EP0248976B1 - Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung - Google Patents

Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung Download PDF

Info

Publication number
EP0248976B1
EP0248976B1 EP87101805A EP87101805A EP0248976B1 EP 0248976 B1 EP0248976 B1 EP 0248976B1 EP 87101805 A EP87101805 A EP 87101805A EP 87101805 A EP87101805 A EP 87101805A EP 0248976 B1 EP0248976 B1 EP 0248976B1
Authority
EP
European Patent Office
Prior art keywords
coolant
housing
ray source
cooling device
source according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87101805A
Other languages
English (en)
French (fr)
Other versions
EP0248976A1 (de
Inventor
Günther Appelt
Josef Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0248976A1 publication Critical patent/EP0248976A1/de
Application granted granted Critical
Publication of EP0248976B1 publication Critical patent/EP0248976B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/025Means for cooling the X-ray tube or the generator

Definitions

  • the invention relates to a liquid-cooled X-ray emitter with a circulation cooling device, which has a housing filled with an electrically insulating coolant, provided with a radiation passage window and an X-ray tube arranged in this, the circulation cooling device comprising a heat exchanger connected to the housing by two coolant lines, which, apart from the coolant, comprises a coolant flows through, and has a circulation pump for the coolant, and wherein the coolant circuit is closed.
  • An X-ray emitter of the type mentioned at the outset is known from "Medical X-ray Technique", Philips Technical Library, 1961, Fig. 21, page 34.
  • the circulation cooling device and the X-ray source are arranged spatially separated from one another, so that considerable additional installation space is required, which is particularly problematic when the X-ray source is to be integrated into an existing X-ray system.
  • the circulation cooling device of the X-ray emitter has a high cooling capacity, since the heat exchanger is formed by a reservoir for the coolant, in which a cooling coil through which water is arranged is arranged.
  • the storage container is arranged in a defined position, so that the circulation cooling device cannot be operated independently of the position.
  • an X-ray emitter with a circulation cooling device is known.
  • the circulation cooling device and the X-ray source are arranged spatially separate from one another, so that the disadvantages mentioned above occur.
  • the circulation cooling device of this X-ray emitter has a fan which generates an air flow directed towards a cooler through which a coolant flows, but the known X-ray emitter is unsuitable for applications in which the X-ray tube is exposed to high loads, since the cooling capacity of the circulation cooling device in these cases not enough.
  • JP-A 60 112 297 an X-ray emitter with a liquid-filled housing is known, in which a wall section of the housing is provided with cooling fins protruding into the housing interior. On the outside of the wall section there is a 'thermo module' which electronically produces a cooling effect like a heat pump. The side of the 'thermo module' facing away from the wall section is provided with a finned heat sink.
  • the invention has for its object to provide an X-ray emitter of the type mentioned in such a way that the X-ray emitter and the circulation cooling device form a compact unit and the circulation cooling device still has a high cooling effect.
  • this object is achieved in that the circulation cooling device is attached directly to the housing of the X-ray emitter, the housing is essentially cylindrical, and the circulation cooling device, which essentially has the outer diameter corresponding to the housing, is arranged on an end face of the housing.
  • the x-ray emitter and the circulation cooling device thus form a compact structural unit, the dimensions of an x-ray emitter according to the invention being hardly larger than that of a conventional one, so that it is possible to use the x-ray systems according to the invention in existing x-ray systems.
  • the circulation cooling device of the X-ray emitter according to the invention has a high cooling capacity.
  • the X-ray emitter according to the invention has the advantage that a small amount of coolant compared to known X-ray emitters is included in the coolant circuit, so that changes in volume of the coolant caused by temperature fluctuations are only small and any means provided for compensating them can be simply formed in the X-ray emitter.
  • the heat exchanger In view of the manufacturing costs for the heat exchanger, it is expedient if it is formed from a double-walled tube which delimits an outer channel with its outer and inner walls and an inner channel with its inner wall, the coolant in one and the coolant flows in the other channel.
  • the space requirement of such a heat exchanger is particularly small if it is formed from a spiral-wound double-walled tube, the tube being able to be provided with ribbing on its outer circumferential surface for additional heat radiation.
  • the heat exchanger is formed from a double-walled tube, it can be provided that the coolant flows in the outer channel and the cooling liquid in the inner channel of the tube. Even in the event of a failure of the coolant flow, heat can then be dissipated by means of the heat exchanger, which now acts as a cooler, whereby a fan for generating an air flow sweeping the heat exchanger can be provided for such emergencies in order to enable a further increase in heat dissipation.
  • a further improvement in the cooling effect lets can be achieved according to a variant of the invention in that the circulation cooling device has means for generating a directional coolant flow in the interior of the housing such that the coolant entering the housing first flows over those regions of the X-ray tube which are at the highest temperature, so that the coolant flow thermal convection is opposed.
  • the fact that the X-ray source is operated in different spatial positions can be taken into account in that the direction of the coolant flow can be reversed, whereby means can be provided which automatically reverse the coolant flow depending on the spatial position of the X-ray source.
  • FIG. 1 shows an X-ray emitter according to the invention, the one with an electrically insulating coolant tel, e.g. Insulating oil, filled housing 1, in which an X-ray tube 2 is arranged.
  • an X-ray tube 2 is arranged.
  • This is designed as a rotating anode X-ray tube, which contains an anode plate 3, a cathode 4 and a motor for driving the rotating anode, which has a rotor 5 and a stator 7 arranged outside the glass body of the X-ray tube 2 on an insulator 6.
  • the housing 1 has a radiation passage window 8 for the X-rays emanating from the anode plate 3.
  • a circulating cooling device which has a cooler 11 connected to the housing 1 by two coolant lines 9 and 10 and a circulating pump 12 for the coolant, the coolant circuit being closed and the coolant lines 9 and 10 being guided liquid-tight through the wall of the housing 1.
  • a transverse wall 13 is provided within the housing 1 , which a flexible membrane 14, which seals the interior of the housing 1 in a liquid-tight manner, is provided, which serves to absorb temperature-related volume fluctuations in the coolant.
  • the circulation cooling device is attached directly to the housing 1, which is essentially cylindrical.
  • the circulation cooling device attached to the one end face of the housing 1, which is arranged under a hood 15 provided with ventilation slots, has an outer diameter which corresponds essentially to that of the housing 1.
  • the cooler 11 is designed as a heat exchanger.
  • This consists of a double-walled tube 20, through which a coolant flows in addition to the coolant, the coolant flowing between the outer wall 21 and the inner wall 22 and the coolant flowing inside the inner wall 22 of the double-walled tube 20. Even if the coolant circuit should fail, a certain heat dissipation from the coolant to the surrounding atmosphere is still possible via the outer wall 21 of the double-walled tube 20, which can be increased by a fan 16.
  • the heat exchanger 11 is formed from a spirally wound tube 20 which has fins 17 on its outer lateral surface, which are not shown in FIGS. 1 and 4 for reasons of clarity.
  • the sections of the coolant lines 9 and 10 located outside the interior of the housing 1 are designed for safety reasons as pipes and are continued within the housing 1 such that the coolant line 9 in the area of the stator 7 and the coolant line 10, which are in the interior of the housing 1 as a plastic hose 23 is formed, ends in the region of the cathode-side end of the X-ray tube 2. If the x-ray emitter is operated in the position shown in FIG. 1, that is to say with the recirculating cooling device pointing upward, it is expedient to let the coolant enter the housing 1 through the coolant line 9, since this then firstly the region of the x-ray tube adjacent to the stator 7 2 flows, which experience has shown the highest temperature in the operating position of the X-ray emitter.
  • the conveying direction of the circulating pump 12 is reversible, specifically depending on the spatial position of the X-ray emitter by means of a mercury switch 24 shown in FIG. 3, which is fixedly attached to the housing 1 not shown in FIG.
  • the mercury switch 24 has two contacts 25 and 26, by means of which the drive motor 27 of the circulating pump 12, which is shown schematically in FIG positive supply voltage + U B and once with a negative supply voltage - U B is connected, which leads to a reversal of the direction of rotation of the drive motor 27 and thus the conveying direction of the circulation pump 12.
  • the drive motor 27 is connected to the positive supply voltage + Us.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft einen flüssigkeitsgekühlten Röntgenstrahler mit einer Umlaufkühleinrichtung, welcher ein mit einem elektrisch isolierenden Kühlmittel gefülltes, mit einem Strahlendurchtrittsfenster versehenes Gehäuse und eine in diesem angeordnete Röntgenröhre aufweist, wobei die Umlaufkühleinrichtung einen durch zwei Kühlmittelleitungen am Gehäuse angeschlossenen Wärmetauscher, der außer von dem Kühlmittel von einer Kühlflüssigkeit durchströmt ist, und eine Umwälzpumpe für das Kühlmittel aufweist und wobei der Kühlmittelkreislauf geschlossen ist.
  • Ein Röntgenstrahler der eingangs genannten Art ist aus "Medical X-ray Technique", Philips Technical Library, 1961, Fig. 21, Seite 34, bekannt. Dabei sind die Umlaufkühleinrichtung und der Röntgenstrahler räumlich getrennt voneinander angeordnet, so daß erheblicher zusätzlicher Bauraum benötigt wird, was besonders dann Probleme bereitet, wenn der Röntgenstrahler in eine bereits vorhandene Röntgenanlage integriert werden soll. Die Umlaufkühleinrichtung des Röntgenstrahlers weist eine hohe Kühlleistung auf, da der Wärmetauscher durch einen Vorratsbehälter für das Kühlmittel gebildet ist, in dem eine von Wasser durchflossene Kühlschlange angeordnet ist. Allerdings ist es für die ungestörte Funktion der Umlaufkühleinrichtung erforderlich, daß der Vorratsbehälter in einer definierten Lage angeordnet ist, so daß die Umlaufkühleinrichtung nicht lageunabhängig betrieben werden kann.
  • Weiter ist aus den Patent Abstracts of Japan, Vol. 9, No. 266 (E-352), 1989, 23.10.1985, JP-A 6 012 229, ein Röntgenstrahler mit einer Umlaufkühleinrichtung bekannt. Dabei sind die Umlaufkühleinrichtung und der Röntgenstrahler räumlich getrennt voneinander angeordnet, so daß die oben erwähnten Nachteile auftreten. Die Umlaufkühleinrichtung dieses Röntgenstrahlers weist zwar ein Gebläse auf, das einen auf einen von einem Kühlmittel durchströmten Kühler gerichteten Luftstrom erzeugt, dennoch ist der bekannte Röntgenstrahler für Anwendungen, in denen die Röntgenröhre hohen Belastungen ausgesetzt ist, ungeeignet, da die Kühlleistung der Umlaufkühleinrichtung in diesen Fällen nicht ausreicht.
  • Die vorgenannten Nachteile sind, soweit sie den Bauraumbedarf und die lageabhängige Funktion der Umlaufkühleinrichtung betreffen, durch einen in der GB-A 2 018 019 beschriebenen Röntgenstrahler mit flüssigkeitsgekühlter Anode vermieden, da hier die Kühleinrichtung unmittelbar an dem Gehäuse des Röntgenstrahlers angebracht ist. Allerdings besteht der Kühler lediglich aus einer im Luftstrom eines Gebläses angeordneten Rohrschlange, so daß die erzielbare Kühlleistung zu wünschen übrig läßt.
  • Außerdem ist aus den Patent Abstracts of Japan, Vol. 9, No. 266 (E-352), 1989, 23.10.1985, JP-A 60 112 297, ein Röntgenstrahler mit einem flüssigkeitsgefüllten Gehäuse bekannt, bei dem ein Wandabschnitt des Gehäuses mit in das Gehäuseinnere ragenden Kühlrippen versehen ist. An der Außenseite des Wandabschnittes ist ein 'Thermo-Modul" angebracht, der auf elektronischem Wege nach Art einer Wärmepumpe eine Kühlwirkung hervorruft. Die von dem Wandabschnitt abgewandte Seite des "Thermo-Moduls" ist mit einem Rippenkühlkörper versehen.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Röntgenstrahler der eingangs genannten Art so auszubilden, daß der Röntgenstrahler und die Umlaufkühleinrichtung eine kompakte Baueinheit bilden und die Umlaufkühleinrichtung dennoch eine hohe Kühlwirkung aufweist.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Umlaufkühleinrichtung unmittelbar an dem Gehäuse des Röntgenstrahlers angebracht ist, das Gehäuse im wesentlichen zylindrisch ausgebildet ist und die einen im wesentlichen dem des Gehäuses entsprechenden Außerdendurchmesser aufweisende Umlaufkühleinrichtung an einer Stirnfläche des Gehäuses angeordnet ist. Der Röntgenstrahler und die Umlaufkühleinrichtung bilden somit eine kompakte Baueinheit, wobei die Abmessungen eines erfindungsgemäßen Röntgenstrahlers kaum größer als die eines herkömmlichen sind, so daß die Möglichkeit besteht, in bereits vorhandenen Röntgenanlagen anstelle herkömmlicher Röntgenstrahler erfindungsgemäße zu verwenden. Dennoch weist die Umlaufkühleinrichtung des erfindungsgemäßen Röntgenstrahlers eine hohe Kühlleistung auf. Außerdem bietet der erfindungsgemäße Röntgenstrahler den Vorteil, daß eine im Vergleich zu bekannten Röntgenstrahlern kleine Kühlmittelmenge in dem Kühlmittelkreislauf eingeschlossen ist, so daß durch Temperaturschwankungen bedingte Volumenänderungen des Kühlmittels nur gering sind und in dem Röntgenstrahler etwa vorgesehene Mittel zur deren Ausgleich einfach ausgebildet sein können.
  • Im Hinblick auf den Fertigungsaufwand für den Wärmetauscher ist es zweckmäßig, wenn dieser aus einem doppelwandigen Rohr gebildet ist, welches mit seiner äußeren und seiner inneren Wand einen äußeren und mit seiner inneren Wand einen inneren Kanal begrenzt, wobei das Kühlmittel in dem einen und die Kühlflüssigkeit in dem anderen Kanal strömt. Der Bauraumbedarf eines solchen Wärmetauschers ist dann besonders gering, wenn er aus spiralartig gewundenem doppelwandigem Rohr gebildet ist, wobei das Rohr an seiner äußeren Mantelfläche zur zusätzlichen Wärmeabstrahlung mit einer Verrippung versehen sein kann.
  • Wenn der Wärmetauscher aus doppelwandigem Rohr gebildet ist, kann vorgesehen sein, daß das Kühlmittel in dem äußeren und die Kühlflüssigkeit in dem inneren Kanal des Rohres strömt. Auch bei Ausfällen des Kühlflüssigkeitsstromes kann dann noch Wärme mittels des nun als Kühler wirkenden Wärmetauschers durch Strahlung abgeführt werden, wobei für derartige Notfälle ein Gebläse zur Erzeugung eines den Wärmetauscher bestreichenden Luftstromes vorgesehen sein kann, um eine weitere Steigerung der Wärmeabfuhr zu ermöglichen.
  • Eine weitere Verbesserung der Kühlwirkung läßt sich nach einer Variante der Erfindung dadurch erzielen, daß die Umlaufkühleinrichtung Mittel zur Erzeugung eines derart gerichteten Kühlmittelstromes im Inneren des Gehäuses aufweist, daß das in das Gehäuse eintretende Kühlmittel zuerst jene Bereiche der Röntgenröhre beströmt, die die größte Temperatur aufweisen, so daß der Kühlmittelstrom der thermischen Konvektion entgegengerichtet ist. Dabei kann dem Umstand, daß der Röntgenstrahler in unterschiedlichen räumlichen Positionen betrieben wird, dadurch Rechnung getragen werden, daß die Richtung des Kühlmittelstromes umkehrbar ist, wobei Mittel vorgesehen sein können, welche den Kühlmittelstrom abhängig von der räumlichen Lage des Röntgenstrahlers selbsttätig umkehren.
  • In der beigefügten Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen:
    • Fig. 1 einen schematischen Längsschnitt durch einen Röntgenstrahler nach der Erfindung,
    • Fig. 2 einen Schnitt nach der Linie 11-11 in Figur 1,
    • Fig. 3 ein Detail des erfindungsgemäßen Röntgenstrahlers, und
    • Fig. 4 ein Detail des erfindungsgemäßen Röntgenstrahlers in vergrößerter geschnittener Darstellung.
  • Die Figur 1 zeigt einen erfindungsgemäßen Röntgenstrahler, der ein mit einem elektrisch isolierenden Kühlmit tel, z.B. Isolieröl, gefülltes Gehäuse 1 aufweist, in dem eine Röntgenröhre 2 angeordnet ist. Diese ist als Drehanoden-Röntgenröhre ausgebildet, die einen Anodenteller 3, eine Kathode 4 und einen Motor zum Antrieb der Drehanode enthält, der einen Rotor 5 und einen außerhalb des Glaskörpers der Röntgenröhe 2 auf einem Isolator 6 angeordneten Stator 7 aufweist. Das Gehäuse 1 besitzt ein Strahlendurchtrittsfenster 8 für die vom Anodenteller 3 ausgehende Röntgenstrahlung. Außerdem ist eine Umlaufkühleinrichtung vorgesehen, die einen durch zwei Kühlmittelleitungen 9 und 10 am Gehäuse 1 angeschlossenen Kühler 11 und eine Umwälzpumpe 12 für das Kühlmittel aufweist, wobei der Kühlmittelkreislauf geschlossen ist und die Kühlmittelleitungen 9 und 10 flüssigkeitsdicht durch die Wandung des Gehäuses 1 geführt sind. Innerhalb des Gehäuses 1 ist eine Querwand 13 vorgesehen, an der eine den Innenraum des Gehäuses 1 flüssigkeitsdicht verschließende, nachgiebige Membran 14 vorgesehen ist, die dazu dient, temperaturbedingte Volumenschwankungen des Kühlmittels aufzunehmen.
  • Die Umlaufkühleinrichtung ist unmittelbar an dem Gehäuse 1 angebracht, das im wesentlichen zylindrisch ausgebildet ist. Dabei besitzt die an der einen Stirnfläche des Gehäuses 1 angebrachte Umlaufkühleinrichtung, die unter einer mit Lüftungsschlitzen versehenen Haube 15 angeordnet ist, einen Außendurchmesser, der im wesentlichen dem des Gehäuses 1 entspricht.
  • Aus der Figur 4 ist ersichtlich, daß der Kühler 11 als Wärmetauscher ausgebildet ist. Dieser besteht aus einem doppelwandigen Rohr 20, das außer von dem Kühlmittel von einer Kühlflüssigkeit durchströmt ist, wobei das Kühlmittel zwischen der äußeren Wand 21 und der inneren Wand 22 und die Kühlflüssigkeit innerhalb der inneren Wand 22 des doppelwandigen Rohres 20 strömt. Selbst dann, wenn der Kühlflüssigkeitskreislauf ausfallen sollte, ist über die äußere Wand 21 des doppelwandigen Rohres 20 noch eine gewisse Wärmeabfuhr von dem Kühlmittel an die umgebende Atmosphäre möglich, die durch ein Gebläse 16 gesteigert werden kann.
  • Der Wärmeaustauscher 11 ist, wie aus den Figuren 2 und 4 ersichtlich ist, aus einem spiralförmig gewundenen Rohr 20 gebildet, das an seiner äußeren Mantelfläche Rippen 17 aufweist, die in den Figuren 1 und 4 aus Gründen der Übersichtlichkeit nicht dargestellt sind.
  • Die außerhalb des Innenraumes des Gehäuses 1 befindlichen Abschnitte der Kühlmittelleitungen 9 und 10 sind aus Sicherheitsgründen als Rohrleitungen ausgeführt und innerhalb des Gehäuses 1 derart weitergeführt, daß die Kühlmittelleitung 9 im Bereich des Stators 7 und die Kühlmittelleitung 10, die im Innenraum des Gehäuses 1 als Kunststoffschlauch 23 ausgebildet ist, im Bereich des kathodenseitigen Endes der Röntgenröhre 2 endet. Wird der Röntgenstrahler in der in Figur 1 dargestellten Lage, also mit nach oben gerichteter Umlaufkühleinrichtung, betrieben, ist es zweckmäßig, das Kühlmittel durch die Kühlmittelleitung 9 in das Gehäuse 1 eintreten zu lassen, da dieses dann zuerst den dem Stator 7 benachbarten Bereich der Röntgenröhre 2 beströmt, der in der erwähnten Betriebslage des Röntgenstrahlers erfahrungsgemäß die höchste Temperatur aufweist. In anderen Betriebslagen des Röntgenstrahlers kann es zweckmäßig sein, die Richtung des Kühlmittelstromes umzukehren. Zu diesem Zweck ist die Förderrichtung der Umwälzpumpe 12 umkehrbar, und zwar abhängig von der räumlichen Position des Röntgenstrahlers selbsttätig mittels eines in Figur 3 dargestellten Quecksilberschalters 24, der fest an dem in Figur 3 nicht dargestellten Gehäuse 1 angebracht ist. Der Quecksilberschalter 24 weist zwei Kontakte 25 und 26 auf, mittels derer der Antriebsmotor 27 der Umwälzpumpe 12, der in Figur 3 schematisch dargestellt ist, durch das im Quecksilberschalter 24 befindlichen Quecksilber 28 je nach der räumlichen Position, die der Röntgenstrahler einnimmt, einmal mit einer positiven Versorgungsspannung +UB und einmal mit einer negativen Versorgungsspannung - UB verbunden ist, was zu einer Umkehrung der Drehrichtung des Antriebsmotors 27 und damit der Förderrichtung der Umwälzpumpe 12 führt. In Figur 3 ist der Antriebsmotor 27 mit der positiven Versorgungsspannung +Us verbunden.
  • Um zu gewährleisten, daß ein ausreichend großer Anteil des Kühlmittelstromes durch den Spalt zwischen dem Isolator 6 und dem Glaskolben der Röntgenröhre 2 - hier bilden sich erfahrungsgemäß sogenannte "Hitzenester" - geführt wird, ist zwischen der Innenwand des Gehäuses 1 und dem Außenumfang des Stators 7 eine Blende 18 vorgesehen, die einige Durchtrittsöffnungen 19 für das Kühlmittel aufweist. Die Durchtrittsöffnungen 19 der Blende 18 sind derart bemessen, daß nur ein vergleichsweise kleiner Anteil des Kühlmittelstromes durch sie hindurchtreten kann.

Claims (9)

1. Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung, welcher ein mit einem elektrisch isolierenden Kühlmittel gefülltes, mit einem Strahlendurchtrittsfenster (8) versehenes Gehäuse (1) und eine in diesem angeordnete Röntgenröhre (2) aufweist, wobei die Umlaufkühleinrichtung einen durch zwei Kühlmittelleitungen (9, 10) am Gehäuse (1) angeschlossenen Wärmetauscher (11), der außer von dem Kühlmittel von einer Kühlflüssigkeit durchströmt ist, und eine Umwälzpumpe (12) für das Kühlmittel aufweist und wobei der Kühlmittelkreislauf geschlossen ist, dadurch gekennzeichnet, daß die Umlaufkühleinrichtung unmittelbar an dem Gehäuse (1) des Röntgenstrahlers angebracht ist, das Gehäuse (1) im wesentlichen zylindrisch ausgebildet ist und die einen im wesentlichen dem des Gehäuses (1) entsprechenden Außendurchmesser aufweisende Umlaufkühleinrichtung an einer Stirnfläche des Gehäuses (1) angeordnet ist.
2. Röntgenstrahler nach Anspruch 1, dadurch gekennzeichnet, daß der Wärmetauscher (11) aus einem doppelwandigen Rohr (20) gebildet ist, welches mit seiner äußeren und seiner inneren Wand (21 bzw. 22) einen äußeren und mit seiner inneren Wand (22) einen inneren Kanal begrenzt, wobei das Kühlmittel in dem einen und die Kühlflüssigkeit in dem anderen Kanal strömt.
3. Röntgenstrahler nach Anspruch 2, dadurch gekennzeichnet, daß das doppelwandige Rohr (20) spiralartig aufgewunden ist.
4. Röntgenstrahler nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das Rohr (20) an seiner äußeren Mantelfläche mit einer Verrippung (17) versehen ist.
5. Röntgenstrahler nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß das Kühlmittel in dem äußeren und die Kühlflüssigkeit in dem inneren Kanal des doppelwandigen Rohres (20) strömt.
6. Röntgenstrahler nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Umlaufkühleinrichtung ein Gebläse (16) zur Erzeugung eines den Wärmetauscher (11) bestreichenden Luftstromes aufweist.
7. Röntgenstrahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Umlaufkühleinrichtung Mittel (9, 18, 19, 23) zur Erzeugung eines derart gerichteten Kühlmittelstromes im Inneren des Gehäuses (1) aufweist, daß das in das Gehäuse (1) eintretende Kühlmittel zuerst jene Bereiche der Röntgenröhre (2) beströmt, die die größte Temperatur aufweisen.
8. Röntgenstrahler nach Anspruch 7, dadurch gekennzeichnet, daß die Richtung des Kühlmittelstromes umkehrbar ist.
9. Röntgenstrahler nach Anspruch 8, dadurch gekennzeichnet, daß Mittel (24) vorgesehen sind, welche den Kühlmittelstrom abhängig von der räumlichen Lage des Röntgenstrahlers selbsttätig umkehren.
EP87101805A 1986-06-13 1987-02-10 Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung Expired - Lifetime EP0248976B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8615918U DE8615918U1 (de) 1986-06-13 1986-06-13 Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung
DE8615918U 1986-06-13

Publications (2)

Publication Number Publication Date
EP0248976A1 EP0248976A1 (de) 1987-12-16
EP0248976B1 true EP0248976B1 (de) 1990-05-23

Family

ID=6795516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87101805A Expired - Lifetime EP0248976B1 (de) 1986-06-13 1987-02-10 Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung

Country Status (4)

Country Link
US (1) US4768212A (de)
EP (1) EP0248976B1 (de)
JP (1) JPH0515759Y2 (de)
DE (2) DE8615918U1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912739A (en) * 1987-09-21 1990-03-27 Weiss Mortimer E Rotating anode X-ray tube with deflected electron beam
DE58905921D1 (de) * 1989-11-09 1993-11-18 Siemens Ag Röngenstrahler.
DE58905402D1 (de) * 1989-11-09 1993-09-30 Siemens Ag Röntgenstrahler.
DE4101777A1 (de) * 1991-01-22 1992-08-06 Siemens Ag Roentgenstrahler mit entgasungsvorrichtung
FR2675628B1 (fr) * 1991-04-17 1996-09-13 Gen Electric Cgr Ensemble anodique a forte dissipation thermique pour tube a rayons x et tube ainsi obtenu.
DE4225221C2 (de) * 1992-07-30 1996-08-22 Siemens Ag Verfahren und Vorrichtung zum Betrieb einer Röntgenanlage mit einem Röntgenstrahler
FR2736239A1 (fr) * 1995-06-30 1997-01-03 Ge Medical Syst Sa Procede de refroidissement d'un dispositif a rayonnement electromagnetique, en particulier un tube a rayons x, et systeme correspondant
US5784430A (en) * 1996-04-16 1998-07-21 Northrop Grumman Corporation Multiple station gamma ray absorption contraband detection system
US5802140A (en) * 1997-08-29 1998-09-01 Varian Associates, Inc. X-ray generating apparatus with integral housing
US6215851B1 (en) 1998-07-22 2001-04-10 Northrop Grumman Corporation High current proton beam target
DE19956491C2 (de) 1999-11-24 2001-09-27 Siemens Ag Röntgenstrahler mit zwangsgekühlter Drehanode
US6608429B1 (en) * 2000-08-16 2003-08-19 Ge Medical Systems Global Technology Co., Llc X-ray imaging system with convective heat transfer device
US6366642B1 (en) * 2001-01-16 2002-04-02 Varian Medical Systems, Inc. X-ray tube cooling system
EP1488441A2 (de) * 2002-01-31 2004-12-22 The Johns Hopkins University Röntgenquelle und verfahren zur effizienteren erzeugung wählbarer röntgenfrequenzen
US6997609B2 (en) * 2002-12-10 2006-02-14 Tark, Inc. System and method for cooling an x-ray tube in a tomography computer system
DE102008017153A1 (de) * 2008-04-03 2009-11-12 Siemens Aktiengesellschaft Strahlungserzeuger
JP5766128B2 (ja) * 2010-02-08 2015-08-19 株式会社日立メディコ X線管装置及びx線ct装置
JP6214899B2 (ja) * 2012-03-30 2017-10-18 東芝電子管デバイス株式会社 回転陽極型x線管ユニット及び回転陽極型x線管装置
CN104465278B (zh) * 2014-12-31 2017-03-15 江苏天瑞仪器股份有限公司 一种x射线管散热装置
DE102017002210A1 (de) 2017-03-08 2018-09-13 Heuft Systemtechnik Gmbh Kühlvorrichtung für Röntgengeneratoren
CN108257837B (zh) 2018-03-14 2019-11-15 苏州博思得电气有限公司 组合机头及射线影像设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1656826A (en) * 1924-01-07 1928-01-17 Morrison Montford Method of and apparatus for cooling electron-discharge tubes
US1992335A (en) * 1932-12-30 1935-02-26 Kelley Koett Mfg Company Shock-proof X-ray tube unit
DE2204894A1 (de) * 1972-02-02 1973-08-16 Siemens Ag Roentgenroehreneinheit
DE2813860A1 (de) * 1978-03-31 1979-10-04 Philips Patentverwaltung Eintank-roentgengenerator
US4369517A (en) * 1980-02-20 1983-01-18 Litton Industrial Products, Inc. X-Ray tube housing assembly with liquid coolant manifold
JPS5871999U (ja) * 1981-11-11 1983-05-16 株式会社東芝 X線管装置
US4625324A (en) * 1983-09-19 1986-11-25 Technicare Corporation High vacuum rotating anode x-ray tube
JPS60112297A (ja) * 1983-11-24 1985-06-18 Hitachi Ltd 回転陽極x線管装置
JPS60112296A (ja) * 1983-11-24 1985-06-18 Hitachi Ltd X線管装置用冷却器
US4674109A (en) * 1984-09-29 1987-06-16 Kabushiki Kaisha Toshiba Rotating anode x-ray tube device
FR2575329B1 (fr) * 1984-12-21 1987-01-16 Thomson Cgr Gaine equipee a convection forcee pour tube radiogene a anode tournante

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 266 (E352)[1989], 23. October 1985; & JP-A-60 112 296 (HITACHI SEISAKUSHO K.K.) 18-06-1985 *

Also Published As

Publication number Publication date
DE3762942D1 (de) 1990-06-28
JPS62201500U (de) 1987-12-22
US4768212A (en) 1988-08-30
DE8615918U1 (de) 1987-10-15
EP0248976A1 (de) 1987-12-16
JPH0515759Y2 (de) 1993-04-26

Similar Documents

Publication Publication Date Title
EP0248976B1 (de) Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung
DE19741750C2 (de) Röntgenstrahler mit zwangsgekühlter Drehanode
DE102012103374B4 (de) Abgasklappenvorrichtung für eine Verbrennungskraftmaschine
WO2001039557A1 (de) Röntgenstrahler mit zwangsgekühlter drehanode
DE19845756C2 (de) Computertomographie-Anlage mit gekühlter Gantry
DE4138268A1 (de) Elektromotor
DE112015002495T5 (de) Elektrische Energie umwandelnde Vorrichtung
DE102018123796A1 (de) Umrichterintegrierter motor
DE102008062671B4 (de) Röntgeneinrichtung
EP0225463B1 (de) Röntgenstrahler
DE2813860A1 (de) Eintank-roentgengenerator
EP0162972B1 (de) Projektionsfernsehbildröhre
DE102005063243A1 (de) Gekühlte Strahlungsemissionsvorrichtung
DE102016219213A1 (de) Leistungselektronik mit direkt und aktiv gekühlter Kondensatoreinheit mittels Wärmerohren
DE102012101983B4 (de) Fenstersystem mit einem im Fensterrahmen integrierten Lüftungssystem
EP1104079B1 (de) Elektromotor für insbesondere eine Kreiselpumpe
EP3182565A1 (de) Elektronikgehäuse mit kühlrippen
DE3601089A1 (de) Fluessigkeitsgekuehlte elektromaschine
DE102018202129B3 (de) Temperaturregelungssystem für eine Antriebseinrichtung und Kraftfahrzeug
DE102018127928A1 (de) Wärmetransporteinheit
DE2204894A1 (de) Roentgenroehreneinheit
DE102020208976A1 (de) Röntgenquellenvorrichtung umfassend eine Anode zur Erzeugung von Röntgenstrahlen
DE4023756C1 (de)
DE1296706B (de) Magnetronroehre
EP2919367A1 (de) Rotor einer rotierenden elektrischen Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR LI

17P Request for examination filed

Effective date: 19880125

17Q First examination report despatched

Effective date: 19890306

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI

REF Corresponds to:

Ref document number: 3762942

Country of ref document: DE

Date of ref document: 19900628

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940419

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940517

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950228

Ref country code: CH

Effective date: 19950228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101