EP0252172B1 - Elektrolyseverfahren - Google Patents

Elektrolyseverfahren Download PDF

Info

Publication number
EP0252172B1
EP0252172B1 EP86109265A EP86109265A EP0252172B1 EP 0252172 B1 EP0252172 B1 EP 0252172B1 EP 86109265 A EP86109265 A EP 86109265A EP 86109265 A EP86109265 A EP 86109265A EP 0252172 B1 EP0252172 B1 EP 0252172B1
Authority
EP
European Patent Office
Prior art keywords
cell
process according
electrolyte
material transport
transport coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86109265A
Other languages
English (en)
French (fr)
Other versions
EP0252172A1 (de
Inventor
Dieter Bruun
Wolfgang Dietz
Klaus-Jürgen Dr. Müller
Conrad Hans Hendrik Reynvaan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enviro-Cell Umwelttechnik Te Oberursel Bonds GmbH
Original Assignee
Deutsche Carbone AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Carbone AG filed Critical Deutsche Carbone AG
Priority to EP86109265A priority Critical patent/EP0252172B1/de
Priority to AT86109265T priority patent/ATE40720T1/de
Priority to DE8686109265T priority patent/DE3662060D1/de
Priority to DE8619501U priority patent/DE8619501U1/de
Priority to JP62021910A priority patent/JPS6314884A/ja
Priority to US07/020,357 priority patent/US4806224A/en
Priority to PT85218A priority patent/PT85218B/pt
Priority to ES8701977A priority patent/ES2007633A6/es
Publication of EP0252172A1 publication Critical patent/EP0252172A1/de
Application granted granted Critical
Publication of EP0252172B1 publication Critical patent/EP0252172B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • the invention relates to an electrolysis process, wherein an electrolyte is passed through an electrolysis cell and the mass transfer coefficient is increased by introducing mechanical energy.
  • electrochemical cells For electrochemical reactions, e.g. To achieve in aqueous solutions, the most varied versions of electrochemical cells are used, e.g. Cells with a fixed bed made of graphite granules, metal wool or metal foam, or stacks of expanded metals. Plate cells are generally used at higher concentrations. It is also known that the mode of action of a cell, especially a plate cell, can be improved by increasing the stream transport coefficient. This is e.g. in that the medium to be treated is circulated at high speed through the cell and the batched liquid is then carried on in batches or a small volume flow is metered into the system in front of the cell and a corresponding small volume flow is branched off after the cell.
  • the mass transfer coefficient is increased by the introduction of mechanical energy, but in the prior art the entire electrolytic cell has been exposed to mechanical vibrations or other means for increasing the mass transfer coefficient, without making a differentiation according to the electrolyte flow in the electrolysis cell .
  • the change in the electrode overvoltages can be very disruptive because this leads to an area at the cell outlet in which undesired side reactions take place at the electrode. In most cases this is on the cathode e.g. the production of hydrogen.
  • the invention is therefore based on the object of proposing an electrolysis process of the type mentioned at the outset, in which the current density at the cell outlet is appreciably increased, without the occurrence of undesirable side reactions.
  • the invention is characterized in that the increase in the mass transfer coefficient increases along the direction of the electrolyte flow.
  • the idea on which the invention is based is therefore to increase the current density at the cell outlet by increasing the mass transfer coefficient there compared to the cell outlet, for example by exposing the electrolyte to pressure waves whose intensity at the cell outlet is stronger than at the cell inlet. It is obvious that in one liquid-filled, open-topped container, the housing of which is caused to vibrate, for example by blows, the amplitude of the vibration is greater in the upper region than in the lower region, in which the side plates are held together by a base. For example, if an electrochemical cell consists of a rectangular box in which the electrodes are suspended as plates, and if this box is vibrated from the outside by vibrators, the amplitude of the vibration in the upper area of the box is greater than in the lower area. If one now places the cell inlet downwards in the box and the cell outlet upwards, the stream transport coefficient along the direction of the electrolyte flow can be influenced in this way, and this essentially increases. The gas bubbles at the cell outlet can then be reduced or avoided.
  • FIG. 1 shows a vessel 1 of an electrolysis cell, in which an electrolyte 2 is located.
  • An anode 3, which is surrounded by a diaphragm 4, and several cathodes 5 are immersed in the electrolyte.
  • the electrolyte is continuously introduced into the vessel 1 via a side inlet 8 in the direction of arrow 9. It leaves the vessel via an overflow at the upper edge of the vessel or via holes or the like provided there.
  • a distributor tube not shown and laid over the bottom of the vessel, ensures a uniform distribution of the electrolyte, the direction of flow of which is indicated in the cell by arrows 10 .
  • Fig. 1 also shows that the vibrator 6 Schwin conditions in the direction of arrow 7, which are essentially perpendicular to the plane of the plates 3, 5.
  • FIG. 2 shows a diagram as a further explanation, the direction of the electrolyte flow 10 being indicated as the abscissa x.
  • the ordinates y are the amplitudes of the mechanical vibrations with which the electrolysis cell is subjected. It also follows from this that a smaller amplitude acts on the electrolyte at the inlet 16 of the electrolytic cell than at the outlet 17. This is shown by the curve 18.

Description

  • Die Erfindung betrifft ein Elektrolyseverfahren, wobei man einen Elektrolyten durch eine Elektrolysezelle hindurchleitet und dabei den Stofftransportkoeffizienten durch Einbringen mechanischer Energie erhöht.
  • Um elektrochemische Umsetzungen, z.B. in wäßrigen Lösungen, zu erreichen, werden die verschiedensten Ausführungen von elektrochemischen Zellen verwendet, bei kleineren Konzentrationen z.B. Zellen mit einem Festbett aus Graphitgranulat, Metallwolle oder Metallschaum oder Stapeln von Streckmetallen. Bei größeren Konzentrationen verwendet man im allgemeinen Plattenzellen. Es ist ebenfalls bekannt, daß die Wirkungsweise einer Zelle, besonders einer Plattenzelle, durch Erhöhung des Strofftransportkoeffizienten zu verbessern ist. Dies wird z.B. dadurch erreicht, daß man das zu behandelnde Medium mit hoher Geschwindigkeit im Kreise durch die Zelle fährt und die behandelte Flüssigkeit dann chargenweise weiterführt oder dem System vor der Zelle einen kleinen Volumenstrom zudosiert und einen entsprechenden kleinen Volumenstrom nach der Zelle abzweigt. Andere Methoden zur Erhöhung des Stofftransportkoeffizienten sind das mechanische Rühren oder Einführen von Gas in die Zelle. Die aufsteigenden Gasblasen erhöhen ebenfalls den Stofftransportkoeffizienten. Auch wird oft die Elektrode bewegt, um so eine höhere Relativbewegung von Elektrolyt und Elektrode zu erhalten. Dies kann geschehen durch eine Vibration der Elektrode, durch ein Verwirbeln eines Festbettes oder durch rotierende Elektroden. Ebenfalls ist es bekannt, die Grenzschicht in einer Plattenzelle durch mechanische Bewegung von Teilchen oder anderen Körpern zu stören und aufzubrechen und so den Stofftransportkoeffizienten zu erhöhen.
  • Ebenfalls bekannt ist die Verwendung von Ultraschall. Es ist auch bekannt, daß diese letzte Methode nicht nur den Vorteil des erhöhten Stofftransportkoeffizienten hat, sondern zusätzlich die Gasblasenbelegung der Elektrodenoberfläche reduziert dadurch, daß die Gasblasen besser von den Oberflächen abgelöst werden.
  • Eine gute Übersicht über die hierbei anstehende Problematik mit Lösungsvorschlägen, beruhend auf verschiedenen Bewegungsprinzipien beschreibt ein Aufsatz, der in der Zeitschrift "Neue Hütte", September 1982, Seite 317-322 erschienen ist. Einen ins Detail gehenden Lösungsvorschlag beschreibt ein anderer Aufsatz, der in der Zeitschrift "Erzmetall", 1974, Seite 107-114, erschienen ist. Hier ist ein Elektrolyseverfahren beschrieben, bei dem man den Elektrolyten durch die Elektrolysezelle hindurchleitet. Von diesem Stand der Technik geht die Erfindung aus.
  • Hingewiesen werden soll auch noch auf einen zusammenfassenden Aufsatz, erschienen in "Quarterly Reviews" 7 (1953), Seiten 84-101.
  • In den beiden erstgenannten Veröffentlichungen wird zwar der Stofftransportkoeffizient durch Einbringen mechanischer Energie erhöht, jedoch hat man beim Stand der Technik die gesamte Elektrolysezelle den mechanischen Schwingungen oder sonstigen Mitteln zur Erhöhung des Stofftransportkoeffizienten ausgesetzt, und zwar ohne hierbei eine Differenzierung entsprechend dem Elektrolytfluß in der Elektrolysezelle vorzunehmen.
  • Bei Festbettzellen und auch bei Plattenzellen besteht aber unabhängig vom Stofftransportkoeffizienten das Problem, daß die kathodische und anodische Überspannung vom Zelleinlauf zum Zellauslauf nicht konstant bleiben. (Wir bezeichnen nun mit einer elektrochemischen Zelle eine Einheit, bei der Kathode und Anode aus jeweils einem Stück sind und nicht in Richtung des Elektrolytflusses segmentiert, so daß damit verschiedene Potentiale eingestellt werden können.)
  • Die Verschiebung der kathodischen und anodischen Überspannung rührt daher, daß die Zellspannung ja am Zelleinlauf und Zellauslauf gleich ist, die Stromdichte aber im allgemeinen am Zellauslauf wesentlich geringer. Bleibt nun der Widerstand der behandelten Lösung vom Zelleinlauf zum Zellauslauf im wesentlichen gleich, wie das im allgemeinen der Fall ist, so verändert sich mit der geringer werdenden Stromdichte auch der Anteil des ohmschen Spannungsabfalls. Dadurch, daß die Zellspannung konstant ist, müssen notwendig die Überspannungen steigen. Dies wird beschrieben durch die Gleichung
  • Zellspannung = kathodische Überspannung + anodische Überspannung + lokaler Zellwiderstand x lokalem Strom
  • Die Änderung der Elektrodenüberspannungen kann sehr störend sein, weil man dadurch am Zellauslauf in einen Bereich kommt, in dem unerwünschte Nebenreaktionen an der Elektrode stattfinden. In den meisten Fällen ist das an der Kathode z.B. die Produktion von Wasserstoff.
  • Es ist bekannt, daß man bei der Verwendung von Festbettzellen dieses Problem dadurch entschärfen kann, daß beim Zellauslauf ein größeres Festbettvolumen angeboten wird oder die Packungsdichte auf eine andere Weise erhöht wird, z.B. durch kleinere Körnung des verwendeten Granulats oder eine stärkere Komprimierung einer Füllung mit Metallwolle oder Metallschaum. Auf diese Weise kann dann der dort lokal fließende Strom gesteigert werden, und der Beitrag des ohmschen Spannungsabfalls wird wieder etwas größer. (Siehe z.B. die DE-PS 2 622 497 oder 3 532 573.)
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Elektrolyseverfahren der eingangs genannten Art vorzuschlagen, bei dem die Stromdichte am Zellauslauf fühlbar erhöht wird, und zwar ohne das Auftreten unerwünschter Nebenreaktionen.
  • Zur Lösung dieser Aufgabe ist die Erfindung dadurch gekennzeichnet, daß die Erhöhung des Stofftransportkoeffizienten entlang der Richtung des Elektrolytflusses zunimmt.
  • Der der Erfindung zugrundeliegende Gedanke ist es also, die Stromdichte am Zellauslauf dadurch zu erhöhen, daß dort der Stofftransportkoeffizient im Vergleich zum Zellauslauf erhöht wird, z.B. dadurch, daß man den Elektrolyten Druckwellen aussetzt, deren Intensität am Zellauslauf stärker ist als am Zelleinlauf. Es ist offensichtlich, daß in einem flüssigkeitsgefüllten, oben offenen Behälter, dessen Gehäuse man z.B. durch Schläge in Schwingungen versetzt, die Amplitude der Schwingung im oberen Bereich größer ist als im unteren Bereich, bei dem die Seitenplatten durch einen Boden zusammengehalten werden. Besteht eine elektrochemische Zelle also z.B. aus einem rechteckigen Kasten, in den die Elektroden als Platten eingehängt sind, und wird dieser Kasten von außen durch Vibratoren in Schwingung versetzt, so ist die Amplitude der Schwingung im oberen Bereich des Kastens größer als im unteren. Legt man nun den Zelleinlauf nach unten in den Kasten und den Zellauslauf nach oben, so läßt sich auf diese Weise der Strofftransportkoeffizient entlang der Richtung des Elektrolytflusses beeinflussen, und zwar nimmt dieser im wesentlichen zu. Dadurch kann dann die Gasblasenbildung am Zellauslauf verringert oder vermieden werden.
  • Damit ist es nun möglich, einen größeren Abreicherungsfaktor in einer einzigen Zelle zu erreichen, ohne daß an den Elektroden eine Gasentwicklung auftritt. Es können damit dann die unerwünschten Nebenreaktionen vermieden werden. Bei vielen Reaktionen kann man davon ausgehen, daß bei beginnender Gasblasenbelegung der Elektrodenoberfläche die elektrochemische Umsetzung nahezu vollständig zum Stillstand kommt.
  • Das erreichbare Abreichungsverhältnis (= Einlaufkonzentration durch Auslaufkonzentration) ist dann im wesentlichen davon bestimmt, bis zu welcher Konzentration man in einer Zelle die Entwicklung von Gasblasen durch eine Nebenreaktion vermeiden kann. Mit dem angegebenen Verfahren kann man dabei einen beträchtlichen Vorteil erzielen, wie an folgender Rechnung klargemacht werden soll.
  • Die Gasblasenentwicklung tritt also ein, wenn die Differenz der Stromdichte an Zelleinlauf und Zellauslauf einen gewissen Wert G überschreitet. Diese Stromdichte ist proportional dem Produkt aus Stofftransportkoeffizient und Konzentration. Bezeichnen wir mit dem Index 0 die Werte für den Zellleinlauf, mit dem Index 1 die Werte für den Zellauslauf, mit K den Stofftransportkoeffizienten und mit C die Konzentration, so muß also folgende Ungleichung erfüllt sein, damit keine unerwünschte Nebenreaktion auftritt.
    • G>KOxCO-KixCi
  • Kann man es nun erreichen, daß das Verhältnis von K 0 : K 1 = 1 : 2, so wird das mögliche C 1, die Auslaufkonzentration, offenbar halb so groß sein wie in dem Fall, daß K 0 = K 1. Das bedeutet, man kann die erreichbare Endkonzentration noch einmal halbieren. Die Änderung des Stofftransportkoeffizienten kann ohne weiteres auch sehr viel größer sein und eine entsprechend stärkere Verringerung der Auslaufkonzentration ist dann möglich.
  • Die Erfindung wird im folgenden anhand eines Ausführungsbeispieles näher erläutert, aus dem sich weitere wichtige Merkmale ergeben. Es zeigt:
    • Fig. 1 schematisch in einer Ansicht eine Elektrolysezelle zur Erläuterung des Prinzips des erfindungsgemäßen Elektrolyseverfahrens;
    • Fig. 2 ein Diagramm, wobei als Beispiel über der Länge der Elektrolysezelle in Richtung des Elektrolytflusses (entsprechend der Höhe der Elektrolysezelle in Fig. 1) die Amplitude der hierbei angewendeten Druckwellen aufgetragen ist.
  • Fig. 1 zeigt ein Gefäß 1 einer Elektrolysezelle, in dem sich ein Elektrolyt 2 befindet. In den Elektrolyten tauchen ein eine Anode 3, die von einem Diaphragma 4 umgeben ist, sowie mehrere Kathoden 5. Der Elektrolyt wird über einen seitlichen Einlaß 8 in Richtung des Pfeiles 9 in das Gefäß 1 kontinuierlich eingeführt. Er verläßt das Gefäß über einen Überlauf am oberen Rand des Gefäßes oder über dort vorgesehene Löcher oder dergl. Ein nicht gezeigtes und über dem Boden des Gefäßes verlegtes Verteilerrohr sorgt für eine gleichmäßige Verteilung des Elektrolyten, dessen Strömungsrichtung in der Zelle durch die Pfeile 10 angedeutet ist.
  • Links in Fig. 1 ist zur Erläuterung des Prinzips des erfindungsgemäßen Verfahrens angedeutet, daß sich in Richtung des Elektrolytflusses 10 hintereinander mehrere Quirle 11, 12, 13, 14, 15 befinden. Der unterste Quirl 11, der sich also in der Nähe des Elektrolyteneinlaufs befindet, wird mit geringer Drehzahl angetrieben, während der oberste Quirl 15, der sich in der Nähe des Auslasses befindet, mit der höchsten Drehzahl angetrieben wird. Die dazwischen befindlichen Quirle 12, 13, 14 werden mit einer mittleren Drehzahl angetrieben derart, daß die von den Quirlen hervorgerufene Verwirbelung des Elektrolyten in Richtung des Elektrolytflusses 10 zunimmt.
  • Diese Darstellung soll nur das Prinzip des erfindungsgemäßen Verfahrens verdeutlichen; in der Praxis wird man die hierdurch bewirkte Erhöhung des Stofftransportkoeffizienten auf andere Art und Weise durchführen, bevorzugt durch einen Vibrator 6. Dieser ist an der Wand des Gefäßes 1 befestigt, und zwar bevorzugt im oberen Bereich der Wand, so daß die von ihm ausgehenden Schallwellen ihre größte Amplitude im Auslaßbereich des Gefäßes haben. Man könnte auch übereinander mehrere der Vibratoren 6 an der Wand des Gefäßes befestigen, wobei man dann den obersten Vibrator mit einer größeren Amplitude beaufschlagt als den untersten der Vibratoren.
  • Versuche haben gezeigt, daß die Anregung wenigstens einer der Wände des Gefäßes 1 mit diesen Vibratoren oder mit wenigstens einem der Vibratoren für den gewünschten Effekt ausreicht. Man muß also nicht das gesamte Elektrolysegefäß in Schwingungen versetzen, wie dies beim Stand der Technik der Fall war, ganz abgesehen davon, daß man bei diesem Verfahren den Stofftransportkoeffizienten nicht in Richtung des Elektrolytflusses beeinflussen kann.
  • Auf andere Lösungswege wurde in den Patentansprüchen bereits hingewiesen, beispielsweise darauf, daß man auch die Elektroden 3 und/oder 5 zu den Schwingungen anregen kann usw. Allen Prinzipien ist es gemeinsam, daß die hierbei in das Bad eingeführte Schwingungsenergie im Bereich des Auslaufs größer ist als im Bereich des Einlaufs.
  • Fig. 1 zeigt auch noch, daß der Vibrator 6 Schwingungen in Richtung des Pfeiles 7 aussendet, die also im wesentlichen senkrecht zur Ebene der Platten 3, 5 verlaufen.
  • Fig. 2 zeigt als weitere Erläuterung ein Diagramm, wobei die Richtung des Elektrolytflusses 10 als Abszisse x angegeben ist. Als Ordinate y sind die Amplituden der mechanischen Schwingungen aufgetragen, mit denen die Elektrolysezelle beaufschlagt wird. Auch hieraus ergibt sich, daß am Einlaß 16 der Elektrolysezelle eine geringere Amplitude auf den Elektrolyten einwirkt als am Auslaß 17. Dies ist durch die Kurve 18 dargestellt.

Claims (8)

1. Elektrolyseverfahren, wobei man einen Elektrolyten (2) durch eine Elektrolysezelle (1) hindurchleitet und dabei den Stofftransportkoeffizienten durch Einbringen mechanischer Energie erhöht, dadurch gekennzeichnet, daß die Erhöhung des Stofftransportkoeffizienten entlang der Richtung (10) des Elektrolytflusses zunimmt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Erhöhung des Stofftransportkoeffizienten durch eine Relativbewegung von Elektroden und Elektrolyt erreicht wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Erhöhung des Stofftransportkoeffizienten dadurch erreicht wird, daß der Elektrolyt Druckwellen ausgesetzt wird, die sich im wesentlichen senkrecht zu den zueinander parallel verlaufenden Elektrodenflächen ausbreiten.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Unterschied im Stofftransportkoeffizienten entlang der Richtung des Elektrolytflusses durch eine Änderung der Amplitude der Druckwelle erreicht wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Amplitude der Druckwelle im Bereich des Zellauslaufs mindestens um den Faktor 4 größer ist als im Bereich des Zelleinlaufs.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Druckwelle durch einen oder mehrere Vibratoren erzeugt wird, die am Gehäuse der elektrochemischen Zelle befestigt sind.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Änderung der Amplitude der Druckwelle entlang der Richtung des Elektrolytflusses durch die Anordnung der Vibratoren und/oder die konstruktive Gestaltung des Zellgehäuses erreicht wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die angestrebte elektrochemische Umsetzung an einer Festbettelektrode erfolgt.
EP86109265A 1986-07-07 1986-07-07 Elektrolyseverfahren Expired EP0252172B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP86109265A EP0252172B1 (de) 1986-07-07 1986-07-07 Elektrolyseverfahren
AT86109265T ATE40720T1 (de) 1986-07-07 1986-07-07 Elektrolyseverfahren.
DE8686109265T DE3662060D1 (en) 1986-07-07 1986-07-07 Electrolysis process
DE8619501U DE8619501U1 (de) 1986-07-07 1986-07-19 Elektrolysezelle
JP62021910A JPS6314884A (ja) 1986-07-07 1987-02-03 電気分解法
US07/020,357 US4806224A (en) 1986-07-07 1987-03-02 Electrolytic process
PT85218A PT85218B (pt) 1986-07-07 1987-06-30 Processo de electrolise
ES8701977A ES2007633A6 (es) 1986-07-07 1987-07-06 Procedimiento de electrolisis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86109265A EP0252172B1 (de) 1986-07-07 1986-07-07 Elektrolyseverfahren

Publications (2)

Publication Number Publication Date
EP0252172A1 EP0252172A1 (de) 1988-01-13
EP0252172B1 true EP0252172B1 (de) 1989-02-08

Family

ID=8195250

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86109265A Expired EP0252172B1 (de) 1986-07-07 1986-07-07 Elektrolyseverfahren

Country Status (7)

Country Link
US (1) US4806224A (de)
EP (1) EP0252172B1 (de)
JP (1) JPS6314884A (de)
AT (1) ATE40720T1 (de)
DE (2) DE3662060D1 (de)
ES (1) ES2007633A6 (de)
PT (1) PT85218B (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681079B1 (fr) * 1991-09-06 1994-09-09 Kodak Pathe Dispositif et procede d'electrolyse a electrode poreuse et agitee.
US5312532A (en) * 1993-01-15 1994-05-17 International Business Machines Corporation Multi-compartment eletroplating system
US5310486A (en) * 1993-05-25 1994-05-10 Harrison Western Environmental Services, Inc. Multi-stage water treatment system and method for operating the same
US5419823A (en) * 1993-11-09 1995-05-30 Hardwood Line Manufacturing Co. Electroplating device and process
US6454918B1 (en) * 1999-03-23 2002-09-24 Electroplating Engineers Of Japan Limited Cup type plating apparatus
AU2002332243A1 (en) * 2001-12-03 2003-06-17 Japan Techno Co., Ltd. Hydrogen-oxygen gas generator and hydrogen-oxygen gas generating method using the generator
CA2606190A1 (en) * 2005-04-27 2006-11-02 Hw Process Technologies, Inc. Treating produced waters
JP4732833B2 (ja) * 2005-08-22 2011-07-27 樫山工業株式会社 スクリューロータおよび真空ポンプ
US7365258B1 (en) 2006-08-02 2008-04-29 Drum Workshop, Inc. Sound box with external and internal impact surfaces
US20080069748A1 (en) * 2006-09-20 2008-03-20 Hw Advanced Technologies, Inc. Multivalent iron ion separation in metal recovery circuits
US20080128354A1 (en) * 2006-11-30 2008-06-05 Hw Advanced Technologies, Inc. Method for washing filtration membranes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2744860A (en) * 1951-11-13 1956-05-08 Robert H Rines Electroplating method
US3351539A (en) * 1965-04-06 1967-11-07 Branson Instr Sonic agitating method and apparatus
DE1263768B (de) * 1965-07-09 1968-03-21 Basf Ag Vorrichtung zur Durchfuehrung elektrochemischer Reaktionen organischer Verbindungen mit stroemendem Elektrolyten
US3699014A (en) * 1970-12-29 1972-10-17 Norton Co Vibratory process
BG22251A1 (en) * 1974-10-04 1979-12-12 Petrov Method and installation for non-ferros elektrolysis
US4049512A (en) * 1975-10-31 1977-09-20 Tolle Jr Albert E Cathode structure for electrolytic apparatus employing impellers
US4125447A (en) * 1978-03-24 1978-11-14 Bachert Karl R Means for plating the inner surface of tubes
GB2078782A (en) * 1980-06-20 1982-01-13 Pullen Peter Agitating Photographic Fix Solutions in Electrolytic Recovery of Silver Therefrom
EP0171647A1 (de) * 1984-07-25 1986-02-19 Deutsche Carbone AG Verfahren zum elektrolytischen Abscheiden von Metallen aus einem Elektrolysebad
US4619749A (en) * 1985-03-25 1986-10-28 Nusbaum Ronald C System for extracting silver from liquid solutions
US4675254A (en) * 1986-02-14 1987-06-23 Gould Inc. Electrochemical cell and method

Also Published As

Publication number Publication date
PT85218B (pt) 1993-07-30
DE3662060D1 (en) 1989-03-16
PT85218A (pt) 1988-07-29
DE8619501U1 (de) 1986-11-06
EP0252172A1 (de) 1988-01-13
US4806224A (en) 1989-02-21
ES2007633A6 (es) 1989-07-01
JPS6314884A (ja) 1988-01-22
ATE40720T1 (de) 1989-02-15

Similar Documents

Publication Publication Date Title
DE2445412C2 (de) Elektrolytische Zelle und Verfahren zur elektrochemischen Behandlung von Abwässern
EP0252172B1 (de) Elektrolyseverfahren
EP0150018B1 (de) Verfahren zum Elektrolysieren von flüssigen Elektrolyten
DE2948579A1 (de) Elektrode und verfahren zum entfernen einer metallischen substanz aus einer loesung unter verwendung dieser elektrode
DE2326070A1 (de) Entfernung von kohlendioxid aus der luft
DE2140836C2 (de) Vorrichtung für gleichzeitige Flüssigflüssigextraktion und Elektrolyse und deren Verwendung
DE2735608A1 (de) Gas-fluessigkeitskontaktreaktionsapparatur
EP2183409B1 (de) Verfahren zum betreiben von kupfer-elektrolysezellen
DE3401636A1 (de) Elektrochemisches verfahren zur behandlung von fluessigen elektrolyten
DE2435185A1 (de) Bipolare elektrolytzelle
DE3246690A1 (de) Verfahren und vorrichtung fuer die elektrolytische behandlung von metallbahnen
DE2923818C2 (de)
DE2850507A1 (de) Vorrichtung zur behandlung in einem wirbelbett
DD216050A5 (de) Elektrolytzelle zur gewinnung eines metalls aus einem erz oder konzentrat
EP0324024A1 (de) Verfahren und vorrichtung zur regeneration von ionenaustauschermaterial
EP0150019B1 (de) Elektrolyseverfahren mit flüssigen Elektrolyten und porösen Elektroden
DE3017006A1 (de) Elektrolyseverfahren und elektrolysegeraet
DE69821955T2 (de) Neue dreidimensionale elektrode
DE114391C (de)
EP0390727B1 (de) Diaphragmalose Messzelle für die coulometrische Karl Fischer-Titration
DD285125B5 (de) Elektrode fuer gasentwickelnde elektrolytische Prozesse
DE3441999A1 (de) Verfahren und vorrichtung zum umwaelzen einer fluessigkeit mit hilfe von gas
DE2544640A1 (de) Verfahren zur durchfuehrung elektrochemischer reaktionen und dessen anwendung
WO1997015702A9 (de) Vorrichtung zur chemischen oder elektrolytischen oberflächenbehandlung plattenförmiger gegenstände
DE2506822A1 (de) Pneumohydraulischer vibrator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880527

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 40720

Country of ref document: AT

Date of ref document: 19890215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3662060

Country of ref document: DE

Date of ref document: 19890316

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SAIC BREVETTI S.R.L.

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920702

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920706

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920707

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920710

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920713

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920722

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 7

Ref country code: BE

Payment date: 19920731

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ENVIRO-CELL UMWELTTECHNIK GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;ENVIRO - CELL UMWELTTECHINIK GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

EPTA Lu: last paid annual fee
NLS Nl: assignments of ep-patents

Owner name: ENVIRO-CELL UMWELTTECHNIK GMBH TE OBERURSEL, BONDS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930707

Ref country code: GB

Effective date: 19930707

Ref country code: AT

Effective date: 19930707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930731

Ref country code: CH

Effective date: 19930731

Ref country code: BE

Effective date: 19930731

BERE Be: lapsed

Owner name: ENVIRO-CELL UMWELTTECHNIK G.M.B.H.

Effective date: 19930731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930707

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86109265.8

Effective date: 19940210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970401

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050707