EP0333912A2 - Verfahren zum Verdampfen einer Probensubstanz - Google Patents

Verfahren zum Verdampfen einer Probensubstanz Download PDF

Info

Publication number
EP0333912A2
EP0333912A2 EP88111565A EP88111565A EP0333912A2 EP 0333912 A2 EP0333912 A2 EP 0333912A2 EP 88111565 A EP88111565 A EP 88111565A EP 88111565 A EP88111565 A EP 88111565A EP 0333912 A2 EP0333912 A2 EP 0333912A2
Authority
EP
European Patent Office
Prior art keywords
sample substance
matrix material
molecules
laser beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88111565A
Other languages
English (en)
French (fr)
Other versions
EP0333912A3 (en
EP0333912B1 (de
Inventor
Edward Prof. Dr. Schlag
Josef Lindner
Ronald C. Dr. Beavis
J. Dr. Grotemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Daltonics GmbH and Co KG
Original Assignee
Bruken Franzen Analytik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruken Franzen Analytik GmbH filed Critical Bruken Franzen Analytik GmbH
Publication of EP0333912A2 publication Critical patent/EP0333912A2/de
Publication of EP0333912A3 publication Critical patent/EP0333912A3/de
Application granted granted Critical
Publication of EP0333912B1 publication Critical patent/EP0333912B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/02Molecular or atomic beam generation

Definitions

  • the invention relates to a method for vaporizing a sample substance consisting of large molecules, in which the sample substance is exposed to laser beam pulses of high energy, so that the molecules located on the surface of the sample substance are desorbed by the energy of the laser beam pulses.
  • the molecules of the sample substance are effectively cooled, by means of which Decomposition should be largely excluded.
  • the ionization of the sample molecules required for mass spectroscopic analysis takes place within the beam of the carrier gas at a later point in time.
  • the invention has for its object to provide a method for vaporizing large molecules, in which the risk of destruction of the molecules by the Energy supplied to evaporation is greatly reduced, if not completely switched off.
  • sample substance is mixed with a matrix material which decomposes easily under the influence of the laser beam pulses and the mixture consisting of the sample substance and the matrix material is exposed to the laser beam pulses.
  • the energy supplied by means of the laser beam pulses is distributed to the sample substance and the matrix material and is primarily used to cause the matrix to disintegrate.
  • an effective destruction of the material takes place in the vicinity of the sample molecules embedded in the matrix substance, with the result that the sample molecules lose the connection to the surface and thus also to other molecules and are thus thrown away from the surface of the sample substance .
  • This process could be called a "local explosion". Therefore, when using the method according to the invention, the sensitive molecules of the sample substance are detached from the sample surface without having to absorb a very high energy themselves.
  • the disintegration of the matrix material creates a kind of "own jet", which is directed away from the sample surface and whose gas particles effectively cool the desorbed sample molecules before they reach a supersonic jet, for example, in which further cooling takes place in the manner described above.
  • a matrix material which consists of at least one compound which easily decomposes into gas molecules. It is advantageous for effective protection of the sample substance if a mixture is used in which the number of molecules of the matrix material is greater than the number of molecules of the sample substance.
  • the proportion of the sample substance in the mixture can be 10 to 40% by weight, depending on the type of sample substance on the one hand and the type of compounds used for the matrix on the other hand.
  • the method according to the invention is particularly effective when a matrix material is used which contains at least one compound which absorbs light with the wavelength of the laser beam pulses.
  • a matrix material which contains at least one compound which absorbs light with the wavelength of the laser beam pulses.
  • organic and inorganic compounds are sugar, in particular pentose or hexose, but also polysaccharides such as cellulose. These compounds decompose thermally to CO2 and H2O, so that they do not form residues that could lead to chemical reactions.
  • An inorganic In particular, ammonium nitrate, which disintegrates practically without residues, should be mentioned.
  • metal dust preferably gold or silver dust with a grain size of less than 40 ⁇ m
  • matrix materials can also be used which are not thermally decomposed as a result of the absorption of the laser radiation.
  • plasma waves are generated on the surface of the metal particles, which propagate as shock waves and on the surface of the matrix material cause the matrix to tear and thus release the embedded molecules.
  • the use of a polyethylene as the matrix material has proven to be particularly suitable for this variant of the method according to the invention.
  • polyethylene has the particular advantage that this material is already used as a matrix material in infrared spectroscopy and therefore tried and tested materials and devices for embedding the sample substance in such polyethylene are available.
  • pellets can be formed from the matrix material and the sample substance and exposed to the laser beam pulses.
  • the method according to the invention was used for the vaporization of organic compounds which vary greatly in their chemical composition. So it can easily be used for molecules that have strongly polar groups, as well as for non-polar molecules. Connections are among the first with an acidic and / or basic character, such as peptides, amino acids and dyes, while the latter include aromatic and non-aromatic hydrocarbons. It has been found to be particularly advantageous that the total yield of desorbed sample molecules can be increased by a factor of 4 to 10 compared to evaporation without mixing with a matrix material, depending on the type of sample substance.
  • pellets made of a spectroscopic polyethylene which is transparent to radiation in the range of 10 ⁇ m wavelength are used in a proportion of about 10 ⁇ 1 to 10 ⁇ 2 Gew.T. the sample substance and about 10 ⁇ 1 to 10 ⁇ 2 Gew.T. made of gold or silver dust and exposed to the radiation of a CO2 laser.
  • a spectroscopic polyethylene which is transparent to radiation in the range of 10 ⁇ m wavelength
  • a sample which was located on a sample holder arranged a few millimeters below a supersonic jet nozzle was used to carry out the method according to the invention irradiated with an IR laser beam pulse, the energy of which was 50 mJ and the duration of which was 20 ⁇ s.
  • the supersonic gas jet was switched on in each case after an IR laser beam pulse, so that the gaseous products generated by the laser beam pulse were carried away by the supersonic gas jet and cooled when the gas jet expanded.
  • the gas jet was then passed through means for removing any cations so that only neutral molecules enter a subsequent ionization area in which a UV laser beam cuts the gas jet.
  • Laser beam pulses of 5 ns duration with an energy of 300 ⁇ J were generated by the UV laser.
  • the cations generated in this way were fed to a time-of-flight mass spectrometer and detected with a multi-channel plate arrangement.
  • the time-of-flight mass spectrometer used was that of Anal. Instrum., 16, 151 (1986).
  • the typical mass resolution is in the range from 6000 to 10000 according to the FWHM definition.
  • sample substances examined with the described device were dipeptides. About 1 mg of the peptide was slurried in 50 ul water and then 20 ul of this slurry was applied to the sample holder. In most of the spectra obtained, about 10% of the substance applied to the sample carrier was used to generate the spectrum.
  • FIG. 1 shows the mass spectrum of the pure peptide leucine tryptophan obtained in the manner described above.
  • the spectrum shows a further line 2 of a substance of the mass M-18.
  • FIG. 2 shows the spectrum of the same peptide leucine-tryptophan, however after embedding the peptide in a glucose matrix in a ratio of 1 mg glucose per 1 mg peptide. Mixing with the glucose results in almost complete suppression of the M-18 line, which is due to the destruction of part of the peptide molecules during evaporation.
  • pellets were produced from 5 mg of powdered polyethylene, about 0.1 mg of powdered silver or gold and the specified amount of the sample substance. These pellets were exposed to the radiation of a scanning TEA laser with a wavelength of 10.6 ⁇ m and a pulse power of 10 mJ.
  • the intensity of the trailing edge was only about half the intensity of the sharp one Top.
  • the molecules of the sample substance desorbed by the laser beam pulses entered a gas jet generated by a supersonic nozzle, which was located at a distance of 1 to 2 mm from the desorption point.
  • the back pressure of the jet was 1 to 2 bar.
  • the molecules of the sample substance were distributed over the gas jet after a flight of 80 mm in the direction of the ionization area.
  • the mass spectrometer used was the same as in the previous examples.
  • 5 and 6 illustrate the significant increase in sensitivity that can be obtained by embedding the substance to be examined in a matrix of polyethylene with an admixture of silver.
  • 10 mg of powdered Leu-Tyr-Leu results in a line with an intensity that is only slightly greater than the intensity of the line obtained from only 100 ng of Leu-Tyr-Leu embedded in polyethylene with silver, that is, around 10 ⁇ 5 lesser amount.
  • the reason for this is that the evaporation of the Leu-Tyr-Leu embedded in the polyethylene matrix with the addition of silver powder takes place practically without any destruction of the molecules, while the substance without a protective matrix by bombardment with the laser beam to a high degree gets destroyed.
  • FIG. 7 to 9 illustrate the spectra of substances from which no signal could be obtained at all up to now, ie without embedding according to the invention in a matrix material.
  • the spectrum of Fig. 7 shows the line of thymine, which was obtained from only 50 ug of the substance in a matrix of polyethylene with silver.
  • the spectrum according to FIG. 8 was even contained in a gold dust using only 10 ⁇ g adenosine received matrix.
  • Fig. 9 shows the spectrum of tris-Ru-bipyridyl acetate. The amount used was only 20 yg in a matrix containing gold.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Beim Verdampfen einer aus großen Molekülen bestehenden probensubstanz, insbesondere zum Zweck massenspektroskopischer Untersuchungen, kann die zum Verdampfen zugeführte Energie eine thermolytische Zersetzung der Probensubstanz bewirken. Um eine solche Zersetzung zu verhindern, wird nach der Erfindung die Probensubstanz vor dem Bestrahlen mit einem Matrixmaterial vermischt, das aus einer unter der Wirkung des Laserstrahles leicht in gasförmige Moleküle zerfallenden Verbindung besteht. Dabei kann es sich um ein die Strahlung absorbierendes, thermolytisch leicht zerfallendes oder aber ein für die Laserstrahlung durchlässiges, aber mit einem Metallpulver versetztes Material handeln. Wird das Gemisch Laserstrahlimpulsen ausgesetzt, zerfällt zunächst das instabile Matrixmaterial und setzt dadurch die eingebetteten Moleküle der Probensubstanz frei. Insbesondere in Verbindung mit einem kühlenden Gasstrahl läßt sich so eine Zerstörung der Moleküle der Probensubstanz praktisch vollständig vermeiden. Geeignete Verbindungen für die Matrix sind insbesondere Zucker, Cellulose und NH4NO3 sowie Polyethylen mit einer Beimengung an Gold- oder Silberstaub.

Description

  • Die Erfindung betrifft ein Verfahren zum Verdampfen einer aus großen Molekülen bestehenden Probensubstanz, bei dem die Proben­substanz Laserstrahlimpulsen hoher Energie ausgesetzt wird, so daß die sich an der Oberfläche der Probensubstanz befindenden Moleküle durch die Energie der Laserstrahlimpulse desorbiert werden.
  • Für die massenspektroskopische Untersuchung ist es erforderlich, feste Probensubstanzen in einen gasförmigen Zustand zu über­führen. Ein solcher Vorgang ist dann mit erheblichen Schwierig­keiten verbunden, wenn die Probensubstanz aus sehr großen Mole­külen besteht, die durch die Zufuhr der zum Verdampfen erforder­lichen Energie leicht zersetzt werden können. Aus der DE-OS 32 24 801 ist ein Verfahren zum Verdampfen einer aus großen Mole­külen bestehenden Probensubstanz bekannt, bei dem die Proben­substanz Laserstrahlimpulsen ausgesetzt wird, deren Energie und Dauer so bemessen ist, daß die Probensubstanz schneller ver­ substanz Laserstrahlimpulsen ausgesetzt wird, deren Energie und Dauer so bemessen ist, daß die Probensubstanz schneller ver­dampft als sie sich zersetzt. Die dabei entstehenden neutralen Moleküle werden dem Strahl eines Trägergases beigemischt, der durch Expansion adiabatisch gekühlt wird. Indem die neutralen Moleküle in einen Bereich des Strahles eingeführt werden, in dem dieser zu expandieren beginnt, und dieser Bereich auf einer Temperatur gehalten wird, die wesentlich geringer ist als die Zersetzungstemperatur der Probensubstanz, erfolgt eine effektive Kühlung der Moleküle der Probensubstanz, durch die deren Zer­setzung weitgehend ausgeschlossen werden soll. Die zur massen­spektroskopischen Untersuchung erforderliche Ionisierung der Probenmoleküle erfolgt innerhalb des Strahles des Trägergases zu einem späteren Zeitpunkt.
  • Obwohl das bekannte Verfahren bei vielen Substanzen mit Erfolg angewendet werden kann, haben die massenspektroskopischen Unter­suchungen solcher Substanzen gezeigt, daß sich im Spektrum Linien befinden, die als Zerfallsprodukte der Probensubstanz betrachtet werden können. Eingehende Untersuchungen haben ge­zeigt, daß diese Zerfallsprodukte beim Verdampfen der Proben­substanz und nicht bei der späteren Ionisierung entstehen. Diese Zerfallsprodukte verhindern zwar nicht die spektrometri­sche Feststellung der Probensubstanz, vermindern jedoch die Ausbeute an unversehrten Molekülen und führen zu störenden Linien im Spektrum.
  • Demgemäß liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Verdampfen von großen Molekülen zur Verfügung zu stellen, bei dem die Gefahr einer Zerstörung der Moleküle durch die zum Verdampfen zugeführte Energie stark reduziert, wenn nicht sogar gänzlich ausgeschaltet ist.
  • Diese Aufgabe wird nach der Erfindung dadurch gelöst, daß die Probensubstanz vor dem Bestrahlen mit einem unter dem Einfluß der Laserstrahlimpulse leicht zerfallenden Matrixmaterial ver­mischt und das aus der Probensubstanz und dem Matrixmaterial bestehende Gemisch den Laserstrahlimpulsen ausgesetzt wird.
  • Durch das Einbetten der Probensubstanz in ein leicht zerfallen­des Matrixmaterial wird die mittels der Laserstrahlimpulse zugeführte Energie auf die Probensubstanz und das Matrixmaterial verteilt und in erster Linie dazu verbraucht, einen Zerfall der Matrix zu bewirken. Durch diesen Zerfall des Matrixmaterials in Gasmoleküle findet in der Umgebung der in die Matrixsubstanz eingebetteten Probenmoleküle eine effektvolle Zerstörung des Materials mit dem Ergebnis statt, daß die Probenmoleküle die Verbindung zur Oberfläche und damit auch zu anderen Molekülen verlieren und dadurch von der Oberfläche der Probensubstanz weggeschleudert werden. Diesen Vorgang könnte man als "lokale Explosion" bezeichnen. Daher werden bei Anwendung des erfin­dungsgemäßen Verfahrens die empfindlichen Moleküle der Proben­substanz von der Probenoberfläche gelöst, ohne daß sie selbst eine sehr hohe Energie aufnehmen müßten. Zugleich entsteht durch den Zerfall des Matrixmaterials eine Art "Eigenjet", der von der Probenoberfläche weggerichtet ist und dessen Gasteilchen die desorbierten Probenmoleküle schon wirksam abkühlen, bevor sie beispielsweise einen Überschallstrahl erreichen, in dem in der oben beschriebenen Weise eine weitere Abkühlung stattfindet.
  • Bei einer Variante des erfindungsgemäßen Verfahrens wird ein Matrixmaterial verwendet, das aus mindestens einer thermolytisch leicht in Gasmoleküle zerfallenden Verbindung besteht. Hierbei ist es für einen wirksamen Schutz der Probensubstanz vorteil­haft, wenn ein Gemisch verwendet wird, in dem die Anzahl der Moleküle des Matrixmaterials größer ist als die Anzahl der Moleküle der Probensubstanz. Dabei kann der Anteil der Proben­substanz im Gemisch, je nach Art der Probensubstanz einerseits und der Art der für die Matrix verwendeten Verbindungen anderer­seits, 10 bis 40 Gew. % betragen.
  • Das erfindungsgemäße Verfahren ist dann besonders wirksam, wenn ein Matrixmaterial verwendet wird, das mindestens eine Verbindung enthält, die Licht mit der Wellenlänge der Laser­strahlimpulse absorbiert. In diesem Fall ist besonders gut gewährleistet, daß der wesentliche Teil der durch die Laser­strahlimpulse zugeführten Energie von dem Matrixmaterial ab­sorbiert wird und die Moleküle der Probensubstanz durch die in ihrer Umgebung in gasförmige Moleküle zerfallenden Verbindungen des Matrixmaterials freigesetzt werden.
  • Die oben genannte Bedingung, daß die das Matrixmaterial bil­denden Verbindungen thermolytisch leicht in gasförmige Moleküle zerfallen, wird sowohl von organischen als auch anorganischen Verbindungen erfüllt. Besonders geeignete organische Verbin­dungen sind Zucker, insbesondere Pentose oder Hexose, aber auch Polysaccharide wie Cellulose. Diese Verbindungen zerfallen thermolytisch zu CO₂ und H₂O, so daß sie keine Rückstände bil­den, die zu chemischen Reaktionen führen könnten. An anorgani­ schen Verbindungen ist insbesondere Ammoniumnitrat zu nennen, das praktisch rückstandsfrei zerfällt.
  • Bei einer anderen Variante des erfindungsgemäßen Verfahrens wird in das Matrixmaterial Metallstaub, vorzugsweise Gold- oder Silberstaub mit einer Korngröße von weniger als 40 µm, eingebettet. In diesem Fall können auch Matrixmaterialien ver­wendet werden, die nicht infolge der Absorption der Laserstrah­lung thermolytisch zersetzt werden. Obwohl diese Theorie nicht vollständig gesichert ist, kann angenommen werden, daß an der Oberfläche der Metallteilchen Plasmawellen entstehen, die sich als Schockwellen ausbreiten und an der Oberfläche des Matrixma­terials ein Zerreißen der Matrix und damit wiederum ein Frei­setzen der eingebetteten Moleküle bewirken. Als besonders geeig­net hat sich für diese Variante des erfindungsgemäßen Verfahrens die Verwendung eines Polyethylens als Matrixmaterial erwiesen. Die Verwendung von Polyethylen hat den besonderen Vorteil, daß dieses Material bereits in der Infrarot-Spektroskopie als Ma­trixmaterial Material verwendet wird und daher erprobte Mate­rialien und Geräte zur Einbettung der Probensubstanz in solches Polyethylen zur Verfügung stehen.
    So können insbesondere aus dem Matrixmaterial und der Proben­substanz Pellets geformt und den Laserstrahlimpulsen ausgesetzt werden.
  • Das erfindungsgemäße Verfahren wurde zur Verdampfung von orga­nischen Verbindungen angewendet, die in ihrer chemischen Zu­sammensetzung stark variieren. So läßt es sich ohne weiteres bei Molekülen, die stark polare Gruppen haben, als auch bei unpolaren Molekülen anwenden. Zu den ersten gehören Verbindungen mit acidischem und/oder basischem Charakter, wie z.B. Peptide, Amminosäuren und Farbstoffe, während zu den letzten aromatische und nicht aromatische Kohlenwasserstoffe zählen. Dabei hat sich als besonders vorteilhaft herausgestellt, daß die Total­ausbeute an desorbierten Probenmolekülen gegenüber der Ver­dampfung ohne die Vermischung mit einem Matrixmaterial, je nach der Art der Probensubstanz, um einen Faktor 4 bis 10 erhöht werden konnte.
  • Bei einer besonders bevorzugten Ausführungsform des erfindungs­gemäßen Verfahrens werden Pellets aus einem spektroskopischen Polyethylen, das für Strahlung im Bereich von 10 µm Wellenlänge durchlässig ist, mit einem Anteil von etwa 10⁻¹ bis 10⁻² Gew.T. der Probensubstanz und etwa 10⁻¹ bis 10⁻² Gew.T. an Gold- oder Silberstaub hergestellt und der Strahlung eines CO₂-Lasers ausgesetzt. Auf diese Weise ist es gelungen, nicht nur die Empfindlichkeit des erfindungsgemäßen Verfahres erheblich zu steigern, sondern auch Moleküle der Massenspektroskopie zuzu­führen, deren massenspektroskopische Untersuchung bisher unmög­lich schien, nämlich Nukleotide.
  • Die Erfindung wird im folgenden anhand einiger Beispiele näher beschrieben und erläutert, deren Ergebnisse durch die in den Fig. 1 bis 9 der Zeichnung dargestellten Diagramme wiedergegeben werden.
  • Bei den durch die Fig. 1 bis 4 veranschaulichten Beispielen wurde zur Durchführung des erfindungsgemäßen Verfahrens eine Probe, die sich auf einem wenige Millimeter unterhalb einer Überschall-Strahldüse angeordneten Probenträger befand, mit einem IR-Laserstrahlimpuls bestrahlt, dessen Energie 50 mJ und dessen Dauer 20 µs betrug. Der Überschall-Gasstrahl wurde je­weils nach einem IR-Laserstrahlimpuls eingeschaltet, so daß die durch den Laserstrahlimpuls erzeugten gasförmigen Produkte von dem Überschall-Gasstrahl mitgenommen und bei der Expansion des Gasstrahles gekühlt wurden. Der Gasstrahl wurde dann durch Einrichtungen zum Entfernen jeglicher Kationen geführt, so daß in einen folgenden Ionisationsbereich nur neutrale Moleküle eintreten, in dem ein UV-Laserstrahl den Gasstrahl schneidet. Von dem UV-Laser wurden Laserstrahlimpulse von 5 ns Dauer mit einer Energie von 300 µJ erzeugt. Die dadurch erzeugten Kationen wurden einem Flugzeit-Massenspektrometer zugeführt und mit einer Mehrkanal-Plattenanordnung detektiert. Das verwendete Flugzeit-Massenspektrometer war von der in Anal. Instrum., 16, 151 (1986) beschriebenen Art. Die typische Massenauflösung liegt im Bereich von 6000 bis 10000 nach der FWHM-Definition.
  • Bei den mit der beschriebenen Einrichtung untersuchten Proben­substanzen handelte es sich um Dipeptide. Es wurden etwa 1 mg des Peptids in 50 µl Wasser aufgeschlämmt und es wurden dann 20 µl dieser Aufschlämmung auf den Probenträger aufgebracht. Bei den meisten der erhaltenen Spektren wurden etwa 10% der auf den Probenträger aufgebrachten Substanz zur Erzeugung des Spektrums verbraucht.
  • In gleicher Weise wurden Mischungen von Dipeptiden und Matrix­materialien hergestellt. Es wurde 1 mg des Peptids in 50 ml einer wässrigen Lösung der gewünschten Matrixverbindung aufge­schlämmt und es wurden dann 20 ml der resultierenden Aufschläm­mung auf dem Probenträger aufgebracht. In beiden Fällen wurde das Wasser einfach durch Trocknen an der Luft entfernt. Als Matrixverbindungen wurden Sucrose und Glucose verwendet. Das verwendete Wasser war dreifach deionisiert.
  • Fig. 1 zeigt das auf die vorstehend beschriebene Weise erhaltene Massenspektrum des reinen Peptids Leucin-Tryptophan. Neben der Linie 1 für das reine Peptid mit der sich aus der auf der Abs­zisse aufgetragenen Flugzeit ergebenden Masse M zeigt das Spek­trum eine weitere Linie 2 einer Substanz der Masse M - 18. Fig. 2 zeigt das Spektrum des gleichen Peptids Leucin-Trypto­phan, jedoch nach Einbetten des Peptids in eine Glucosematrix im Verhältnis 1 mg Glucose pro 1 mg Peptid. Die Vermischung mit der Glucose hat eine fast vollständige Unterdrückung der Linie M - 18 zur Folge, die auf eine Zerstörung eines Teiles der Peptid-Moleküle bei der Verdampfung zurückzuführen ist.
  • Ähnlich wie die Fig. 1 und 2 zeigen auch die Fig. 3 und 4 das Spektrum eines reinen Peptids bzw. eines in eine Sucrose-Matrix eingebetteten Peptids. Als Peptid findet diesmal Methionin-­Tyrosin Verwendung. Auf der Abszisse der Diagramme nach den Fig. 3 und 4 ist diesmal das Massen/Ladungs-verhältnis M/Z aufgetragen, während die Koordinate wiederum die Intensität der Linien wiedergibt. Bei der Ionisation der Substanz entstand nur das A₁ Fragment mit M/Z = 104. Die Bezeichnung A-Fragment beruht auf der Roepstroff-Fohlman-Nomenklatur [Biodmed. Mass Spectrom. 11,601 (1984)].
  • Ähnlich wie bei dem durch die Fig. 1 und 2 veranschaulichten Versuch tritt auch hier bei der Verdampfung des reinen Peptids eine Fragmentation des Peptids ein, die zu der Linie mit der Massenzahl M - 18 führt. Dagegen verschwindet diese Linie voll­kommen, wie aus Fig. 4 ersichtlich, wenn das Peptid in eine Sucrosematrix eingebettet wird. Es ist ohne weiteres verständ­lich, daß das erst nach der Verdampfung der Peptidmoleküle bei der Ionisation entstehende A₁-Fragment auch bei dem Verdampfen des Peptids in einer Sucrosematrix erhalten bleibt.
  • Es sei noch erwähnt, daß an den Proben, die zu den vorstehend behandelten Spektren geführt haben, die Pyrolyse der Zucker­matrix als Schwärzung der Probe durch die Einwirkung der wieder­holten Laserstrahlimpulse erkennbar war. Eine solche Schwärzung trat bei den Proben, welche die reinen Peptide enthielten, nicht ein. Es ist anzunehmen, daß die Zersetzung der Zucker eine pyrolytische Dehydratation der Peptide verhindert, weil die Pyrolyse des Zuckers zu einem Überschuß an Wasser in der Umgebung der Peptid-Moleküle führt, wodurch die Dehydratations-­Reaktion der Peptide in die andere Richtung getrieben wird.
  • Für die durch die Diagramme nach den Fig. 5 bis 9 veranschau­lichten Beispiele wurden, soweit nichts anderes angegeben, aus 5 mg pulverförmigem Polyethylen, etwa 0,1 mg pulverförmigem Silber oder Gold und der angegebenen Menge der Probensubstanz Pellets hergestellt. Diese Pellets wurden der Strahlung eines getasteten TEA-Lasers mit einer Wellenlänge von 10,6 µm und einer Pulsleistung von 10 mJ ausgesetzt. Der von dem Laser erzeugte Puls war bimodal und hatte eine kurze, scharfe Spitze von 2 µs Dauer (d.h. FWHM = 2 µs) und eine breite Rückflanke von 20 µs Dauer (d.h. FWHM = 20 µs). Die Intensität der Rück­flanke betrug nur etwa die Hälfte der Intensität der scharfen Spitze. Die durch die Laserstrahlimpulse desorbierten Moleküle der Probensubstanz gelangten in einen von einer Überschall-­Düse erzeugten Gasstrahl, die sich in einem Abstand von 1 bis 2 mm von der Desorptionsstelle befand. Der Staudruck des Strahls betrug 1 bis 2 bar. Die Moleküle der Probensubstanz verteilten sich über den Gasstrahl nach einem Flug von 80 mm in Richtung auf den Ionisationsbereich. Das verwendete Massenspektrometer war das gleiche wie bei den vorhergehenden Beispielen.
  • Die Fig. 5 und 6 veranschaulichen die bedeutende Steigerung der Empfindlichkeit, die durch das Einbetten der zu untersuchen­den Substanz in eine Matrix aus Polyethylen mit einer Beimengung von Silber erhalten werden kann. So ergeben 10 mg pulverförmiges Leu-Tyr-Leu eine Linie mit einer Intensität, die nur wenig größer ist als die Intensität der Linie, die von nur 100 ng in Polyethylen mit Silber eingebettetes Leu-Tyr-Leu erhalten wird, also von einer um 10⁻⁵ geringeren Menge. Der Grund dafür besteht darin, daß die Verdampfung des in die Polyethylen-Matrix mit der Beimengung von Silberpulver eingebetteten Leu-Tyr-Leu prak­tisch ohne jegliche Zerstörung der Moleküle erfolgt, während die Substanz ohne schützende Matrix durch den Beschuß mit dem Laserstrahl in einem hohen Maße zerstört wird.
  • Die Fig. 7 bis 9 veranschaulichen die Spektren von Substanzen, von denen bisher, d.h. ohne die erfindungsgemäße Einbettung in ein Matrixmaterial, überhaupt kein Signal erhalten werden konn­te. Das Spektrum nach Fig. 7 zeigt die Linie von Thymin, die von nur 50 µg der Substanz in einer Matrix aus Polyethylen mit Silber erhalten wurde. Das Spektrum nach Fig. 8 wurde unter Einsatz von sogar nur 10 µg Adenosin in einer Goldstaub enthal­ tenden Matrix erhalten. Endlich zeigt Fig. 9 das Spektrum von tris-Ru-Bipyridylacetat. Die eingesetzte Menge betrug nur 20 yg in einer Gold enthaltenden Matrix.

Claims (12)

1. Verfahren zum Verdampfen einer aus großen Molekülen bestehenden Probensubstanz, bei dem die Probensubstanz Laserstrahlimpulsen hoher Energie ausgesetzt wird, so daß die sich an der Oberfläche der Probensubstanz befindenden Moleküle durch die Energie der Laserstrahlimpulse desorbiert werden,
dadurch gekennzeichnet, daß
die Probensubstanz vor dem Bestrahlen mit einem unter dem Einfluß der Laserstrahlimpulse leicht zerfallenden Matrixmaterial vermischt und das aus der Probensubstanz und dem Matrixmaterial bestehende Gemisch den Laserstrahlimpulsen ausgesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Matrixmaterial verwendet wird, das aus mindestens einer thermolytisch leicht in Gasmoleküle zerfallenden Verbindung besteht.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Gemisch verwendet wird, in dem die Anzahl der Moleküle des Matrixmaterials größer ist als die Anzahl der Moleküle der Probensubstanz.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Anteil der Probensubstanz im Gemisch 10 bis 40 Gew.% beträgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Matrixmaterial verwendet wird, das mindestens eine Verbindung enthält, welche Licht mit der Wellenlänge der Laserstrahlimpulse absorbiert.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als eine das Matrixmaterial bildende Verbindung ein Zucker, insbesondere eine Pentose oder Hexose, verwendet wird.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als eine das Matrixmaterial bildende Verbindung ein Polysaccharid, insbesondere Cellulose, verwendet wird.
8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als eine das Matrixmaterial bildende Verbindung Ammoniumnitrat verwendet wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in das Matrixmaterial Metallstaub, vorzugsweise Gold- oder Silberstaub mit einer Korngröße von weniger als 40 µm, eingebettet wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als eine das Matrixmaterial bildende Verbindung ein Polyethylen verwendet wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß aus dem Matrixmaterial und der Probensubstanz und ggf. dem Metallstaub Pellets geformt und den Laserstrahlimpulsen ausgesetzt werden.
12. Verfahren nach den Ansprüchen 9 bis 11, dadurch gekennzeichnet, daß die Pellets aus einem spektroskopischen Polyethylen, das für Strahlung im Bereich von 10 µm Wellenlänge durchlässig ist, mit einem Anteil von etwa 10⁻⁴ bis 10⁻⁵ Gew.T. der Probensubstanz und etwa 10⁻⁴ bis 10⁻⁵ Gew.T. an Gold- oder Silberstaub hergestellt und der Strahlung eines CO₂-Lasers ausgesetzt werden.
EP88111565A 1988-03-22 1988-07-19 Verfahren zum Verdampfen einer Probensubstanz Expired - Lifetime EP0333912B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3809504A DE3809504C1 (de) 1988-03-22 1988-03-22
DE3809504 1988-03-22

Publications (3)

Publication Number Publication Date
EP0333912A2 true EP0333912A2 (de) 1989-09-27
EP0333912A3 EP0333912A3 (en) 1990-03-07
EP0333912B1 EP0333912B1 (de) 1995-06-28

Family

ID=6350311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88111565A Expired - Lifetime EP0333912B1 (de) 1988-03-22 1988-07-19 Verfahren zum Verdampfen einer Probensubstanz

Country Status (3)

Country Link
US (1) US5062935A (de)
EP (1) EP0333912B1 (de)
DE (1) DE3809504C1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015001A2 (en) * 1993-11-12 1995-06-01 Waters Corporation Enhanced resolution maldi tof-ms sample surface
US5894063A (en) * 1993-05-28 1999-04-13 Baylor College Of Medicine Surface-enhanced neat desorption for disorption and detection of analytes
US6020208A (en) * 1994-05-27 2000-02-01 Baylor College Of Medicine Systems for surface-enhanced affinity capture for desorption and detection of analytes
US6071610A (en) * 1993-11-12 2000-06-06 Waters Investments Limited Enhanced resolution matrix-laser desorption and ionization TOF-MS sample surface
US7294515B2 (en) 1993-05-28 2007-11-13 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017805C2 (de) * 1989-08-22 1998-03-26 Finnigan Mat Gmbh Verfahren, Präparat und Vorrichtung zur Bereitstellung eines Analytes für eine Untersuchung
DE4108462C2 (de) * 1991-03-13 1994-10-13 Bruker Franzen Analytik Gmbh Verfahren und Vorrichtung zum Erzeugen von Ionen aus thermisch instabilen, nichtflüchtigen großen Molekülen
US6436635B1 (en) 1992-11-06 2002-08-20 Boston University Solid phase sequencing of double-stranded nucleic acids
US5605798A (en) 1993-01-07 1997-02-25 Sequenom, Inc. DNA diagnostic based on mass spectrometry
US6194144B1 (en) 1993-01-07 2001-02-27 Sequenom, Inc. DNA sequencing by mass spectrometry
US5547835A (en) 1993-01-07 1996-08-20 Sequenom, Inc. DNA sequencing by mass spectrometry
US7803529B1 (en) 1995-04-11 2010-09-28 Sequenom, Inc. Solid phase sequencing of biopolymers
US5830655A (en) 1995-05-22 1998-11-03 Sri International Oligonucleotide sizing using cleavable primers
US5589685A (en) * 1995-05-26 1996-12-31 Jen Wu; Kuang Matrix enhanced SIMS
US6146854A (en) * 1995-08-31 2000-11-14 Sequenom, Inc. Filtration processes, kits and devices for isolating plasmids
US5777324A (en) 1996-09-19 1998-07-07 Sequenom, Inc. Method and apparatus for maldi analysis
EP1460083B1 (de) 1996-11-06 2006-01-18 Sequenom, Inc. Verfahren zur Analyse und Vorrichtung
AU735416B2 (en) 1996-11-06 2001-07-05 Sequenom, Inc. Dna diagnostics based on mass spectrometry
DE19705762C2 (de) * 1997-02-14 2001-06-07 Rainer Edmund Weinkauf Verfahren und Vorrichtung zum Erzeugen von Gasstrahlen
US6207370B1 (en) 1997-09-02 2001-03-27 Sequenom, Inc. Diagnostics based on mass spectrometric detection of translated target polypeptides
US6723564B2 (en) 1998-05-07 2004-04-20 Sequenom, Inc. IR MALDI mass spectrometry of nucleic acids using liquid matrices
WO2001081829A1 (en) * 2000-04-27 2001-11-01 Brio Technology, Inc. Method and apparatus for processing jobs on an enterprise-wide computer system
US6703366B2 (en) 2001-04-30 2004-03-09 George Jackowski Biopolymer marker indicative of disease state having a molecular weight of 1,896 daltons
US20040224423A1 (en) * 2001-04-30 2004-11-11 George Jackowski Biopolymer marker indicative of disease state having a molecular weight of 2056 daltons
US6620786B2 (en) 2001-04-30 2003-09-16 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having molecular weight of 2937 daltons
US7314717B2 (en) 2001-04-30 2008-01-01 Nanogen Inc. Biopolymer marker indicative of disease state having a molecular weight of 1562 daltons
US7049397B2 (en) * 2001-04-30 2006-05-23 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 1211 daltons
US6620787B2 (en) 2001-04-30 2003-09-16 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 2267 daltons
US6627608B2 (en) 2001-04-30 2003-09-30 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 1206 daltons
US6693080B2 (en) 2001-04-30 2004-02-17 Syn X Pharma Biopolymer marker indicative of disease state having a molecular weight of 1521 daltons
US6756476B2 (en) 2001-04-30 2004-06-29 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 2021 daltons
US6627607B2 (en) 2001-04-30 2003-09-30 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 1845 daltons
US20040198950A1 (en) * 2001-04-30 2004-10-07 George Jackowski Biopolymer marker indicative of disease state having a molecular weight of 1518 daltons
US7087435B2 (en) * 2001-04-30 2006-08-08 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 2753 daltons
US6627606B2 (en) 2001-04-30 2003-09-30 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 1465 daltons
US7008800B2 (en) * 2001-04-30 2006-03-07 Artemis Proteomics, Ltd. Biopolymer marker indicative of disease state having a molecular weight of 1077 daltons
US7294688B2 (en) 2001-04-30 2007-11-13 Nanogen Inc. Biopolymer marker indicative of disease state having a molecular weight of 1348 daltons
US6593298B2 (en) 2001-04-30 2003-07-15 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 1690 daltons
US6602855B2 (en) 2001-04-30 2003-08-05 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 1449 daltons
US20020160533A1 (en) * 2001-04-30 2002-10-31 George Jackowski Biopolymer marker indicative of disease state having a molecular of weight of 1525 daltons
US6677303B2 (en) 2001-04-30 2004-01-13 Syn X Pharma Biopolymer marker indicative of disease state having a molecular weight of 1097 daltons
US6599877B2 (en) 2001-04-30 2003-07-29 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 1020 daltons
US7015004B2 (en) * 2001-11-23 2006-03-21 Syn X Pharma, Inc. Inter-alpha trypsin inhibitor biopolymer marker indicative of insulin resistance
US6890763B2 (en) 2001-04-30 2005-05-10 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 1350 daltons
US6617308B2 (en) 2001-04-30 2003-09-09 Syn X Pharma, Inc. Biopolymer marker indicative of disease state having a molecular weight of 1865 daltons
US7179610B2 (en) * 2001-11-23 2007-02-20 Nanogen Inc. Complement C3 precursor biopolymer markers indicative of insulin resistance
US7314762B2 (en) 2001-11-21 2008-01-01 Nanogen, Inc. Apolipoprotein biopolymer markers indicative of insulin resistance
US7132244B2 (en) * 2001-11-21 2006-11-07 Syn X Pharma, Inc. Betaine/GABA transport protein biopolymer marker indicative of insulin resistance
US7026129B2 (en) * 2001-11-23 2006-04-11 Syn X Pharma, Inc. IG lambda biopolymer markers predictive of Alzheimers disease
US7097989B2 (en) * 2001-11-23 2006-08-29 Syn X Pharma, Inc. Complement C3 precursor biopolymer markers predictive of type II diabetes
US7125678B2 (en) * 2001-11-23 2006-10-24 Nanogen, Inc. Protein biopolymer markers predictive of type II diabetes
US6890722B2 (en) 2001-11-23 2005-05-10 Syn X Pharma, Inc. HP biopolymer markers predictive of insulin resistance
US7052849B2 (en) * 2001-11-23 2006-05-30 Syn X Pharma, Inc. Protein biopolymer markers predictive of insulin resistance
JP2005510723A (ja) * 2001-11-23 2005-04-21 シン.クス ファーマ、インコーポレイテッド 年齢にマッチした対照を示すタンパク質バイオポリマーマーカー
US7179606B2 (en) * 2001-11-23 2007-02-20 Syn X Pharma, Inc. IG heavy chain, IG kappa, IG lambda biopolymer markers predictive of Alzheimer's disease
US7122327B2 (en) * 2001-11-23 2006-10-17 Nanogen Inc. Biopolymer markers indicative of type II diabetes
US7179605B2 (en) 2001-11-23 2007-02-20 Nanogen Inc. Fibronectin precursor biopolymer markers indicative of alzheimer's disease
US20070003974A1 (en) * 2001-11-23 2007-01-04 George Jackowski Cene-E biopolymer marker indicative of age matched control
US7094549B2 (en) * 2001-11-23 2006-08-22 Syn X Pharma, Inc. Fibronectin biopolymer marker indicative of insulin resistance
US7135297B2 (en) * 2001-11-23 2006-11-14 Nanogen Inc. Protein biopolymer markers indicative of insulin resistance
US7074576B2 (en) * 2001-11-23 2006-07-11 Syn X Pharma, Inc. Protein biopolymer markers indicative of alzheimer's disease
US20030113808A1 (en) * 2001-12-13 2003-06-19 George Jackowski Apolipoprotein biopolymer markers predictive of alzheimers disease
JP3530942B2 (ja) * 2002-03-05 2004-05-24 独立行政法人通信総合研究所 分子ビーム発生方法及び装置
KR20080073748A (ko) 2005-11-16 2008-08-11 노파르티스 아게 척수 손상에서의 항-nogo-a 항체 치료를 위한바이오마커
FR2995403B1 (fr) * 2012-09-13 2014-09-12 Commissariat Energie Atomique Procede et dispositif de mesure quantitative par libs de cibles biomoleculaires sur bio-puce

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3018455A1 (de) * 1979-05-16 1980-11-27 Varian Mat Gmbh Verfahren zur ionisierung von organischen substanzen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091256A (en) * 1975-01-16 1978-05-23 The United States Of America As Represented By The Secretary Of The Air Force Pulsed atomic beam apparatus
US4091265A (en) * 1975-08-06 1978-05-23 Racor Industries, Inc. Fuel filter heating assembly
DE2654057B1 (de) * 1976-11-29 1978-04-27 Varian Mat Gmbh Verfahren zur Ionisierung von organischen Substanzen,sowie dieses Verfahren benutzendes Analysegeraet
DE3224801C2 (de) * 1982-07-02 1986-04-30 Edward William Prof. Dr. 8000 München Schlag Verfahren und Einrichtung zum Erzeugen von gepulsten Molekularstrahlen, die große, thermisch instabile Moleküle enthalten
US4728796A (en) * 1986-04-10 1988-03-01 Medical College Of Wisconsin Method for ionization of polymers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3018455A1 (de) * 1979-05-16 1980-11-27 Varian Mat Gmbh Verfahren zur ionisierung von organischen substanzen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL CHEMISTRY, Band 50, Nr. 7, 19. June 1978, Seiten 985-991, American Chemical Society, Columbus, Ohio, US; M.A. POSTHUMUS et al.: "Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules" *
ANALYTICAL CHEMISTRY, Band 53, Nr. 1, Januar 1981, Seiten 109-113, American Chemical Society, Columbus, Ohio, US; L.K. LIU et al.: "Matrix-assisted secondary ion mass spectra of biological compounds" *
TRAC (TRENDS IN ANALYTICAL CHEMISTRY), Band 6, Nr. 4, April 1987, Seiten 78-81, Elsevier Science Publishers B.V., Amsterdam, NL; R. ISOBE et al.: "Direct microanalysis by negative ion fast atom bombardment mass spectrometry" *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413909B2 (en) * 1993-05-28 2008-08-19 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US7071003B2 (en) 1993-05-28 2006-07-04 Baylor College Of Medicine Surface-enhanced laser desorption/Ionization for desorption and detection of analytes
US5894063A (en) * 1993-05-28 1999-04-13 Baylor College Of Medicine Surface-enhanced neat desorption for disorption and detection of analytes
US8748193B2 (en) 1993-05-28 2014-06-10 Baylor College Of Medicine Apparatus for desorption and ionization of analytes
US7491549B2 (en) 1993-05-28 2009-02-17 Baylor College Of Medicine Apparatus for desorption and ionization of analytes
US7449150B2 (en) 1993-05-28 2008-11-11 Baylor College Of Medicine Probe and apparatus for desorption and ionization of analytes
US7294515B2 (en) 1993-05-28 2007-11-13 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US6124137A (en) * 1993-05-28 2000-09-26 Baylor College Of Medicine Surface-enhanced photolabile attachment and release for desorption and detection of analytes
US6027942A (en) * 1993-05-28 2000-02-22 Baylor College Medicine Surface-enhanced affinity capture for desorption and detection or analytes
US6734022B2 (en) 1993-05-28 2004-05-11 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
US6528320B2 (en) 1993-05-28 2003-03-04 Baylor College Of Medicine Method and apparatus for desorption and ionization of analytes
WO1995015001A3 (en) * 1993-11-12 1995-09-21 Waters Corp Enhanced resolution maldi tof-ms sample surface
WO1995015001A2 (en) * 1993-11-12 1995-06-01 Waters Corporation Enhanced resolution maldi tof-ms sample surface
US6071610A (en) * 1993-11-12 2000-06-06 Waters Investments Limited Enhanced resolution matrix-laser desorption and ionization TOF-MS sample surface
US6558744B2 (en) 1993-11-12 2003-05-06 Waters Investments Limited Enhanced resolution matrix-laser desorption and ionization TOF-MS sample surface
US6020208A (en) * 1994-05-27 2000-02-01 Baylor College Of Medicine Systems for surface-enhanced affinity capture for desorption and detection of analytes

Also Published As

Publication number Publication date
EP0333912A3 (en) 1990-03-07
EP0333912B1 (de) 1995-06-28
US5062935A (en) 1991-11-05
DE3809504C1 (de) 1989-09-21

Similar Documents

Publication Publication Date Title
EP0333912B1 (de) Verfahren zum Verdampfen einer Probensubstanz
EP0503748B1 (de) Verfahren zum Erzeugen von Ionen, insbesondere für ein Massenspektrometer, wie Flugzeitmassenspektrometer, aus thermisch instabilen, nichtflüchtigen grossen Molekülen
DE69010410T2 (de) Verfahren zur vorbereitung von proben für eine massenanalyse mittels desorption von einer gefrorenen lösung.
EP1200984B1 (de) Verfahren und vorrichtung zur clusterfragmentation
DE69024344T2 (de) Verfahren für die Laserdesorption von Ionen in der Massenspektrometrie
DE1808965C3 (de) Verfahren und Vorrichtung zum Verdampfen einer Probe
EP0108939A2 (de) Nebelwurfkörper und Verfahren zur Erzeugung eines gleichzeitig optisch und im Infrarotbereich deckenden Nebels
EP0112858B1 (de) Verfahren und einrichtung zum erzeugen von molekularstrahlen und verwendung dieses verfahrens
DE2107853A1 (de) Verfahren und Vorrichtung zum Hinaus schleudern eines Menschen aus einer Kabine
DE1789071B1 (de) Vorrichtung zur Untersuchung plasmaphysikalischer Vorgaenge
DE19637480A1 (de) Massenspektrometrische Analyse von Oberflächen
DE1598882B2 (de) Mehrkanal-absorptionsspektrometer
DE19914095A1 (de) Pyrotechnischer Nebelsatz zur Erzeugung eines im sichtbaren, infraroten und im Millimeterwellen-Bereich undurchdringlichen Aerosols
DE112004002755T5 (de) Verfahren zur Ionisation durch Cluster-Ionen-Beschuss und Vorrichtung dafür
EP0588015A1 (de) Tarnverfahren und Tarnpartikel zu seiner Durchführung
EP0106334A2 (de) Pyrotechnische Nebelsätze
DE2703047A1 (de) Verfahren zur erzeugung ausgesuchter massenspektren
DE102021105327B3 (de) Desorptions-Ionenquelle mit Postdesorptions-Ionisierung in Transmissionsgeometrie
WO2003063183A1 (de) Neutronenoptische bauelementanordnung zur gezielten spektralen gestaltung von neutronenstrahlen oder -pulsen
DE3705694C2 (de)
EP2580784B1 (de) Verfahren und vorrichtung zum kontaktieren eines halbleitersubstrates mittels eines strahldruckverfahrens
DE19630547A1 (de) Verfahren zur Matrix-unterstützten Laserdesorption und Ionisierung von Analytmolekülen, insbesondere von fragilen bzw. labilen Molekülen
DE69310238T2 (de) Verfahren und Vorrichtung zum Unschädlichmachen einer Bedrohung durch Freigabe eines Neutralisationsmittels
DE4017804A1 (de) Verfahren und vorrichtung zur laserdesorption von analytmolekuelionen, insbesondere von biomolekuelen
DE3842115A1 (de) Einrichtung zum schutz von zielen gegen bestrahlung durch hochenergielaser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900313

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19931014

RBV Designated contracting states (corrected)

Designated state(s): CH FR GB IT LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950628

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950629

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070718

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071002

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070712

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080718