2089820T3 (de)
WO (1) WO1993023523A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660873A1 (de) 1992-09-01 1995-07-05 The Procter & Gamble Company Verfahren zur herstellung von granuliertem reinigungsmittel von hoher dichte und nach dem verfahren hergestellte zusammensetzungen
WO1997022685A1 (en) * 1995-12-20 1997-06-26 Unilever Plc A process for preparing a granular detergent
WO1997023595A1 (de) * 1995-12-22 1997-07-03 Henkel Kommanditgesellschaft Auf Aktien Verfahren zum herstellen granularer wasch- und/oder reinigungsmittel und zur durchführung geeignete vorrichtung
WO1997034991A1 (de) * 1996-03-21 1997-09-25 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung rieselfähiger wasch- oder reinigungsmittelgranulate
WO1998024542A1 (en) * 1996-12-06 1998-06-11 Agglomeration Technology Limited Method of granulating powder material
EP0853117A1 (de) * 1997-01-13 1998-07-15 Henkel Kommanditgesellschaft auf Aktien Granulares Waschmittel mit verbessertem Fettauswaschvermögen
US5866531A (en) * 1994-08-19 1999-02-02 Henkel Kommanditgesellschaft Auf Aktien Process for the production of detergent or cleaning tablets
US5990073A (en) * 1995-06-30 1999-11-23 Lever Brothers Company Process for the production of a detergent composition
US6534471B1 (en) 1998-01-15 2003-03-18 Henkel Kommanditgesellschaft Auf Aktien Method for producing colored detergents and cleaning agents
US7446085B2 (en) 2002-09-06 2008-11-04 Kao Corporation Process for preparing detergent particles
US8426635B2 (en) 2008-03-11 2013-04-23 Clariant Finance (Bvi) Limited Process for preparing solid alkaline earth metal salts of secondary paraffinsulphonic acids
US9102903B2 (en) 2011-02-10 2015-08-11 Weylchem Switzerland Ag Use of transition metal complexes as bleach catalysts in washing and cleaning compositions

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435743C2 (de) * 1994-02-17 1998-11-26 Chemolux Sarl Verfahren zur Herstellung eines Mehrkomponenten-Granulates
US6391844B1 (en) * 1996-10-04 2002-05-21 The Procter & Gamble Company Process for making a detergent composition by non-tower process
US6281188B1 (en) * 1996-10-04 2001-08-28 The Procter & Gamble Company Process for making a low density detergent composition
US6121229A (en) * 1996-10-04 2000-09-19 The Procter & Gamble Company Process for making a detergent composition by non-tower process
US6156719A (en) * 1996-10-04 2000-12-05 The Procter & Gamble Company Process for making a low density detergent composition by non-tower process
US6136777A (en) * 1996-10-04 2000-10-24 The Procter & Gamble Company Process for making a detergent composition by non-tower process
US5914308A (en) * 1996-10-23 1999-06-22 Henkel Corporation Process for agglomerating detergent powders
DE19713852A1 (de) 1997-04-04 1998-10-08 Henkel Kgaa Aktivatoren für Persauerstoffverbindungen in Wasch- und Reinigungsmitteln
DE19732751A1 (de) 1997-07-30 1999-02-04 Henkel Kgaa Neue Beta-Glucanase aus Bacillus
DE19732749A1 (de) 1997-07-30 1999-02-04 Henkel Kgaa Glucanasehaltiges Waschmittel
DE19732750A1 (de) 1997-07-30 1999-02-04 Henkel Kgaa Glucanasehaltiges Reinigungsmittel für harte Oberflächen
US5932531A (en) * 1997-09-26 1999-08-03 Noramtech Corporation Method for forming solid detergent activator for use with oxygen bleaches
DE19824705A1 (de) 1998-06-03 1999-12-09 Henkel Kgaa Amylase und Protease enthaltende Wasch- und Reinigungsmittel
DE19844523A1 (de) 1998-09-29 2000-03-30 Henkel Kgaa Granulationsverfahren
DE19844522A1 (de) 1998-09-29 2000-03-30 Henkel Kgaa Granulationsverfahren
DE19914811A1 (de) 1999-03-31 2000-10-05 Henkel Kgaa Enzym- und bleichaktivatorhaltige Wasch- und Reinigungsmittel
ATE345168T1 (de) * 1999-06-24 2006-12-15 Donald E Maynard Vorrichtung zur granulierung von kunststoffen
MXPA03000793A (es) 2000-07-28 2003-06-04 Henkel Kgaa Enzima amilolitica novedosa, extraida de bacilo sp a 7-7 (dsm 12368) y agentes de lavado y limpiadores que contienen esta enzima amilolitica novedosa.
DE10058645A1 (de) 2000-11-25 2002-05-29 Clariant Gmbh Verwendung von cyclischen Zuckerketonen als Katalysatoren für Persauerstoffverbindungen
WO2002044350A2 (de) 2000-11-28 2002-06-06 Henkel Kommanditgesellschaft Auf Aktien Cyclodextrin-glucanotransferase (cg tase) aus bicillus agaradherens (dsm 9948) sowie wasch- und reinigungsmittel mit dieser neuen cyclodextrin-glucanotransferase
DE10102248A1 (de) 2001-01-19 2002-07-25 Clariant Gmbh Verwendung von Übergangsmetallkomplexen mit Oxim-Liganden als Bleichkatalysatoren
DE10138753B4 (de) * 2001-08-07 2017-07-20 Henkel Ag & Co. Kgaa Wasch- und Reinigungsmittel mit Hybrid-Alpha-Amylasen
DE60217889T2 (de) * 2001-10-25 2007-05-31 Unilever N.V. Verfahren zur herstellung von waschmittelgranulaten
DE10160319B4 (de) * 2001-12-07 2008-05-15 Henkel Kgaa Tensidgranulate und Verfahren zur Herstellung von Tensidgranulaten
DE10163603B4 (de) * 2001-12-21 2006-05-04 Henkel Kgaa Verfahren zur Herstellung builderhaltiger Tensidgranulate
DE10163748A1 (de) 2001-12-21 2003-07-17 Henkel Kgaa Neue Glykosylhydrolasen
DE10211389A1 (de) * 2002-03-15 2003-09-25 Clariant Gmbh Ammoniumnitrile und deren Verwendung als hydrophobe Bleichaktivatoren
DE10214388A1 (de) * 2002-03-30 2003-10-16 Cognis Deutschland Gmbh Verfahren zur Herstellung fester Mittel
DE10258006B4 (de) * 2002-12-12 2006-05-04 Henkel Kgaa Trockenneutralisationsverfahren II
DE10260930A1 (de) * 2002-12-20 2004-07-15 Henkel Kgaa Neue Cholinoxidasen
DE10260903A1 (de) * 2002-12-20 2004-07-08 Henkel Kgaa Neue Perhydrolasen
DE10304131A1 (de) 2003-02-03 2004-08-05 Clariant Gmbh Verwendung von Übergangsmetallkomplexen als Bleichkatalysatoren
DE102004016497B4 (de) 2004-04-03 2007-04-26 Henkel Kgaa Verfahren zur Herstellung von Granulaten und deren Einsatz in Wasch- und/oder Reinigungsmitteln
DE102004028494A1 (de) * 2004-06-11 2005-12-29 Clariant Gmbh Mischungen von Ammoniumnitril-Bleichaktivatoren und Aminosäuren
JP2008502746A (ja) * 2004-06-16 2008-01-31 ヘンケル コマンディットゲゼルシャフト アウフ アクチエン コンポミックスマシーンにおいて中性化することにより得られるターゲット造粒
DE102004029475A1 (de) * 2004-06-18 2006-01-26 Henkel Kgaa Neues enzymatisches Bleichsystem
DE502005008002D1 (de) * 2004-09-08 2009-10-08 Clariant Produkte Deutschland Bleichmittel-mischungen
DE102004043360A1 (de) * 2004-09-08 2006-03-09 Clariant Gmbh Bleichaktivator-Mischungen
DE102004047776B4 (de) 2004-10-01 2018-05-09 Basf Se Gegen Di- und/oder Multimerisierung stabilisierte Alpha-Amylase-Varianten, Verfahren zu deren Herstellung sowie deren Verwendung
DE102004047777B4 (de) 2004-10-01 2018-05-09 Basf Se Alpha-Amylase-Varianten mit erhöhter Lösungsmittelstabilität, Verfahren zu deren Herstellung sowie deren Verwendung
DE102005039580A1 (de) 2005-08-19 2007-02-22 Henkel Kgaa Farbschützendes Waschmittel
DE102005053529A1 (de) 2005-11-08 2007-06-21 Henkel Kgaa System zur enzymatischen Generierung von Wasserstoffperoxid
JP2007172716A (ja) * 2005-12-20 2007-07-05 Sony Corp 再生装置、再生方法および再生プログラム、記録媒体およびデータ構造、ならびに、オーサリング装置、オーサリング方法およびオーサリングプログラム
WO2007134614A1 (de) * 2006-05-18 2007-11-29 Henkel Ag & Co. Kgaa Farbschützendes waschmittel
DE102007016391A1 (de) 2007-04-03 2008-10-09 Henkel Ag & Co. Kgaa Farbschützendes Wasch- oder Reinigungsmittel
DE102007028310A1 (de) 2007-06-20 2008-12-24 Clariant International Ltd. Tensidmischungen mit synergistischen Eigenschaften
US9427289B2 (en) * 2007-10-31 2016-08-30 Illuminoss Medical, Inc. Light source
DE102008024084A1 (de) 2008-05-17 2009-11-19 Clariant International Ltd. Wasch- und Reinigungsmittel
WO2011005803A1 (en) * 2009-07-09 2011-01-13 The Procter & Gamble Company Continuous process for making a laundry detergent composition
DE102014009836B4 (de) 2014-07-03 2017-04-06 Weylchem Wiesbaden Gmbh Natriumsalze sekundärer Alkansulfonate enthaltende Compounds, ihre Herstellung und Verwendung sowie Wasch-, Desinfektion- und Reinigungsmittel enthaltend diese

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2568584A1 (fr) * 1984-08-06 1986-02-07 Kao Corp Detergent en poudre a haute densite et son procede de preparation
EP0367339A2 (de) * 1988-11-02 1990-05-09 Unilever N.V. Verfahren zur Herstellung einer körnigen Reinigungsmittelzusammensetzung mit hoher Schüttdichte
EP0368137A1 (de) * 1988-11-10 1990-05-16 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung zeolithhaltiger Granulate hoher Dichte
EP0390251A2 (de) * 1989-03-30 1990-10-03 Unilever N.V. Detergens-Zusammensetzungen und Verfahren zu ihrer Herstellung
EP0420317A1 (de) * 1989-09-29 1991-04-03 Unilever N.V. Verfahren zur Herstellung von Detergenszubereitungen mit hoher Schüttdichte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3706036A1 (de) * 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
GB8817386D0 (en) * 1988-07-21 1988-08-24 Unilever Plc Detergent compositions & process for preparing them
CA1323277C (en) * 1988-04-29 1993-10-19 Robert Donaldson Process for preparing detergent compositions
US5366652A (en) * 1993-08-27 1994-11-22 The Procter & Gamble Company Process for making high density detergent agglomerates using an anhydrous powder additive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2568584A1 (fr) * 1984-08-06 1986-02-07 Kao Corp Detergent en poudre a haute densite et son procede de preparation
EP0367339A2 (de) * 1988-11-02 1990-05-09 Unilever N.V. Verfahren zur Herstellung einer körnigen Reinigungsmittelzusammensetzung mit hoher Schüttdichte
EP0368137A1 (de) * 1988-11-10 1990-05-16 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung zeolithhaltiger Granulate hoher Dichte
EP0390251A2 (de) * 1989-03-30 1990-10-03 Unilever N.V. Detergens-Zusammensetzungen und Verfahren zu ihrer Herstellung
EP0420317A1 (de) * 1989-09-29 1991-04-03 Unilever N.V. Verfahren zur Herstellung von Detergenszubereitungen mit hoher Schüttdichte

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660873A1 (de) 1992-09-01 1995-07-05 The Procter & Gamble Company Verfahren zur herstellung von granuliertem reinigungsmittel von hoher dichte und nach dem verfahren hergestellte zusammensetzungen
EP0660873B2 (de) 1992-09-01 2006-05-31 The Procter & Gamble Company Granuliertes reinigungsmittel von hoher dichte
US5866531A (en) * 1994-08-19 1999-02-02 Henkel Kommanditgesellschaft Auf Aktien Process for the production of detergent or cleaning tablets
US5990073A (en) * 1995-06-30 1999-11-23 Lever Brothers Company Process for the production of a detergent composition
US6077820A (en) * 1995-12-20 2000-06-20 Lever Brothers Company Division Of Conopco, Inc. Process for preparing a granular detergent
WO1997022685A1 (en) * 1995-12-20 1997-06-26 Unilever Plc A process for preparing a granular detergent
AU702278B2 (en) * 1995-12-20 1999-02-18 Unilever Plc A process for preparing a granular detergent
US5929021A (en) * 1995-12-20 1999-07-27 Lever Brothers, Division Of Conopco, Inc. Process for preparing a granular detergent
EA000766B1 (ru) * 1995-12-20 2000-04-24 Унилевер Н.В. Способ получения гранулированного моющего средства
WO1997023595A1 (de) * 1995-12-22 1997-07-03 Henkel Kommanditgesellschaft Auf Aktien Verfahren zum herstellen granularer wasch- und/oder reinigungsmittel und zur durchführung geeignete vorrichtung
WO1997034991A1 (de) * 1996-03-21 1997-09-25 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung rieselfähiger wasch- oder reinigungsmittelgranulate
WO1998024542A1 (en) * 1996-12-06 1998-06-11 Agglomeration Technology Limited Method of granulating powder material
EP0853117A1 (de) * 1997-01-13 1998-07-15 Henkel Kommanditgesellschaft auf Aktien Granulares Waschmittel mit verbessertem Fettauswaschvermögen
US6534471B1 (en) 1998-01-15 2003-03-18 Henkel Kommanditgesellschaft Auf Aktien Method for producing colored detergents and cleaning agents
US7446085B2 (en) 2002-09-06 2008-11-04 Kao Corporation Process for preparing detergent particles
US8426635B2 (en) 2008-03-11 2013-04-23 Clariant Finance (Bvi) Limited Process for preparing solid alkaline earth metal salts of secondary paraffinsulphonic acids
US9102903B2 (en) 2011-02-10 2015-08-11 Weylchem Switzerland Ag Use of transition metal complexes as bleach catalysts in washing and cleaning compositions

Also Published As

Publication number Publication date
DE59303203D1 (de) 1996-08-14
EP0642576B1 (de) 1996-07-10
JPH07506611A (ja) 1995-07-20
US5616550A (en) 1997-04-01
ATE140264T1 (de) 1996-07-15
DE4216774A1 (de) 1993-11-25
EP0642576A1 (de) 1995-03-15
ES2089820T3 (es) 1996-10-01
JP3488235B2 (ja) 2004-01-19

Similar Documents

Publication Publication Date Title
EP0642576B1 (de) Verfahren zur kontinuierlichen herstellung eines granularen wasch- und/oder reinigungsmittels
EP0486592B1 (de) Herstellung verdichteter granulate für waschmittel
EP0603207B1 (de) Verfahren zur herstellung von tensidgranulaten
EP0595946B1 (de) Verfahren zur herstellung von waschmitteln mit hohem schüttgewicht und verbesserter lösegeschwindigkeit
EP0337330B1 (de) Verfahren zur Erhöhung der Dichte sprühgetrockneter, phosphatreduzierter Waschmittel
DE4203031A1 (de) Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
EP0663005B1 (de) Verfahren zur herstellung von tensidgranulaten
EP0683814B1 (de) Verfahren zur herstellung von tensidgranulaten
EP0772674A1 (de) Verfahren zur herstellung von tensidgranulaten
WO1994014946A1 (de) Granulare wasch- und/oder reinigungsmittel
DE19601841A1 (de) Niotensidreiche Granulate und Verfahren zu ihrer Herstellung
EP0804535B1 (de) Bleichendes wasch- und reinigungsmittel in granulatform
EP0605436B1 (de) Verfahren zur herstellung von zeolith-granulaten
EP0647261B1 (de) Granulares wasch- und reinigungsmittel
WO1993005133A1 (de) Wasch- und/oder reinigungsverfahren
DE19735788A1 (de) Verfahren zur Herstellung hochtensidhaltiger Granulate
EP0674703B1 (de) Verfahren zur herstellung eines granulierten wasch- und reinigungsmittels
DE19548346A1 (de) Verfahren zum Herstellen granularer Wasch- und/oder Reinigungsmittel und zur Durchführung geeignete Vorrichtung
DE4304475A1 (de) Granuliertes Wasch- und Reinigungsmittel
WO1997018290A1 (de) Verfahren zur herstellung von granularen wasch- oder reinigungsmitteln oder komponenten hierfür
DE19546465A1 (de) Verfahren zur Herstellung von granularen Wasch- oder Reinigungsmitteln oder Komponenten hierfür

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993909975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08335810

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993909975

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993909975

Country of ref document: EP