EP0321759A2 - Elektromagnetische Stosswellenquelle - Google Patents

Elektromagnetische Stosswellenquelle Download PDF

Info

Publication number
EP0321759A2
EP0321759A2 EP88120217A EP88120217A EP0321759A2 EP 0321759 A2 EP0321759 A2 EP 0321759A2 EP 88120217 A EP88120217 A EP 88120217A EP 88120217 A EP88120217 A EP 88120217A EP 0321759 A2 EP0321759 A2 EP 0321759A2
Authority
EP
European Patent Office
Prior art keywords
membrane
shock wave
wave source
insulation film
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88120217A
Other languages
English (en)
French (fr)
Other versions
EP0321759A3 (en
EP0321759B1 (de
Inventor
Josef Dipl.-Ing. Katona
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier Medizintechnik GmbH
Original Assignee
Dornier Medizintechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier Medizintechnik GmbH filed Critical Dornier Medizintechnik GmbH
Publication of EP0321759A2 publication Critical patent/EP0321759A2/de
Publication of EP0321759A3 publication Critical patent/EP0321759A3/de
Application granted granted Critical
Publication of EP0321759B1 publication Critical patent/EP0321759B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated

Definitions

  • the invention relates to an electromagnetic shock wave source according to the preamble of claim 1.
  • Electromagnetic shock wave generation is used, among other things, in extracorporeal stone crushing (DE 33 28 066 A) and is also suitable for other therapeutic methods in which shock waves are used.
  • shock tube The construction of a so-called shock tube is described in the magazine "Akustician Beihefte", 1962, Issue 1, pages 158 to 202.
  • a copper membrane is located in front of a flat coil, separated by an insulating film.
  • a tube filled with water connects to this copper membrane.
  • a voltage in the range of 2 - 20 kV By applying a voltage in the range of 2 - 20 kV to the flat coil, a magnetic field is induced in the copper membrane, which causes repulsive forces that push the membrane away from the coil. This creates a flat pressure pulse that becomes a steep shock wave in the water-filled pipe and is available for experiments at the end of the pipe.
  • Such a shock tube is used, for example, for chemical substance tests.
  • the object of the invention is to improve such a shock wave source in such a way that efficiency and service life are increased.
  • the invention has the following advantages: - Efficiency losses due to an earthed copper membrane are avoided. The heating of the overall system is reduced due to the improved efficiency. - The skin effect no longer has a limiting effect on the entire thickness of the highly conductive membrane, as shown in FIG. 2. Nevertheless, several membranes can now be placed one behind the other, the total thickness of which is greater than that of a single membrane. - The potential distribution between the coil and the grounded, final metal membrane becomes more favorable because the membranes in between are isolated from the final metal membrane and therefore assume a certain, lower potential when a high voltage is applied. This increases the lifespan, because the lifespan of the system is determined by the dielectric strength of the insulation layer between the wire coil and the membrane.
  • the insulation layer is subjected to less electrical stress, which means that the service life increases.
  • the highly conductive membrane can be placed directly on the coil, provided the insulation layer between its and the final membrane is made of it is laid. This results in a further improvement in the coupling of the membrane to the wire coil, since the stray field is minimized. - Reduction of eddy current losses.
  • the preferred metals used are stainless steel for the high-strength membrane and copper or silver for the highly conductive membranes.
  • Preferred dimensions are: Noble jet membrane: 0.1 - 0.2 mm Copper membrane: 0.05 - 0.2 mm Insulation film: 0.025 - 0.125 mm
  • any number of combinations are possible in the number and thickness of the insulating foils or the metal membranes. However, a total thickness of up to 1 mm should not be exceeded.
  • the shock wave source according to the invention here consists of a basic body 1, a wire coil 2, an insulation film 3, a copper membrane 4, a further insulation film 5, a second copper membrane 6, a further insulation lation film 7 and a stainless steel membrane 8, which is grounded. Designs with more than two highly conductive metal foils 4, 6 are possible, but not shown.
  • the individual layers are connected to one another in a conventional manner, for example by gluing.
  • the figure shows the shock wave source on a greatly enlarged scale. A total thickness of up to 1.0 mm is realistic.
  • the potential curve U during the application of a high voltage is shown in the lower part of the figure.
  • the coil 2 is at the high potential U0.
  • the stainless steel membrane 8 is at earth potential.
  • the copper membranes 4 and 6 are each at potentials that lie between the value U0 and 0. Within the insulating foils 3, 5 and 7, the potential U falls from the higher value to a lower one.
  • FIG. 2 shows the current density distribution in a 0.2 mm thick copper membrane and the current density distribution in two 0.1 mm thick copper membranes, which are separated by an insulation film. Due to the skin effect, the current density at high frequencies is not evenly distributed over the conductor cross-section. The maximum penetration depth at the frequency used is approx. 0.2 mm.
  • the distribution of the current density is shown schematically in FIG. 2. As can be seen from this, the integral over the current density is larger when using two membranes. This increases the repulsive forces and the amplitude of the pressure pulse generated. In the case of well-conductive membranes whose thicknesses are greater than 0.4 mm, the current density is zero in the inner region. This is not the case with a layered membrane. The distribution of the current density is similar in every membrane.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)
  • Building Environments (AREA)

Abstract

Elektromagnetische Stosswellenquelle mit einem Grundkörper (1) und einer Drahtspule (2), bei der mehrere, voneinander isoliert angeordnete Metallmembranen (4, 6, 8) verwendet werden.

Description

  • Die Erfindung betrifft eine elektromagnetische Stosswellen­quelle nach dem Oberbegriff des Anspruch 1.
  • Die elektromagnetische Stosswellenerzeugung (EMSE) wird unter anderem bei der extrakorporalen Steinzerkleinerung eingesetzt (DE 33 28 066 A) und ist auch für andere thera­peutische Verfahren geeignet, bei denen Stosswellen ver­wendet werden.
  • In der Zeitschrift "Akustische Beihefte", 1962, Heft 1, Seiten 158 bis 202, ist der Aufbau eines sogenannten Stoss­wellenrohres beschrieben. Vor einer Flachspule, durch eine Isolierfolie getrennt, befindet sich eine Kupfermembran. An dieser Kupfermembran schliesst ein mit Wasser gefülltes Rohr an. Durch Anlegen einer Spannung im Bereich von 2 - 20 kV an die Flachspule wird in der Kupfermembran ein Magnetfeld induziert, welches Abstosskräfte bewirkt, die die Membran von der Spule wegdrücken. Hierdurch entsteht ein ebener Druckpuls, der im wassergefüllten Rohr zu einer steilen Stosswelle wird und am Rohrende für Experimente zur Ver­fügung steht. Eingesetzt wird ein solches Stosswellenrohr zum Beispiel zu Stoffuntersuchungen in der Chemie.
  • Aufgabe der Erfindung ist es, eine solche Stosswellenquelle dahingehend zu verbessern, dass Wirkungsgrad und Lebensdauer erhöht werden.
  • Diese Aufgabe wird erfindungsgemäß gelöst von einer Stoss­wellenquelle mit den Merkmalen des Anspruchs 1. Ausführungen der Erfindung sind Gegenstände von Unteran­sprüchen.
  • Die Erfindung hat folgende Vorteile:
    - Wirkungsgradverluste durch eine geerdete Kupfermembran werden vermieden. Die Erwärmung des Gesamtsystems wird wegen des verbesserten Wirkungsgrades verringert.
    - Der Skineffekt wirkt sich nicht mehr begrenzend auf die gesamte Dicke der gut leitfähigen Membran aus, wie an­hand von Figur 2 gezeigt ist. Dennoch können nun mehrere Membranen hintereinander gesetzt werden, deren Gesamt­dicke größer ist als die einer einzelnen Membran.
    - Die Potentialaufteilung zwischen Spule und der geerdeten abschliessenden Metallmembran wird günstiger, da die zwischenliegenden Membranen gegen die abschliessende Metallmembran isoliert sind und deshalb beim Anlegen einer hohen Spannung ein bestimmtes, niedrigeres Potential annehmen. Dies erhöht die Lebensdauer, denn die Lebensdauer des Systems ist bestimmt durch die Durchschlagfestigkeit der Isolationsschicht zwischen Drahtspule und Membran. Aufgrund der günstigeren Poten­tialaufteilung wird die Isolationsschicht elektrisch weniger stark beansprucht, das heisst die Lebensdauer erhöht sich.
    - Die gut leitfähigen Membrane können direkt auf die Spule aufgelegt werden, sofern die Isolationsschicht zwischen ihren und der abschliessenden Membran entsprechend aus­ gelegt ist. Hieraus folgt eine weitere Verbesserung der Ankopplung der Membran an die Drahtspule, da das Streu­feld minimiert wird.
    - Verringerung der Wirbelstromverluste.
  • Als bevorzugte Metalle werden für die hochfeste Membran Edelstahl und für die gut leitfähigen Membranen Kupfer oder Silber verwendet.
  • Bevorzugte Dimensionen sind:
    Edelstrahlmembran: 0,1 - 0,2 mm
    Kupfermembran: 0,05 - 0,2 mm
    Isolationsfolie: 0,025 - 0,125 mm
  • In der Anzahl und Dicke der Isolationsfolien oder der Metallmembranen sind beliebige Kombinationen möglich. Allerdings sollte eine Gesamtdicke von bis zu 1 mm nicht überschritten werden.
  • Die Erfindung wird anhand zweier Figuren näher erläutert.
    • Figur 1 zeigt eine erfindungsgemässe Stosswellenquelle,
    • Figur 2 zeigt den Stromdichteverlauf in verschiedenen Membranen.
  • Die Figur 1 zeigt in ihrer oberen Hälfte den Aufbau einer bevorzugten Ausführungsform einer erfindungsgemässen Stoss­wellenquelle und in ihrer unteren Hälfte den Potentialver­lauf beim Anlegen einer hohen Spannung an die Spule.
    Die erfindungsgemässe Stosswellenquelle besteht hier aus einem Grundköprer 1, einer Drahtspule 2, einer Isolations­folie 3, einer Kupfermembran 4, einer weiteren Isolations­folie 5, einer zweiten Kupfermembran 6, einer weiteren Iso­ lationsfolie 7 und eine Edelstahlmembran 8, die geerdet ist. Möglich, aber nicht gezeigt, sind Ausführungen mit mehr als zwei gut leitenden Metallfolien 4, 6. Die einzelnen Schich­ten sind auf konventionelle Weise, zum Beispiel durch Kleben, miteinander verbunden.
    Die Figur zeigt die Stosswellenquelle in stark vergrössertem Maßstab. Realistisch ist eine Gesamtdicke bis zu 1,0 mm. Im unteren Teil der Figur ist der Potentialverlauf U während des Anlegens einer hohen Spannung gezeigt. Die Spule 2 liegt auf dem hohen Potential U₀. Die Edelstahlmembran 8 liegt auf Erdpotential.
    Die Kupfermembranen 4 und 6 liegen jeweils auf Potentialen, die zwischen dem Wert U₀ und 0 liegen. Innerhalb der Iso­lationsfolien 3, 5 und 7 fällt das Potential U jeweils vom höheren Wert auf einen niedrigeren.
  • Figur 2 zeigt oben die Stromdichteverteilung in einer 0,2 mm dicken Kupfermembran und unten die Stromdichteverteilung in zwei 0,1 mm dicken Kupfermembranen, die von einer Isola­tionsfolie getrennt sind. Aufgrund des Skineffektes verteilt sich die Stromdichte bei hohen Frequenzen nicht gleichmässig über den Leiterquerschnitt. Die maximale Eindringtiefe bei der verwendeten Frequenz beträgt ca. 0,2 mm. Die Verteilung der Stromdichte ist schematisch in der Figur 2 gezeigt. Wie daraus ersichtlich wird, ist das Integral über die Stromdichte bei Verwendung zweier Membranen grösser. Damit erhöhen sich die Abstossungskräfte und die Amplitude des erzeugten Druckimpules.
    Bei gut leitfähigen Membranen, deren Dicken grösser als 0,4 mm sind, ist im inneren Bereich die Stromdichte Null. Bei einer geschichteten Membran ist dies nicht der Fall. Die Verteilung der Stromdichte ist in jeder Membran ähnlich.

Claims (5)

1. Stosswellenquelle mit einem Grundkörper (1), mindestens einer Drahtspule (2), einer Isolationsfolie (3) und einer Metallmembran (8), gekennzeichnet durch mindestens eine gut leitfähige weitere Metall­membran (4, 6), die durch mindestens eine Isolations­folie (5, 7) von der ersten Metallmembran (8) getrennt ist.
2. Stosswellenquelle nach Anspruch 1, gekennzeichnet durch eine hochfeste Membran (8), die von einer Isolations­folie (7) von den anderen Metallmembranen (4, 6) ge­trennt ist.
3. Vorrichtung nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die gut leitfähigen Metallmembranen (4, 6) aus Kupfer oder Silber bestehen.
4. Stosswellenquelle nach mindestens einem der vorhergehen­den Ansprüche, dadurch gekennzeichnet, dass die hoch­feste Membran (8) aus Edelstahl besteht.
5. Stosswellenquelle nach mindestens einem der vorhergehen­den Ansprüche, gekennzeichnet durch folgende Materialien und Dicken: - Edelstrahlmembran: 0,1 bis 0,2 mm - Isolationsfolie: 0,025 bis 0,125 mm - Kupfermembran: 0,05 bis 0,2 mm.
EP88120217A 1987-12-23 1988-12-03 Elektromagnetische Stosswellenquelle Expired - Lifetime EP0321759B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3743822 1987-12-23
DE19873743822 DE3743822A1 (de) 1987-12-23 1987-12-23 Elektromagnetische stosswellenquelle

Publications (3)

Publication Number Publication Date
EP0321759A2 true EP0321759A2 (de) 1989-06-28
EP0321759A3 EP0321759A3 (en) 1989-10-04
EP0321759B1 EP0321759B1 (de) 1994-06-01

Family

ID=6343441

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120217A Expired - Lifetime EP0321759B1 (de) 1987-12-23 1988-12-03 Elektromagnetische Stosswellenquelle

Country Status (5)

Country Link
US (1) US4924858A (de)
EP (1) EP0321759B1 (de)
JP (1) JPH0741043B2 (de)
DE (1) DE3743822A1 (de)
ES (1) ES2056880T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4201139A1 (de) * 1992-01-17 1993-07-22 Siemens Ag Elektromagnetische akustische druckimpulsquelle mit elektrisch leitfaehigen membranmitteln
DE4228963A1 (de) * 1992-08-31 1994-03-03 Siemens Ag Druckimpulsquelle mit kavitationsfest beschichteter Membran

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907605C2 (de) * 1989-03-09 1996-04-04 Dornier Medizintechnik Stosswellenquelle
DE4130796A1 (de) * 1990-09-27 1992-04-02 Siemens Ag Elektrisch antreibbare stosswellenquelle
US5233972A (en) * 1990-09-27 1993-08-10 Siemens Aktiengesellschaft Shockwave source for acoustic shockwaves
DE4041063A1 (de) * 1990-12-20 1992-06-25 Siemens Ag Vorrichtung zum entfernen von implantierten gelenkprothesen
DE4125088C1 (de) * 1991-07-29 1992-06-11 Siemens Ag, 8000 Muenchen, De
US7189209B1 (en) 1996-03-29 2007-03-13 Sanuwave, Inc. Method for using acoustic shock waves in the treatment of a diabetic foot ulcer or a pressure sore
US6390995B1 (en) 1997-02-12 2002-05-21 Healthtronics Surgical Services, Inc. Method for using acoustic shock waves in the treatment of medical conditions
DE10160595A1 (de) * 2001-12-10 2003-06-26 Dornier Medtech Holding Int Gmbh Elektromagnetische Stoss- bzw. Druckwellenquelle
DE102004013573B3 (de) * 2004-03-19 2005-09-01 Dornier Medtech Systems Gmbh Elektromagnetischer Wandler zur Erzeugung von Zugimpulsen
DE102004036526B4 (de) * 2004-07-28 2008-06-05 Dornier Medtech Systems Gmbh Stoßwellenquelle und Stoßwellenbehandlungsgerät
CN1878427A (zh) * 2005-06-07 2006-12-13 日本电产鸽株式会社 扬声器
CN1882195A (zh) * 2005-06-07 2006-12-20 日本电产鸽株式会社 扬声器
US9997189B2 (en) * 2016-11-07 2018-06-12 Seagate Technology Llc Three dimensional electric field data storage device utilizing shockwaves and a light source
US10056146B2 (en) 2016-11-07 2018-08-21 Seagate Technology Llc Electric field storage device
US20220072326A1 (en) * 2020-09-10 2022-03-10 Moshe Ein-Gal Combined pulsed electromagnetic field and low intensity shockwave system and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3447440A1 (de) * 1984-12-27 1986-07-03 Siemens AG, 1000 Berlin und 8000 München Stosswellenrohr fuer die zertruemmerung von konkrementen
DE3505894A1 (de) * 1985-02-20 1986-08-21 Siemens AG, 1000 Berlin und 8000 München Stosswellenrohr mit spule und membran
US4718421A (en) * 1985-08-09 1988-01-12 Siemens Aktiengesellschaft Ultrasound generator
EP0256203A1 (de) * 1986-06-05 1988-02-24 Siemens Aktiengesellschaft Stosswellengenerator zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
US4796608A (en) * 1986-06-16 1989-01-10 Siemens Aktiengesellschaft Shock wave generator for an apparatus for non-contacting disintegration of calculi in the body of a life form
DE8627238U1 (de) * 1986-10-06 1988-02-04 Siemens AG, 1000 Berlin und 8000 München Stoßwellenquelle
EP0278304A1 (de) * 1987-02-04 1988-08-17 Siemens Aktiengesellschaft Lithotripter mit integrierter Ortungseinrichtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4201139A1 (de) * 1992-01-17 1993-07-22 Siemens Ag Elektromagnetische akustische druckimpulsquelle mit elektrisch leitfaehigen membranmitteln
DE4228963A1 (de) * 1992-08-31 1994-03-03 Siemens Ag Druckimpulsquelle mit kavitationsfest beschichteter Membran
DE4228963C2 (de) * 1992-08-31 1998-10-22 Siemens Ag Druckimpulsquelle mit kavitationsfest beschichteter Membran

Also Published As

Publication number Publication date
ES2056880T3 (es) 1994-10-16
DE3743822C2 (de) 1989-10-12
DE3743822A1 (de) 1989-07-13
US4924858A (en) 1990-05-15
JPH0741043B2 (ja) 1995-05-10
EP0321759A3 (en) 1989-10-04
JPH01280451A (ja) 1989-11-10
EP0321759B1 (de) 1994-06-01

Similar Documents

Publication Publication Date Title
EP0321759A2 (de) Elektromagnetische Stosswellenquelle
DE102008004660B4 (de) Gradientenspule und Verfahren zur Herstellung einer Gradientenspule
EP0115803A2 (de) Scheibenförmige Solarzelle
DE4231185A1 (de) Pruefelektrodeneinheit fuer gedruckte schaltungen, pruefgeraet, das die pruefelektrodeneinheit umfasst, und verfahren zum pruefen gedruckter schaltungen, das das pruefgeraet verwendet
DE102018115654A1 (de) Aktiv gekühlte Spule
DE2615354A1 (de) Einrichtung zum unterdruecken von statischer elektrizitaet und verfahren zum herstellen der einrichtung
EP0048488A1 (de) Gehäuse aus Kunststoff
DE2729406A1 (de) Zugvorrichtung mit elektrodynamischer fahrzeugabfederung fuer hochschnell- landverkehr
DE963978C (de) Wanderfeldroehre mit einem unter dem Einfluss gekreuzter elektrischer und magnetischer Felder entlang einer Verzoegerungsleitung laufenden Elektronenstrahl
DE3906908C2 (de) Laminierte Spule für einen mit starkem Wechselstrom betriebenen Wirbelstrom-Magnetfeldgenerator
DE2720514C3 (de) Verfahren zur Bestrahlung von kreiszylindrischen Gegenständen mit beschleunigten Elektronen
DE1257203B (de) Aus duennen magnetischen Schichten bestehendes Speicherelement
DE102017208814A1 (de) Distanzband, Transformatorenwicklung und Transformator sowie das Verfahren zur Herstellung eines Distanzbandes
DE4125088C1 (de)
DE2049351A1 (de) Magnetspeicher
DE3104888A1 (de) Koronaentladungselektrodenvorrichtung
DE3502770A1 (de) Verfahren zur herstellung einer flachspule sowie flachspule fuer ein stosswellenrohr
DE2701228C2 (de) Koaxialleitungssystem
DE550059C (de) Verfahren zur Schwaechung der Randfelder an leitenden Kondensatoreinlagen in Isolatoren, deren Spannungsverteilung zwischen den Elektroden nach dem bekannten Kondensatorprinzip gesteuert wird
DE2421257A1 (de) Uebertrager
DE964782C (de) Jalousiefoermige Richtantenne mit horizontaler Polarisation
EP0061521B1 (de) Schirmkörper für Joche von Eisenkernen von Transformatoren und Drosselspulen
DE1513997B2 (de) Abschirmflaeche fuer transformatoren, drosselspulen und dgl. hochspannungsgeraete
DE102020112950A1 (de) Spule
DE9204717U1 (de) Hochfrequenz-Wellenleiter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH ES IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH ES IT LI NL

17P Request for examination filed

Effective date: 19890908

17Q First examination report despatched

Effective date: 19920810

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH ES IT LI NL

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2056880

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071220

Year of fee payment: 20

Ref country code: ES

Payment date: 20071227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071220

Year of fee payment: 20

Ref country code: CH

Payment date: 20071224

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081204