EP0294683B1 - Verfahren zur Aufnahme von ICR-Massenspektren und zur Durchführung des Verfahrens ausgebildetes ICR-Massenspektrometer - Google Patents

Verfahren zur Aufnahme von ICR-Massenspektren und zur Durchführung des Verfahrens ausgebildetes ICR-Massenspektrometer Download PDF

Info

Publication number
EP0294683B1
EP0294683B1 EP88108648A EP88108648A EP0294683B1 EP 0294683 B1 EP0294683 B1 EP 0294683B1 EP 88108648 A EP88108648 A EP 88108648A EP 88108648 A EP88108648 A EP 88108648A EP 0294683 B1 EP0294683 B1 EP 0294683B1
Authority
EP
European Patent Office
Prior art keywords
frequency
signals
time
dependent
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88108648A
Other languages
English (en)
French (fr)
Other versions
EP0294683A3 (de
EP0294683A2 (de
Inventor
Geoffrey Bodenhausen
Peter Pfändler
Jacques Rapin
Tino Gäumann
Raymond Hourriet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spectrospin AG
Original Assignee
Spectrospin AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spectrospin AG filed Critical Spectrospin AG
Publication of EP0294683A2 publication Critical patent/EP0294683A2/de
Publication of EP0294683A3 publication Critical patent/EP0294683A3/de
Application granted granted Critical
Publication of EP0294683B1 publication Critical patent/EP0294683B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/36Radio frequency spectrometers, e.g. Bennett-type spectrometers, Redhead-type spectrometers
    • H01J49/38Omegatrons ; using ion cyclotron resonance

Definitions

  • the invention relates to a method and a device for recording ICR mass spectra in each case according to the preambles of patent claims 1 and 4. Such a method is known from US Pat. No. 3,937,955.
  • Ion cyclotron resonance is an excellent method for mass spectroscopy because of its versatility, sensitivity and high resolution. Ions of different types contained in a gas sample can be excited simultaneously by a corresponding broadband pulse, so that a frequency mixture is present in the high-frequency signal induced by the excited ions after the end of the pulse. The components contained in the induction signal can then be resolved by a Fourier transform according to frequency and intensity.
  • ICR mass spectroscopy allows not only the analysis of substances and mixtures of substances, but also the observation of dynamic processes, such as the observation of the products of ion-molecule collisions and unimolecular fragmentations, through double resonance.
  • this double resonance also known as an MS / MS experiment, all ions except the one type of ion that is to be investigated are first eliminated by the ions of the substance to be investigated, which are trapped in the measuring cell of an ICR mass spectrometer, by irradiation of appropriate cyclotron resonance frequencies. If necessary, a collision gas is then let into the measuring cell. The selected ion type is then excited to such an extent that there are collisions with one another or with the molecules of the collision gas and secondary fragments are formed by collision dissociation.
  • the secondary ions formed are then analyzed by the usual ICR measurement cycle. If the original mass spectrum contains a number of N lines, a number N of such experiments is required for a complete analysis. This creates a number of new spectral lines for each line of the original spectrum, see above that a two-dimensional array of spectral lines is obtained if the original spectral lines are plotted along a coordinate direction and the secondary spectral lines assigned to these spectral lines are plotted along a second coordinate direction. Even if such an MS / MS experiment is carried out automatically, carrying out such an experiment requires a very long time and a considerable outlay on equipment. The automatic also fails if the spectra are very complex and have overlapping lines or if they contain weak lines lying on the detection line.
  • the invention has for its object to further develop the generic method for recording ICR mass spectra so that it can be used with short measuring time even in complicated cases in which peaks lying close together must be resolved. Furthermore, it is an object of the invention to provide a device which is suitable for carrying out the method. This object is achieved by the features characterized in claims 1 and 4.
  • the dependent claims 2, 3 and 5 characterize advantageous developments thereof.
  • the method according to the invention is accordingly comparable in some respects to the method of 2D exchange spectroscopy (NOESY) known from nuclear magnetic resonance, which serves to process dynamic processes such as chemical reactions, isomerization and the like.
  • NOESY 2D exchange spectroscopy
  • nuclear magnetic resonance which serves to process dynamic processes such as chemical reactions, isomerization and the like.
  • To be examined see, for example, BH Meier and RR Ernst in J. Am. Chem. Soc. 101 (1979) 6441 and J. Jeener et al in J. Chem. Phys. 71 (1979) 4546). Nevertheless, it was not obvious to use an analog method in ICR spectroscopy, because there are fundamental differences between the transverse magnetization of the spins observed in NMR and the coherent resonance of the ions excited in ICR spectroscopy.
  • the resonance frequencies that occur in NMR spectroscopy are very closely adjacent, so that they differ from each other by a few percent at most, whereas the resonance frequencies in cyclotron ion resonance are in a ratio of up to about 1 because of the greatly different charge / mass ratios : 50 can stand.
  • the resonance frequencies of substances of interest can vary from about 50 kHz to 2.6 MHz.
  • the difficulties resulting therefrom can in an embodiment of the method according to the invention either are overcome in that the second RF pulse P 3 has a different frequency than the two partial pulses P 1 and P 2, or characterized also in that the high-frequency pulses broadband pulses given with a Range of varied frequency.
  • Such broadband pulses are also referred to as "chirp pulses" (MB Comisarow and AG Marshall in Chem. Phys. Lett. 26 (1974) 489).
  • the second sub-pulse P 2 has the same frequency and phase as the first sub-pulse P 1 . If, at the end of the variable preparation time t 1, the ions have a phase that is opposite to the phase of the second partial pulse P 2 , the second partial pulse P 2 partially cancels the effect of the first partial pulse P 1 .
  • the effect of the second partial pulse therefore depends on the instantaneous phase of the movement of the individual ions after the first time t 1 , which was therefore referred to as the preparation time. Therefore, the number of incoherent ions that are present after the end of the second partial pulse P 2 and thus at the beginning of the reaction time ⁇ m is a function of the preparation time t 1 .
  • the preparation time t 1 is varied systematically.
  • the signals converted into the frequency domain with respect to the time axis t 2 are converted into frequency-dependent signals with respect to the time axis t 1 , so that a two-dimensional representation of the secondary effects which are conceivable for the primary ions is obtained.
  • these substances can enter into the following reactions, namely a hydrogen transfer from neutral particles to the ion: A + ⁇ + A or B ⁇ AH + + neutral products, and proton transfer from ion to neutral particles, namely A + ⁇ or B + ⁇ + A ⁇ AH + + neutral products.
  • the Br-pyridine was ionized at a pressure of 6.10 -8 mbar with a 20 ms pulse of 70 eV electrons.
  • the duration of the excitation pulses was 20 ⁇ s and their amplitude 35 V pp .
  • the resulting spectral window was large enough to capture the signals from A + ⁇ and AH + , however the signals from BH + are folded published.
  • the second sub-pulse P 2 in the above-mentioned sequence has the effect of "de-excitation" of the ions which were originally excited by the first excitation pulse P 1 so that they have an almost vanishing kinetic energy in the reaction interval ⁇ m and can be brought back into the cyclotron orbits in which they are observed by the second high-frequency pulse P 3 .
  • FIG. 1b then shows the Fourier transform of the ICR signal according to FIG. 1a, in which even-numbered and odd-numbered sidebands with positive and negative amplitudes appear.
  • Fig. 2 shows the complete two-dimensional spectrum.
  • the ⁇ 2 frequency axis corresponds to the Fourier transform with respect to the observation time t 2 .
  • the vertical ⁇ 1 range which is determined by a real cosine transformation with respect to the Preparation time t 1 was obtained shows sideband families that are connected by arcs for clarity.
  • the first sidebands in all families lie on one of the diagonals shown by dashed lines in Fig. 2, apart from the resonance at ⁇ BH , which appears to be folded.
  • the frequency origin at the intersection of the dashed diagonals corresponds to the RF carrier frequency f 0 .
  • These signals provide direct evidence of the above-mentioned reaction A + ⁇ ⁇ AH + ⁇ Because of their alternating signs, these lines can be identified unambiguously.
  • the spectral width was 3000 Hz in both areas.
  • the number of observed points was 240 x 2048 in the two time ranges t 1 and t 2 , which were filled up to zero with 256 x 2048 points before the Fourier transformation. There was a line broadening of 20 Hz in the ⁇ 2 range and 40 Hz in the ⁇ 1 range.
  • the spectral width of the full matrix was 500 x 500 Hz, of which only 40% are shown. 56 x 4048 data points, filled up to 128 x 4048 data points with zeros, were processed. The line broadening was 30 Hz in the ⁇ 1 range and 20 Hz in the ⁇ 2 range.
  • broadband pulses in the form of so-called chirp pulses. whose frequency is varied over a certain range, which includes the resonance frequencies of the starting materials and the expected reaction products. The use of such broadband pulses does not change the basic sequence of the method according to the invention.
  • the method according to the invention delivers essentially the same results as can also be obtained with an MS / MS experiment. Nevertheless, the method according to the invention has many advantages, which are particularly useful when complex networks are to be examined, in which a multiplicity of exchange processes take place simultaneously, all of which are recorded simultaneously using the method according to the invention, whereas in an MS / MS experiment all possible exchange processes have to be recorded by individual measurements to be carried out one after the other.
  • the method according to the invention also allows the kinetics of reactions to be examined by observing the amplitude of the signals obtained as a function of the duration of the reaction interval ⁇ m or as a function of various manipulations to which the system under test is exposed during the reaction time ⁇ m , such as laser pulses, electron beam pulses or neutral gases introduced in the form of a pulse, the molecules of which give rise to collision reactions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Aufnahme von ICR-Massenspektren jeweils nach den Oberbegriffen der Patentansprüche 1 und 4. Ein solches Verfahren ist aus der US-A-3 937 955 bekannt.
  • Die Ionen-Cyclotron-Resonanz ist wegen ihrer Vielseitigkeit, Empfindlichkeit und hohen Auflösung eine ausgezeichnete Methode für die Massenspektroskopie. Dabei können in einer Gasprobe enthaltene Ionen unterschiedlicher Art durch einen entsprechend breitbandigen Impuls gleichzeitig angeregt werden, so daß in dem nach dem Ende des Impulses von den angeregten Ionen induzierten Hochfrequenzsignal ein Frequenzgemisch vorliegt. Die in dem Induktionssignal enthaltenen Komponenten können dann durch eine Fourier-Transformation nach Frequenz und Intensität aufgelöst werden.
  • Die ICR-Massenspektroskopie erlaubt jedoch nicht nur die Analyse von Stoffen und Stoffgemischen, sondern durch Doppelresonanz die Beobachtung von dynamischen Vorgängen, wie beispielsweise die Beobachtung der Produkte von Ionen-Molekül-Kollisionen sowie von unimolekularen Fragmentationen. Bei dieser auch als MS/MS-Experiment bezeichneten Doppelresonanz werden zunächst von den in der Meßzelle eines ICR-Massenspektrometers gefangene Ionen der zu untersuchenden Substanz durch Einstrahlung entsprechender Cyclotron-Resonanzfrequenzen alle Ionen mit Ausnahme der einen Ionensorte, die weiter untersucht werden soll, eliminiert. Soweit erforderlich, wird danach in die Meßzelle ein Kollisionsgas eingelassen. Danach wird die selektierte Ionensorte in einem solchen Maße angeregt, daß es zu Stößen untereinander oder mit den Molekülen des Kollisionsgases kommt und durch Stoß-Dissoziation sekundäre Fragmente entstehen. Danach werden die entstandenen Sekundärionen durch den üblichen ICR-Meßzyklus analysiert. Wenn das ursprüngliche Massenspektrum eine Anzahl N Linien enthält, ist für eine vollständige Analyse eine Anzahl N solcher Experimente erforderlich. Dabei entsteht für jede Linie des ursprünglichen Spektrums eine Anzahl neuer Spektrallinien, so daß ein zweidimensionales Feld von Spektrallinien erhalten wird, wenn die ursprünglichen Spektrallinien längs einer Koordinatenrichtung und die diesen Spektrallinien zugeordneten, sekundären Spektrallinien längs einer zweiten Koordinatenrichtung aufgetragen werden. Selbst wenn ein solches MS/MS-Experiment automatisch durchgeführt wird, erfordert die Durchführung eines solchen Experimentes eine sehr lange Zeit und einen erheblichen apparativen Aufwand. Außerdem versagt die Automatik, wenn die Spektren sehr komplex sind und überlappende Linien aufweisen oder wenn sie schwache, an der Detektionslinie liegende Linien enthalten.
  • Bei dem aus der gattungsgemäßen US-A-3 937 955 bekannten Verfahren zur Aufnahme von ICR-Massenspektren kann es vorkommen, daß dicht zusammenliegende Peaks verschiedener Produktionen unter Umständen nicht aufgelöst werden können, da das bekannte Verfahren lediglich zwei durch eine Verzögerungszeit getrennte Anregungsimpulse verwendet und diese einzige Verzögerungszeit zwischen den zwei Anregungsimpulsen festliegt und nicht systematisch variiert wird.
  • Der Erfindung liegt die Aufgabe zugrunde, das gattungsgemäße Verfahren zur Aufnahme von ICR-Massenspektren so weiterzubilden, daß es bei geringer Meßzeit auch in komplizierten Fällen anwendbar ist, bei denen dicht zusammenliegende Peaks aufgelöst werden müssen. Ferner ist es Aufgabe der Erfindung eine zur Durchführung des Verfahrens geeignete Vorrichtung anzugeben. Diese Aufgabe wird erfindungsgemäß durch die in den Patentansprüchen 1 und 4 gekennzeichneten Merkmale gelöst. Die abhängigen Ansprüche 2, 3 und 5 kennzeichnen vorteilhafte Weiterbildungen davon.
  • Das erfindungsgemäße Verfahren ist demgemäß in mancher Hinsicht mit dem aus der Kernresonanz bekannten Verfahren der 2D-Austausch-Spektroskopie (NOESY) vergleichbar, das dazu dient, dynamische Prozesse wie chemische Reaktionen, Isomerisation u. dgl. zu untersuchen (siehe z.B. B. H. Meier und R. R. Ernst in J. Am. Chem. Soc. 101 (1979) 6441 sowie J. Jeener et al in J. Chem. Phys. 71 (1979) 4546). Trotzdem war es nicht naheliegend, in der ICR-Spektroskopie eine analoge Methode anzuwenden, weil grundsätzliche Unterschiede zwischen der in der NMR beobachteten transversalen Magnetisierung der Spins und der kohärenten Resonanz der bei der ICR-Spectroskopie angeregten Ionen bestehen. Außerdem sind bei der NMR-Spektroskopie die auftretenden Resonanzfrequenzen sehr dicht benachbart, so daß sie allenfalls um wenige Prozent voneinander abweichen, wogegen die Resonanzfrequenzen bei der Cyclotron-Ionen-Resonanz wegen der stark unterschiedlichen Ladungs/Massen-Verhältnisse in einem Verhältnis bis zu etwa 1:50 stehen können. So können bei einem ICR-Massenspektrometer, bei dem die Meßzelle einem statischen Magnetfeld von 3T ausgesetzt ist, die Resonanzfrequenzen interessierender Substanzen etwa von 50 kHz bis 2,6 MHz variieren. Die sich daraus ergebenden Schwierigkeiten können jedoch in Ausgestaltung des erfindungsgemäßen Verfahrens entweder dadurch überwunden werden, daß der zweite Hochfrequenzimpuls P3 eine andere Frequenz aufweist als die beiden Teilimpulse P1 und P2, oder aber auch dadurch, daß die Hochfrequenzimpulse Breitbandimpulse mit in einem vorgegebenen Bereich variierter Frequenz sind. Solche Breitbandimpulse werden auch als "Chirp-Impulse" bezeichnet (M. B. Comisarow und A. G. Marshall in Chem. Phys. Lett. 26 (1974) 489).
  • Das erfindungsgemäße Verfahren läßt sich demnach durch die folgende Sequenz beschreiben:
       P1 - t1 - P2 - τm - P3 - t2
  • P1
    Erster Teilimpuls des ersten Hochfrequenzimpulses
    P2
    Zweiter Teilimpuls des ersten Hochfrequenzimpulses
    P3
    Zweiter Hochfrequenzimpuls
    t1
    Variable Vorbereitungszeit (Zeitparameter in der ersten Dimension)
    t2
    Meßzeit für das Interferogramm (Zeitparameter der zweiten Dimension)
    τm
    Reaktionszeit
  • Wie oben erwähnt, weist der zweite Teilimpuls P2 die gleiche Frequenz und Phase auf wie der erste Teilimpuls P1. Wenn die Ionen am Ende der variablen Vorbereitungszeit t1 eine Phase aufweisen, die zur Phase des zweiten Teilimpulses P2 entgegengesetzt ist, hebt der zweite Teilimpuls P2 die Wirkung des ersten Teilimpulses P1 teilweise wieder auf. Die Wirkung des zweiten Teilimpulses hängt somit von der momentanen Phase der Bewegung der einzelnen Ionen nach Ablauf der ersten Zeit t1 ab, die deshalb als Vorbereitungszeit bezeichnet wurde. Daher ist die Zahl der inkohärenten Ionen, die nach Ende des zweiten Teilimpulses P2 und damit zu Beginn der Reaktionszeit τm vorhanden sind, eine Funktion der Vorbereitungszeit t1. Die innerhalb der Reaktionszeit τm auftretenden Ereignisse, welche von der Anzahl der angeregten Ionen abhängen, werden deshalb entsprechend beeinflußt. Infolgedessen weist das nach der erneuten Anregung der Ionen durch den zweiten Hochfrequenzimpuls P3 während der zweiten Meßzeit t2 aufgezeichnete Induktionseine Abhängigkeit von der Dauer der Vorbereitungszeit t1 auf. Gemäß der Erfindung wird die Vorbereitungszeit t1 systematisch variiert. Die dabei in bezug auf die Zeitachse t2 in den Frequenzbereich umgesetzten Signale werden ein zweites Mal in bezug auf die Zeitachse t1 in frequenzabhängige Signale umgesetzt, so daß man eine zweidimensionale Darstellung der Sekundäreffekte erhält, welche für die Primärionen denkbar sind. Bei geeigneter Wahl der Parameter und bei Anwesenheit eines Kollisionsgases können auf diese Weise z.B. Spektren erzeugt werden, die den mit Hilfe des MS/MS-Experimentes erhaltenen Spektren vergleichbar sind.
  • Die Erfindung wird im folgenden anhand von mehreren Ausführungsbeispielen des erfindungsgemäßen Verfahrens und den dadurch gewonnenen, in der Zeichnung dargestellten Spektren näher beschrieben und erläutert. Es zeigen
  • Fig. 1a
    das als Funktion der Vorbereitungszeit t1 modulierte ICR-Signal S(t1, ω2) von 81Br-Pyridin+,
    Fig. 1b
    die Fourier-Transformierte des ICR-Signals nach Fig. 1a,
    Fig. 2
    ein zweidimensionales Fourier-ICR-Spektrum von 81Br-Pyridin+ und
    Fig. 3
    das zweidimensionale ICR-Spektrum der Reaktion CH3CO+ + CH3COCH3 → CH3C+(OH)CH3.
  • Die folgenden Versuche wurden mit einem Spectrospin-ICR-Massenspektrometer vom Typ CMS-47 durchgeführt, dessen supraleitender Magnet ein Feld von 3T erzeugt, und mit einem Rechner vom Typ Aspect 3000 ausgewertet.
  • Als erstes wurde eine Mischung von 81Br-Pyridin und 79Br-Pyridin untersucht. Diese beiden Stoffe werden im folgenden mit A und B bezeichnet. Demgemäß gilt:
    • A = 81Br-Pyridin; mA = 159 amu,
    • fA = 289.7 kHz; fAH = 287.8 kHz
    • B = 79Br-Pyridin; mB = 157 amu,
    • fB = 293.4 kHz; fBH = 291.5 kHz
  • Diese Stoffe können, soweit es die für diesen Versuch relevanten Prozesse angeht, in die folgenden Reaktionen eingehen, nämlich in einen Wasserstofftransfer von neutralen Teilchen zum Ion: A + A oder B → AH + + neutrale Produkte,
    Figure imgb0001
    sowie einen Protonentransfer vom Ion zu neutralen Teilchen, nämlich A oder B + A → AH + + neutrale Produkte.
    Figure imgb0002
  • Das Br-Pyridin wurde bei einem Druck von 6.10-8 mbar mit einem 20 ms-Impuls von 70 eV Elektronen ionisiert. Die Dauer der Anregungsimpulse betrug 20 µs und deren Amplitude 35 Vpp. Die Frequenz f0 der Anregungsimpulse hatte von der Frequenz fA des 81Br-Pyridin einen Abstand ΩA/2µ = 760 Hz. Das dadurch geschaffene spektrale Fenster war ausreichend groß, um die Signale von A+· und AH+ zu erfassen, wogegen die Signale von BH+ gegefaltet erschienen. Figur 1 zeigt die τ1-Abhängigkeit des Signales von A+, das durch die eingangs behandelte Meßsequenz
       P1 - t1 - P2 - τm - P3 - t2
    erhalten wird. Die scharfen Spitzen im t1-Bereich erscheinen immer dann, wenn Ω A t 1 = (2k + 1) π, k = 0,1,2 ...,
    Figure imgb0003
    also immer dann, wenn die im Verlauf der Vorbereitungszeit t1 sich entwickelnde Phasenverschiebung ΩA t1 gegenüber der Hochfrequenz-Schwingung des esten Teilimpulses P1 eine Phasenverschiebung von 180° aufweist. Demgemäß erscheinen diese Spitzen in Zeitintervallen von 1,32 ms. Das bei der Aufnahme dieser Kurve verwendete Digitalisierungsintervall betrug Δ t1 = 166 µs. Unter diesen Bedingungen hat der zweite Teilimpuls P2 in der vorstehend erwähnten Sequenz die Wirkung einer "Aberregung" der Ionen, die ursprünglich von dem ersten Anregungsimpuls P1 angeregt worden waren, so daß sie in dem Reaktionsintervall τm eine fast verschwindende kinetische Energie aufweisen und durch den zweiten Hochfrequenzimpuls P3 in die Cyclotronbahnen zurückgebracht werden können, in denen sie beobachtet werden. Fig. 1b zeigt dann die Fourier-Transformierte des ICR-Signals nach Fig. 1a, in dem geradzahlige und ungeradzahlige Seitenbänder mit positiver bzw. negativer Amplitude erscheinen.
  • Fig. 2 zeigt das vollständige zweidimensionale Spektrum. Die ω2-Frequenzachse entspricht der Fourier-Transformierten in bezug auf die Beobachtungszeit t2. Der vertikale ω1-Bereich, der durch eine reelle Cosinus-Transformation in bezug auf die Vorbereitungszeit t1 erhalten wurde, zeigt Seitenbandfamilien, die zur Verdeutlichung durch Bogen verbunden sind. Der Querschnitt, d.h. die Spalte für ω2 = ΩA, entspricht der in Fig. 1b dargestellten Fourier-Transformierten. Die ersten Seitenbänder in allen Familien liegen auf einer der Diagonalen, die in Fig. 2 durch gestrichelte Linien dargestellt sind, abgesehen von der Resonanz bei ΩBH, die gefaltet erscheint. Der Frequenzursprung im Schnittpunkt der gestrichelten Diagonalen entspricht der HF-Trägerfrequenz f0. Die Spalte bei ω2 = ΩAH enthält nicht nur eine Diagonallinie mit ihrer Serie von Seitenbändern, sondern auch eine Kreuzlinie bei ω1 = ΩA und ω2 = ΩAH mit den ihr zugeordneten Seitenbändern, die alle durch Vierecke hervorgehoben sind. Diese Signale bilden einen direkten Beweis für die oben angegebene Reaktion A+·→ AH+· Wegen ihrer abwechselnden Vorzeichen können diese Linien unzweideutig identifiziert werden. Die Spektralbreite betrug 3000 Hz in beiden Bereichen. Die Anzahl der beobachteten Punkte betrug 240 x 2048 in den beiden Zeitbereichen t1 und t2, die durch Nullen auf 256 x 2048 Punkte vor der Fourier-Transformation aufgefüllt wurden. Es erfolgte eine Linienverbreiterung von 20 Hz im ω2-Bereich und von 40 Hz im ω1-Bereich.
  • Trotz der Eindeutigkeit der Linien kann die Interpretation solcher zweidimensionaler Spektren wegen des Vorliegens von sowohl Diagonal- als auch Kreuzlinien mit ihren zugeordneten Seitenbandfamilien schwierig werden. Es besteht jedoch die Möglichkeit, das Auftreten von Seitenbändern. zu vermeiden, wenn anstelle einer Fourier-Transformation die Methode maximaler Entropie verwendet wird, um die zeitabhängigen Resonanzsignale in frequenzabhängige Signale umzusetzen. Hiervon bleibt jedoch das erfindungsgemäße Meßverfahren unberührt, so daß davon abgesehen wurde, ein Beispiel für ein unter Verwendung der Methode der maximalen Entropie erhaltenes Spektrum darzustellen.
  • Um die Variante des Verfahrens zu veranschaulichen, bei der für den zweiten Hochfrequenzimpuls P3 eine andere Frequenz verwendet wird als für die ersten beiden Teilimpulse P1 und P2 der ersten Hochfrequenzimpulse, wurde die folgende Reaktion gewählt: CH 3 CO + + CH 3 COCH 3 → CH 3 C + (OH) CH 3 .
    Figure imgb0004
  • Dabei hat CH3CO+ das Massenverhältnis mc = 43 amu und eine Resonanzfrequenz von fc = 1071 kHz. Das Reaktionsprodukt CH3C+(OH)CH3 hat das Massenverhältnis mD = 59 amu und die Resonanzfrequenz fD = 779.9 kHz.
  • Für die beiden Teilimpulse P1 und P2 des esten Hochfrequenzimpluses wurde eine Frequenz gewählt, deren Abstand von fc 79 Hz betrug, während für den zweiten Hochfrequenzimpuls P3 eine Frequenz gewählt wurde, deren Abstand von fD 100 Hz betrug. Das in der beschriebenen Weise aufgenommene 2D-ICR-Spektrum ist in Fig. 3 dargestellt. Das Auftreten einer Kreuzlinie in dem hier senkrecht dargestellten ω2-Bereich bei ω2/2π = 100 Hz und im ω1-Bereich bei ω1/2π = 79 Hz beweist klar, daß die oben angegebene Reaktion stattgefunden hat. Die Kreuzlinie ist wiederum im horizontalen ω1-Bereich von einer Seitenbandfamilie begleitet, deren Mitglieder bei Vielfachen von 79 Hz erscheinen. Die Spektralbreite der vollen Matrix betrug 500 x 500 Hz, von der nur 40 % dargestellt sind. Es wurden 56 x 4048 Datenpunkte, durch Nullen auf 128 x 4048 Datenpunkte aufgefüllt, verarbeitet. Die Linienverbreiterung betrug 30 Hz im ω1-Bereich und 20 Hz im ω2-Bereich.
  • Statt für den zweiten Hochfrequenzimpuls P3 eine andere Frequenz als für die beiden Teilimpulse P1, P2 zu verwenden, wobei die Frequenzen auf die Resonanzfrequenzen der Ausgangsprodukte und der Endprodukte abgestimmt sind, besteht die Möglichkeit, Breitbandimpulse in Form sogenannter Chirp-Impulse einzusetzen, deren Frequenz über einen bestimmt Bereich variiert wird, der die Resonanzfrequenzen der Ausgangsstoffe sowie der zu erwartenden Reaktionsprodukte umfaßt. Auch durch die Anwendung solcher Breitbandimpulse ändert sich an dem grundsätzlichen Ablauf des erfindungsgemäßen Verfahrens nichts.
  • Wie bereits oben erwähnt, liefert das erfindungsgemäße Verfahren im wesentlichen die gleichen Ergebnisse, wie sie auch mit einem MS/MS-Experiment erhalten werden können. Trotzdem hat das erfindungsgemäße Verfahren viele Vorteile, die vor allem dann zum Tragen kommen, wenn komplexe Netzwerke zu untersuchen sind, bei denen eine Vielzahl von Austauschprozessen gleichzeitig stattfindet, die alle nach dem erfindungsgemäßen Verfahren gleichzeitig erfaßt werden, wogegen bei einem MS/MS-Experiment alle möglichen Austauschprozesse durch nacheinander durchzuführende, einzelne Messungen erfaßt werden müssen. Dabei erlaubt es das erfindungsgemäße Verfahren auch, die Kinetik von Reaktionen zu untersuchen, indem die Amplitude der erhaltenen Signale als Funktion der Dauer des Reaktionsintervalles τm oder auch in Abhängigkeit von verschiedenen Manipulationen beobachtet wird, denen das untersuchte System während der Reaktionszeit τm ausgesetzt wird, wie beispielsweise Laser-Impulsen, Elektronenstrahl-Impulsen oder impulsförmig eingeführten neutralen Gasen, deren Moleküle zu Stoßreaktionen Anlaß geben.
  • Aus dem Vorstehenden ist ersichtlich, daß das neue Verfahren dem Fachmann viele Möglichkeiten massenspektroskopischer Untersuchungen bietet, die mit den bisherigen Methoden nur unter großen Schwierigkeiten oder überhaupt nicht durchführbar waren.

Claims (5)

  1. Verfahren zur Aufnahme von ICR Massenspektren, bei dem
    - in der Meßzelle eines ICR-Massenspektrometers Ionen und neutrale Moleküle vorhanden sind,
    - die Ionen durch einen an die Meßzelle angelegten ersten Hochfrequenzimpuls (P1, P2) zu Schwingungen angeregt werden,
    - anschließend mit den neutralen Molekülen während einer vorgegebenen Mischzeit (τm) in Wechselwirkung treten können,
    - sodann ein zweiter Hochfrequenzimpuls (P3) eingestrahlt wird und danach die dadurch induzierten Resonanzsignale während einer vorgegebenen Meßzeit t2 empfangen, aufgezeichnet und in frequenzabhängige Signale umgesetzt werden,
       dadurch gekennzeichnet,
       daß der erste Hochfrequenzimpuls aus zwei Teilimpulsen (P1, P2) besteht, die die gleiche Frequenz enthalten und deren zeitlicher Abstand t1 systematisch variiert wird, so daß die Amplitude des induzierten Resonanzsignals von t1 abhängt, und daß die von der Variation des Abstands t1 abhängigen Sätze der von der Meßzeit t2 abhängigen Resonanzsignale unter Eliminierung der Abhängigkeit von der Meßzeit t2 und dem Abstand t1 in zweidimensional frequenzabhängige Signale umgesetzt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,daß die HF-Impulse eine in einem vorgegebenen Bereich variierte Frequenz aufweisen.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der zweite Hochfrequenzimpuls (P3) eine andere Frequenz aufweist als die beiden Teilimpulse (P1,P2) des ersten Hochfrequenz-Impulses.
  4. ICR-Massenspektrometer zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche mit einer Meßzelle, einer daran angeschlossenen Sendeeinrichtung zum Erzeugen von HF-Impulsen, einer ebenfalls daran angeschlossenen Empfangseinrichtung für die induzierten HF-Signale und einem an die Empfangseinrichtung angeschlossenen Rechner zum Umsetzen der empfangenen zeitabhängigen HF-Signale in entsprechende frequenzabhängige Signale,
    dadurch gekennzeichnet,
    daß die Sendeeinrichtung zum Erzeugen von zwei durch einen zeitlichen Abstand (t1) getrennten Teilimpulse gleicher Frequenz eines ersten aus zwei Teilimpulsen bestehenden HF-Impulses und eines zweiten HF-Impulses einer gleichen oder anderen einstellbaren Frequenz eingerichtet ist und mindestens ein Zeitglied zum fortlaufenden Verändern des Zeitabstandes (t1) zwischen den Teilimpulsen aufweist,
    daß die Empfangseinrichtung zum Speichern einer Vielzahl von zeitabhängigen HF-Signalen eingerichtet ist und daß der Rechner zum Umsetzen der zeitabhängigen HF-Signale zum Erzeugen von zweidimensional frequenzabhängigen Signalen aus den gespeicherten Sätzen der zeitabhängigen HF-Signale eingerichtet ist.
  5. ICR-Massenspektrometer nach Anspruch 4, dadurch gekennzeichnet, daß die Sendeeinrichtung zum Erzeugen von HF-Impulsen mit während ihrer Dauer variierender Frequenz eingerichtet ist.
EP88108648A 1987-06-06 1988-05-31 Verfahren zur Aufnahme von ICR-Massenspektren und zur Durchführung des Verfahrens ausgebildetes ICR-Massenspektrometer Expired - Lifetime EP0294683B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873719018 DE3719018A1 (de) 1987-06-06 1987-06-06 Verfahren zur aufnahme von icr-massenspektren und zur durchfuehrung des verfahrens ausgebildetes icr-massenspektrometer
DE3719018 1987-06-06

Publications (3)

Publication Number Publication Date
EP0294683A2 EP0294683A2 (de) 1988-12-14
EP0294683A3 EP0294683A3 (de) 1990-12-27
EP0294683B1 true EP0294683B1 (de) 1996-10-23

Family

ID=6329213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108648A Expired - Lifetime EP0294683B1 (de) 1987-06-06 1988-05-31 Verfahren zur Aufnahme von ICR-Massenspektren und zur Durchführung des Verfahrens ausgebildetes ICR-Massenspektrometer

Country Status (4)

Country Link
US (1) US4855593A (de)
EP (1) EP0294683B1 (de)
JP (1) JP2666147B2 (de)
DE (1) DE3719018A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990775A (en) * 1988-06-06 1991-02-05 University Of Delaware Resolution improvement in an ion cyclotron resonance mass spectrometer
US4945234A (en) * 1989-05-19 1990-07-31 Extrel Ftms, Inc. Method and apparatus for producing an arbitrary excitation spectrum for Fourier transform mass spectrometry
US5013912A (en) * 1989-07-14 1991-05-07 University Of The Pacific General phase modulation method for stored waveform inverse fourier transform excitation for fourier transform ion cyclotron resonance mass spectrometry
US5015848A (en) * 1989-10-13 1991-05-14 Southwest Sciences, Incorporated Mass spectroscopic apparatus and method
US5047636A (en) * 1990-01-08 1991-09-10 Wisconsin Alumni Research Foundation Linear prediction ion cyclotron resonance spectrometry apparatus and method
AUPR474801A0 (en) * 2001-05-03 2001-05-31 University Of Sydney, The Mass spectrometer
WO2007080857A1 (ja) * 2006-01-16 2007-07-19 National University Corporation Kobe University 気体核磁気共鳴装置
GB201504934D0 (en) 2015-03-24 2015-05-06 Micromass Ltd Improved method of FT-IMS
GB201616017D0 (en) 2016-09-20 2016-11-02 Micromass Ltd Improved method ion mobility spectrometry

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535512A (en) * 1966-07-21 1970-10-20 Varian Associates Double resonance ion cyclotron mass spectrometer for studying ion-molecule reactions
US3742212A (en) * 1971-02-16 1973-06-26 Univ Leland Stanford Junior Method and apparatus for pulsed ion cyclotron resonance spectroscopy
US3937955A (en) * 1974-10-15 1976-02-10 Nicolet Technology Corporation Fourier transform ion cyclotron resonance spectroscopy method and apparatus
DE3124465C2 (de) * 1981-06-22 1985-02-14 Spectrospin AG, Fällanden, Zürich Verfahren zur Ionen-Zyklotron-Resonanz-Spektroskopie
US4686365A (en) * 1984-12-24 1987-08-11 American Cyanamid Company Fourier transform ion cyclothon resonance mass spectrometer with spatially separated sources and detector
US4682027A (en) * 1986-04-25 1987-07-21 Varian Associates, Inc. Method and apparatus for sample confirmation in gas chromatography
US4761545A (en) * 1986-05-23 1988-08-02 The Ohio State University Research Foundation Tailored excitation for trapped ion mass spectrometry

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.D. Baldeschwieler und S.S.Woodgate Acc.Chem.Res. 4 (1971) S.114-120. *
The Journal of Chemical Physics, band 71, no 11, 1 dec.1979. S. 4546-4553, J.Jeener et al.: "Investigation of exchange processes by two-dimensional NMR spectroscopy". *

Also Published As

Publication number Publication date
EP0294683A3 (de) 1990-12-27
DE3719018A1 (de) 1988-12-22
US4855593A (en) 1989-08-08
EP0294683A2 (de) 1988-12-14
DE3719018C2 (de) 1992-04-16
JPH02118441A (ja) 1990-05-02
JP2666147B2 (ja) 1997-10-22

Similar Documents

Publication Publication Date Title
DE2546225A1 (de) Verfahren und vorrichtung zur ionenzyklotronresonanzspektroskopie mit fourier-transformation
EP0184840B1 (de) Einrichtung zur ortsaufgelösten Untersuchung einer Probe mittels magnetischer Resonanz von Spinmomenten
DE69233438T2 (de) Massenspektrometrie-verfahren unter verwendung zusätzlicher wechselspannungssignale
DE4317247C2 (de) Verfahren zur Aufnahme der Massenspektren gespeicherter Ionen
DE4032491C2 (de) Massenspektroskopisches Verfahren und massenspektroskopische Vorrichtung
DE19834145C1 (de) Verfahren zum Verbessern der Auflösung in zweidimensionalen heteronuklearen Korrelationsspektren der Festkörper-NMR
DE4437575C2 (de) Spektrometer mit kohärenter und periodisch gepulster Strahlung
DE2726270C2 (de)
EP0089534A1 (de) Verfahren zum Messen der magnetischen Kernresonanz
DE3331136C2 (de)
DE2110175A1 (de) Verfahren und Vorrichtung zur automatischen Phasenkontrolle bei einer Fourier-Analyse von abgelesenen Impulsresonanzdaten
DE2847641C2 (de)
EP0294683B1 (de) Verfahren zur Aufnahme von ICR-Massenspektren und zur Durchführung des Verfahrens ausgebildetes ICR-Massenspektrometer
DE3124465C2 (de) Verfahren zur Ionen-Zyklotron-Resonanz-Spektroskopie
EP0224854B1 (de) Verfahren zur Aufnahme von Kernresonanzspektren
DE2755091A1 (de) Messverfahren fuer magnetische kernresonanz
DE4316737C1 (de) Verfahren zur digitalen Erzeugung einer zusätzlichen Wechselspannung für die resonante Anregung von Ionen in Ionenfallen
DE3627605C2 (de)
EP0708976B1 (de) Verfahren zum betreiben eines flugzeit-sekundärionen-massenspektrometers
DE3131669A1 (de) Verfahren zum eichen von ionen-zyklotron-resonanz-spektrometern
DE4324233C1 (de) Verfahren zur Auswahl der Reaktionspfade in Ionenfallen
DE3143626C2 (de) Verfahren zum Aufnehmen von Kernresonanzspektren in einem dreidimensionalen Frequenzbereich und Kernresonanzspektrometer zur Durchführung des Verfahrens
DE1673209C3 (de) Verfahren und Vorrichtung zum Erzielen und Verarbeiten eines Resonanzsignals
DE102017111693B4 (de) Unterdrückung harmonischer Signale in der Ionenzyklotronresonanz-Massenspektrometrie
DE4027252A1 (de) Verfahren fuer die zweidimensionale kernresonanzspektroskopie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19901205

17Q First examination report despatched

Effective date: 19930723

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RBV Designated contracting states (corrected)

Designated state(s): CH FR GB LI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961023

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: BRUKER AG TRANSFER- BRUKER DALTONICS, INC.

Ref country code: CH

Ref legal event code: PFA

Free format text: SPECTROSPIN AG TRANSFER- BRUKER AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060425

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070529

Year of fee payment: 20

Ref country code: CH

Payment date: 20070724

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080131

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080530

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080530