WO2001039557A1 - Röntgenstrahler mit zwangsgekühlter drehanode - Google Patents

Röntgenstrahler mit zwangsgekühlter drehanode Download PDF

Info

Publication number
WO2001039557A1
WO2001039557A1 PCT/DE2000/004126 DE0004126W WO0139557A1 WO 2001039557 A1 WO2001039557 A1 WO 2001039557A1 DE 0004126 W DE0004126 W DE 0004126W WO 0139557 A1 WO0139557 A1 WO 0139557A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
ray emitter
guide body
anode
coolant
Prior art date
Application number
PCT/DE2000/004126
Other languages
English (en)
French (fr)
Inventor
Erich Hell
Wolfgang KNÜPFER
Detlef Mattern
Peter Schardt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US09/889,898 priority Critical patent/US6396901B1/en
Priority to JP2001540571A priority patent/JP2003515877A/ja
Publication of WO2001039557A1 publication Critical patent/WO2001039557A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/025Means for cooling the X-ray tube or the generator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/30Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray
    • H01J35/305Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray by using a rotating X-ray tube in conjunction therewith

Definitions

  • the invention relates to an X-ray emitter with a force-cooled rotating anode, according to the preamble of patent claim 1.
  • the turning power to be used at the speeds required today is considerable because of the very high friction losses; if at all, it can only be reduced by a comparatively high design effort.
  • the oil filling has to be introduced very carefully into the tube housing in order to avoid blistering.
  • vapor bubble formation due to cavitation in the insulation area can lead to considerable problems with regard to high-voltage strength. The dissipation of the heat loss from the rotating anode is also problematic.
  • High-performance tubes in the range of 70 to 100 kv that generate comparatively large heat can lead to a reduction in the insulating ability of the gas.
  • the invention specified in claim 1 is based on the object of specifying an X-ray source of the type mentioned at the outset with which the disadvantages of the known X-ray sources can be avoided.
  • the x-ray emitter is intended to ensure reliable insulation of the high-voltage parts, which is independent of the rotational speed, and to have a lower frictional power, so that the x-ray tube also higher speed and lower friction than can be operated.
  • the functions of the electrical insulation and the cooling of the anode are separated without physically separating the two media provided for this purpose in the tube housing.
  • the insulating gas is introduced into the lamp housing so that it is not physically separated from the coolant supply.
  • the high-voltage parts are advantageously subjected to sulfur hexafluoride (SF ⁇ ) at a gas pressure of approx. 3 bar. Under these conditions, the gas is an excellent insulator and chemically completely inert up to several hundred degrees Celsius.
  • SF ⁇ sulfur hexafluoride
  • the coolant cooling is designed as an open cooling system, making an expansion tank unnecessary and facilitating the exchange of tubes and coolant.
  • oil is preferably used, which is fed from a reservoir concentrically to the bearing axis of the anode with the help of a feed pump, then first forced through narrow gaps along the tube outside of the anode plate and along the radiation exit window, then via one or, if necessary, several baffle plates arranged radially into the radiator housing.
  • the reservoir is advantageously arranged within the spotlight housing and designed as an open trough.
  • the trough can also, together with the feed pump, be arranged externally of the radiator housing and be designed as a heat exchanger.
  • a major advantage of the arrangement according to the invention is that the x-ray emitter has only a fraction of the friction power known from previous emitters, so that the Tubes can be operated at comparatively high speeds with lower friction losses.
  • the guide body fixedly arranged in the spotlight housing can, if the constructional circumstances allow, advantageously be at least partially formed by walls of the spotlight housing itself.
  • the guide body can be provided with a hood-like guide element, which is advantageously semi-ring-shaped in cross section.
  • the baffle plate can be present several times on the rotary piston tube and can engage in the lamella-like manner in the fixed guide body.
  • the baffle plates or lamellae advantageously advantageously consist at least partially of elastic material and lie with the elastic parts axially and / radially on the corresponding surfaces of the guide body. This ensures that as little coolant as possible can get into the remaining part of the radiator housing.
  • the flapper-type baffles only have to seal against splash oil.
  • the cooling system is advantageously designed as an open cooling system, oil being preferably used as the coolant, which, with the aid of a pump, is first routed from an open oil pan to the parts to be cooled and then flows back into the oil pan without being forced.
  • Fig. 1 shows an embodiment of an X-ray tube in longitudinal section
  • Fig. 2 shows a detail of Fig. 1
  • enlarged 1 shows a simplified representation of an embodiment of an X-ray emitter according to the invention in longitudinal section.
  • a radiator housing generally denoted by 1
  • a rotary piston tube 2 is rotatably mounted in a known manner, the cathode of which is denoted by 3 and the anode plate is denoted by 4.
  • the rotary piston tube 2 is driven by a motor 5 which is arranged in a first housing chamber 6.
  • the housing chamber 6 is protected in the area of the drive shaft by means of a sealing ring 7 against the ingress of oil and gas.
  • a fixed guide body 12 which is arranged essentially in the area of the anode plate 4 around the rotary piston tube 2.
  • Guide body 12 is partially formed by walls 13 of the housing 1 or the housing chamber 10, otherwise by a separate, one-part or multi-part molded part 14.
  • the parts are designed such that an open trough 15 for receiving cooling oil is formed underneath the tube and is sufficient Space to accommodate a feed pump 16 is available.
  • the guide body 12 is further designed so that the oil delivered by the feed pump 16 out of the trough 15 is first supplied concentrically to the anode-side bearing axis 17 of the rotary piston tube 2 and then, forming a narrow one
  • Gap 18 of about 1 to 10 mm along the tube outside of the anode plate 4 and the circumferential radiation exit window 20 is positively guided.
  • the oil strikes a first baffle plate 21 arranged on the tube, which deflects the oil and discharges it radially outward into the housing via a gap 19 (see also FIG. 2).
  • the oil thrown off at the exit point is discharged from the guide body 12 arranged Haubenar igen, intercept semi-annular guide element 22 intercepted.
  • the guide element 22 serves primarily as a splash guard and is intended to prevent the housing chamber 10 and the adjacent chambers from being sprayed in an uncontrolled manner.
  • a second baffle plate 23 can be provided on the rotary piston tube.
  • the two baffles 21 and 23 engage in a lamella-like manner in the guide body 12. At least the free ends of the
  • Baffle plates are made of elastic material and lie lightly on corresponding surfaces of the guide body. In this way, little oil can get into the remaining part of the lamp housing. As a result, the friction losses can be kept very small.
  • openings or recesses 24 can be provided in the guide body 12 at suitable locations for this purpose.
  • the cooling system which works like a pressure lubrication system, does not require an expansion vessel like the known tube cooling systems.
  • the oil reservoir (pan 15) can be kept relatively small.
  • the reservoir can also advantageously be designed as an external heat exchanger and arranged in such a way that the feed pump, which is also arranged externally, cannot draw in any gas. Suction must therefore be avoided to prevent local overheating of the anode plate and the radiation exit window and oil caking.
  • the insulation of the high-voltage parts is generally carried out in the lamp housing 1 by a pressure filling with gas, preferably with sulfur hexafluoride (SF ⁇ ).
  • gas preferably with sulfur hexafluoride (SF ⁇ ).
  • SF ⁇ sulfur hexafluoride
  • the gas pressure is set at about 3 bar.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

Es wird ein Röntgenstrahler mit rotierbar gelagerter Drehkol-benröhre (2) vorgestellt, bei dem zur Kühlung des Anodentel-lers (4) ein die Röhre wenigstens teilweise umgebender, fest-stehender Führungskörper (12) vorgesehen ist. Der Führungs-körper (12) ist so ausgebildet, daß ein aus einem Reservoir (15) konzentrisch zur anodenseitigen Lagerachse (17) der Röhre (2) zugeführtes flüssiges Kühlmittel unter Bildung enger Spalte (18, 19) zunächst entlang der Röhrenaußenseite des Anodentellers (4) und entlang des Strahlenaustrittsfen-sters (20) der Röhre zwangsgeführt und anschließend über wenigstens eine an der Röhre (2) angeordnete und in einen entsprechend ausgebildeten Spalt des Führungskörpers (12) eingreifende Prallscheibe (21) radial abgeleitet wird. Die Hochspannungsteile werden mit einem Isoliergas beaufschlagt, welches im Strahlergehäuse (1) physikalisch nicht vom flüssi-gen Kühlmittel getrennt ist.

Description

Beschreibung
Röntgenstrahier mit zwangsgekühlter Drehanode
Die Erfindung bezieht sich auf einen Röntgenstrahier mit zwangsgekühlter Drehanode, entsprechend dem Oberbegriff des Patentanspruches 1.
Bei Röntgenröhren auf der Basis von Drehkolbenröhren wird die gesamte Röhre mechanisch in schneller Drehung gehalten und der Elektronenstrahl magnetisch auf den Fokus festgehalten. Der Zwischenraum zwischen Röhre und Strahlergehäuse ist bei bekannten solchen Röntgenröhren (DE 197 41 750 AI) mit einem geeigneten flüssigen Kühlmittel, in der Regel Öl, gefüllt. Die Olfüllung dient einerseits dazu, die an der Anode entstehende Wärmemenge abzuführen, und andererseits, die Hochspannungen, positiv an der Anode und negativ an der Kathode, gegen das auf Masse liegende Strahlergehäuse ausreichend zu isolieren. Ein solches geschlossenes System mit globaler Öl- füllung bringt mehrere Probleme mit sich.
Zum einen ist die aufzuwendende Drehleistung bei den heute geforderten Drehzahlen (>100 U/sec) wegen der sehr hohen Reibungsverluste erheblich; sie kann, wenn überhaupt, nur durch einen vergleichsweise hohen konstruktiven Aufwand reduziert werden. Zum anderen muß die Olfüllung sehr sorgfältig in das Röhrengehäuse eingebracht werden um eine Blasenbildung zu vermeiden. Bei Röhrenbetrieb kann nämlich eine Dampfblasen- bildung durch Kavitation im Isolationsbereich zu erheblichen Problemen hinsichtlich der Hochspannungsfestigkeit führen. Auch das Ableiten der Verlustwärme von der Drehanode ist problematisch .
Bei dem oben erwähnten bekannten Röntgenstrahier hat man ver- sucht, dieses Problem dadurch zu lösen, daß man zur Rückkühlung des Öls einen externen Wärmetauscher vorgesehen und den Zu- und Ablauf des Öls an Stellen des Strahlergehäuses ange- ordnet hat, an denen durch die Rotation des Drehkolbens ein Unter- bzw. Überdruck erzeugt wird.
Alternativ zur Kühlung der Anode mit Öl ist es auch bekannt, die Anode mit einem Kühlgas zu kühlen, wobei der besseren
Wärmeableitung wegen die Röhre an ihrer Außenseite mit kreisförmigen Rippen versehen werden kann, die gleichsam auch zum Antrieb für die Röhre herangezogen werden können (EP 0 187 020 Bl) .
In der US-PS 4 418 421 wird auf einen Stand der Technik hingewiesen, der besagt, zur Einsparung von Gewicht anstelle einer Ölkühlung der Anode eine Gaskühlung mit Schwefel- hexafluorid (SF6) vorzusehen. Als nachteilig wird bei solchen Ausführungen jedoch angesehen, daß die insbesondere bei
Hochleistungsröhren im Bereich von 70 bis 100 kv entstehende vergleichsweise große Wärme zu einer Reduktion der Isolierfähigkeit des Gases führen kann.
In der genannten US-Patentschrift wird noch auf einen weiteren Stand der Technik hingewiesen, der besagt, die beiden Medien Öl und Gas physikalisch zu trennen und die Röntgenröhre in einem ersten, mit Öl gefüllten Gehäuse unterzubringen, und die Hochspannungsteile in einem zweiten Gehäuse an- zuordnen in dem die Gasfüllung eingebracht ist. Die beiden separaten Gehäuse sind zwar elektrisch und mechanisch miteinander verbunden, die beiden Medien sind jedoch voneinander isoliert angeordnet. Eine diesbezügliche Ausführung ist jedoch vergleichsweise aufwendig.
Der im Patentanspruch 1 angegebenen Erfindung liegt die Aufgabe zugrunde, einen Röntgenstrahier der eingangs genannten Art anzugeben mit dem sich die Nachteile der bekannten Röntgenstrahier vermeiden lassen. Der Röntgenstrahier soll insbe- sondere eine zuverlässige, von der Drehzahl unabhängige Isolation der Hochspannungsteile sicherstellen und eine geringere Reibleistung aufweisen, so daß die Röntgenröhre mit höherer Drehzahl und geringerer Reibleistung als bisher betrieben werden kann.
Erfindungsgemäß werden die Funktionen der elektrischen Isola- tion und der Kühlung der Anode getrennt ohne jedoch die beiden dafür vorgesehenen Medien im Röhrengehäuse physikalisch voneinander zu trennen. Das Isoliergas ist im Strahlergehäuse so eingebracht, daß es physikalisch nicht von der Kühlmittelführung getrennt ist.
Um in etwa die gleiche Isolationsfestigkeit wie mit Öl zu bekommen, werden die Hochspannungsteile vorteilhafterweise mit Schwefelhexafluorid (SFβ) bei einem Gasdruck von ca. 3 bar beaufschlagt. Das Gas ist unter diesen Bedingungen ein her- vorragender Isolator und bis zu mehreren hundert Grad Celsius chemisch völlig innert.
Die Kühlmittelkühlung ist als offenes Kühlsystem ausgebildet wodurch ein Ausdehnungsgefäß entbehrlich und der Austausch von Röhre und Kühlmittel erleichtert ist. Zur Kühlung des thermisch stark belasteten Anodentellers wird vorzugsweise Öl verwendet, welches mit Hilfe einer Förderpumpe aus einem Reservoir konzentrisch zur Lagerachse der Anode zugeführt, dann über enge Spalte zunächst entlang der Röhrenaußenseite des Anodentellers und entlang des Strahlenaustrittsfensters zwangsgeführt, anschließend über ein oder gegebenenfalls mehrere an der Röhre angeordnete Prallscheiben radial in das Strahlergehäuse abgeleitet. Das Reservoir ist vorteilhaf erweise innerhalb des Strahlergehäuses angeordnet und als offene Wanne ausgebildet. Die Wanne kann auch, zusammen mit der Förderpumpe, extern des Strahlergehäuses angeordnet und als Wärmetauscher ausgebildet sein.
Ein wesentlicher Vorteil der erfindungsgemäßen Anordnung ist, daß der Röntgenstrahler nur einen Bruchteil der bei bisherigen Strahlern bekannten Reibleistung aufweist, so daß die Röhre mit vergleichsweise hohen Drehzahlen bei geringeren Reibverlusten betrieben werden kann.
Der im Strahlergehäuse fest angeordnete Führungskörper kann, wenn dies die konstruktiven Gegebenheiten zulassen, mit Vorteil zumindest teilweise von Wandungen des Strahlergehäuses selbst gebildet sein. Um das Ableiten des an der Prallscheibe ausspritzenden Kühlmittels zu optimieren, kann der Führungs- körper mit einem haubenartigen Leitelement, welches vorteil- hafterweise im Querschnitt halbringförmig ausgebildet ist, versehen sein. Sofern erforderlich, kann die Prallscheibe mehrfach an der Drehkolbenröhre vorhanden sein und lamellenartig in den feststehenden Führungskörper eingreifen. Die Prallscheiben bzw. Lamellen bestehen vorteilhaf erweise we- nigstens teilweise aus elastischem Material und liegen mit den elastischen Teilen axial und/radial an den entsprechenden Flächen des Führungskörpers an. Damit ist sichergestellt, daß möglichst wenig Kühlmittel in den restlichen Teil des Strahlergehäuses gelangen kann. Die lammellenartig vorgesehe- nen Prallscheiben müssen lediglich gegen Spritzöl abdichten.
Das Kühlsystem ist mit Vorteil als offenes Kühlsystem ausgebildet, wobei als Kühlmittel vorzugsweise Öl eingesetzt wird, welches mit Hilfe einer Pumpe von einer offenen Ölwanne zu- nächst zwangsgeführt zu den zu kühlenden Teilen geleitet wird, und dann ohne Zwangsführung wieder zurück in die Ölwanne fließt.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. Es zeigen:
Fig. 1 eine Ausführung eines Röncgenstrahlers im Längsschnitt, und
Fig. 2 einen Ausschnitt aus Fig. 1, vergrößert dargestellt Die Fig. 1 zeigt in einer vereinfachten Darstellung eine Aus- führungsform eines Röntgenstrahlers nach der Erfindung im Längsschnitt. In einem allgemein mit 1 bezeichneten Strahler- gehäuse ist in bekannter Weise eine Drehkolbenröhre 2 rotierbar gelagert, deren Kathode mit 3, und deren Anodenteller mit 4 bezeichnet sind. Der Antrieb der Drehkolbenröhre 2 erfolgt mittels eines Motors 5 der in einer ersten Gehäusekammer 6 angeordnet ist. Die Gehäusekammer 6 ist im Bereich der An- triebswelle mittels Dichtring 7 gegen Eindringen von Öl und Gas geschützt.
Mit 8, 9, und 10 sind weitere Gehäusekammern bezeichnet, die gegeneinander nicht abgedichtet, also zueinander offen sind. Hierzu können in den Gehäusewandungen entsprechende Öffnungen 11 vorhanden sein.
In der Gehäusekammer 10 befindet sich ein feststehender Führungskörper 12 der im wesentlichen im Bereich des Anodentel- lers 4 um die Drehkolbenröhre 2 herum angeordnet ist. Der
Führungskörper 12 wird teilweise von Wandungen 13 des Gehäuses 1 bzw. der Gehäusekammer 10 gebildet, ansonsten von einem separaten, ein- oder mehrteiligen Formteil 14. Die Teile sind so gestaltet, daß unterhalb der Röhre eine offene Wanne 15 zur Aufnahme von Kühlöl gebildet und ausreichend Raum zur Unterbringung einer Förderpumpe 16 vorhanden ist. Der Führungskörper 12 ist weiterhin so gestaltet, daß das von der Förderpumpe 16 aus der Wanne 15 geförderte Öl zunächst konzentrisch zur anodenseitigen Lagerachse 17 der Drehkolben- röhre 2 zugeführt und dann, unter Bildung eines schmalen
Spaltes 18 von ca. 1 bis 10 mm entlang der Röhrenaußenseite des Anodentellers 4 und des umlaufenden Strahlenaustrittsfensters 20 zwangsgeführt wird. Unmittelbar danach trifft das Öl auf eine an der Röhre angeordnete erste Prallscheibe 21 die das Öl umlenkt und radial über einen Spalt 19 nach außen in das Gehäuse abführt (siehe auch Fig. 2). Das an der Austrittsstelle abgeschleuderte Öl wird von einem am Führungskörper 12 angeordneten haubenar igen, im Querschnitt halbringförmigen Leitelement 22 abgefangen. Das Leitelement 22 dient in erster Linie als Spritzschutz und soll ein unkontrolliertes Bespritzen der Gehäusekammer 10 und der benachbarten Kammern verhin- dem .
Sofern erforderlich kann, wie in der Fig. 1 gezeigt, auf der Drehkolbenröhre eine zweite Prallscheibe 23 vorgesehen sein. Die beiden Prallscheiben 21 und 23 greifen lamellenartig in den Führungskörper 12 ein. Zumindest die freien Enden der
Prallscheiben bestehen aus elastischem Material und liegen an korrespondierenden Flächen des Führungskörpers leicht an. Auf diese Weise kann wenig Öl in den restlichen Teil des Strahlergehäuses gelangen. Die Reibungsverluste können da- durch sehr klein gehalten werden.
Das Öl fließt nach dem Aufprall auf das Leitelement 22 ohne Zwangsführung zurück in die Wanne 15. Im Führungskörper 12 können hierzu an geeigneten Stellen entsprechende Öffnungen oder Ausnehmungen 24 vorhanden sein.
Wie bereits angesprochen, benötigt das nach Art einer Druckumlaufschmierung arbeitende Kühlsystem, kein Ausdehnungsgefäß wie die bekannten Röhrenkühlsysteme . Das Ölreservoir (Wanne 15) kann relativ klein gehalten werden. Mit Vorteil kann das Reservoir auch als externer Wärmetauscher ausgelegt und so angeordnet sein, daß die ebenfalls extern angeordnete Förderpumpe kein Gas ansaugen kann. Ein Ansaugen muß deshalb vermieden werden, um lokale Überhitzungen des Anodentellers und des Strahlenaustrittsfensters und Ölanbackungen zu verhindern .
Die Isolation der Hochspannungteile, die im Einzelnen hier nicht aufgezeigt sind und die vornehmlich in den Gehäusekam- mern 8 und 9 angeordnet sind, wird im Strahlergehäuse 1 generell von einer Druckfüllung mit Gas, vorzugsweise mit Schwe- felhexafluorid (SFβ) übernommen. Um mindestens die gleiche Isolationsfähigkeit wie mit Öl zu bekommen, wird der Gasdruck auf ca. 3 bar festgelegt.

Claims

Patentansprüche
1.Röntgenstrahler mit zwangsgekühlten Drehanode umfassend eine in einem Strahlergehäuse (1) rotierbar gelagerte Dreh- kolbenröhre (2) deren Anodenteller (4) an der Außenseite der Röhre mittels eines flüssigen Kühlmittels gekühlt wird und deren Hochspannungsteile von einem gasförmigen Medium elektrisch isoliert werden, d a d u r c h g e k e n n z e i c h n e t , daß im Strahlergehäuse (1) ein die Dreh- kolbenröhre (2) im Bereich des Anodentellers (4) wenigstens teilweise umgebender, feststehender Führungskörper (12) angeordnet ist, welcher derart ausgebildet ist, daß das konzentrisch zur anodenseitigen Lagerachse (17) der Röhre (2) aus einem Reservoir (15) zugeführte Kühlmittel unter Bildung enger Spalte (18, 19) zunächst entlang der Röhrenaußenseite des Anodentellers (4) und entlang des Strahlenaustrittsfensters (20) der Röhre zwangsgeführt und anschließend über wenigstens eine an der Röhre (2) angeordnete, und in einen entsprechend ausgebildeten Spalt des Führungskörpers (12) eingreifende Prallscheibe (21) radial abgeleitet wird, und daß das Isoliergas im Strahlergehäuse (1) so eingebracht ist, daß es physikalisch nicht von der Führung des flüssigen Kühlmittels getrennt ist.
2. Röntgenstrahler nach Patentanspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß der Führungskörper (12) zumindest teilweise von Wandungen (13) des Strahlergehäuses (1) selbst gebildet ist.
3. Röntgenstrahler nach Patentanspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß der Führungskörper (12) im Bereich der Ableitung des Kühlmittels ein haubenartiges Leitelement (22) für das Kühlmittel aufweist.
4. Röntgenstrahler nach Patentanspruch 3 , d a d u r c h g e k e n n z e i c h n e t , daß das Leitelement (22) halbringförmig ausgebildet ist.
5. Röntgenstrahler nach Patentanspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Prallscheibe (21) mehrfach an der Drehkolbenröhre (2) vorhanden ist.
6 Röntgenstrahler nach Patentanspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Prallscheibe (21) zumindest teilweise aus elastischem Material besteht und mit den elastischen Teilen axial und/oder radial an Flächen des Führungskörpers (12) anliegt.
7. Röntgenstrahler nach Patentanspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Kühlmittelreservoir (15) als offene Wanne ausgebildet und innerhalb des Strahlergehäuses (1) . angeordnet ist.
8. Röntgenstrahler nach Patentanspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Kühlmittelreservoir (15) als Wärmetauscher ausgebildet und extern des Strahlergehäuses (1) angeordnet ist.
PCT/DE2000/004126 1999-11-24 2000-11-22 Röntgenstrahler mit zwangsgekühlter drehanode WO2001039557A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/889,898 US6396901B1 (en) 1999-11-24 2000-11-22 X-ray emitter with force-cooled rotating anode
JP2001540571A JP2003515877A (ja) 1999-11-24 2000-11-22 強制冷却式回転陽極付きx線照射器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19956491A DE19956491C2 (de) 1999-11-24 1999-11-24 Röntgenstrahler mit zwangsgekühlter Drehanode
DE19956491.4 1999-11-24

Publications (1)

Publication Number Publication Date
WO2001039557A1 true WO2001039557A1 (de) 2001-05-31

Family

ID=7930146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004126 WO2001039557A1 (de) 1999-11-24 2000-11-22 Röntgenstrahler mit zwangsgekühlter drehanode

Country Status (4)

Country Link
US (1) US6396901B1 (de)
JP (1) JP2003515877A (de)
DE (1) DE19956491C2 (de)
WO (1) WO2001039557A1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083612B2 (en) * 2003-01-15 2006-08-01 Cryodynamics, Llc Cryotherapy system
US7410484B2 (en) * 2003-01-15 2008-08-12 Cryodynamics, Llc Cryotherapy probe
US7273479B2 (en) * 2003-01-15 2007-09-25 Cryodynamics, Llc Methods and systems for cryogenic cooling
DE10320361B3 (de) * 2003-05-07 2004-12-16 Siemens Ag Vorrichtung mit einem in einem Fluid eingetauchten Drehkörper, insbesondere Röntgenstrahler
DE10331807A1 (de) * 2003-07-14 2005-03-03 Siemens Ag Vorrichtung mit einem drehangetriebenen Drehkörper
DE10335664B3 (de) * 2003-08-04 2005-06-16 Siemens Ag Vorrichtung mit einem drehangetriebenen Drehkörper
DE10352014B4 (de) * 2003-11-07 2008-06-12 Siemens Ag Antrieb für einen Röntgenstrahler
DE10353964B4 (de) * 2003-11-19 2013-10-10 Siemens Aktiengesellschaft Röntgenröhre mit Drehanode
DE102004003383B4 (de) * 2004-01-22 2012-08-09 Siemens Ag Hochleistungsanodenteller für eine direkt gekühlte Drehkolbenröhre
DE102004003370B4 (de) * 2004-01-22 2015-04-02 Siemens Aktiengesellschaft Hochleistungsanodenteller für eine direkt gekühlte Drehkolbenröhre
US6947523B2 (en) * 2004-02-20 2005-09-20 Siemens Aktiengesellschaft X-ray radiator
DE102005034687B3 (de) * 2005-07-25 2007-01-04 Siemens Ag Drehkolbenstrahler
DE102005049455B4 (de) * 2005-10-15 2007-11-22 Ziehm Imaging Gmbh Wärmetauscher für einen Einkessel-Generator einer Röntgendiagnostikeinrichtung mit einer Drehanodenröhre mit Glasgehäuse
JP4559377B2 (ja) * 2006-03-23 2010-10-06 株式会社ジョブ X線発生装置
US7520672B2 (en) * 2006-03-31 2009-04-21 General Electric Company Cooling assembly for an X-ray tube
CN100457044C (zh) * 2006-04-28 2009-02-04 上海西门子医疗器械有限公司 Ct设备的风冷散热方法及装置
JP2008027852A (ja) * 2006-07-25 2008-02-07 Shimadzu Corp 外囲器回転型x線管装置
JP4908341B2 (ja) * 2006-09-29 2012-04-04 株式会社東芝 回転陽極型x線管装置
DE102006054058B4 (de) * 2006-11-16 2009-04-02 Siemens Ag Drehkolben-Röntgenstrahler
DE102008062671B4 (de) * 2008-12-17 2011-05-12 Siemens Aktiengesellschaft Röntgeneinrichtung
JP5257607B2 (ja) * 2009-02-23 2013-08-07 株式会社島津製作所 外囲器回転型x線管装置
US8761338B2 (en) * 2011-06-20 2014-06-24 The Boeing Company Integrated backscatter X-ray system
US9151721B2 (en) 2011-06-20 2015-10-06 The Boeing Company Integrated backscatter X-ray system
US8855268B1 (en) 2011-11-01 2014-10-07 The Boeing Company System for inspecting objects underwater
JP6173849B2 (ja) * 2013-09-17 2017-08-02 東芝電子管デバイス株式会社 回転陽極型x線管装置
EP3049005B1 (de) 2013-09-24 2022-08-10 Adagio Medical, Inc. Endovaskuläre kryoablationskatheter auf basis eines fast kritischen fluids
US10617459B2 (en) 2014-04-17 2020-04-14 Adagio Medical, Inc. Endovascular near critical fluid based cryoablation catheter having plurality of preformed treatment shapes
BR112017009586B1 (pt) 2014-11-13 2022-09-20 Adagio Medical, Inc. Sistema de crioablação
WO2017048965A1 (en) 2015-09-18 2017-03-23 Adagio Medical Inc. Tissue contact verification system
WO2017095756A1 (en) 2015-11-30 2017-06-08 Adagio Medical, Inc. Ablation method for creating elongate continuous lesions enclosing multiple vessel entries
US11282668B2 (en) * 2016-03-31 2022-03-22 Nano-X Imaging Ltd. X-ray tube and a controller thereof
CN111225626B (zh) 2017-09-05 2023-11-14 艾达吉欧医疗公司 具有形状记忆探针的消融导管
EP3737316A4 (de) 2018-01-10 2021-09-29 Adagio Medical, Inc. Kryoablationselement mit leitfähiger auskleidung
CN108257837B (zh) * 2018-03-14 2019-11-15 苏州博思得电气有限公司 组合机头及射线影像设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575329A1 (fr) * 1984-12-21 1986-06-27 Thomson Cgr Gaine equipee a convection forcee pour tube radiogene a anode tournante
EP0248976A1 (de) * 1986-06-13 1987-12-16 Siemens Aktiengesellschaft Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung
DE19741750A1 (de) * 1997-09-22 1999-03-25 Siemens Ag Röntgenstrahler mit zwangsgekühlter Drehanode
EP0952605A2 (de) * 1998-04-21 1999-10-27 Picker International, Inc. Kühlung einer Röntgenvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814499A (ja) * 1981-07-20 1983-01-27 Toshiba Corp X線発生装置
DE3587087T2 (de) 1984-12-20 1993-09-02 Varian Associates Roentgenstrahlenquelle mit hoher intensitaet.
US5541975A (en) * 1994-01-07 1996-07-30 Anderson; Weston A. X-ray tube having rotary anode cooled with high thermal conductivity fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575329A1 (fr) * 1984-12-21 1986-06-27 Thomson Cgr Gaine equipee a convection forcee pour tube radiogene a anode tournante
EP0248976A1 (de) * 1986-06-13 1987-12-16 Siemens Aktiengesellschaft Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung
DE19741750A1 (de) * 1997-09-22 1999-03-25 Siemens Ag Röntgenstrahler mit zwangsgekühlter Drehanode
EP0952605A2 (de) * 1998-04-21 1999-10-27 Picker International, Inc. Kühlung einer Röntgenvorrichtung

Also Published As

Publication number Publication date
JP2003515877A (ja) 2003-05-07
DE19956491A1 (de) 2001-06-07
DE19956491C2 (de) 2001-09-27
US6396901B1 (en) 2002-05-28

Similar Documents

Publication Publication Date Title
WO2001039557A1 (de) Röntgenstrahler mit zwangsgekühlter drehanode
CH690145A5 (de) Hochspannungsstecker für eine Röntgenröhre.
DE19612698C1 (de) Röntgenstrahler mit zwangsgekühlter Drehröhre
AT397319B (de) Röntgenröhren-drehanode
DE102005049270B4 (de) Drehkolbenröhre mit einer von Kühlflüssigkeit durchströmten Kühleinrichtung sowie Verwendung der Kühlflüssigkeit
EP0430367B1 (de) Röntgenröhre
DE102011087602B4 (de) Elektrische Maschine
DE10318194A1 (de) Röntgenröhre mit Flüssigmetall-Gleitlager
WO2010115397A2 (de) Kühlrohre, elektrodenaufnahmen und elektrode für einen lichtbogenplasmabrenner sowie anordnungen aus denselben und lichtbogenplasmabrenner mit denselben
DE2628076A1 (de) Elektronenabgabeanordnung
DE19851853C1 (de) Drehkolbenstrahler
EP0248976B1 (de) Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung
EP0543280A2 (de) Elektromotor
WO2018162437A1 (de) Kühlvorrichtung für röntgengeneratoren
DE19929655A1 (de) Röntgenstrahler
DE2845007C2 (de) Drehanoden-Röntgenröhre mit einem Metallkolben
DE69210391T2 (de) Röntgenröhre mit einem aus metall bestehenden mittelteil
DE102007032496B3 (de) Vorrichtung zur Erzeugung eines Plasma-Jets
DE102015000536B4 (de) Elektrische Maschine und Kraftfahrzeug
DE102013215673B4 (de) Einpoliger Röntgenstrahler
DE102005044834A1 (de) Elektrische Maschine
EP0063840A1 (de) Hochspannungs-Vakuumröhre, insbesondere Röntgenröhre
DE3644719C1 (en) Liquid-cooled X-ray rotating anode
EP1104079B1 (de) Elektromotor für insbesondere eine Kreiselpumpe
DE4429910B4 (de) Röntgenröhre mit Abschirmteil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 540571

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09889898

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase