EP2183409B1 - Verfahren zum betreiben von kupfer-elektrolysezellen - Google Patents
Verfahren zum betreiben von kupfer-elektrolysezellen Download PDFInfo
- Publication number
- EP2183409B1 EP2183409B1 EP08782805A EP08782805A EP2183409B1 EP 2183409 B1 EP2183409 B1 EP 2183409B1 EP 08782805 A EP08782805 A EP 08782805A EP 08782805 A EP08782805 A EP 08782805A EP 2183409 B1 EP2183409 B1 EP 2183409B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrolyte
- copper
- cell
- feed
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
Definitions
- the invention relates to a method for operating copper electrolysis cells, which comprise a plurality of vertically and mutually parallel anode and cathode plates, a longitudinal electrolyte inlet and an electrolyte effluent, and a novel copper electrolysis cell.
- m is the mass of copper produced in g
- M the molar mass of copper in g / mol
- i the current density in A / m 2
- A the electrode surface in m 2
- t the time in s
- z the valence of the reaction ions involved
- F the Faraday constant in As / mol.
- the currently technically feasible current densities are, for example, in a copper refining electrolysis at a maximum of 350 A / m 2 . This value results from the fact that in a technical electrolysis cell only about 30-40% of the theoretical limiting current density can be driven.
- This theoretical limiting current density i limit (equation 2) is a function of the copper ion concentration in the electrolyte (c °) and the diffusion layer thickness ⁇ N at the electrode. N, the number of ions involved in the process, F, the Faraday constant and D, the diffusion coefficient, are constant.
- i border n ⁇ F ⁇ D ⁇ c 0 ⁇ N
- the types of refining electrolysis cells used today are distinguished by the fact that the electrolyte is fed in on the front side and removed again on the opposite end side.
- the main flow therefore takes place between the cell wall and the electrodes or the cell bottom and the lower edges of the electrodes.
- This externally applied flow also called forced convection
- the flow between the electrodes is determined by the natural convection that results from the density difference of the electrolyte in front of the cathodes (lighter electrolyte due to depletion of copper ions) and before the anodes (heavier electrolyte due to the accumulation of copper ions).
- containers for electrolytic metal extraction are known in which, to achieve a parallel flow, the electrolyte inlet and outlet into or out of the electrode space is effected by perforated plates arranged parallel to the longitudinal walls.
- a parallel partition with openings for the passage of electrolyte into the electrode space is arranged only on one longitudinal wall.
- the passage openings are distributed over the entire electrode height and are aligned with the electrode interstices.
- a relatively simple means of achieving parallel flow in conventional electrolysis cells is the provision of tubular electrolyte supply and drainage devices which direct the electrolyte in opposite directions between the bath longitudinal walls and the electrode side edges in the two free spaces. Due to the larger cathode width, a jam of the electrolyte occurs in front of the cathode side edges, as a result of which the latter partially flows into the respective electrode gap.
- electrolytic bath in which the parallel flow is achieved by an inlet of the electrolyte from the bath floor.
- an electrolysis cell is described with longitudinal electrolyte inlet, in which on one or both longitudinal sides extending over the entire length of the bath extending to just below the cathode lower edge, down and closed at the sides, above the electrolyte level open electrolyte inlet box is attached to the the electrodes facing horizontal and parallel to the electrodes aligned through openings, which in the region of the lower cathode edges over a extend certain area of the cathode spaces.
- the cross-sectional area of all the passage openings is smaller than the open horizontal cross-sectional area at the top of the electrolyte inlet box in order to achieve a slight overpressure.
- the channel cell requires a large pump capacity to achieve the high flow rates.
- To separate the entrained anode sludge continuous electrolyte filtration is required.
- Leiteinbauten as a flow straightener and the arrangement of appropriately shaped partitions is associated with a very large material and manufacturing effort.
- the hanging of these baths with the electrodes requires great care, since the desired electrolyte circulation is guaranteed only if the required geometric conditions are precisely met.
- the present invention aims to avoid the above-mentioned disadvantages and problems of the prior art and has as its object to provide a method for operating (conventional) copper electrolysis cells and a copper electrolysis cell with which higher current densities and thus higher current yields than in State of the art are possible, the cathode quality, for example but not affected by fluidization of the anode sludge, disturbance of anode sludge deposition, or poor inhibitor distribution. Likewise, extensive changes to and complex installations in the cell should be avoided.
- This object is achieved in a first aspect in a method of the type mentioned above in that the electrolyte via the electrolyte inlet horizontally and parallel to the electrodes in each electrode gap at the level of the lower third of the electrodes at a speed of 0.3 to 1, 0 m / s is flowed, wherein the cathode plates are arranged stationary relative to the inflow direction.
- the electrolyte is flowed into the cell at a rate of 0.3 to 0.6 m / s.
- a further improvement of the method is possible if the electrolyte is not applied as usual and applied in the examples on the front side of the cell but longitudinally drained.
- the method according to the invention has the additional advantage that it can be carried out even with existing electrolysis cells without great effort with few changes to the existing facilities.
- a copper electrolytic cell comprising a plurality of vertically and parallelly disposed anode and cathode plates, a longitudinal electrolyte inlet, and an electrolyte drain, characterized in that the electrolyte inlet is located on a longitudinal wall thereof Cell which extends into the region of the electrode lower edge and comprises a closed feed box which can be attached to the end faces of the cell and can be connected to an electrolyte source and means for stationary arrangement of each cathode plate and in the lower third of the electrode height extending and respectively corresponding to the electrode gap Regions with at least one opening, in particular nozzle, for the directed supply of electrolyte is provided.
- the means for the fixed arrangement of the cathode plates are designed as means for vertical guidance.
- the means for vertical guidance are formed as circular discs or wheels, wherein the cathode plates are each centered between two adjacently arranged and spaced discs or wheels.
- the electrolyte drain is arranged on the front side.
- it can also advantageously be arranged longitudinally.
- the electrolyte feed box used in the cell according to the invention can also be used advantageously in already existing conventional electrolysis cells.
- Fig. 2 shows a schematic representation of a copper electrolysis cell according to the present invention, in which, for reasons of better visibility of the inventive electrolyte feed box in relation to the electrolytic cell itself has been highlighted graphically.
- the closed inlet box 1 extends along a side wall 3 of the bath 2 and is attached to the end walls 4 of the bath 2 fastened in the cell, wherein the Einh brieflyen 5 simultaneously serve the supply and discharge of the electrolyte in the actual feed box.
- the inlet box 1 with an electrolyte source for example via a flange 6, connectable.
- the inlet box 1 is arranged so deep in the cell that it extends into the region of the electrode lower edge.
- openings in particular nozzles 7, are arranged, wherein at least one opening is located in each region corresponding to the electrode gap and extending over the lower third of the electrode height ( Fig. 3 ).
- the electrolyte is flowed into the cell in the lower area of the electrode gap at a speed of 0.3 to 1.0 m / s in order to achieve the advantageous flow guidance mentioned above.
- the fixed arrangement is achieved by means for the vertical guidance of the cathode plates, which are formed as circular disks or wheels 8, wherein the cathode plates 9 are respectively centered between two adjacently arranged and spaced disks or wheels ( Fig. 4 ).
- the cathode plates which are formed as circular disks or wheels 8
- the cathode plates 9 are respectively centered between two adjacently arranged and spaced disks or wheels ( Fig. 4 ).
- a conventional industrial copper electrolysis cell was equipped with an electrolyte inlet according to the invention, comprising a feed box as described above.
- Table 1 gives the operating conditions and results of further experiments.
- Table 1 Experiment No. i Q v ⁇ 1 trip ⁇ 2 trip in A / m 2 in l / min in m / s in % in % 1 407 75 0.75 93.92 95.01 2 407 75 0.5 97.24 98,15 3 407 75 0.5 99.46 98.35 4 407 75 0.5 97.49 96.27 4a 407 75 0.5 92.1 93.77 5 498 150 1 98.99 93.47 6 498 75 0.5 99.55 99.28 7 498 100 0.67 99.53 99.13 8th 543 100 0.67 98.18 97.59
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren zum Betreiben von Kupfer-Elektrolysezellen, welche eine Vielzahl von senkrecht und parallel zueinander angeordneten Anoden- und Kathodenplatten, einen längsseitigen Elektrolytzulauf und einen Elektrolytablauf umfassen, sowie eine neuartige Kupfer-Elektrolysezelle.
- Prinzipiell wird in einer Kupferelektrolyse anodisch Kupfer in Form von Kupfer(II)ionen in Lösung gebracht, welches sich an der Kathode wieder zu metallischem Kupfer abscheidet.
- Anode:
Cu →7 Cu2+ + 2 e-
- Kathode:
Cu2+ + 2 e- → Cu
-
- Dabei ist m die Masse an produziertem Kupfer in g, M die Molmasse von Kupfer in g/mol, i die Stromdichte in A/m2, A die Elektrodenfläche in m2, t die Zeit in s, z die Wertigkeit der an der Reaktion beteiligten Ionen und F die Faraday Konstante in As/mol. Will man nun bei gegebener Anlagengröße (A) die Menge an produziertem Kupfer erhöhen, kann man nur die Stromdichte i erhöhen.
- Die heute technisch machbaren Stromdichten liegen z.B. in einer Cu-Raffinationselektrolyse bei maximal 350 A/m2. Dieser Wert ergibt sich daraus, dass in einer technischen Elektrolysezelle nur rund 30 - 40 % der theoretischen Grenzstromdichte gefahren werden kann. Diese theoretische Grenzstromdichte iGrenz (Gleichung 2) ist eine Funktion der Kupferionenkonzentration im Elektrolyten (c°) und der Diffusionsschichtdicke δN an der Elektrode. N, die Anzahl der am Prozess beteiligten Ionen, F, die Faraday Konstante und D, der Diffusionskoeffizient, sind konstant.
- Die Berechnung der theoretische Stromdichte ergibt, bei den heutigen Bauformen, Werte von rund 1000 A/m2 und daher technische Stromdichten von maximal 350 A/m2.
- Bei höheren Stromdichten kommt es vermehrt zu Dendritenbildung und letztendlich zu elektrischen Kurzschlüssen zwischen Anode und Kathode, was den Wirkungsgrad zur Abscheidung von Kathodenkupfer herabsetzt und die Kathodenqualität ebenso. Um eine wesentlich höhere Stromdichte einstellen zu können, muss die Grenzstromdichte erhöht werden. Dies ist im wesentlichen nur durch eine Verringerung der nemstschen Diffusionsschichtdicke möglich. Diese Verringerung kann durch eine höhere Relativbewegung zwischen Elektrolyt und Elektrode erreicht werden.
- Die heute verwendeten Bauformen von Raffinationselektrolysezellen zeichnen sich dadurch aus, dass der Elektrolyt stirnseitig zu- und auf der gegenüberliegenden Stirnseite wieder abgeführt wird. Die Hauptströmung erfolgt daher zwischen der Zellenwand und den Elektroden bzw. dem Zellenboden und den Unterkanten der Elektroden. Diese von außen aufgebrachte Strömung (auch erzwungene Konvektion genannt) hat nur geringen Einfluss auf die Strömungsverhältnisse zwischen den Elektroden. Die Strömung zwischen den Elektroden ist von der natürlichen Konvektion, die sich aufgrund des Dichteunterschiedes des Elektrolyten vor den Kathoden (leichterer Elektrolyt aufgrund der Verarmung an Kupferionen) beziehungsweise vor den Anoden (schwererer Elektrolyt aufgrund der Anreicherung der Kupferionen) ergibt, bestimmt.
- Neben Elektrolysezellen mit Querströmungsprinzip sind daher auch Zellen vorgeschlagen worden, in denen der Elektrolyt hauptsächlich parallel zu den Oberflächen der Elektroden strömt.
- Es wurden sogenannte Kanalzellen entwickelt, in denen eine Parallelströmung mit relativ hoher Geschwindigkeit angewandt wird, wobei zur Gewährleistung einer gleichmäßigen Strömungsverteilung über den gesamten Kanalquerschnitt im Elektrolytzulaufteil vor den Elektrodengruppen siebförmige Durchflusseinbauten erforderlich sind.
- Ebenfalls bekannt sind Parallelstromzellen mit doppelwandigen Zwischenwänden, wobei die eine Wand mit dem oberen Badrand abschließt, jedoch nicht bis zum Badboden reicht, während die andere Wand am Badboden beginnt, jedoch nicht bis zum oberen Rand reicht. In einem anderen bekannten Elektrolysebad (
) sind doppel- oder auch mehrfachwandige Zwischenwände mit über die gesamte Breite verteilten Öffnungen angeordnet, die sich auf der einen Seite in Höhe der Kathodenunterkante und/oder etwas aufwärts und auf der anderen Seite in Höhe des Elektrolytniveaus und/oder etwas abwärts befinden.DD 87 665 - Ferner sind Behälter zu elektrolytischen Metallgewinnung bekannt, in denen zur Erzielung einer Parallelströmung der Elektrolytzu- und -ablauf in bzw. aus dem Elektrodenraum durch parallel zu den Längswänden angeordnete Lochplatten erfolgt.
- Bei einer anderen Zellenkonstruktion ist nur an einer Längswand eine parallele Trennwand mit Öffnungen für den Elektrolytdurchtritt in den Elektrodenraum angeordnet. Die Durchtrittsöffnungen verteilen sich über die gesamte Elektrodenhöhe und sind auf die Elektrodenzwischenräume ausgerichtet.
- Zur Erzielung einer Parallelströmung sind weiters Leiteinbauten an den Längswänden der Zelle vorgeschlagen worden, durch die der Elektrolyt serpentinenartig um die Elektroden gelenkt wird.
- Eine relativ einfache Maßnahme zur Erzielung einer Parallelströmung in herkömmlichen Elektrolysezellen besteht in der Anordnung von röhrenförmigen Elektrolytzu- und - ablaufvorrichtungen, durch die der Elektrolyt in den beiden freien Räumen zwischen den Badlängswänden und den Elektrodenseitenkanten in entgegengesetzten Richtungen gelenkt wird. Aufgrund der größeren Kathodenbreite kommt es vor den Kathodenseitenkanten zu einem Stau des Elektrolyten, wodurch dieser zum Teil in den betreffenden Elektrodenzwischenraum strömt.
- Bekannt ist auch ein Elektrolysebad, in welchem die Parallelströmung durch einen Zulauf des Elektrolyten vom Badboden her erreicht wird. Hierbei befinden sich die Elektrolytzulauföffnungen unter den Anoden und sind senkrecht nach oben gerichtet.
- In der
ist eine Elektrolysezelle mit längsseitigem Elektrolytzulauf beschrieben, bei der an einer oder beiden Längsseiten ein über die gesamte Badlänge reichender, sich bis kurz unter die Kathodenunterkante erstreckender, unten und an den Seiten geschlossener, oberhalb des Elektrolytniveaus offener Elektrolytzulaufkasten angebracht ist, der an der den Elektroden zugewandten Seite horizontal und parallel zu den Elektroden ausgerichtete Durchtrittsöffnungen aufweist, die sich im Bereich der Kathodenunterkanten über einen bestimmten Bereich der Kathodenzwischenräume erstrecken. Gemäß einer Ausführungsform ist die Querschnittsfläche aller Durchtrittsöffnungen kleiner als die offene horizontale Querschnittsfläche an der Oberseite des Elektrolytzulaufkastens, um einen geringen Überdruck zu erzielen.DD 109 031 - Die oben genannten Parallelstromzellen haben jedoch zahlreiche Nachteile, weshalb sie sich gegenüber den Querstromzellen bislang nicht durchsetzen konnten.
- So erfordert die Kanalzelle zur Erzielung der hohen Strömungsgeschwindigkeiten eine große Pumpenkapazität. Zur Abtrennung des mitgerissenen Anodenschlamms ist eine laufende Elektrolytfiltration erforderlich.
- Ebenso sind wegen der Gefahr der Aufwirbelung von Anodenschlamm Elektrolytzulauföffnungen im Badboden nicht geeignet.
- Auch in Parallelstromzellen mit einfachen Zwischenwänden können trotz geringerer Strömungsgeschwindigkeiten noch erhebliche Stromverzweigungen auftreten. Die Anordnung des Elektrolytab- bzw. -zulaufes am Badboden birgt zudem ebenfalls die Gefahr einer Aufwirbelung von Anodenschlamm und damit der Verschlechterung der Kathodenqualität. Eine solche Gefahr besteht auch bei der Anordnung doppelwandiger Zwischenwände, von denen eine jeweils nicht bis zum Badboden reicht. Außerdem ergeben sich ungünstige Bedingungen für die Vermischung von Bad- und Frischelektrolyt. Ein weiterer Nachteil ist die Belastung solcher doppelwandigen Zwischenwände. So müssen diese Wände zur Aufnahme der Anodenlasten besonders stabil ausgeführt sein, was jedoch mit erheblichen Werkstoffproblemen verbunden ist.
- In den Parallelstrombädern mit doppel- oder mehrfachwandigen Zwischenwänden werden durch die Anordnung von reihenförmigen Öffnungen in Höhe der Kathodenunterkante und etwas darüber sowie in Höhe des Elektrolytniveaus und etwas darunter zwar verbesserte Strömungsverhältnisse erzielt, es bestehen jedoch die selben Werkstoffprobleme wie oben. In den doppel- oder mehrfachwandigen Zwischenwänden sind außerdem Bereiche mit nur geringer Elektrolytbewegung vorhanden, in denen es zu Inkrustierungen kommen kann.
- Von den bekannten Parallelstromzellen mit separatem Elektrolytzu- und -ablauf ist der mit Lochplatten ausgerüstete Behälter nicht einsetzbar, da die angestrebte Parallelströmung sich aufgrund der Dichteunterschiede zwischen dem Badelektrolyten und dem wärmeren Zulaufelektrolyten nicht realisieren lässt und die Voraussetzungen für eine ausreichende Sedimentation von Anodenschlamm nicht gegeben sind.
- In dem vorgeschlagenen Elektrolysebad mit nur noch einer perforierten Trennwand auf der Elektrolytzulaufseite sind die Strömungsverhältnisse aus den gleichen Gründen nicht befriedigend. Durch die relativ stark ausgeführte selbständige Trennwand vergrößert sich die Badbreite erheblich, was mit einem größeren Platzbedarf verbunden ist.
- Der Einsatz von Leiteinbauten als Strömungsrichter sowie die Anordnung entsprechend geformter Trennwände ist mit einem sehr großen materiellen und fertigungstechnischen Aufwand verbunden. Außerdem verlangt das Behängen dieser Bäder mit den Elektroden große Sorgfalt, da die gewünschte Elektrolytzirkulation nur bei genauer Einhaltung der geforderten geometrischen Bedingungen gewährleistet ist.
- Die vorliegende Erfindung bezweckt die Vermeidung der oben genannten Nachteile und Probleme des Standes der Technik und stellt sich die Aufgabe, ein Verfahren zum Betreiben von (herkömmlichen) Kupfer-Elektrolysezellen sowie eine Kupfer-Elektrolysezelle bereitzustellen, mit denen höhere Stromdichten und damit höhere Stromausbeuten als im Stand der Technik möglich sind, die Kathodenqualität z.B. durch Aufwirbelung des Anodenschlamms, Störung der Anodenschlammabscheidung oder eine schlechte Inhibitorverteilung, aber nicht beeinträchtigt wird. Ebenso sollen umfangreiche Änderungen an und aufwändige Einbauten in der Zelle vermieden werden.
- Diese Aufgabe wird in einem ersten Aspekt bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass der Elektrolyt über den Elektrolytzulauf horizontal und parallel zu den Elektroden in jedem Elektrodenzwischenraum jeweils in Höhe des unteren Drittels der Elektroden mit einer Geschwindigkeit von 0,3 bis 1,0 m/s eingeströmt wird, wobei die Kathodenplatten gegenüber der Einströmrichtung ortsfest angeordnet werden.
- Hierdurch wird eine Optimierung der Strömungsführung in der Elektrolysezelle bezogen auf eine maximale Relativbewegung von Elektrolyt zur Elektrode erzielt, was vorteilhafterweise in einer Verkleinerung der hydrodynamischen Grenzschicht, einer Vergleichmäßigung der Konzentration und Temperatur des Elektrolyten, einer besseren Verteilung der Inhibitoren und vor allem einer Erhöhung der Grenzstromdichte resultiert.
- Zwischen Anode und Kathode kommt es durch die natürliche Konvektion in Kathodennähe zu einer Aufwärtsbewegung und in Anodennähe zu einer Abwärtsbewegung des Elektrolyts. Zwischen den Elektroden besteht eine Geschwindigkeitsverteilung wie in
Fig. 1 gezeigt. Die höhere Elektrolytgeschwindigkeit in unmittelbarer Nähe der Kathodenoberfläche führt zu einer verbesserten bzw. vermehrten Abscheidung von Kupfer an der Kathode, während die verminderte Geschwindigkeit an der Anodenoberfläche gleichzeitig das Absinken des Anodenschlamms begünstigt. - In einer bevorzugten Ausführungsform wird der Elektrolyt mit einer Geschwindigkeit von 0,3 bis 0,6 m/s in die Zelle eingeströmt.
- Eine weitere Verbesserung des Verfahrens ist möglich, wenn der Elektrolyt nicht wie üblich und in den Beispielen angewandt an der Stirnseite der Zelle sondern längsseitig ablaufen gelassen wird.
- Das erfindungsgemäße Verfahren weist insbesondere den zusätzlichen Vorteil auf, dass es auch bei bereits bestehenden Elektrolysezellen ohne großen Aufwand mit wenigen Änderungen an den bestehenden Einrichtungen durchgeführt werden kann.
- Gemäß einem anderen Aspekt der Erfindung wird eine Kupfer-Elektrolysezelle, umfassend eine Vielzahl von senkrecht und parallel zueinander angeordneten Anoden- und Kathodenplatten, einen längsseitigen Elektrolytzulauf und einen Elektrolytablauf, bereitgestellt, welche dadurch gekennzeichnet ist, dass der Elektrolytzulauf einen, sich an einer Längswand der Zelle bis in den Bereich der Elektrodenunterkante erstreckenden, geschlossenen Zulaufkasten umfasst, welcher an den Stirnseiten der Zelle einhängbar und mit einer Elektrolytquelle verbindbar ist und mit Mitteln zur ortsfesten Anordnung jeder Kathodenplatte sowie in den sich über das untere Drittel der Elektrodenhöhe erstreckenden und jeweils dem Elektrodenzwischenraum entsprechenden Bereichen mit mindestens einer Öffnung, insbesondere Düse, zur gerichteten Zuführung von Elektrolyt versehen ist.
- Vorzugsweise sind die Mittel zur ortsfesten Anordnung der Kathodenplatten als Mittel zur senkrechten Führung ausgebildet.
- Gemäß einer bevorzugten Ausführungsform sind die Mittel zur senkrechten Führung als Kreisscheiben oder Räder ausgebildet, wobei die Kathodenplatten jeweils zwischen zwei benachbart angeordneten und beabstandeten Scheiben bzw. Rädern zentriert werden.
- Gemäß einer möglichen Ausbildung der Elektrolysezelle ist der Elektrolytablauf stirnseitig angeordnet. Er kann jedoch auch vorteilhafterweise längsseitig angeordnet sein.
- Der in der erfindungsgemäßen Zelle eingesetzte Elektrolytzulaufkasten ist auch in bereits bestehenden herkömmlichen Elektrolysezellen vorteilhaft verwendbar.
- Die Erfindung wird nachfolgend anhand von Beispielen sowie der Zeichnung näher erläutert.
-
Fig. 2 zeigt eine schematische Darstellung einer Kupfer-Elektrolysezelle gemäß der vorliegenden Erfindung, bei welcher aus Gründen der besseren Erkennbarkeit der erfindungsgemäße Elektrolytzulaufkasten im Verhältnis zur Elektrolysezelle selbst zeichnerisch hervorgehoben wurde. Der geschlossene Zulaufkasten 1 erstreckt sich entlang einer Seitenwand 3 des Bades 2 und ist an den Stirnwänden 4 des Bades 2 befestigbar in die Zelle eingehängt, wobei die Einhängvorrichtungen 5 gleichzeitig der Zu- und Abfuhr des Elektrolyten in den eigentlichen Zulaufkasten dienen. Am Ende einer Einhängvorrichtung 5 ist der Zulaufkasten 1 mit einer Elektrolytquelle, z.B. über eine Flanschverbindung 6, verbindbar. - Der Zulaufkasten 1 ist derart tief in der Zelle angeordnet, dass er sich bis in den Bereich der Elektrodenunterkante erstreckt. Im unteren Bereich des Zulaufkastens 1 sind, den Elektroden zugewandt, Öffnungen, insbesondere Düsen 7, angeordnet, wobei sich mindestens eine Öffnung in jedem dem Elektrodenzwischenraum entsprechenden und sich über das untere Drittel der Elektrodenhöhe erstreckenden Bereich befindet (
Fig. 3 ). Durch diese Öffnungen wird der Elektrolyt mit einer Geschwindigkeit von 0,3 bis 1,0 m/s in die Zelle in den unteren Bereich des Elektrodenzwischenraums eingeströmt, um zu der weiter oben genannten vorteilhaften Strömungsführung zu gelangen. Da dieser Effekt jedoch nur bei einer definierten und auch tatsächlich eingehaltenen Anordnung der Elektroden gegenüber der Einströmungsrichtung erzielt wird, was beim gewöhnlichen Einhängen der Elektroden in das Bad kaum zu bewerkstelligen ist, ist es wesentlich, die Kathodenplatten gegenüber der Einströmrichtung ortsfest anzuordnen. Zu diesem Zweck sind in der Elektrolysezelle, genauer am Zulaufkasten 1, Mittel zur ortsfesten Anordnung jeder Kathodenplatte vorgesehen. - Bei der in
Fig. 3 dargestellten Ausführungsform wird die ortsfeste Anordnung durch Mittel zur senkrechten Führung der Kathodenplatten erzielt, die als Kreisscheiben oder Räder 8 ausgebildet sind, wobei die Kathodenplatten 9 jeweils zwischen zwei benachbart angeordneten und beabstandeten Scheiben bzw. Rädern zentriert werden (Fig. 4 ). Dem Fachmann sind jedoch zahlreiche andere Ausführungsformen bekannt oder aufgrund seines Fachwissens leicht auffindbar. - Für die nachfolgenden Beispiele wurde eine herkömmliche industrielle Kupfer-Elektrolysezelle mit einem erfindungsgemäßen Elektrolytzulauf, umfassend einen wie oben beschriebenen Zulaufkasten, ausgestattet.
- Beispiel 1:
- In einer industriellen Elektrolysezelle wurden mit einer Einströmgeschwindigkeit von 0,75 m/s und einer Stromdichte von 407 A/m2 Kupferbleche erzeugt. Die kathodische Stromausbeute betrug während der ganzen Anodenreise mehr als 97 %.
- Beispiel 2:
- In einer industriellen Elektrolysezelle wurden mit einer Einströmgeschwindigkeit von 1,0 m/s und einer Stromdichte von 498 A/m2 Kupferbleche erzeugt. Die kathodische Stromausbeute betrug während der ganzen Anodenreise mehr als 93 %.
- Beispiel 3:
- In einer industriellen Elektrolysezelle wurde mit einer Einströmgeschwindigkeit von 0,5 m/s und einer Stromdichte von 498 A/m2 Kupferbleche erzeugt. Die kathodische Stromausbeute betrug während der ganzen Anodenreise mehr als 98 %.
- Beispiel 4:
- In einer industriellen Elektrolysezelle wurden mit einer Einströmgeschwindigkeit von 0,67 m/s und einer Stromdichte von 543 A/m2 Kupferbleche erzeugt. Die kathodische Stromausbeute betrug während der ganzen Anodenreise mehr als 95 %.
- In Tabelle 1 sind die Betriebsbedingungen und Ergebnisse weiterer Versuche angeführt.
Tabelle 1 Versuch Nr. i Q v η 1 Reise η 2 Reise in A/m2 in l/min in m/s in % in % 1 407 75 0,75 93,92 95,01 2 407 75 0,5 97,24 98,15 3 407 75 0,5 99,46 98,35 4 407 75 0,5 97,49 96,27 4a 407 75 0,5 92,1 93,77 5 498 150 1 98,99 93,47 6 498 75 0,5 99,55 99,28 7 498 100 0,67 99,53 99,13 8 543 100 0,67 98,18 97,59
Claims (9)
- Verfahren zum Betreiben von Kupfer-Elektrolysezellen, welche eine Vielzahl von senkrecht und parallel zueinander angeordneten Anoden- und Kathodenplatten, einen längsseitigen Elektrolytzulauf und einen Elektrolytablauf umfassen, dadurch gekennzeichnet, dass der Elektrolyt über den Elektrolytzulauf horizontal und parallel zu den Elektroden in jedem Elektrodenzwischenraum jeweils in Höhe des unteren Drittels der Elektroden mit einer Geschwindigkeit von 0,3 bis 1,0 m/s eingeströmt wird, wobei die Kathodenplatten gegenüber der Einströmrichtung ortsfest angeordnet werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt mit einer Geschwindigkeit von 0,3 bis 0,6 m/s in die Zelle eingeströmt wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Elektrolyt längsseitig ablaufen gelassen wird.
- Kupfer-Elektrolysezelle, umfassend eine Vielzahl von senkrecht und parallel zueinander angeordneten Anoden- und Kathodenplatten, einen längsseitigen Elektrolytzulauf und einen Elektrolytablauf, dadurch gekennzeichnet, dass der Elektrolytzulauf einen, sich an einer Längswand der Zelle bis in den Bereich der Elektrodenunterkante erstreckenden, geschlossenen Zulaufkasten umfasst, welcher an den Stirnseiten der Zelle einhängbar und mit einer Elektrolytquelle verbindbar ist und mit Mitteln zur ortsfesten Anordnung jeder Kathodenplatte sowie in den sich über das untere Drittel der Elektrodenhöhe erstreckenden und jeweils dem Elektrodenzwischenraum entsprechenden Bereichen mit mindestens einer Öffnung, insbesondere Düse, zur gerichteten Zuführung von Elektrolyt versehen ist.
- Kupfer-Elektrolysezelle nach Anspruch 4, dadurch gekennzeichnet, dass die Mittel zur ortsfesten Anordnung der Kathodenplatten als Mittel zur senkrechten Führung ausgebildet sind.
- Kupfer-Elektrolysezelle nach Anspruch 5, dadurch gekennzeichnet, dass die Mittel zur senkrechten Führung als Kreisscheiben oder Räder ausgebildet sind, wobei die Kathodenplatten jeweils zwischen zwei benachbart angeordneten und beabstandeten Scheiben bzw. Rädern zentriert werden.
- Kupfer-Elektrolysezelle nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Elektrolytablauf stirnseitig angeordnet ist.
- Kupfer-Elektrolysezelle einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Elektrolytablauf längsseitig angeordnet ist.
- Elektrolytzulaufkasten für eine Kupfer-Elektrolysezelle, welcher Zulaufkasten geschlossen ist und sich an einer Längswand der Zelle bis in den Bereich der Elektrodenunterkante erstreckt, dadurch gekennzeichnet, dass er an den Stirnseiten der Zelle einhängbar und mit einer Elektrolytquelle verbindbar ist und mit Mitteln zur ortsfesten Anordnung jeder Kathodenplatte sowie in den sich über das untere Drittel der Elektrodenhöhe erstreckenden und jeweils dem Elektrodenzwischenraum entsprechenden Bereichen mit mindestens einer Öffnung, insbesondere Düse, zur gerichteten Zuführung von Elektrolyt versehen ist.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL08782805T PL2183409T3 (pl) | 2007-08-27 | 2008-08-07 | Sposób działania elektrolizerów do elektrolizy miedzi |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT0133707A AT505700B1 (de) | 2007-08-27 | 2007-08-27 | Verfahren zum betreiben von kupfer-elektrolysezellen |
| PCT/AT2008/000277 WO2009026598A2 (de) | 2007-08-27 | 2008-08-07 | Verfahren zum betreiben von kupfer-elektrolysezellen |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2183409A2 EP2183409A2 (de) | 2010-05-12 |
| EP2183409B1 true EP2183409B1 (de) | 2011-04-20 |
Family
ID=40377687
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08782805A Active EP2183409B1 (de) | 2007-08-27 | 2008-08-07 | Verfahren zum betreiben von kupfer-elektrolysezellen |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US8454818B2 (de) |
| EP (1) | EP2183409B1 (de) |
| JP (1) | JP5227404B2 (de) |
| CN (1) | CN101376990B (de) |
| AT (2) | AT505700B1 (de) |
| AU (1) | AU2008291662B2 (de) |
| CA (1) | CA2696635C (de) |
| DE (1) | DE502008003297D1 (de) |
| ES (1) | ES2365376T3 (de) |
| PL (1) | PL2183409T3 (de) |
| WO (1) | WO2009026598A2 (de) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB201112606D0 (en) | 2011-07-22 | 2011-09-07 | Johnson Matthey Plc | Desulphurisation materials |
| JP5632340B2 (ja) * | 2011-08-05 | 2014-11-26 | Jx日鉱日石金属株式会社 | 水酸化インジウム及び水酸化インジウムを含む化合物の電解製造装置及び製造方法 |
| CN103255443B (zh) * | 2013-05-06 | 2015-11-25 | 阳谷祥光铜业有限公司 | 超高电流密度电解或电积槽 |
| CN104018191B (zh) * | 2014-06-16 | 2017-01-11 | 南华大学 | 带流量控制管的电解槽 |
| JP6410131B2 (ja) * | 2014-07-31 | 2018-10-24 | 佐々木半田工業株式会社 | 錫の高電流密度電解精製法 |
| CN104831319A (zh) * | 2015-05-28 | 2015-08-12 | 杭州三耐环保科技股份有限公司 | 一种顶部进液双向平行流电解槽及其使用方法 |
| CN105506670B (zh) * | 2015-12-18 | 2018-03-23 | 阳谷祥光铜业有限公司 | 一种铜电解或铜电积的装置与运行方法 |
| GB201603224D0 (en) | 2016-02-24 | 2016-04-06 | Barker Michael H And Grant Duncan A | Equipment for a metal electrowinning or liberator process and way of operating the process |
| JP7150768B2 (ja) * | 2020-01-30 | 2022-10-11 | Jx金属株式会社 | 電解装置及び電解方法 |
| JP7150769B2 (ja) * | 2020-01-30 | 2022-10-11 | Jx金属株式会社 | 電解装置及び電解方法 |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3558466A (en) * | 1968-03-04 | 1971-01-26 | Kennecott Copper Corp | Electrolytic cell |
| JPS4919003Y1 (de) * | 1970-01-22 | 1974-05-21 | ||
| US3682809A (en) * | 1970-02-24 | 1972-08-08 | Kennecott Copper Corp | Electrolytic cell constructed for high circulation and uniform flow of electrolyte |
| BE771215A (en) * | 1970-06-24 | 1971-12-16 | Mansfeld Kom Wilhelm Veb | Copper electrorefining bath - comprising several units with hollow connecting walls |
| JPS5237602Y2 (de) * | 1972-05-29 | 1977-08-26 | ||
| DD109031A1 (de) * | 1973-11-22 | 1974-10-12 | ||
| US3966567A (en) * | 1974-10-29 | 1976-06-29 | Continental Oil Company | Electrolysis process and apparatus |
| DD125714A1 (de) | 1976-04-21 | 1977-05-11 | ||
| EP0146732B1 (de) * | 1983-11-08 | 1988-02-03 | Holzer, Walter, Senator h.c. Dr.h.c.Ing. | Arbeitsverfahren und Vorrichtung zur Ausübung des Verfahrens zur Abscheidung von z.B. Kupfer aus flüssigen Elektrolyten, der durch einen mehrzelligen Elektrolysebehälter geführt wird |
| JPH0768629B2 (ja) * | 1987-07-06 | 1995-07-26 | 三菱マテリアル株式会社 | ユニット化された極板を用いた電解方法 |
| JPH0389166U (de) * | 1989-12-25 | 1991-09-11 | ||
| US5066379A (en) * | 1990-06-14 | 1991-11-19 | Corrosion Technology, Inc. | Container for corrosive material |
| US5492608A (en) * | 1994-03-14 | 1996-02-20 | The United States Of America As Represented By The Secretary Of The Interior | Electrolyte circulation manifold for copper electrowinning cells which use the ferrous/ferric anode reaction |
| US5855756A (en) * | 1995-11-28 | 1999-01-05 | Bhp Copper Inc. | Methods and apparatus for enhancing electrorefining intensity and efficiency |
| JP2002105684A (ja) * | 2000-09-29 | 2002-04-10 | Dowa Mining Co Ltd | 電解方法及びこれに使用する電解槽 |
-
2007
- 2007-08-27 AT AT0133707A patent/AT505700B1/de active
-
2008
- 2008-07-25 CN CN2008101334907A patent/CN101376990B/zh not_active Expired - Fee Related
- 2008-08-07 PL PL08782805T patent/PL2183409T3/pl unknown
- 2008-08-07 WO PCT/AT2008/000277 patent/WO2009026598A2/de not_active Ceased
- 2008-08-07 US US12/675,601 patent/US8454818B2/en active Active
- 2008-08-07 DE DE502008003297T patent/DE502008003297D1/de active Active
- 2008-08-07 EP EP08782805A patent/EP2183409B1/de active Active
- 2008-08-07 ES ES08782805T patent/ES2365376T3/es active Active
- 2008-08-07 AT AT08782805T patent/ATE506467T1/de active
- 2008-08-07 AU AU2008291662A patent/AU2008291662B2/en active Active
- 2008-08-07 CA CA2696635A patent/CA2696635C/en active Active
- 2008-08-07 JP JP2010522124A patent/JP5227404B2/ja active Active
Also Published As
| Publication number | Publication date |
|---|---|
| AU2008291662B2 (en) | 2011-10-06 |
| US8454818B2 (en) | 2013-06-04 |
| CN101376990A (zh) | 2009-03-04 |
| CN101376990B (zh) | 2012-09-05 |
| AU2008291662A1 (en) | 2009-03-05 |
| CA2696635C (en) | 2014-10-07 |
| ATE506467T1 (de) | 2011-05-15 |
| ES2365376T3 (es) | 2011-10-03 |
| EP2183409A2 (de) | 2010-05-12 |
| CA2696635A1 (en) | 2009-03-05 |
| US20110056842A1 (en) | 2011-03-10 |
| JP2010537051A (ja) | 2010-12-02 |
| AT505700B1 (de) | 2009-12-15 |
| AT505700A1 (de) | 2009-03-15 |
| WO2009026598A2 (de) | 2009-03-05 |
| PL2183409T3 (pl) | 2011-11-30 |
| DE502008003297D1 (de) | 2011-06-01 |
| JP5227404B2 (ja) | 2013-07-03 |
| WO2009026598A3 (de) | 2009-08-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2183409B1 (de) | Verfahren zum betreiben von kupfer-elektrolysezellen | |
| DE4444114C2 (de) | Elektrochemische Halbzelle mit Druckkompensation | |
| DE10153544B4 (de) | Vorrichtung zur Steuerung des Durchflusses in einem Galvanisierungsprozeß | |
| DE2039422A1 (de) | Vorrichtung zum Absetzen von Teilchen aus einer Fluessigkeit | |
| DE19713647C2 (de) | Vorrichtung zum galvanischen Abscheiden eines ein- oder beidseitigen Metall- oder Legierungsüberzuges auf einem Metallband | |
| DE2640801C3 (de) | Verfahren zur Elektrolytzirkulation in einer Elektrolysezelle für die elektrische Raffination und Elektrogewinnung von Kupfer sowie eine Elektrolysezelle zur Durchführung des Verfahrens | |
| DE19715429A1 (de) | Elektrochemische Halbzelle | |
| DE3889187T2 (de) | Unlösliche Elektrode. | |
| DE4225961C5 (de) | Vorrichtung zur Galvanisierung, insbesondere Verkupferung, flacher platten- oder bogenförmiger Gegenstände | |
| DE3246690A1 (de) | Verfahren und vorrichtung fuer die elektrolytische behandlung von metallbahnen | |
| DE2619821A1 (de) | Verfahren und vorrichtung zur kontinuierlichen elektrolytischen behandlung eines metallbandes | |
| DE3017079A1 (de) | Vorrichtung zum elektroplattieren | |
| DE2041250C3 (de) | Gitteranode für eine Elektrolysezelle | |
| DE2949495C2 (de) | Elektrode für Elektrolysezellen | |
| DE2259020C3 (de) | Flotationszelle mit elektrolytischer Gasblasenerzeugung | |
| AT392090B (de) | Vorrichtung zum elektroplattieren | |
| DE1496357B2 (de) | Meerwasserbatterie bei welcher der deckel und der boden einer jeden zelle aus bzw eintrittskanaele fuer die die zelle durchstroemende elektrolytfluessigkeit hat | |
| EP0150019B1 (de) | Elektrolyseverfahren mit flüssigen Elektrolyten und porösen Elektroden | |
| DE102004018748A1 (de) | Elektrochemische Zelle | |
| DE2507492C3 (de) | Verfahren und Vorrichtung zum elektrolytischen Entfernen von Metallionen aus einer Lösung | |
| DE4438692C2 (de) | Verfahren zur elektrochemischen Gewinnung der Metalle Kupfer, Zink, Blei, Nickel oder Kobalt | |
| DE3024696C2 (de) | Elektrolysezelle zur Durchführung einer Raffinationselektrolyse | |
| DE4224492C1 (de) | Vorrichtung zum elektrolytischen Behandeln von Flüssigkeiten mit einer Anoden- und einer Kathodenkammer sowie deren Verwendung | |
| DE3340360C2 (de) | Elektrolysebehälter | |
| DE10235117B3 (de) | Anlage zur kataphoretischen Tauchlackierung von Gegenständen |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20100216 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| DAX | Request for extension of the european patent (deleted) | ||
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| REF | Corresponds to: |
Ref document number: 502008003297 Country of ref document: DE Date of ref document: 20110601 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008003297 Country of ref document: DE Effective date: 20110601 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110420 |
|
| LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110420 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2365376 Country of ref document: ES Kind code of ref document: T3 Effective date: 20111003 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110720 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110822 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110820 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110721 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
| REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
| 26N | No opposition filed |
Effective date: 20120123 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008003297 Country of ref document: DE Effective date: 20120123 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120430 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110831 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120807 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110807 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120807 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110420 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BG Payment date: 20230818 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20230822 Year of fee payment: 16 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240807 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20240831 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240831 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20250917 Year of fee payment: 18 Ref country code: FI Payment date: 20250820 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250819 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20250729 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20250718 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20250821 Year of fee payment: 18 |

