EP0295472B1 - Verfahren und Vorrichtung zum Verdichten von Formstoff in Giesserei-Formmaschinen - Google Patents

Verfahren und Vorrichtung zum Verdichten von Formstoff in Giesserei-Formmaschinen Download PDF

Info

Publication number
EP0295472B1
EP0295472B1 EP88108468A EP88108468A EP0295472B1 EP 0295472 B1 EP0295472 B1 EP 0295472B1 EP 88108468 A EP88108468 A EP 88108468A EP 88108468 A EP88108468 A EP 88108468A EP 0295472 B1 EP0295472 B1 EP 0295472B1
Authority
EP
European Patent Office
Prior art keywords
stamps
pressure
ramming
pressure medium
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88108468A
Other languages
English (en)
French (fr)
Other versions
EP0295472A3 (en
EP0295472A2 (de
Inventor
Norbert Damm
Thomas Dr.-Ing. Parr
Ernst Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMD Badische Maschinenfabrik Durlach GmbH
Original Assignee
BMD Badische Maschinenfabrik Durlach GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25856643&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0295472(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19873719846 external-priority patent/DE3719846A1/de
Application filed by BMD Badische Maschinenfabrik Durlach GmbH filed Critical BMD Badische Maschinenfabrik Durlach GmbH
Publication of EP0295472A2 publication Critical patent/EP0295472A2/de
Publication of EP0295472A3 publication Critical patent/EP0295472A3/de
Application granted granted Critical
Publication of EP0295472B1 publication Critical patent/EP0295472B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/02Compacting by pressing devices only
    • B22C15/08Compacting by pressing devices only involving pneumatic or hydraulic mechanisms

Definitions

  • the invention relates to a method for compacting molding material in the molding box of foundry molding machines with a multi-die press plate, the individual punches of which are arranged at a distance from one another and penetrate into the back of the molding material at different depths according to the model height.
  • the aim is to achieve the same level of strength in the entire molding area.
  • wall friction on box and model surfaces on the one hand large differences in model heights or narrow, deep model contours on the other hand lead to different dimensional strengths. So there are differences in large model heights Molded parts are pressed over protruding model surfaces, whereas weakly compacted mold parts often occur in narrow and deep model contours and at the edge of the box.
  • compression In order to achieve a reasonably homogeneous compression of the mold with critical model contours, compression generally has to be carried out in two stages, the compression of the back of the molding material being able to be carried out with a multi-die press plate.
  • the purpose of multi-stamp pressing is to automatically compensate for compression differences caused by the model during the compression process. It is known from DE-OS 29 36 173 to precompact the filled sand in the molding box first by means of a press plate approaching the back of the molding material and then to carry out the post-compaction in a second step by means of press dies stored in the press plate.
  • the press rams are connected to a common pressure medium source and penetrate more or less deeply into the back of the molding material according to the model contour.
  • the object of the present invention is to improve the method described at the outset in such a way that a consistently high compression quality is obtained even with difficult contours.
  • a device is to be specified with which this method can be implemented inexpensively in practice.
  • the described method produces particularly good results if the sum of the punch cross sections on the sand side is chosen to be 20% to 70%, in particular 20% to 50%, of the mold box area. It is particularly expedient to provide more specific stamp area in the inner area, that is to say above the model, than in the edge area, in that it amounts to 20% to 50% in the edge area 50% to 100% of the associated molding box area.
  • stamp speeds have hitherto been around 0.2 to 0.7 m / s, stamp speeds above 2.0 m / s are particularly recommended for the present method, particularly 3 to 10 m / s, values of 4 to 8 m / s being particularly preferred are cheap.
  • stamp speeds have hitherto been around 0.2 to 0.7 m / s, stamp speeds above 2.0 m / s are particularly recommended for the present method, particularly 3 to 10 m / s, values of 4 to 8 m / s being particularly preferred are cheap.
  • the dynamic effects in the molding material are similar to those of gas pulse compression.
  • the molding material particles are accelerated to such an extent that, when they strike the model or model plate surface, they are compressed to a greater extent than by mechanical slow pressing due to the impact impulse.
  • the same applies to the molding material particles located under the pressing plate if one expediently also moves the pressing plate towards the molding material at the same lifting speed.
  • the press batten is expediently provided on its edge and in the area between the outer punches with projections on the underside, for example with a circumferential bar that is only interrupted by the outer punches.
  • the edge area of the mold acts as a damping device for the press plate and the individual punches connected to it, and at the same time this edge area experiences a desired additional compression.
  • stamps take place with discretely specified pressures, i.e. that instead of the previously used balancing pressure compensation, a certain support pressure is built up in each stamp, for example, in such a way that the stamps are completely moved out of the press plate before compacting and then are supported according to the model height with different levels of back pressure - especially pneumatically.
  • the press plate is then pressed together with the stamps which move relative to it against the molding material.
  • the stamps can also be set to different levels from the start according to the model profile and then - in particular hydraulic - are supported or fixed so that they essentially maintain their level relative to one another during the subsequent compaction.
  • the method according to the invention is carried out in such a way that at least the pressure medium cylinders for the stamps located within the outer stamp are each connected to a pressure source via their own pressure medium lines and via valves.
  • the individual stamps can either be pneumatically preloaded to a specific support pressure which is selected in accordance with the model contour, or the stamps are set hydraulically to different level positions in accordance with the model contour.
  • the pressure medium cylinders of the punches can each be connected to the pressure source via their own switching valves.
  • the pressure medium cylinders can be row-by-row at their one end and column-by-row at their other end. be connected column-wise pressure medium line, these lines are each connected to the supply or discharge line via valves and the control of these valves is carried out by a microprocessor according to the desired stroke positions of the punches.
  • the compressed gas pulse can be generated in a manner known per se by compressed air or by explosive gas mixtures.
  • Such a multi-stage compression offers the advantage that the compressed gas flowing through the molding material, on the one hand, brings about fluidization and, on the other hand, pre-compression of the molding material. Both effects improve the compression properties of the mold.
  • the pressure gas pulse can be brought into effect before and / or during pressing.
  • the pressure level and the pressure curve can be as high as, or significantly below, that of pure pulse compression. It is also within the scope of the invention to allow gas to escape from the molding box, in particular via the model plate, or to actively aspirate it during compression.
  • the press head can either be installed in a pressure vessel, which adjoins the filling frame.
  • the press head expediently has a valve plate which interacts with a corresponding valve seat of the pressure container in order to open or shut off the connection of a pressure source which is under pressure to the molding box. So that the gas pulse can communicate to the molding material without large flow losses, it is recommended that the compressed gas not only between the press head and the filling frame, but also through corresponding openings of the press head can flow through it.
  • the press head itself can also be designed as a pressure vessel and connected to a pressure source.
  • a tight connection of the press head to the filling frame must be ensured, for example by means of a sliding seal between the two parts.
  • Figures 1 and 2 first show a model plate 1 with model 2 and a molding box 3 placed on the model plate 1 and a filling frame 4 placed thereon.
  • the loosely poured molding sand is designated by 5.
  • a compression unit 6 in the form of a Veil stamp press head.
  • individual punches 7 are distributed relatively evenly over the cross section of the molding box, expediently have a round cross section and are spaced apart from one another by an amount corresponding to their diameter. They traverse a horizontal press plate 8, which forms the lower end of a box-shaped compression head 9. At least the lower cross section of the compression head 9 is dimensioned so that it fits into the filling frame 4.
  • the outer edge of the press plate 8 is formed by downwardly projecting strips 8a, which at the same time form elongated guide bushes for the external punches.
  • a pressure medium cylinder 10 is arranged within the compression head 9, each of which is connected to a pressure source 12 via a line 11.
  • a lifting table (not shown in the drawing) is provided for raising the molding box against the compression head 9 or, what is more expedient, the compression head 9 can be moved hydraulically into the filling frame 4 which remains at rest via a press cylinder 13 arranged above.
  • the individual pressure medium cylinders 10 are prestressed with different pneumatic pressures, specifically with discrete values that are prescribed as a function of the model contour.
  • the external punches above the model-free space are pre-stressed with 4 bar, the neighboring punches with about 1 bar and the inner punches arranged above the model recess with about 3 bar compressed air.
  • the individual prestressing of the individual cylinders 10 takes place by means of a schematically indicated electrical individual control 14, which can be program-controlled depending on the model.
  • the entire compression head 9 is accelerated to a speed of about 7 m / s, the individual punches 7 first penetrating into the back of the molding material.
  • the subsequent press plate 8 By overtaking the subsequent press plate 8, by its spaced arrangement and by its high lifting speed ensures that the prescribed maximum stroke difference ⁇ H / H of at least 30% is set at the end of the compression process.
  • the hydraulic cylinder 13 is again pressurized with oil.
  • the overpressure present in the cylinders 10 automatically ensures that the punches 7 are advanced to the position shown in FIG. 1.
  • Known monitoring units can automatically bring the pressure in individual cylinders 10 back to the prescribed level.
  • Fig. 2 shows an alternative to the pressure supply to the cylinders 10 compared to Fig. 1, in that each cylinder 10 has its own, electrically operated inlet valve 15 and in which all these valves open into a common pressure chamber 16 within the compression head 9.
  • the pressure chamber 16 stands over an on or.
  • Outlet valve 17 with a pressure medium source 12 or with the atmosphere in connection.
  • valves 15 are connected to an electrical selection device 20. It allows to close those valves 15, the cylinders 10 of which have reached the desired preload pressure, during the pressure increase in the pressure chamber 16.
  • the system shown in FIG. 3 is particularly suitable for a hydraulic loading of the cylinders in such a way that the punches 7 are set to different height positions before compression and more or less can be fixed.
  • the individual cylinders as a two-dimensional matrix with a field arrangement of several columns, for example 1, 2, 3 and 4 several rows, for example A, B, C and D.
  • the series-connected cylinder connections of the columns are located at the upper end of the cylinder and lie at right angles to the cylinder connections of the series connected in series at the lower cylinder ends.
  • Each column S and each row R can be hydraulically switched on and off with a two-way valve V1, V2 ...
  • the image of the model height contour is entered into the control program in a model-coded stroke data record and is available for the duration of the model impressions for individual control of the individual stamps.
  • the model-coded stroke data record needs to be changed.
  • FIGS. 4 to 7 show molding machines with which the previously described method is carried out in combination with an air pulse acting on the molding material. Depending on its strength, this air pulse causes fluidization, but preferably also pre-compression of the molding material.
  • the entire press head 6 with the compression head 9 and the press cylinder 13 is installed in a pressure container 21.
  • the pressure vessel 21 has a valve seat 22 which interacts with a head plate 23 of the compression head 9, which acts as a valve disk, with the interposition of a seal 22a.
  • the pressure container 21 can enter a closed upper chamber 21a, which is connected to a compressed air source 24, and a lower chamber 21b, which is in airtight connection with the molding space formed by molding box 3 and filling frame 4, can be divided.
  • the function is as follows: First, the chamber 21a is filled with compressed gas, in particular compressed air, the top plate 23 of the compression head 9 sealing the chamber 21a via appropriate sealing surfaces. Then the hydraulic cylinder 13 is reversed so that the compression head 9 moves down.
  • the chamber 21 opens and the compressed gas in it flows with simultaneous downward movement of the compression head 9 and reaches both along the outer edge gap between the compression head and the pressure vessel 21 and through gaps between the individual punches 7 and the pressure plate 8 to the first still loose molding material 5.
  • the molding material 5 is fluidized by and when the plunger 7 is immersed there is first the positive effect of a reduction in friction. Furthermore, the compressed gas flowing through the molding material effects a pre-compression in a manner known per se.
  • the final compression takes place in the manner already described by the punches 7 penetrating into the molding material at different depths and finally by the press plate 8.
  • the compressed gas can of course also be supplied outside the compression head 9 in the molding space.
  • the compressed gas can also be moved laterally via valves, not shown be introduced into the lower region of the pressure container 21 above the filling frame 4.
  • Figures 5 to 7 show another design that works with combined compression.
  • the press head 6, that is to say its compression head 9 is itself designed as a pressure vessel.
  • a chamber 9a is formed in the compression head 9, which on the one hand is to be pressurized via a pressurized gas connection 24 and, on the other hand, can be opened to the molding space via numerous valves 25, only one of which is shown in the drawing.
  • the compression head 9 is provided on the outer edge of the press plate 8 formed by the strips 8a with sealing lips 26 which seal it against the full frame 4.
  • the chamber 9a is connected via connections 27 to the underside of all pressure medium cylinders 10, so that it is not only responsible for the generation of the pressure gas pulse, but also for the lifting of the stamps 7.
  • the pressure medium cylinders 10 are accommodated directly in the chamber 9a, therefore simple cross bores at the lower end of the cylinders 10 are sufficient for the connections 27.
  • Figure 5 shows the beginning of the compression process.
  • the compression head 9 is just so far immersed in the filling frame that the sealing lips 26 seal it against the filling frame 4.
  • the pressure medium cylinders 10 are depressurized from above, whereas the chamber 9a has an overpressure via the external pressure gas source 24. This excess pressure is transferred via the connections 27 to the lower displacement of the cylinders 10 and holds all the individual stamps 7 in the upper stroke position shown.
  • FIG. 6 shows the following compression section: Individual cylinders 10 were subjected to discrete counterpressures, preferably gas pressures, on their upper side via their connecting line 11, so that individual punches 7 immersed in the molding material to different depths according to the contour of the model 2.
  • discrete counterpressures preferably gas pressures
  • valves 25 in the chamber 9a were opened, as a result of which the gas under pressure flows into the lower part of the compression head 9, flows around the punches 7 and penetrates into the molding material. This leads to the fluidization already described and the easier penetration of the punches 7 into the molding material surface and to a certain pre-compression of the molding material.
  • exhaust air nozzles 28 can discharge the gas originating from the pressure pulse and the shaped air of the molding material liberated during the subsequent mechanical compression. This air discharge can additionally by active air extraction before and / or during the Compressed are supported by connecting the exhaust air nozzles 28 to a vacuum source.
  • FIG. 7 shows the arrangement after the compression has ended, that is to say after the compression head 9 has been pressed into its lower end position by the hydraulic cylinder 13 in the manner described at the outset, a maximum stroke difference of at least 30% based on the mold box height being maintained between the individual stamps 7 becomes.
  • the fluidization and pre-compression effect by the gas pulse is effective due to the high stamp speeds at least during the main part of the stroke movement of the compression head 9.
  • the duration of action of the gas pulse can be optimally adapted to the other process parameters by corresponding control of the valves 25. It may also be expedient to make the air pulse relatively weak, so that it only leads to fluidization of the molding material without pre-compression.
  • the advantage of the described invention is that the individual control of the individual punches or their different preload in the sense of a high maximum stroke difference between the individual punches results in a much more homogeneous compression than before, even with problematic model contours.
  • the invention also extends to boxless molding, the molding box being stripped or disassembled after compression.
  • the invention is also suitable for combination with other precompression processes.

Description

  • Die Erfindung betrifft ein Verfahren zum Verdicten von Formstoff im Formkasten von Gießerei-Formmaschinen mit einer Vielstempel-Preßplatte, deren einzelne Stempel mit Abstand voneinander angeordnet sind und entsprechend der Modellhöhe unterschiedlich tief in den Formstoffrücken eindringen.
  • Grundsätzlich strebt man beim Verdichten ein möglichst gleiches Festigkeitsniveau im gesamten Formbereich an. In der Praxis führen aber Wandreibung an Kasten- und Modellflächen einerseits, große Modellhöhen-Unterschiede oder enge, tiefe Modellkonturen andererseits zu unterschiedlichen Formfestigkeiten. So werden bei großen Modellhöhen-Unterschieden Formpartien über hochstehenden Modellflächen überpreßt, wohingegen in engen und tiefen Modellkonturen sowie am Kastenrand häufig schwach verdichtete Formpartien entstehen.
  • Um bei kritischen Modellkonturen eine einigermaßen homogene Verdichtung der Form zu erreichen, muß im Allgemeinen zweistufig verdichtet werden, wobei die Verdichtung des Formstoffrückens mit einer Vielstempel-Preßplatte erfolgen kann. Zweck des Vielstempelpressens ist es, modellbedingte Verdichtungsunterschiede während des Verdichtungsvorganges selbsttätig auszugleichen. So ist es durch die DE-OS 29 36 173 bekannt, den eingefüllten Sand im Formkasten zunächst mittels einer auf den Formstoffrücken zufahrenden Preßplatte vorzuverdichten und sodann in einem zweiten Schritt durch in der Preßplatte gelagerte Preßstempel die Nachverdichtung durchzuführen. Dabei sind die Preßstempel an eine gemeinsame Druckmittelquelle angeschlossen und dringen entsprechend der Modellkontur mehr oder weniger tief in den Formstoffrücken ein.
  • Ebenso ist es beispielsweise durch die EP-AS 172 937 bekannt, die überwiegende Verdichtung zunächst mit einer Vielstempel-Preßplatte durchzuführen und sodann bei angehobenem Formkasten eine Nachverdichtung durch Hochpressen des Modells durchzuführen.
  • Schließlich ist es bei Vielstempel-Preßplatten auch bekannt, die außen liegenden Stempel mit einem höheren Druckniveau zu stützen als die innenliegenden Stempel, wenn der den gefüllten Formkasten tragende Hubtisch nach oben gegen die Stempel verfahren wird. Man erhält dadurch zwar eine bessere Hubanpassung der Stempel an die Modellkontur, trotzdem sind die Verdichtungsunterschiede über den Formquerschnitt immer noch beträchtlich. In den meisten Fällen ist daher die Kombination dieses Systems mit einer Rüttelverdichtung notwendig.
  • Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, das eingangs beschriebene Verfahren dahingehend zu verbessern, daß man selbst bei schwierigen Konturen eine gleichbleibend hohe Verdichtungsqualität erhält. Außerdem soll eine Vorrichtung angegeben werden, mit der sich dieses Verfahren in der Praxis kostengünstig realisieren läßt.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zumindest die innenliegenden Stempel jeweils individuell entsprechend der Kontur des Modelles mit Druckmittel beaufschlagt werden, daß sodann zusätzlich die Preßplatte zur Verdichtung verwendet und bis etwa an den oberen Formkastenrand verfahren wird und daß am Verdichtungsende eine maximale Hubdifferenz zwischen einzelnen Stempeln von zumindest 30 % vorzugsweise zumindest 40 % der Formkastenhöhe eingehalten wird.
  • Durch diese Maßnahmen, insbesondere die individuelle Druckansteuerung und die bis zum Ende der Verdichtung erzwungenen Hubdifferenzen zwischen den Einzelstempeln ergeben sich überraschend hohe Verdichtungswerte selbst in schmalen und tiefen Taschen des Modells wie auch im modellfreien Randbereich. Mitursächlich hierfür dürfte sein, daß erfindungsgemäß die Verdichtungsendlage der kolben über der gesamten Modellkontur weitgehend zum gleichen Zeitpunkt erreicht wird. Die Rißbildung auslösenden Relativbewegungen in Formstoffbereichen, die bereits verdichtet sind, werden dadurch ausgeschlossen.
  • Wie sich gezeigt hat, kommt den Hubdifferenzen zwischen den einzelnen Stempeln entscheidende Bedeutung zu. Diese Hubdifferenzen, die beim Stand der Technik nur bei 10 bis 20 % liegen, werden beim erfindungsgemäßen Verfahren zweckmäßig mit über 40 % und sogar mit über 50 % bis etwa 80 % der Formkastenhöhe vorgeschrieben. Überraschenderweise haben die daraus resultierenden starken Vertiefungen im Formrücken keine negative, sondern im Gegenteil eine äußerst positive Wirkung auf die Verdichtung.
  • Desweiteren hat sich ergeben, daß das beschriebene Verfahren besonders gute Ergebnisse bringt, wenn die Summe der sandseitigen Stempelquerschnitte mit 20 % bis 70 %, insbesondere 20 % bis 50 % der Formkastenfläche gewählt wird. Dabei ist es besonders günstig, im Innenbereich, also über dem Modell mehr spezifische Stempelfläche vorzusehen als im Randbereich, indem sie innen 20% bis 50% im Randbereich 50% bis 100% der zugehörigen Formkastenfläche beträgt.
  • Außerdem hat es sich als günstig erwiesen, das erfindungsgemäße Verdichtungsverfahren mit hohen Hubgeschwindigkeiten der Preßplatte und der Stempel durchzuführen. Während bisher die Stempelgeschwindigkeiten bei etwa 0,2 bis 0,7 m/s liegen, empfehlen sich für das vorliegende Verfahren Stempelgeschwindigkeiten über 2,0 m/s insbesondere 3 bis 10 m/s, wobei Werte von 4 bis 8 m/s besonders günstig sind. Bei diesen hohen Stempelgeschwindigkeiten entstehen im Formstoff ähnliche dynamische Effekte wie bei der Gasimpulsverdichtung. Die Formstoffteilchen werden so hoch beschleunigt, daß sie beim Auftreffen auf die Modell- oder Modellplattenfläche aufgrund des Aufschlagimpulses höher verdichtet werden als durch mechanisches langsames Pressen. Das gleiche gilt für die unter der Preßplatte befindlichen formstoffteilchen, wenn man zweckmäßigerweise auch die Preßplatte mit der gleichen Hubgeschwindigkeit auf den Formstoff zubewegt.
  • Wird jedoch die kinetische Energie der Stempel und der Preßplatte ungedämpft auf den Formstoff übertragen, so ergibt sich eine unerwünschte Überpressung auf hochliegenden Modellflächen. Diese Überpressung kann erfindungsgemäß dadurch vermieden werden, indem die kinetische Energie überwiegend nur in denjenigen Formstoffbereichen aufgenommen wird, die nicht über hohen Modellpartien, sondern in modellfreien Zonen liegen, also am Kastenrand. Zu diesem Zweck ist die Preßlatte zweckmäßig an ihrem Rand und im Bereich zwischen den Außenstempeln mit unterseitigen Vorsprüngen versehen, etwa mit einer umlaufenden, nur von den Außenstempeln unterbrochenen Leiste. Dadurch fungiert der Randbereich der Form als Dämpfung für die Preßplatte und die mit ihr verbundenen Einzelstempel und zugleich erfährt dieser Randbereich eine angestrebte zusätzliche Verdichtung.
  • Desweiteren empfiehlt es sich, daß die unterschiedliche Druckbeaufschlagung der einzelnen Stempel mit diskret vorgegebenen Drücken erfolgt, d.h. daß anstelle des bisher praktizierten Preßdruckausgleiches in jedem Stempel ein bestimmter Stützdruck aufgebaut wird, etwa in der Weise, daß die Stempel vor dem Verdichten ganz aus der Preßplatte herausgefahren und sodann entsprechend der Modellhöhe mit unterschiedlich starkem Gegendruck - insbesondere pneumatisch - abgestützt werden. Die Preßplatte wird dann mitsamt den sich relativ zu ihr verschiebenden Stempeln gegen den Formstoff gepreßt.
  • Stattdessen können die Stempel aber auch von Anfang an entsprechend der Modellprofilierung auf unterschiedliches Niveau eingestellt und sodann - insbesondere hydraulisch - abgestützt oder fixiert werden, sodaß sie beim anschließenden Verdichten ihr Niveau relativ zueinander im wesentlichen beibehalten.
  • Die Durchführung des erfindungsgemäßen Verfahrens erfolgt in der Weise, daß zumindest die Druckmittelzylinder für die innerhalb der Außenstempel liegenden Stempel jeweils über eigene Druckmittelleitungen und über Ventile an eine Druckquelle angeschlossen sind. Dadurch können die einzelnen Stempel entweder pneumatisch auf einen bestimmten Stützdruck vorgespannt werden, der entsprechend der Modellkontur gewählt ist oder die Stempel werden hydraulisch entsprechend der Modellkontur unterschiedliche Niveaulagen eingestellt.
  • Zur unterschiedlichen Druckbeaufschlagung bzw. zur Ein stellung der unterschiedlichen Hubpositionen können die Druckmittelzylinder der Stempel jeweils über eigene Schaltventile an die Druckquelle angeschlossen werden. Um den Aufwand an Ventilen niedriger zu halten, können die Druckmittelzylinder an ihrem einen Ende zeilenweise an ihrem anderen Ende spaltenweise an je eine zeilen-bzw. spaltenweise verlaufende Druckmittelleitung angeschlossen sein, wobei diese Leitungen jeweils über Ventile an die Zu- bzw. Abführleitung angeschlossen sind und die Ansteuerung dieser Ventile durch eine Mikroprozessor entsprechend den gewünschten Hubpositionen der Stempel erfolgt.
  • Es liegt im Rahmen der vorliegenden Erfindung, die zuvor beschriebene mechanische Verdichtung mit der Einwirkung eines Druckgas-Impulses zu kombinieren. Der Druckgasimpuls kann dabei in an sich bekannter Weise durch Druckluft ober durch Explosion zündfähiger Gasgemische erzeugt werden.
  • Eine derartige mehrstufige Verdichtung bietet den Vorteil, daß das den Formstoff durchströmende Druckgas einerseits eine Fluidisierung, andererseits eine Vorverdichtung des Formstoffes herbeiführt. Beide Effekte verbessern die Verdichtungseigenschaften der Form.
  • Der Druckgasimpuls kann zeitlich vor und/oder während des Pressens zur Wirkung gebracht werden. Je nach den angestrebten Ergebnissen kann die Druckhöhe und der Druckverlauf ähnlich hoch wie bei der reinen Impulsverdichtung oder deutlich darunter liegen. Auch liegt es im Rahmen der Erfindung, während des Verdichtens Gas aus dem Formkasten, insbesondere über die Modellplatte entweichen zu lassen oder aktiv abzusaugen.
  • Für die Durchführung eines derartigen kombinierten Verdichtungsverfahrens kann das Preßhaupt entweder in einen Druckbehälter eingebaut sein, der dicht an den Füllrahmen anschließt. In diesem Fall weist das Preßhaupt zweckmäßig einen Ventilteller auf, der mit einem entsprechenden Ventilsitz des Druckbehälters zusammenwirkt, um die Verbindung einer unter Überdruck stehenden Druckquelle mit dem Formkasten zu öffnen oder abzusperren. Damit sich der Gasimpuls ohne große Strömungsverluste dem Formstoff mitteilen kann, empfiehlt es sich, daß das Druckgas nicht nur zwischen Preßhaupt und Füllrahmen, sonderen auch über entsprechende Öffnungen des Preßhauptes durch dieses hindurchströmen kann.
  • Stattdessen kann das Preßhaupt auch selbst als Druckbehälter ausgebildet und an eine Druckquelle angeschlossen sein. In diesem Fall muß für einen dichten Anschluß des Preßhauptes an den Füllrahmen gesorgt werden, etwa durch eine Gleitdichtung zwischen beiden Teilen.
  • Weitere Einzelheiten hierzu wie auch zu den anderen Aspekten der Erfindung folgen aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand Zeichnung; dabei zeigt.
  • Fig. 1
    einen teilweisen Vertikalschnitt des Oberteils einer Formmaschine zu Beginn der Verdichtung;
    Fig. 2
    den entsprechenden Vertikalschnitt am Ende der der Verdichtung;
    Fig. 3
    ein Schaltungsschema für die Druckmittelzylinder;
    Figur 4
    einen teilweisen Vertikalschnitt des Oberteils einer Formmaschine mit zusätzlicher Impulsverdichtung zu Beginn der Verdichtung;
    Figur 5
    einen teilweisen Vertikalschnitt einer anderen Formmaschine mit zusätzlicher Impulsverdictung zu Beginn der Verdichtung;
    Figur 6
    einen Vertikalschnitt entsprechend Figur 5 bei fortgeschrittener Verdichtung und
    Figur 7
    einen entsprechenden Vertikalschnitt am Ende der Verdichtung.
  • Die Figuren 1 und 2 zeigen zunächst eine Modellplatte 1 mit Modell 2 und einen auf die Modellplatte 1 aufgesetzten Formkasten 3 sowie einen darauf aufgesetzten Füllrahmen 4. Der lose eingeschüttete Formsand ist mit 5 bezeichnet.
  • Darüber befindet sich ein Verdichtungsaggregat 6 in Form eines Veilstempel-Preßhauptes. Seine einzelnen Stempel 7 sind relativ gleichmäßig über den Formkastenquerschnitt verteilt, weisen zweckmäßig einen runden Querschnitt auf und sind etwa um ein ihrem Durchmesser entsprechendes Maß voneinander distanziert. Sie durchqueren eine horizontale Preßplatte 8, die den unteren Abschluß eines kastenförmigen Verdichtungskopfes 9 bildet. Zumindest der untere Querschnitt des Verdichtungskopfes 9 ist so bemessen, daß er in den Füllrahmen 4 hineinpaßt. Der Außenrand der Preßplatte 8 ist durch nach unten vorstehende Leisten 8a gebildet, die zugleich verlängerte Führungsbuchsen für die außenliegenden Stempel bilden.
  • Innerhalb des Verdichtungskopfes 9 ist für jeden Stempel 7 ein Druckmittelzylinder 10 angeordnet, der jeweils über eine Leitung 11 mit einer Druckquelle 12 in Verbindung steht.
  • Um die Verdichtung herbeizuführen ist entweder ein in der Zeichnung nicht dargestellter Hubtisch zum Hochfahren des Formkastens gegen den Verdichtungskopf 9 vorgesehen oder, was zweckmäßiger, ist, der Verdichtungskopf 9 ist über einen oberhalb angeordneten Preßzylinder 13 hydraulisch in den in Ruhe bleibenden Füllrahmen 4 hinein verfahrbar.
  • Wesentlich ist nun, daß die einzelnen Druckmittelzylinder 10 mit unterschiedlichen Pneumatikdrucken vorgespannt sind, und zwar mit diskreten Werten, die in Abhängigkeit von der Modellkontur vorgeschrieben werden. So sind beispielsweise die außenliegenden, über dem modellfreien Raum liegenden Stempel mit 4 bar, die benachbarten Stempel mit etwa 1 bar und die oberhalb der Modellvertiefung angeordneten Innenstempel mit etwa 3 bar Druckluft vorgespannt. Das individuelle Vorspannen der einzelnen Zylinder 10 erfolgt durch eine schematisch angedeutete elektrische Einzelansteuerung 14, die modellabhängig programmgesteuert sein kann.
  • Wird nun der Hydraulikzylinder 13 im Verdichtungssinn ausgelöst,so wird der gesamte Verdichtungskopf 9 auf eine Geschwindigkeit von etwa 7 m/s beschleunigt, wobei zunächst die einzelnen Stempel 7 in den Formstoffrücken eindringen. Durch ihr Voreilen gegenüber der nachkommenden Preßplatte 8, durch ihre distanzierte Anordnung und durch ihre hohe Hubgeschwindigkeit ist sichergestellt, daß sich am Ende des Verdichtungsvorganges die vorgeschriebene maximale Hubdifferenz ΔH/H von mindestens 30 % einstellt.
  • Die Verdichtung der Zwischenräume zwischen den einzelnen Stempeln erfolgt durch die Preßplatte 8, die während des Verdichtungshubes die vorstehenden Stempel 7 mehr oder weniger stark einholt. Eine derart hergestellte Form zeichnete sich trotz der steil abfallenden Modellasußenwände und der in der Mitte befindlichen Vertiefung durch außerordentlich gleichmäßige Formfestigkeiten von 18 bis 20 N/cm² aus.
  • Nach dem Verdichtungshub wird der Hydraulikzylinder 13 wieder im Gegensinn mit Drucköl beaufschlagt. Bei dem dann folgenden Herausziehen des Verdichtungskopfes 9 aus dem Formkasten 3 bzw. Füllrahmen 4 sorgt der in den Zylindern 10 anstehende Überdruck automatisch wieder für das Vorfahren der Stempel 7 in die Position gemäß Fig. 1.
  • Durch an sich bekannte Überwachungseinheiten kann nachlassender Druck in einzelnen Zylindern 10 automatisch wieder auf die vorgeschriebene Höhe gebracht werden.
  • Damit der für die Herstellung des Eingußtrichters verwendete Eingußpin nicht von den Stempeln beaufschlagt wird, ist es zweckmäßig, die Stempel oberhalb der Eingußposition in ihrer zurückgefahrenen Position zu belassen. Da die Eingußposition modellabhängig ist und somit wechselt, sind jeweils andere Stempel in ihrer zurückgezogenen Position zu halten. Steuerungstechnisch ist dies erfindungsgemäß dadurch zu realisieren, daß alle Zylinder 10 über unterseitige Öffnungen 10 a an einen gemeinsamen Druckraum 18 innerhalb des Verdichtungskopfes 9 angeschlossen sind, der seinersseits über einen Anschluß 19 mit einer pneumatischen Druckquelle in Verbindung steht. Dadurch sind alle Stempel 7 elastisch nach oben hin vorgespannt und die oberhalb der Eingußposition befindlichen Stempel verbleiben in dieser Position, wohingegen die anderen Stempel über die jeweiligen Leitungen 11 individuell mit Gegendruck beaufschlagt werden.
  • Fig. 2 zeigt hinsichtlich der Druckversorgung der Zylinder 10 eine Alternative gegenüber Fig. 1, indem hier jeder Zylinder 10 ein eigenes, elektrisch betätigtes Einlaßventil 15 aufweist und in dem all diese Ventile in einen gemeinsamen Druckraum 16 innerhalb des Verdichtungskopfes 9 münden. Der Druckraum 16 steht über ein Ein-bzw. Auslaßventil 17 mit einer Druckmittelquelle 12 bzw. mit der Atmosphäre in Verbindung.
  • Um die einzelnen Zylinder 10 mit dem vorgeschriebenen Vordruck zu beaufschlagen, sind die Ventile 15 an eine elektrische Wähleinrichtung 20 angeschlossen. Sie gestattet es, während des Druckanstieges im Druckraum 16 jeweils diejenigen Ventile 15 zu schließen, deren Zylinder 10 den gewünschten Vorspanndruck erreicht haben.
  • Während die vorbeschriebene Beaufschlagung der Zylinder 10 in erster Linie für pneumatische Druckmittel gedacht ist, eignet sich das in Figur 3 dargestellte System vor allem für eine hydraulische Beaufschlagung der Zylinder in der Weise, daß die Stempel 7 bereits vor der Verdichtung auf unterschiedliche Höhenpositionen eingestellt und mehr oder weniger fixiert werden. Zu diesem Zweck werden die einzelnen Zylinder als zweidimensionale Matrix mit einer Feldanordnung von mehreren Spalten, beispielsweise 1, 2, 3 und 4 mehreren Reihen, beispielsweise A, B, C und D. Die hintereinander geschalteten Zylinderanschlüsse der Spalten befinden sich am oberen Zylinderende und liegen rechtwinklig überkreuz zu den hin tereinander geschalteten Zylinderanschlüssen der Reihen an den unteren Zylinderenden. Jede Spalte Sund jede Reihe R ist hydraulisch mit einem Durchgangsventil V₁, V₂... bzw. VA, VB... zu- und abschaltbar. Dadurch sind für (SxR) Zylinder nur (S+R) Ventile erforderlich, bei der Bauform nach Figur 1 mit 8 Zylindern in einer Reihe und 7 Reihen hintereinander sind also für 56 Zylinder nur 7+8=15 Einzelventile notwendig.
  • Um beispielsweise den Zylinder D3 im Hub zu verstellen, werden nur die beiden Ventile VD und V₃ geöffnet . Nun kann durch Druckölzuführ über die Leitung S der Kolben in eine tiefere Position abgesenkt werden und alle anderen in dieser Reihe und in dieser Spalte befindlichen Zylinder bleiben trotz ihrer Hintereinanderschaltung blockiert, weil stets eines ihrer beiden Ventile geschlossen bleibt.
  • Wegen der Vielfalt modellbezogener Einzelhubeinstellungen ist es zweckmäßig, die Ventile über einen programmierbaren Mikroprozessor anzusteuern. Das Abbild der Modellhöhenkontur wird hierzu in einem modellcodierten Hubdatensatz in das Steuerprogramm eingegeben und steht für die Dauer der Modellabformungen zur individuellen Ansteuerung der Einzelstempel zur Verfügung. Beim Modellwechsel braucht lediglich der modellcodierte Hubdatensatz gewechselt werden.
  • Um die Hubverstellung praktikabel zu machen, empfiehlt es sich, sie absatzweise durch aufeinanderfolgende gleich große Dosierhübel vorzunehmen, das heißt, die gewünschte Hubposition in bestimmten Einzelschritten anzufahren. Man kann dadurch zwar nicht mehr unendlich viele Hubpositionen anfahren. Für die Praxis ist es aber ausreichend, wenn jeder Stempel schrittweise um etwa zwei bis drei Zentimeter verstellt werden kann.
  • Durch die Merkmale der Ansprüche 18 und 19, die in der Zeichnung nicht näher dargestellt sind, ergibt sich der Vorteil, daß anstelle mehrerer manuell auszutauschender Wechselrahmen lediglich der Vorsprung 8a bzw. die Vorsprünge hinsichtlich ihrer Überstandes verstellt zu werden brauchen, um sie optimal an unterschiedliche Modellgrößen bzw. Modellkonturen anzupassen.
  • Die Figuren 4 bis 7 zeigen Formmaschinen, mit denen das zuvor beschriebene Verfahren in Kombination mit einem auf den Formstoff einwirkenden Luftimpuls durchgeführt wird. Dieser Luftimpuls bewirkt je nach seiner Stärke eine Fluidisierung, vorzugweise aber zugleich auch eine Vorverdichtung des Formstoffes.
  • Zur diesem Zweck ist bei der Ausführungsform nach Figur 4 das gesamte Preßhaupt 6 mit dem Verdichtungskopf 9 und dem Preßzylinder 13 in einen Druckbehälter 21 eingebaut. Der Druckbehälter 21 weist einen Ventilsitz 22 auf, der unter Zwischenlage einer Dichtung 22a mit einer als Ventilteller fungierender Kopfplatte 23 des Verdichtungskopfes 9 zusammenwirkt. Dadurch kann der Druckbehälter 21 in eine geschlossene obere Kammer 21a, die an eine Druckluftquelle 24 angeschlossen ist und in eine untere Kammer 21b, die in luftdichter Verbindung mit dem durch Formkasten 3 und Füllrahmen 4 gebildeten Formraum steht, unterteilt werden.
  • Die Funktion ist folgende: Zunächst wird die Kammer 21a mit Druckgas, insbesondere Preßluft, gefüllt, wobei die Kopfplatte 23 des Verdichtungskopfes 9 die Kammer 21a über entsprechende Dichtflächen abdichtet. Anschließend wird die Hydraulikzylinder 13 umgesteuert, so daß der Verdichtungskopf 9 nach unten fährt. Dabei öffnet sich die Kammer 21 und das in ihr befindliche Druckgas strömt bei gleichzeitiger Abwärtsbewegung des Verdichtungskopfes 9 nach unter und gelangt sowohl entlang dem äußeren Randspalt zwischen dem Verdichtungskopf und dem Druckbehälter 21 als auch durch Spalte zwischen den Einzelstempeln 7 und der Preßplatte 8 zu dem zunächst noch losen Formstoff 5. Der Formstoff 5 wird durch fluidisiert und beim Eintauchen der Stempel 7 ergibt sich zunächst der positive Effekt einer Reibungsverminderung. Des weiteren bewirkt das den Formstoff durchströmende Druckgas in an sich bekannter Weise eine Vorverdichtung. Die Endverdichtung erfolgt in der bereits beschriebenen Weise durch die unterschiedlich tief in den Formstoff eindringenden Stempel 7 und schließlich durch die Preßplatte 8.
  • Sofern auf die Umspülung der Einzelstempel 7 innerhalb des Verdichtungskopfes 9 kein Wert gelegt wird, kann des Druckgas selbstverständlich auch außerhalb des Verdichtungskopfes 9 im Formraum zugeführt werden. Auch kann das Druckgas über nicht dargestellte Ventile seitlich in den unteren Bereich des Druckbehälters 21 oberhalb des Füllrahmens 4 eingeleitet werden.
  • Die Figuren 5 bis 7 zeigen eine andere Bauform, die mit kombinierter Verdichtung arbeitet. Im Unterschied zu Figur 4 ist hier das Preßhaupt 6, das heißt sein Verdichtungskopf 9 selbst als Druckbehälter ausgebildet. Zu diesem Zweck ist im Verdichtungskopf 9 eine Kammer 9a gebildet, die einerseits über einen Druckgasanschluß 24 unter Überdruck zu setzen ist und die andererseits über zahlreiche Ventile 25, von denen in der Zeichnung nur eines dargestellt ist, zum Formraum hin geöffnet werden kann. Außerdem ist der Verdichtungskopf 9 an dem durch die Leisten 8a gebildeten Außenrand der Preßplatte 8 mit Dichtlippen 26 versehen, die ihn gegen den Fullrahmen 4 abdichten.
  • Die Kammer 9a steht über Anschlüsse 27 mit der Unterseite aller Druckmittelzylinder 10 in Verbindung, so daß er nicht nur für die Erzeugung des Druckgas-Impulses, sondern auch für des Anheben der Stempel 7 verantwortlich ist. Im Ausführungsbeispiel sind die Druckmittelzylinder 10 direkt in der Kammer 9a untergebracht, daher genügen für die Anschlüsse 27 einfache Querbohrungen am unteren Ende der Zylinder 10.
  • Figur 5 zeigt den Beginn des Verdichtungsvorganges. Dabei ist der Verdichtungskopf 9 gerade so weit in den Füllrahmen eingetaucht, daß ihn die Dichtlippen 26 gegen den Füllrahmen 4 abdichten. Die Druckmittelzylinder 10 sind von oben her drucklos geschaltet, wohingegen die Kammer 9a über die äußere Druckgasquelle 24 einen Überdruck aufweist. Dieser Überdruck überträgt sich über die Anschlüsse 27 auf den unteren Hubraum der Zylinder 10 und hält alle Einzelstempel 7 in der gezeigten oberen Hublage.
  • Figur 6 zeigt den folgenden Verdichtungsabschnitt: Einzelne Zylinder 10 wurden an ihrer Oberseite über ihre Anschlußleitung 11 mit diskreten Gegendrücken, vorzugsweise Gasdrücken beaufschlagt, so daß einzelne Stempel 7 entsprechend der Kontur des Modelles 2 unterschiedlich tief in den Formstoff eintauchen.
  • Gleichzeitig wurden die Ventile 25 in der Kammer 9a geöffnet, wodurch das unter Überdruck stehende Gas in den unteren Teil des Verdichtungskopfes 9 einströmt, die Stempel 7 umspült und in den Formstoff eindringt. Es kommt dadurch zu dem bereits beschriebenen Fluidisieren und dem leichteren Eindringen der Stempel 7 in die Formstoffoberfläche und zu einer gewissen Vorverdichtung des Formstoffes.
  • Es liegt aber auch im Rahmen der Erfindung, diese Fluidisierung und Vorverdichtung erst dann auszulösen, nachdem die Stempel 7 bereits die in Figur 6 dargestellte Voreinstellung entsprechend der Modellkontur erreicht haben.
  • An besonders tiefen oder engen Stellen im Modell- oder Modellplattenbereich können Abluftdüsen 28 das vom Druckimpuls stammende Gas und die bei der anschließenden mechanischen Verdichtung freiwerdende Formluft der Formstoffschüttung abführen. Diese Luftabführung kann zusätzlich durch aktive Luftabsaugung vor und/ober während des Verdichtens unterstützt werden, indem die Abluftdüsen 28 an eine Unterdruckquelle angeschlossen werden.
  • Figur 7 zeigt die Anordnung nach Beendigung der Verdichtung, nachdem also der Verdichtungskopf 9 in der eingangs beschriebenen Weise durch den Hyraulikzylinder 13 in seine untere Endlage gepreßt worden ist, wobei zwischen den einzelnen Stempeln 7 eine maximale Hubdifferenz von mindestens 30% bezogen auf die Formkastenhöhe aufrechterhalten wird.
  • Der Fluidisierungs- und Vorverdichtungseffekt durch den Gasimpuls ist aufgrund der hohen Stempelgeschwindigkeiten zumindest während des Hauptteiles der Hubbewegung des Verdichtungskopfes 9 wirksam. Durch entsprechende Steuerung der Ventile 25 kann die Wirkungsdauer des Gasimpulses optimal an die übrigen Verfahrensparameter angepaßt werden. Auch kann es zweckmäßig sein, den Luftimpuls relativ schwach auszuführen, so daß er nur zu einer Fluidisierung des Formstoffes ohne Vorverdichtung führt.
  • Die vorstehenden Ausführungsbeispiele sind jeweils mit absenkbarem Verdichtungskopf 9 beschrieben worden. Selbstverständlich liegt auch die Umkehrung der Bewegungsverhältnisse im Rahmen der vorliegenden Erfindung, das heißt, den Verdichtungskopf 9 unter Weglassung des Hydraulikzylinders 13 auf konstanter Höhe zu halten und dafür die Modellplatte 1 mittels eines nicht dargestellten Hubtisches gegen den Verdichtungskopf hochzufahren.
  • Zusammenfassend besteht der Vorteil der beschriebenen Erfindung darin, daß durch die individuelle Ansteuerung der Einzelstempel bzw. durch ihre unterschiedliche Vorspannung im Sinne einer hohen maximalen Hubdifferenz zwischen den Einzelstempeln auch bei problematischen Modellkonturen eine wesentlich homogenere Verdichtung als bisher erzielt wird.
  • Die Erfindung erstreckt sich auch auf kastenloses Formen, wobei der Formkasten nach der Verdichtung abgestreift oder zerlegt wird. Auch ist die Erfindung für die Kombination mit anderen Vorverdichtungsverfahren geeignet.

Claims (31)

  1. Verfahren zum Verdichten von Formstoff im Formkasten von Gießerei-Formmaschinen mit einer Vielstempel-Preßplatte, wobei einzelne Stempel mit Abstand voneinander angeordnet sind und entsprechend der Modellhöhe unterschiedlich tief in den Formstoffrücken eindringen, wobei die Verdichtung zunächst allein durch die im Verdichtungssinn durch ein Druckmittel beaufschlagten Stempel erfolgt,
    dadurch gekennzeichnet,
    daß zumindest die innen liegenden Stempel (7) jeweils individuell ensprechend der Kontur des Modelles (2) mit Druckmittel beaufschlagt werden, daß sodann zusätzlich die Preßplatte (8) zur Verdichtung verwendet und bis etwa an den oberen Formkastenrand verfahren wird und daß am Verdichtungsende eine maximale Hubdifferenz zwischen einzelnen Stempeln (7) von zumindest 30 % vorzugsweise zumindest 40 % der Formkastenhöhe eingehalten wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine maximale Hubdifferenz zwischen einzelnen Stempeln von mindestens 50 % der Formkastenhöhe eingehalten wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Summe der sandseitigen Stempelquerschnitte mit 20 % bis 70 %, insbesondere 20 % bis50 % der Formkastenfläche gewählt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Summe der sandseitigen Stempelquerschnitte im Innenbereich mit 20 % bis 50 %, im Randbereich mit 50 % bis 100 % der zugehörigen Formkastenfläche gewählt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Hubgeschwindigkeit eines die Stempel (7) und die Preßplatte (8) enthaltenden Verdichtungskopfes (9) über 2,0 m/s insbesondere 3 bis 10 m/s, vorzugsweise 4 bis 8 m/s beträgt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die kinetische Energie der Preßplatte (8) und ihrer Stempel (7) am Ende des Verdichtungshubes mindestens überwiegend am Rand des Formkastens (3) vom Formstoff aufgenommen wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die unterschiedliche Druckbeaufschlagung der Stempel (7) mit diskret vorgegebenen Drücken erfolgt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stempel (7) vor dem Verdichten ganz aus der Preßplatte (8) herausgefahren und sodann entsprechend der Modellhöhe, mit unterschiedlich starkem Gegendruck, insbesondere pneumatisch, abgestützt werden, worauf die Preßplatte (8) mitsamt den sich relativ zu ihr verschiebenden Stempeln (7) auf den Formstoff (5) gepreßt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Stempel (7) einerseits durch konstanten Druck im Einfahrsinn belastet, andererseits durch diskret entsprechend der Modellkontur vorgegebene Gegendrücke abgestützt werden.
  10. Verfahren nach einem Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Stempel (7) ensprechend der Modellhöhe auf unterschiedliches Niveau eingestellt und, insbesondere hydraulisch, mit gleich starkem Gegendruck abgestützt werden, sodaß sie beim Verdichten ihr Niveau relativ zueinander im wesentlichen beibehalten.
  11. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 10, mit einem Preßhaupt (6), das zahlreiche über den Formkastenquerschnitt verteilte Stempel (7) enthält, die jeweils in Druckmittelzylindern (10) geführt sind und aus der den unteren Abschluß des Preßhauptes (6) bildenden Preßplatte (8) herausfahrbar sind, dadurch gekennzeichnet, daß zumindest die Druckmittelzylinder (10) für die innerhalb der Außenstempel liegende Stempel (7) jeweils über eigene Druckmittelleitungen und über Ventile an eine Druckquelle (12) angeschlossen sind.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Druckmittelzylinder (10) jeweils über ein eigenes Pilotventil (15) an die Druckquelle (12) angeschlossen sind.
  13. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Druckmittelzylinder (10) an ihrem einen Ende zeilenweise, an ihrem anderen Ende spaltenweise an je eine zeilen- bzw. spaltenweise verlaufende Druckmittelleitung angeschlossen sind und diese Leitungen jeweils über Ventile (V₁, V₂, V₃...; VA, VB, VC...) an eine Druckmittelzuführleitung und an eine Druckmittel abführleitung angeschlossen sind.
  14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß die Ansteuerung der genannten Ventile (14; 15; V₁...;VA...) durch einen Mikroprozessor entsprechend den gewünschten Vorspanndrücken bzw. Hubpositionen der Stempel (7) erfolgt.
  15. Vorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß die Einstellung der gewünschten Hubpositionen absatzweise durch aufeinanderfolgende, gleich große Dosierhübe erfolgt.
  16. Vorrichtung nach einem der Ansprüche 11 bis 15, dadurch gekennzeichne, daß die Preßplatte (8) an ihrem Rand und im Bereich zwischen den Außenstempeln unterseitig einen umlaufenden Vorsprung oder mehrere Einzelvorsprünge (8a) aufweist.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß der Vorsprung bzw. die Vorsprünge (8a) eine Breite von 50 bis 100 mm und eine Höhe von 50 bis 130 mm aufweist.
  18. Vorrichtung mit einer Preßplatte (8), die an ihrem Rand unterseitig einen umlaufenden Vorsprung oder mehrere Einzelvorsprünge (8a) aufweist, nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß der Vorsprung (8a)bzw. die Vorsprünge relativ zur Preßplatte (8) zur Erzeugung unterschiedlich starken Überstehens vertikal verstellbar zur Preßplatte (8) gelagert sind.
  19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die Verstellung des Vorsprunges (8a) bzw. der Vorsprünge pneumatisch erfolgt.
  20. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die dort beschriebene mechanische Verdichtung durch Pressen kombiniert wird mit der Einwirkung eines durch Druckluft oder durch Explosion zündfähiger Gasgemische erzeugten Druckgas-Impulses.
  21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß der Druckgas-Impuls vor und/oder während des Pressens zur Wirkung gebracht wird.
  22. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß während des Verdichtens Gas aus dem Formkasten (3) insbesondere über die Modellplatte (1) abgesaugt wird.
  23. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 20 oder 21, mit einem Preßhaupt (6), das zahlreiche über den Formkastenquerschnitt verteilte Stempel (7) enthält, die jeweils in Druckmittelzylindern (10) geführt sind und aus der den unteren Abschluß des Preßhauptes (6) bildenden Preßplatte (8) herausfahrbar sind, dadurch gekennzeichnet, daß das Preßhaupt (6) in einen Druckbehälter (21) eingebaut ist, der dicht an den Füllrahmen (4) anschließar ist.
  24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, daß das Preßhaupt (6) einen Ventilteller (23) aufweist, der mit einem Ventilsitz (22) des Druckbehälters (21) zusammenwirkt, um die Verbindung einer unter Überdruck stehenden Druckquelle mit dem Formkasten (3) zu öffnen oder abzusperren.
  25. Vorrichtung nach Anspruch 23 oder 24, dadurch gekennzeichnet, daß das preßhaupt (6) im Bereich seines Verdichtungskopfes (9) Durchströmöffnungen aufweist.
  26. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 20 oder 21, mit einem Preßhaupt (6) das zahlreiche über den Formkastenquerschnitt venteilte Stempel (7) enthält, die jeweils in Druckmittelzylindern (10) geführt sind und aus der den unteren Abschluß des Preßhauptes (6) bildenden Preßplatte (8) herausfahrbar sind, dadurch gekennzeichnet, daß das Preßhaupt (6) einen Druckbehälter (9a) enthält und an eine Druckquelle (24) angeschlossen ist.
  27. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, daß der Druckbehälter (9a) in einem die Druckmittelzylinder (10) enthaltenden Bereich des Preßhauptes (6) angeordnet ist.
  28. Vorrichtung nach Anspruch 26 oder 27, dadruch gekennzeichnet, daß der Druckbehälter (9a) über Ventile (25) mit dem durch Formkasten (3) und Füllrahmen (4) gebildeten Formraum in Verbindung steht.
  29. Vorrichtung nach einem der Ansprüche 26 bis 28, dadurch gekennzeichnet, daß das Preßhaupt (6) dicht an den Füllrahmen (4) anschließbar ist.
  30. Vorrichtung nach Anpruch 29, dadurch gekennzeichnet, daß das Preßhaupt (6) über Dichtungslippen (26) entlang der Innenwandung des Füllrahmens 4 in diesen eintaucht.
  31. Vorrichtung nach einem der Ansprüche 23 bis 30, dadurch gekennzeichnet, daß in der Modellplatte (1) und/oder in Modell (2) Abluftkanäle (28) angeordnet sind.
EP88108468A 1987-06-13 1988-05-27 Verfahren und Vorrichtung zum Verdichten von Formstoff in Giesserei-Formmaschinen Expired - Lifetime EP0295472B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19873719846 DE3719846A1 (de) 1987-06-13 1987-06-13 Verfahren und vorrichtung zum verdichten von formstoff in giesserei-formmaschinen
DE3719846 1987-06-13
DE19873740185 DE3740185A1 (de) 1987-06-13 1987-11-27 Verfahren und vorrichtung zum verdichten von formstoff in giesserei-formmaschinen
DE3740185 1987-11-27

Publications (3)

Publication Number Publication Date
EP0295472A2 EP0295472A2 (de) 1988-12-21
EP0295472A3 EP0295472A3 (en) 1989-06-21
EP0295472B1 true EP0295472B1 (de) 1992-01-15

Family

ID=25856643

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108468A Expired - Lifetime EP0295472B1 (de) 1987-06-13 1988-05-27 Verfahren und Vorrichtung zum Verdichten von Formstoff in Giesserei-Formmaschinen

Country Status (5)

Country Link
US (1) US4915159A (de)
EP (1) EP0295472B1 (de)
JP (1) JPH0771721B2 (de)
DE (2) DE3740185A1 (de)
ES (1) ES2028178T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419300A1 (de) * 1994-06-01 1995-12-07 Kuenkel Wagner Service Und Ver Verfahren und Vorrichtung mit aktiv steuerbarer Membran-Preßeinheit

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794476B2 (ja) * 1990-03-30 1998-09-03 新東工業株式会社 分割スクイズフート式の鋳型造型機
ES2048635B1 (es) * 1991-10-30 1996-07-01 Erana Agustin Arana Cabezal para maquinas de moldeo de cajas de arena por impacto de aire.
CH686412A5 (de) * 1992-03-10 1996-03-29 Fischer Georg Giessereianlagen Verfahren zum Verdichten von Formsand fuer Giessformen.
JPH08164444A (ja) * 1994-12-09 1996-06-25 Sintokogio Ltd 鋳型造型機
DE19540466A1 (de) * 1995-03-17 1996-09-19 Kuenkel Wagner Serv & Vertrieb Sandformqualität durch Ölstrommessung zum Preßhaupt
USH1769H (en) * 1995-06-06 1999-01-05 The United States Of America As Represented By The Secretary Of The Air Force Optimized recursive foundry tooling fabrication method
DE19652308B4 (de) * 1995-12-15 2007-03-01 Künkel-Wagner Prozesstechnologie GmbH Dynamische Iterative Stempel-Regelung des Preßvorganges beim Vielstempelpressen
US5794681A (en) * 1996-06-07 1998-08-18 Sintokogio, Ltd. Molding machine
DE69707094T2 (de) * 1996-12-17 2002-07-04 Loramendi Sa Luftdruckimpuls-Formmaschinen
JPH11333546A (ja) 1998-05-22 1999-12-07 Sintokogio Ltd 砂型加圧用加圧装置
EP1149646B1 (de) * 1999-11-04 2011-05-18 Sintokogio, Ltd. Formvorrichtung und -verfahren für sandformen
JP3413798B2 (ja) * 2000-01-14 2003-06-09 新東工業株式会社 枠付造型装置の造型方法及び造型システム
KR100837464B1 (ko) * 2000-02-17 2008-06-12 신토고교 가부시키가이샤 주물사 충전 압축 장치 및 취입 충전 방법
WO2001070432A1 (en) * 2000-03-20 2001-09-27 Georg Fischer Disa A/S Method and apparatus for producing two-part moulds
CN1234481C (zh) * 2000-04-13 2006-01-04 新东工业株式会社 型砂的压缩方法及其装置
JP3407879B2 (ja) * 2000-04-13 2003-05-19 新東工業株式会社 鋳物砂の充填圧縮方法およびその装置
DE10024930A1 (de) * 2000-05-19 2001-11-22 Josef Mertes Verfahren und Vorrichtung zum Verdichten von Formstoffen z. B. Giesserei-Formsand
EP1240957B1 (de) * 2001-03-16 2007-01-03 Sintokogio, Ltd. Verfahren und Vorrichtung zum Verdichten von Formsand
ES2654247T3 (es) * 2001-08-06 2018-02-12 Sintokogio, Ltd. Método y sistema para monitorizar una máquina de moldeo
JP2008018745A (ja) * 2006-07-10 2008-01-31 Mitsui Eng & Shipbuild Co Ltd 水中清掃ロボット
CN104190877B (zh) * 2014-09-22 2016-10-05 江铃汽车股份有限公司 一种型砂紧实装置
DE102015205058A1 (de) * 2015-03-20 2016-09-22 Gelson G. Montero Verfahren und Vorrichtung zum Herstellen einer Gussform für den Sandguss
EP3610966B1 (de) * 2018-03-27 2023-10-04 Künkel Wagner Germany GmbH Verfahren und maschine zur herstellung eines formteils

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE516911C (de) * 1929-10-29 1931-01-28 Walter Killmer Elastische Pressvorrichtung fuer Formmaschinen
US2959828A (en) * 1958-06-30 1960-11-15 Herman Pneumatic Machine Co Foundry mold forming
US3220066A (en) * 1961-07-28 1965-11-30 Squeeze molding machine
US3181208A (en) * 1962-02-12 1965-05-04 Herman Pneumatic Machine Co Molding machine squeeze foot
DE1415661A1 (de) * 1962-09-28 1968-10-10 Carborundum Co Halbleiter
US3293703A (en) * 1962-11-13 1966-12-27 Arthur R Taccone Vacuum molding apparatus
US3586093A (en) * 1968-09-19 1971-06-22 Spo Inc Foundry squeeze mechanism
US3692093A (en) * 1970-09-08 1972-09-19 Bangor Punta Operations Inc High impact molding machine
JPS5394219A (en) * 1977-01-31 1978-08-18 Nippon Casting Co Ltd Molding machine
SU749545A1 (ru) * 1978-01-03 1980-07-23 Пермское Специальное Проектно-Конструкторское И Технологическое Бюро Прессова головка формовочной машины
CH632430A5 (de) * 1978-10-05 1982-10-15 Inventio Ag Verfahren und vorrichtung zur herstellung von giessformteilen.
JPS5756138A (en) * 1980-09-19 1982-04-03 Sintokogio Ltd Method and device for molding
JPS57142743A (en) * 1981-02-27 1982-09-03 Komatsu Ltd Squeeze head for multiple molds of molding machine
DE3319030A1 (de) * 1983-05-26 1984-11-29 BMD Badische Maschinenfabrik Durlach GmbH, 7500 Karlsruhe Vorrichtung zum verdichten von giessereiformsand im gasdruckverfahren
DE3406466A1 (de) * 1984-02-23 1985-08-29 BMD Badische Maschinenfabrik Durlach GmbH, 7500 Karlsruhe Verfahren und vorrichtung zum verdichten von giessereiformstoff
DE3469278D1 (en) * 1984-08-30 1988-03-17 Komatsu Mfg Co Ltd A method for making sand molds
US4620584A (en) * 1985-05-24 1986-11-04 Witt Raymond H Green sand mold filling system
DE3634767A1 (de) * 1986-10-11 1988-04-21 Wagner Heinrich Sinto Masch Vorrichtung zur verdichtung von formsand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419300A1 (de) * 1994-06-01 1995-12-07 Kuenkel Wagner Service Und Ver Verfahren und Vorrichtung mit aktiv steuerbarer Membran-Preßeinheit
DE4419300C2 (de) * 1994-06-01 1999-05-20 Kuenkel Wagner Prozesstechnolo Verdichtungsverfahren mit abwärts bewegbarer Membran-Preßplatte

Also Published As

Publication number Publication date
EP0295472A3 (en) 1989-06-21
ES2028178T3 (es) 1992-07-01
JPS645642A (en) 1989-01-10
JPH0771721B2 (ja) 1995-08-02
EP0295472A2 (de) 1988-12-21
DE3867717D1 (de) 1992-02-27
US4915159A (en) 1990-04-10
DE3740185A1 (de) 1989-06-08

Similar Documents

Publication Publication Date Title
EP0295472B1 (de) Verfahren und Vorrichtung zum Verdichten von Formstoff in Giesserei-Formmaschinen
DE60217205T2 (de) Verfahren und Vorrichtung zum Verdichten von Formsand
DE1265348B (de) Verfahren und Vorrichtung zum Herstellen von kastenlosen Giessformen
DE60127231T2 (de) Kompressionsverfahren für giess-sand und vorrichtung dafür
DE2336835A1 (de) Presse zur herstellung von bloecken, insbesondere blockelektroden
DE2437852A1 (de) Presse zur herstellung von keramikgegenstaenden, insbesondere von fliesen und tellern
CH644039A5 (de) Verfahren und vorrichtung zum herstellen von sandgiessformen.
CH632430A5 (de) Verfahren und vorrichtung zur herstellung von giessformteilen.
DE1297818B (de) Giessereiformmaschine
DE3321955C2 (de)
DE2712489C3 (de) Vorrichtung zum Einfüllen und Verdichten des Formsandes bei der Herstellung von Sandformen für Gießereizwecke
DE1182795B (de) Mehretagenpresse
EP0203322B1 (de) Vorrichtung zum Verdichten von Giesserei-formstoff mittels Druckgas
DE3914160C1 (de)
DD216654A5 (de) Vorrichtung zum verdichten von giessereiformsand
DE1627853C3 (de) Schrottpreßanlage
DE2528646A1 (de) Vorrichtung zur automatischen herstellung kastenloser giessformen
DD281556A5 (de) Verfahren und vorrichtung zum verdichten von formstoff im formkasten von giesserei-formmaschinen
DE19530872A1 (de) Erschütterungsfreie Sandform-Herstellung mit höhenveränderlichem Zwischenrahmen
DE2815951A1 (de) Giessereiformmaschine
DE4010537A1 (de) Verfahren und vorrichtung zum herstellen von giessformen durch gegenpressen
DE1058702B (de) Verfahren und Vorrichtung zur maschinellen Herstellung von Giessereiformen aus Formsand
DE1235787B (de) Trockenpresse zum Herstellen von Geschirrteilen
DE1583526C (de) Verfahren und Fromanlage zum Her stellen waagrecht geteilter kastenloser Sandformen mittels doppelseitiger hon zontaler Modellplatte, Formrahmen und vertikal beweglichem Preßstempel
DE684920C (de) Verfahren zum Herstellen von Formkoerpern aus keramischen Massen auf einer hydraulischen Presse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19891207

17Q First examination report despatched

Effective date: 19900918

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3867717

Country of ref document: DE

Date of ref document: 19920227

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2028178

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KUENKEL-WAGNER GMBH & CO. KG

Effective date: 19921013

EAL Se: european patent in force in sweden

Ref document number: 88108468.5

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: DIEBALL GMBH ANLAGEN- UND MASCHINENBAU

Effective date: 19921013

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: KUENKEL-WAGNER GMBH & CO. KG

Effective date: 19921013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970411

Year of fee payment: 10

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980528

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

EUG Se: european patent has lapsed

Ref document number: 88108468.5

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010523

Year of fee payment: 14

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: DIEBALL GMBH ANLAGEN- UND MASCHINENBAU

Effective date: 19921013

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20021216

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KUENKEL-WAGNER PROZESSTECHNOLOGIE GMBH

Free format text: BMD BADISCHE MASCHINENFABRIK DURLACH GMBH#PFINZTALSTRASSE 90#D-76227 KARLSRUHE (DE) -TRANSFER TO- KUENKEL-WAGNER PROZESSTECHNOLOGIE GMBH#HANNOVERSCHE STRASSE 59#31061 ALFELD/LEINE (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070727

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070614

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080526