EP0326855A1 - Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten - Google Patents

Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten Download PDF

Info

Publication number
EP0326855A1
EP0326855A1 EP89100767A EP89100767A EP0326855A1 EP 0326855 A1 EP0326855 A1 EP 0326855A1 EP 89100767 A EP89100767 A EP 89100767A EP 89100767 A EP89100767 A EP 89100767A EP 0326855 A1 EP0326855 A1 EP 0326855A1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
acid
electrolysis
catholyte
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89100767A
Other languages
English (en)
French (fr)
Other versions
EP0326855B1 (de
Inventor
Steffen Dr. Dapperheld
Rudolf Dr. Heumüller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0326855A1 publication Critical patent/EP0326855A1/de
Application granted granted Critical
Publication of EP0326855B1 publication Critical patent/EP0326855B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • Biologically active organic fluorine compounds are often used as crop protection agents or pharmaceuticals. In many cases, such compounds have an increased activity, often coupled with a reduced side effect, effects which can be attributed to the fluorine substitution, such as higher lipid solubility and higher oxidation stability, playing an important role.
  • Fluormalonic acid and its derivatives can be prepared by various methods, which, however, mostly produce poor yields and which are also based on very toxic or expensive starting compounds. It is known that diethyl fluoromalonate can be obtained by reacting ethyl monofluoroacetate and ethyl chloroformate under basic conditions (J. Chem. Soc. 1959 , 3286-3289), by halogen exchange from diethyl chloromalonate and potassium fluoride (USSR P 185.878 (1966) - Chem . 67 , 2777 r (1967)) or by fluorination of diethyl malonate with perchloryl fluoride (J. Org. Chem. 31 , 916-918 (1966)).
  • R 1 is a halogen with an atomic weight of 35 to 127, that is chlorine, bromine or iodine, preferably chlorine.
  • R2 and R3 are identical or different and mean hydroxyl or the group OX, where X is an alkali metal, alkaline earth metal or NH4+ ion, such as lithium, sodium, potassium, magnesium or calcium, or a C1- C12-alkyl, preferably C1-C6-alkyl, or R2 and R3 represent the group NR4R5, wherein R worin and R5 are the same or different and are hydrogen or a hydrocarbon radical having 1 to 12 carbon atoms.
  • This hydrocarbon residue can be more aromatic, be cycloaliphatic or aliphatic in nature and advantageously has 1 to 6 carbon atoms.
  • it represents phenyl.
  • R4 and R5 are preferably hydrogen and / or C1-C6-alkyl.
  • Preferred radicals R2 and R3 are hydroxyl radicals and those in which X represents an alkali or NH4+ ion or an alkyl radical.
  • Suitable alkyl radicals for X, R4 and R5 are in particular methyl, ethyl, the various propyl, butyl, pentyl and hexyl radicals, but also higher radicals such as the various octyl, decyl and dodecyl radicals.
  • Suitable starting compounds for the process according to the invention are therefore chlorofluoronic acid, bromofluoromonic acid and iodofluoronic acid and their esters, amides and salts which satisfy the formula I.
  • the process according to the invention can be carried out in divided or undivided electrolysis cells at a temperature from -20 ° C. to the boiling point of the electrolyte at a current density of 1 to 600 mA / cm2 on a cathode made of lead, cadmium, zinc, copper, tin, zircon, Mercury, alloys of at least 2 of these metals or carbon in an electrolyte liquid, the liquid medium of which consists of water and / or an organic solvent.
  • the usual diaphragms that are stable in the electrolyte can be made from organic polymers such as polyethylene, polypropylene, polyesters and polysulfones, in particular halogen-containing polymers such as polyvinyl chloride or polyvinylidene fluoride, but preferably from perfluorinated polymers, or diaphragms made from inorganic Use materials such as glass or ceramics, but preferably ion exchange membranes.
  • Preferred ion exchange membranes are cation exchange membranes made from polymers such as polystyrene, but preferably from perfluorinated polymers which contain carboxyl and / or sulfonic acid groups.
  • polymers such as polystyrene, but preferably from perfluorinated polymers which contain carboxyl and / or sulfonic acid groups.
  • the use of stable anion exchange membranes is also possible.
  • cathodes are used which are stable in the electrolyte.
  • the electrolysis can be carried out either continuously or batchwise and in all customary electrolysis cells, for example in beaker or plate and frame cells or cells with fixed bed or fluidized bed electrodes. Both the monopolar and the bipolar circuit of the electrodes can be used. It is particularly expedient to work in divided electrolysis cells (i.e. with a catholyte and anolyte liquid) with a discontinuous execution of the cathode reaction and continuous operation of the anode reaction.
  • the electrode materials used according to the invention have a medium to high hydrogen overvoltage.
  • carbon cathodes are preferred, especially for electrolysis in acid electrolytes with a pH of 0 to 4, since some of the electrode materials listed, e.g. Zn, Sn, Cd and Pb, can suffer corrosion.
  • all possible carbon electrode materials are possible as carbon cathodes, such as electrode graphites, impregnated graphite materials, carbon felts and also glassy carbon.
  • All materials customary in anode reactions can be used as anode material.
  • Examples are lead, lead dioxide on lead or other carriers, platinum or with noble metal oxides, for example ruthenium oxide, doped titanium dioxide on titanium or other materials for the development of oxygen from dilute acids such as sulfuric acid, phosphoric acid or tetrafluoroboric acid.
  • Carbon or titanium dioxide doped with noble metal oxides on titanium or other materials is also suitable for the development of chlorine from aqueous alkali metal chloride or hydrogen chloride solutions.
  • Preferred anolyte liquids are aqueous mineral acids or solutions of their salts, such as dilute sulfuric acid, phosphoric acid, tetrafluoroboric acid, concentrated hydrochloric acid, sodium sulfate or sodium chloride solutions.
  • organic solvents e.g. suitable short-chain aliphatic alcohols such as methanol, ethanol, n- and iso-propanol or the various butanols, diols such as ethylene glycol, the various propanediols, but also polyalkylene glycols from ethylene and / or propylene glycol and their ethers, ethers such as tetrahydrofuran, dioxane, amides such as N, N-dimethylformamide, hexamethylphosphoric triamide, N-methyl-2-pyrrolidinone, nitriles such as acetonitrile, propionitrile, ketones such as acetone and other solvents such as sulfolane or dimethyl sulfoxide. Mixtures can also be used. In principle, two-phase electrolysis is also possible with the addition of a water-insoluble organic solvent such as t-butyl methyl ether or methylene chloride in conjunction with a phase transfer catalyst.
  • the proportion of organic solvents in the electrolyte in the undivided cell or the catholyte in the divided cell can be 0 to 100% by weight, based on the total amount of the electrolyte or catholyte. It is preferably 10 to 80% by weight.
  • soluble salts of metals with a hydrogen overvoltage of at least 0.25 V can be added to the electrolyte in the undivided cell or the catholyte in the divided cell. and / or enthalogenating properties can be added.
  • Possible salts are mainly the soluble salts of Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr, Ce, Co or Ni, preferably the soluble Pb- , Zn, Cd and Ag salts.
  • the preferred anions of these salts are Cl ⁇ , SO4 ⁇ , NO3 ⁇ and CH3COO ⁇ .
  • the salts can be added to the electrolysis solution or can also be generated in the solution, for example by adding oxides, carbonates etc. - in some cases also the metals themselves (if soluble).
  • Their concentration in the electrolyte of the undivided cell and in the catholyte of the divided cell is expediently about 10 auf to 10% by weight, preferably about 10 ⁇ 3 to 5% by weight, in each case based on the total amount of the electrolyte or catholyte, set.
  • Electrolysis can be carried out in a wide pH range, most preferably at a pH from 0 to 13, preferably from 0.5 to 12.
  • acids such as hydrochloric, boric, phosphoric, sulfur or tetrafluoroboric acid and / or formic, acetic or citric acid and / or their salts
  • acids such as hydrochloric, boric, phosphoric, sulfur or tetrafluoroboric acid and / or formic, acetic or citric acid and / or their salts
  • work is of course only carried out in those pH ranges in which no insoluble compounds form.
  • organic bases may also be necessary to set the pH value which is favorable for the electrolysis and / or have a favorable influence on the course of the electrolysis.
  • Suitable are primary, secondary and tertiary C2-C12 alkyl and cycloalkylamines, aromatic and aliphatic-aromatic (in particular araliphatic) amines and their salts, inorganic bases such as alkali and alkaline earth metal hydroxides such as, for example, Li, Na, K, Cs, Mg, Ca, Ba hydroxide, quaternary ammonium salts, with anions, such as, for example, the fluorides , Chlorides, bromides, iodides, acetates, sulfates, hydrogen sulfates, tetrafluoroborates, phosphates and hydroxides, whereby, of course, combinations of cations and anions are not taken into account which lead to insoluble products under the conditions used.
  • ammonium salts are, for example, those of C1-C12-tetraalkylammonium, C1-C12-trialkylarylammonium and C1-C12-trialkylmonoalkylarylammonium.
  • anionic or cationic emulsifiers can also be used in amounts of 0.01 to 15, preferably 0.03 to 10 percent by weight, based on the total amount of the electrolyte or catholyte.
  • compounds can be added to the electrolyte which are oxidized at a more negative potential than the released halogen ions in order to avoid the formation of the free halogen.
  • the salts of oxalic acid, methoxyacetic acid, glyoxylic acid, formic acid and / or hydrochloric acid are suitable, for example.
  • Electrolysis is preferably carried out at a current density of 10 to 500 mA / cm2.
  • the electrolysis temperature is expediently in the range from -10 ° C. to the boiling point of the electrolysis liquid, preferably from 5 to 90 ° C., in particular from 15 to 80 ° C.
  • the electrolysis product is worked up in a customary manner, for example by extraction from the reaction medium or by distilling off the solvent.
  • the compounds added to the catholyte can thus be returned to the process.
  • the electrolysis is carried out in the corresponding alcohol. After the electrolysis has ended, the majority of the alcohol is distilled off and the acid is esterified by customary methods.
  • Jacketed glass pot cell with a volume of 350 ml; Anode: platinum mesh (20 cm2); Cathode area: 12 cm2; Electrode distance: 1.5 cm; Anolyte: dilute aqueous sulfuric acid; Cation exchange membrane; Two-layer membrane made from a copolymer of perfluorosulfonylethoxy vinyl ether and tetrafluoroethylene (®Nafion 324 from E.I. du Pont de Nemours & Co., Wilmington, USA); Mass transfer by magnetic stirrer.

Abstract

Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten der Formel <IMAGE> dadurch gekennzeichnet, daß man Verbindungen der Formel <IMAGE> worin R¹ ein Halogen mit einem Atomgewicht von 35 bis 127 darstellt und R² und R³ gleich oder verschieden sind und Hydroxyl, die Gruppe OX, worin X ein Alkali-, Erdalkali- oder NH4<+>-Ion oder einen C1-C12-Alkylrest bedeutet, oder die Gruppe NR<4>R<5> darstellt, worin R<4> und R<5> gleich oder verschieden sind und Wasserstoff oder einen Kohlenwasserstoffrest mit 1 bis 12 C-Atomen bedeuten, bei einer Temperatur von -20°C bis zur Siedetemperatur des Elektrolyten bei einer Stromdichte von 1 bis 600 mA/cm² an einer Kathode aus Blei, Cadmium, Zink, Kupfer, Zinn, Zirkon, Quecksilber, Legierungen von mindestens 2 dieser Metalle oder Kohlenstoff in einer Elektrolytflüssigkeit elektrolysiert, die aus Wasser und/oder einem organischen Lösungsmittel besteht.

Description

  • Biologisch aktive organische Fluorverbindungen finden häufig Verwendung als Pflanzenschutzmittel oder Pharmazeutika. Solche Verbindungen besitzen in vielen Fällen eine erhöhte Wirksamkeit, oft gekoppelt mit verminderter Nebenwirkung, wobei Effekte, die auf die Fluorsubstitution zurückzuführen sind, wie höhere Lipidlöslichkeit und höhere Oxydationsstabilität, eine wesentliche Rolle spielen.
  • Man kennt heute eine Reihe präparativer Methoden zur direkten Einführung eines Fluoratoms in die gewünschte Position organischer Moleküle. Da eine direkte Fluorierung aber oft nicht praktikabel ist, kommt der Herstellung von fluorierten Zwischenprodukten für die Synthese der ins Auge gefaßten Verbindungen eine besondere Bedeutung zu. Mit der Fluormalonsäure und ihren Derivaten stehen so z.B. Fluorverbindungen zur Verfügung, die sich nach vielfältigen synthetischen Methoden in pharmakologisch interessante Produkte wie Fluorpimelinsäuren, Alkylfluorbarbitursäuren oder 5-Fluoruracil überführen lassen.
  • Fluormalonsäure und ihre Derivate können nach verschiedenen Methoden hergestellt werden, die jedoch meist schlechte Ausbeuten liefern und bei denen man zudem von sehr toxischen oder teuren Ausgangsverbindungen ausgeht. So ist es bekannt, daß man Fluormalonsäurediäthylester durch Umsetzung von Monofluoressigsäureäthylester und Chlorameisensäureäthylester unter basischen Bedingungen (J. Chem. Soc. 1959, 3286-3289), durch Halogenaustausch aus Chlormalonsäurediäthylester und Kaliumfluorid (USSR P 185,878 (1966) - s. Chem. Abstr. 67, 2777 r (1967)) oder durch Fluorierung von Malonsäurediäthylester mit Perchlorylfluorid (J. Org. Chem. 31, 916-918 (1966)) erhalten kann.
  • Es sind weiterhin Verfahren beschrieben, Fluormalonsäurederivate durch Ammonolyse bzw. Alkoholyse von Hexafluorpropen herzustellen (Jap. OS 59-046 256 (1984), Chem. Lett. 1981, 107-110), wobei fünf der sechs Fluorsubstituenten abgebaut werden, was einen Zwangsanfall an Fluoriden oder Fluorwasserstoff mit sich bringt.
  • Nach dem Stand der Technik bestand also das Bedürfnis, ein Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten bereitzustellen, das nicht von toxischen oder teuren Verbindungen ausgeht, nicht mit einem Zwangsanfall von Fluoriden oder Fluorwasserstoff verbunden ist und nach dem man sowohl die Fluormalonsäure als auch ihre Derivate in hohen Ausbeuten herstellen kann.
  • Diese Aufgabe konnte nun erfindungsgemäß dadurch gelöst werden, daß man Halogenfluormalonsäuren, die z.B. durch die selektive Hydrolyse von Tetrahalogen-2-fluorpropionsäuren leicht zugänglich sind, bzw. deren Derivate, d.s. Verbindungen der Formel I, elektrochemisch enthalogeniert. Dabei entstehen Verbindungen der Formel II
    Figure imgb0001
  • In der Formel I ist R¹ ein Halogen mit einem Atomgewicht von 35 bis 127, also Chlor, Brom oder Jod, vorzugsweise Chlor. In den Formeln I und II sind R² und R³ gleich oder verschieden und bedeuten Hydroxyl oder die Gruppe OX, worin X ein Alkali-, Erdalkali- oder NH₄⁺-Ion, wie Lithium, Natrium, Kalium, Magnesium oder Kalzium, oder einen C₁-C₁₂-Alkylrest, vorzugsweise C₁-C₆-Alkylrest, darstellt, oder R² und R³ bedeuten die Gruppe NR⁴R⁵, worin R⁴ und R⁵ gleich oder verschieden sind und Wasserstoff oder einen Kohlenwasserstoffrest mit 1 bis 12 C-Atomen bedeuten. Dieser Kohlenwasserstoffrest kann aromatischer, cycloaliphatischer oder aliphatischer Natur sein und hat vorteilhaft 1 bis 6 C-Atome. Z.B. stellt er Phenyl dar. Bevorzugt sind R⁴ und R⁵ jedoch Wasserstoff und/oder C₁-C₆-Alkyl.
  • Als Reste R² und R³ sind Hydroxylreste sowie diejenigen bevorzugt, in denen X ein Alkali- oder NH₄⁺-Ion oder einen Alkylrest darstellt.
  • Als Alkylreste für X, R⁴ und R⁵ kommen insbesondere Methyl, Äthyl, die verschiedenen Propyl-, Butyl-, Pentyl- und Hexylreste in Betracht, daneben aber auch höhere Reste wie die verschiedenen Octyl-, Decyl- und Dodecylreste.
  • Als Ausgangsverbindungen für das erfindungsgemäße Verfahren sind also Chlorfluormalonsäure, Bromfluormalonsäure und Jodfluormalonsäure sowie deren Ester, Amide und Salze geeignet, die der Formel I genügen.
  • Das erfindungsgemäße Verfahren läßt sich in geteilten oder ungeteilten Elektrolysezellen durchführen bei einer Temperatur von -20°C bis zur Siedetemperatur des Elektrolyten bei einer Stromdichte von 1 bis 600 mA/cm² an einer Kathode aus Blei, Cadmium, Zink, Kupfer, Zinn, Zirkon, Quecksilber, Legierungen von mindestens 2 dieser Metalle oder Kohlenstoff in einer Elektrolytflüssigkeit, deren flüssiges Medium aus Wasser und/oder einem organischen Lösungsmittel besteht. Zur Teilung der Zellen in den Anoden- und Kathodenraum lassen sich die üblichen, im Elektrolyten stabilen Diaphragmen aus organischen Polymeren wie Polyäthylen, Polypropylen, Polyestern und Polysulfonen, insbesondere halogenhaltigen Polymeren, wie Polyvinylchlorid oder Polyvinylidenfluorid, vorzugsweise aber aus perfluorierten Polymeren, oder Diaphragmen aus anorganischen Werkstoffen, wie Glas oder Keramik, vorzugsweise aber Ionenaustauschermembranen, verwenden.
  • Bevorzugte Ionenaustauschermembranen sind Kationenaustauschermembranen aus Polymeren wie Polystyrol, vorzugsweise aber aus perfluorierten Polymeren, die Carboxyl- und/oder Sulfonsäuregruppen enthalten. Die Verwendung von stabilen Anionenaustauschermembranen ist ebenfalls möglich.
  • Erfindungsgemäß werden Kathoden verwendet, die im Elektrolyten stabil sind. Die Elektrolyse kann sowohl kontinuierlich als auch diskontinuierlich und in allen üblichen Elektrolysezellen, wie beispielsweise in Becherglas- oder Platten- und Rahmenzellen oder Zellen mit Festbett- oder Fließbettelektroden, durchgeführt werden. Es ist sowohl die monopolare als auch die bipolare Schaltung der Elektroden anwendbar. Besonders zweckmäßig ist eine Arbeitsweise in geteilten Elektrolysezellen (d.i. mit einer Katholyt- und Anolytflüssigkeit) mit diskontinuierlicher Ausführung der Kathodenreaktion und kontinuierlichem Betrieb der Anodenreaktion. Die erfindungsgemäß verwendeten Elektrodenmaterialien haben eine mittlere bis hohe Wasserstoffüberspannung. Bevorzugt ist die Verwendung von Kohlenstoffkathoden, insbesondere bei der Elektrolyse in sauren Elektrolyten mit einem pH-Wert von 0 bis 4, da einige der aufgeführten Elektrodenmaterialien, z.B. Zn, Sn, Cd und Pb, Korrosion erleiden können. Als Kohlenstoffkathoden kommen im Prinzip alle möglichen Kohle-Elektrodenmaterialien in Frage, wie Elektrodengraphite, imprägnierte Graphitwerkstoffe, Kohlefilze und auch glasartiger Kohlenstoff.
  • Als Anodenmaterial können alle bei Anodenreaktionen üblichen Materialien verwendet werden. Beispiele sind Blei, Bleidioxyd auf Blei oder anderen Trägern, Platin oder mit Edelmetalloxyden, z.B. Rutheniumoxyd, dotiertes Titandioxyd auf Titan oder anderen Materialien für die Sauerstoffentwicklung aus verdünnten Säuren wie Schwefelsäure, Phosphorsäure oder Tetrafluoroborsäure.
  • Geeignet ist auch Kohlenstoff oder mit Edelmetalloxyden dotiertes Titandioxyd auf Titan oder anderen Materialien für die Entwicklung von Chlor aus wäßrigen Alkalichlorid- oder ChlorwasserstoffLösungen.
  • Bevorzugte Anolytflüssigkeiten sind wäßrige Mineralsäuren oder Lösungen ihrer Salze, wie verdünnte Schwefelsäure, Phosphorsäure, Tetrafluoroborsäure, konzentrierte Salzsäure, Natriumsulfat- oder Natriumchloridlösungen.
  • Als organische Lösungsmittel sind z.B. geeignet kurzkettige aliphatische Alkohole wie Methanol, Äthanol, n- und iso-­Propanol oder die verschiedenen Butanole, Diole wie Äthylenglykol, die verschiedenen Propandiole, aber auch Polyalkylenglykole aus Äthylen- und/oder Propylenglykol und deren Äther, Äther wie Tetrahydrofuran, Dioxan, Amide wie N,N-Dimethylformamid, Hexamethylphosphorsäuretriamid, N-Metyl-2-pyrrolidinon, Nitrile wie Acetonitril, Propionitril, Ketone wie Aceton und andere Lösungsmittel wie Sulfolan oder Dimethylsulfoxyd. Auch Gemische können verwendet werden. Im Prinzip ist auch eine Zweiphasenelektrolyse unter Zusatz eines nicht wasserlöslichen organischen Lösungsmittels wie t-Butyl­methyläther oder Methylenchlorid in Verbindung mit einem Phasentransferkatalysator möglich.
  • Der Anteil der organischen Lösungsmittel im Elektrolyten in der ungeteilten Zelle oder dem Katholyten in der geteilten Zelle kann 0 bis 100 Gew.-%, bezogen auf die Gesamtmenge des Elektrolyten oder Katholyten, betragen. Vorzugsweise beträgt er 10 bis 80 Gew.-%.
  • Weiterhin können dem Elektrolyten in der ungeteilten Zelle oder dem Katholyten in der geteilten Zelle lösliche Salze von Metallen mit einer Wasserstoffüberspannung von mindestens 0,25 V (bezogen auf eine Stromdichte von 300 mA/cm²) und/oder enthalogenierenden Eigenschaften zugesetzt werden. Als Salze kommen hauptsächlich infrage die löslichen Salze von Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr, Ce, Co oder Ni, vorzugsweise die löslichen Pb-, Zn-, Cd- und Ag-Salze. Die bevorzugten Anionen dieser Salze sind Cl⁻, SO₄⁻, NO₃⁻ und CH₃COO⁻. Die Salze können der Elektrolyselösung zugesetzt oder auch, z.B. durch Zugabe von Oxyden, Carbonaten etc. - in einigen Fällen auch der Metalle selbst (sofern löslich) - in der Lösung erzeugt werden. Ihre Konzentration im Elektrolyten der ungeteilten Zelle sowie im Katholyten der geteilten Zelle wird zweckmäßig auf etwa 10⁻⁵ bis 10 Gew.-%, vorzugsweise auf etwa 10⁻³ bis 5 Gew.-%, jeweils bezogen auf die Gesamtmenge des Elektrolyten oder Katholyten, eingestellt.
  • Bei der Elektrolyse kann man in einem weiten pH-Bereich arbeiten, am günstigsten bei einem pH-Wert von 0 bis 13, vorzugsweise von 0,5 bis 12. Um diesen Wert einzustellen und die Leitfähigkeit zu erhöhen, können beim Arbeiten in der geteilten Zelle dem Katholyten oder beim Arbeiten in der ungeteilten Zelle dem Elektrolyten anorganische oder organische Säuren zugesetzt werden, vorzugsweise Säuren wie Salz-, Bor-, Phosphor-, Schwefel oder Tetrafluoroborsäure und/oder Ameisen-, Essig- oder Citronensäure und/oder deren Salze, wobei bei Verwendung von Säuren, die mit den obengenannten Metallen im neutralen oder basischen Bereich schwer lösliche Verbindungen bilden, natürlich nur in solchen pH-Bereichen gearbeitet wird, in denen sich keine unlöslichen Verbindungen bilden.
  • Auch die Zugabe organischer Basen kann zur Einstellung des für die Elektrolyse günstigen pH-Wertes nötig sein und/oder den Verlauf der Elektrolyse günstig beeinflussen. Geeignet sind primäre, sekundäre und tertiäre C₂-C₁₂-Alkyl- und Cycloalkylamine, aromatische und aliphatisch-aromatische (insbesondere araliphatische) Amine und deren Salze, anorganische Basen wie Alkali- und Erdalkalihydroxyde wie beispielsweise Li-, Na-, K-, Cs-, Mg-, Ca-, Ba-hydroxyd, quartäre Ammoniumsalze, mit Anionen, wie beispielsweise den Fluoriden, Chloriden, Bromiden, Jodiden, Acetaten, Sulfaten, Hydrogensulfaten, Tetrafluoroboraten, Phosphaten und Hydroxyden, wobei natürlich solche Kombinationen von Kationen und Anionen außer Betracht bleiben, die unter den angewandten Bedingungen zu unlöslichen Produkten führen. Als Ammoniumsalze kommen z.B. solche des C₁-C₁₂-­Tetraalkylammoniums, C₁-C₁₂-Trialkylarylammoniums und C₁-C₁₂-Trialkylmonoalkylarylammoniums in Betracht. Es können aber auch anionische oder kationische Emulgatoren in Mengen von 0,01 bis 15, vorzugsweise 0,03 bis 10 Gewichtsprozenten, bezogen auf die Gesamtmenge des Elektrolyten oder Katholyten, eingesetzt werden.
  • Bei der Elektrolyse in ungeteilter Zelle können dem Elektrolyten Verbindungen zugesetzt werden, die bei einem negativeren Potential oxydiert werden als die freigesetzten Halogenionen, um das Entstehen des freien Halogens zu vermeiden. Geeignet sind hierfür beispielsweise die Salze der Oxalsäure, der Methoxyessigsäure, der Glyoxylsäure, der Ameisensäure und/oder der Stickstoffwasserstoffsäure.
  • Man elektrolysiert bevorzugt bei einer Stromdichte von 10 bis 500 mA/cm². Die Elektrolysetemperatur liegt zweckmäßig im Bereich von -10°C bis zur Siedetemperatur der Elektrolyseflüssigkeit, vorzugsweise von 5 bis 90°C, insbesondere von 15 bis 80°C.
  • Die Aufarbeitung des Elektrolyseprodukts erfolgt auf übliche Weise, z.B. durch Extraktion aus dem Reaktionsmedium oder durch Abdestillieren des Lösungsmittels. Die dem Katholyten zugesetzten Verbindungen können so dem Prozeß wieder zugeführt werden.
  • Zur Herstellung von Fluormalonsäureestern wird die Elektrolyse in dem entsprechenden Alkohol durchgeführt. Nach Beendigung der Elektrolyse wird die Hauptmenge des Alkohols abdestilliert und die Säure nach üblichen Methoden verestert.
  • Soweit nichts anderes angegeben ist, wurde in den folgenden Beispielen eine Elektrolysezelle mit den nachstehenden Merkmalen verwendet. Die Ausbeuteangaben sind auf den Umsatz an Chlorfluormalonsäure bezogen.
  • Elektrolysezelle
  • Ummantelte Glastopfzelle mit einem Volumen von 350 ml; Anode: Platinnetz (20 cm²); Kathodenfläche: 12 cm²; Elektrodenabstand: 1,5 cm; Anolyt: verdünnte wäßrige Schwefelsäure; Kationenaustauschermembran; Zweischichtenmembran aus einem Copolymerisat aus Perfluorsulfonyläthoxyvinyläther und Tetrafluoräthylen (®Nafion 324 der Fa. E.I. du Pont de Nemours & Co., Wilmington, USA); Stofftransport durch Magnetrührer.
  • Beispiele
    • 1) Es wurde ein Katholyt aus 250 ml Wasser, 0,5 g Natriumhydroxyd, 0,5 g Bleiacetat und 10 g Chlorfluormalonsäure an einer Kathode aus imprägniertem Graphit (®Diabon N der Fa. Sigri, Meitingen, Deutschland) bei einer Stromdichte von 88 mA/cm², einer Spannung von 7,2 bis 5,8 V und einer Temperatur von 30°C elektrolysiert. Der Stromverbrauch betrug 3,77 Ah und der pH-Wert 0,8.
      Man erhielt nach Zugabe von NaCl-Lösung zum Katholyten durch Extraktion mit Diäthyläther und Abdestillation des Lösungsmittels 7,36 g Fluormalonsäure (Ausbeute 95,4 %) neben 0,114 g unveränderter Chlorfluormalonsäure.
    • 2) Die Anordnung unterschied sich dadurch, daß eine ummantelte Glastopfumlaufzelle mit einem Volumen von 450 ml verwendet wurde; der Elektrodenabstand betrug 1 cm und der Stofftransport erfolgte mit Hilfe einer Pumpe mit einem Durchfluß von 360 l/h. Es wurde ein Katholyt aus 250 ml Wasser, 0,5 g Natriumhydroxyd, 0,5 g Tetrabutylammoniumhydrogensulfat und 2 g Chlorfluormalonsäure an einer Kathode aus Bleiblech bei einer Stromdichte von 450 mA/cm², einer Spannung von 56 bis 30 V und einer Temperatur von 24 bis 44°C elektrolysiert. Der Stromverbrauch betrug 0,754 Ah und der pH-Wert 1,5 bis 1,4.
      Man erhielt nach der Aufarbeitung wie im Beispiel 1 0,82 g Fluormalonsäure (Ausbeute 96,8 %) neben 1,14 g unveränderter Chlorfluormalonsäure.
    • 3) Es wurde ein Katholyt aus 300 ml Wasser, 0,5 g Natriumhydroxyd, 0,5 g Silbernitrat und 4 g Chlorfluormalonsäure an einer Graphitkathode bei einer Stromdichte von 200 mA/cm², einer Spannung von 12 bis 10,5 V und einer Temperatur von 30°C elektrolysiert. Der Stromverbrauch betrug 1,78 Ah und der pH-Wert 1,6.
      Man erhielt nach der Aufarbeitung wie im Beispiel 1 2,38 g Fluormalonsäure (Ausbeute 90,9 %) neben 0,62 g unveränderter Chlorfluormalonsäure.
    • 4) Die Elektrolysezelle unterschied sich dadurch, daß ohne Kationenaustauschermembran gearbeitet wurde. Es wurde ein Elektrolyt aus 300 ml Wasser, 0,5 g Zinkchlorid, 40 g Natriumformiat und 6,8 g Chlorfluormalonsäure verwendet und an einer Kathode aus imprägniertem Graphit (Diabon N) bei einer Stromdichte von 200 mA/cm², einer Spannung von 12,5 V und einer Temperatur von 30°C elektrolysiert. Der Stromverbrauch betrug 3,03 Ah und der pH-Wert 4,9.
      Zur Aufarbeitung wurde der pH-Wert mit Salzsäure auf 1 eingestellt, und es wurde wie im Beispiel 1 weitergearbeitet. Man erhielt 3,84 g Fluormalonsäure (Ausbeute 96,9 %) neben 1,76 g unveränderter Chlorfluormalonsäure.
    • 5) Es wurde ein Katholyt aus 300 ml Methanol, 0,5 g Bleiacetat, 0,5 g Natriumhydroxyd und 4 g Chlorfluormalonsäure verwendet und an einer Kathode aus imprägniertem Graphit (Diabon N) bei einer Stromdichte von 200 mA/cm², einer Spannung von 30 bis 17,5 V und einer Temperatur von 30°C bei einem pH-Wert von 1,04 elektrolysiert. Nach einem Stromverbrauch von 1,78 Ah wurde die Hauptmenge Methanol abdestilliert und die verbleibende Lösung mit p-Toluolsulfonsäure unter Rückfluß erhitzt. Man erhielt 3,98 g Fluormalonsäuredimethylester (Ausbeute 84,5 %) neben 0,07 g Chlorfluormalonsäuredimethylester.
    • 6) Es wurde ein Katholyt aus 200 ml 2n NaOH-Lösung in Wasser und 10 g Chlorfluormalonsäure verwendet und an einer Kathode aus Elektrodengraphit (Type EH der Firma Sigri, Meitingen, Deutschland) bei einer Stromdichte von 88 mA/cm², einer Spannung von 12 bis 8 V und einer Temperatur von 8°C bei einem pH-Wert von 10,4 elektrolysiert. Nach einem Stromverbrauch von 4,5 Ah war der pH-Wert auf 5,6 gesunken. Zur Aufarbeitung wurde der pH-Wert mit Salzsäure auf 1 eingestellt, und es wurde wie in Beispiel 1 weitergearbeitet. Man erhielt 6,94 g Fluormalonsäure (Ausbeute 90 %).
    • 7) Es wurde ein Katholyt aus 200 ml Isopropanol, 30 ml 2n Salzsäure, 2 g Methyl-trioctylammoniumchlorid und 10 g Chlorfluormalonsäure verwendet und an einer Kathode aus imprägniertem Graphit (Diabon N) bei einer Stromdichte von 88 mA/cm², einer Spannung von 16 bis 12 V und einer Temperatur von 30°C bei einem pH-Wert von 0,9 elektrolysiert. Nach einem Stromverbrauch von 5,1 Ah wurde die Hauptmenge des Katholyten abdestilliert, die verbleibende Lösung mit Chlorwasserstoffgas gesättigt und erhitzt. Man erhielt 7,02 g Fluormalonsäurediisopropylester (Ausbeute 46 %).

Claims (10)

1. Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten der Formel
Figure imgb0002
dadurch gekennzeichnet, daß man Verbindungen der Formel
Figure imgb0003
worin R¹ ein Halogen mit einem Atomgewicht von 35 bis 127 darstellt und R² und R³ gleich oder verschieden sind und Hydroxyl, die Gruppe OX, worin X ein Alkali-, Erdalkali- oder NH₄⁺-Ion oder einen C₁-C₁₂-Alkylrest bedeutet, oder die Gruppe NR⁴R⁵ darstellt, worin R⁴ und R⁵ gleich oder verschieden sind und Wasserstoff oder einen Kohlenwasserstoffrest mit 1 bis 12 C-Atomen bedeuten, bei einer Temperatur von -20°C bis zur Siedetemperatur des Elektrolyten bei einer Stromdichte von 1 bis 600 mA/cm² an einer Kathode aus Blei, Cadmium, Zink, Kupfer, Zinn, Zirkon, Quecksilber, Legierungen von mindestens 2 dieser Metalle oder Kohlenstoff in einer Elektrolytflüssigkeit elektrolysiert, die aus Wasser und/oder einem organischen Lösungsmittel besteht.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Elektrolyse bei einem pH von 0 bis 13, vorzugsweise 0,5 bis 12, durchführt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man an einer Kohlenstoffkathode in einem sauren pH-Bereich von 0 bis 4 elektrolysiert.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man die Elektrolyse bei einer Temperatur von 5 bis 90°C, insbesondere von 15 bis 80°C, durchführt.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man die Elektrolyse bei einer Stromdichte von 10 bis 500 mA/cm² durchführt.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Elektrolyse in Gegenwart eines löslichen Salzes eines Metalles mit einer Wasserstoffüberspannung von mindestens 0,25 V (bezogen auf eine Stromdichte von 300 mA/cm²), vorzugsweise von Blei, Zink, Cadmium und Silber, mit einem Elektrolyten in der ungeteilten Zelle oder einem Katholyten in der geteilten Zelle durchführt, wobei die Konzentration von 10⁻⁵ bis 10 Gew.-%, vorzugsweise 10⁻³ bis 5 Gew.-% beträgt, bezogen auf die Gesamtmenge des Elektrolyten oder Katholyten.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man in geteilten Elektrolysezellen mit diskontinuierlicher Ausführung der Kathodenreaktion und kontinuierlichem Betrieb der Anodenreaktion arbeitet.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Elektrolyt in der ungeteilten Zelle bzw. der Katholyt in der geteilten Zelle 10 bis 80 Gew.-% organisches Lösungsmittel enthält, bezogen auf die Gesamtmenge des Elektrolyten bzw. Katholyten.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man Verbindungen elektrolysiert, in denen R¹ Chlor ist.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß man Verbindungen elektrolysiert, in denen R² und R³ C₁-C₆-Alkyl oder Hydroxyl darstellt.
EP89100767A 1988-01-30 1989-01-18 Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten Expired - Lifetime EP0326855B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3802745A DE3802745A1 (de) 1988-01-30 1988-01-30 Verfahren zur herstellung von fluormalonsaeure und ihren derivaten
DE3802745 1988-01-30

Publications (2)

Publication Number Publication Date
EP0326855A1 true EP0326855A1 (de) 1989-08-09
EP0326855B1 EP0326855B1 (de) 1991-04-10

Family

ID=6346290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100767A Expired - Lifetime EP0326855B1 (de) 1988-01-30 1989-01-18 Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten

Country Status (4)

Country Link
US (1) US4950367A (de)
EP (1) EP0326855B1 (de)
JP (1) JPH01222079A (de)
DE (2) DE3802745A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496460B2 (ja) * 1997-06-13 2004-02-09 ダイキン工業株式会社 電解液およびそれを用いるリチウム2次電池
CN102405309A (zh) * 2009-04-20 2012-04-04 巴斯夫欧洲公司 通过电化学还原制备反应性锌的方法
CN114182269B (zh) * 2021-12-22 2023-05-23 浙江工业大学 一种电化学还原脱氯转化含氯挥发性有机物的方法
CN114843601B (zh) * 2022-05-23 2024-03-01 远景动力技术(江苏)有限公司 电解液及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3607446A1 (de) * 1986-03-07 1987-09-10 Hoechst Ag Verfahren zur enthalogenierung von chlor- und von bromessigsaeuren

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132504A (en) * 1977-04-26 1978-11-18 Central Glass Co Ltd Dehalogenation of halogenated hydrocarbons
US4533454A (en) * 1981-09-28 1985-08-06 The Dow Chemical Company Electrolytic cell comprising stainless steel anode, basic aqueous electrolyte and a cathode at which tetrachloro-2-picolinate ions can be selectively reduced in high yield to 3,6-dichloropicolinate ions
JPS5946256A (ja) * 1982-08-31 1984-03-15 Daikin Ind Ltd α−フルオロシアノ酢酸エステル又はその誘導体の製造方法
US4588484A (en) * 1985-02-28 1986-05-13 Eli Lilly And Company Electrochemical reduction of 3-chlorobenzo[b]thiophenes
DE3704915A1 (de) * 1987-02-17 1988-08-25 Hoechst Ag Elektrochemisches verfahren zum austausch von halogenatomen in einer organischen verbindung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3607446A1 (de) * 1986-03-07 1987-09-10 Hoechst Ag Verfahren zur enthalogenierung von chlor- und von bromessigsaeuren

Also Published As

Publication number Publication date
DE58900078D1 (de) 1991-05-16
JPH01222079A (ja) 1989-09-05
DE3802745A1 (de) 1989-08-03
EP0326855B1 (de) 1991-04-10
US4950367A (en) 1990-08-21

Similar Documents

Publication Publication Date Title
EP0280120B1 (de) Elektrochemisches Verfahren zum Austausch von Halogenatomen in einer organischen Verbindung
EP0457320B1 (de) Verfahren zur teilweisen elektrolytischen Enthalogenierung von Di-und Trichloressigsäure sowie Elektrolyselösung
EP0334796B1 (de) Verfahren zur Herstellung von ungesättigten halogenierten Kohlenwasserstoffen
EP0308838B1 (de) Verfahren zur Herstellung von fluorierten Acrylsäuren und ihren Derivaten
EP0326855B1 (de) Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten
WO2010108874A1 (de) Elektrochemisches verfahern zur herstellung von 3-tert.-butylbenzaldehyd-dimethylacetal
EP0578946B1 (de) Elektrochemisches Verfahren zur Reduktion von Oxalsäure zu Glyoxylsäure
EP0339523B1 (de) Verfahren zur Herstellung von Hydroxicarbonsäureestern
EP0293856B1 (de) Verfahren zur Herstellung fluorierter Vinylether
EP1769103B1 (de) Elektrochemisches verfahren zur herstellung cyclopropylbenzylaminen
WO1992005299A1 (de) Verfaharen zur herstellung von halogenierten acrylsäuren
EP0382106B1 (de) Verfahren zur Herstellung von Thiophenderivaten
EP0164705B1 (de) Verfahren zur Herstellung von Phthalaldehydacetalen
EP0100498B1 (de) Verfahren zur Herstellung von Dichlormilchsäure oder dem Nitril oder Amid der Dichlormilchsäure
EP0554564A1 (de) Verfahren zur Herstellung von Benzaldehydacetalen
EP0179377B1 (de) Verfahren zur Herstellung von 1-Alkoxyisochromanen und neue 1-Alkoxy-alkylisochromane
EP0237769B1 (de) Benzaldehyd-dialkylacetale
DE2428878C2 (de) Verfahren zur Herstellung von p-Hydroxymethyl-benzoesäureestern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19890918

17Q First examination report despatched

Effective date: 19891206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 58900078

Country of ref document: DE

Date of ref document: 19910516

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921214

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921216

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921221

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930309

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940131

Ref country code: CH

Effective date: 19940131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050118