EP0225463B1 - Röntgenstrahler - Google Patents

Röntgenstrahler Download PDF

Info

Publication number
EP0225463B1
EP0225463B1 EP86114903A EP86114903A EP0225463B1 EP 0225463 B1 EP0225463 B1 EP 0225463B1 EP 86114903 A EP86114903 A EP 86114903A EP 86114903 A EP86114903 A EP 86114903A EP 0225463 B1 EP0225463 B1 EP 0225463B1
Authority
EP
European Patent Office
Prior art keywords
tube
rotor
pump
hood
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86114903A
Other languages
English (en)
French (fr)
Other versions
EP0225463A1 (de
Inventor
Klaus Dr. Haberrecker
Rainer Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0225463A1 publication Critical patent/EP0225463A1/de
Application granted granted Critical
Publication of EP0225463B1 publication Critical patent/EP0225463B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/025Means for cooling the X-ray tube or the generator

Definitions

  • the invention relates to an X-ray emitter according to the preamble of claim 1.
  • Such arrangements are known, for example, from G.J. van der Plaats M.D. "Medical X-Ray Technique” Principles and Applications in Philips Technical Library 1961, pages 31 to 34.
  • the liquid present in the tubular hood can also be circulated by pumping it out of the hood and pumping it back again via a cooling block (cooling forced by circulation).
  • Static cooling has only a slight effect, especially when the tube is under high load, whereas forced cooling requires a complicated structure, which is particularly annoying if the arrangement is to be kept in motion during the recording, as in computed tomography (CT) .
  • CT computed tomography
  • the invention is therefore based on the object of specifying a highly effective and at the same time space-saving cooling device which can be combined with the radiator in a compact manner in an X-ray source of the type mentioned at the outset. This object is achieved by the measures specified in the characterizing part of claim 1. Advantageous embodiments and developments of the invention are specified in the subclaims.
  • the invention is based on the fact that it is advantageous and favorable for the cooling of the tube if the coolant, that is to say an oil filled into the hood, is kept in motion by means of a circulation pump.
  • the coolant that is to say an oil filled into the hood
  • the electrical wiring of the hood is required for generating the X-rays anyway.
  • the pump and its drive motor by using a squirrel-cage motor, the rotor of which also acts as a conveying means for the pump, i.e. the pump is also part of the drive motor.
  • This is achieved in a simple manner by designing the rotor of the motor in the form of a tube which carries the pumping means, for example enclosing a propeller designed in the form of a propeller, or by fitting the blades of the rotor of a centrifugal pump onto one end of the rotor are.
  • the rotor itself can be made in the manner known from X-ray tubes from a two-layer material, of which one is copper and the other is iron. A favorable construction is obtained by pulling a copper pipe over an iron pipe.
  • the diameter of the rotor is expediently adapted to the required flow.
  • the rotor can be guided on an axis in ball bearings, which in turn are attached to a stainless steel tube surrounding the rotor via cantilevers.
  • the stator can be attached to the outside of this tube. This can be designed in particular in the way that is used for driving the anode of X-ray tubes.
  • the rotor can be accommodated in the tube hood so that it is enclosed by the insulating coolant.
  • the pump can also be attached to the hood so that the rotor is then outside the hood.
  • Mains alternating current of 50 or 60 Hz can be used to drive the pump, as is also used to drive the anode of X-ray tubes.
  • Mains alternating current of 50 or 60 Hz can be used to drive the pump, as is also used to drive the anode of X-ray tubes.
  • no additional power supply needs to be provided for the pump, since a drive for the rotating anode must be present anyway.
  • FIG. 1 shows an X-ray emitter, partially broken away, in which a pump is provided in the hood, the pumping means of which is a propeller,
  • a tubular hood 1 is shown partially broken open, which contains a rotating anode X-ray tube 2.
  • This tube 2 has a cathode arrangement 3 at its rear end and an anode arrangement 4 opposite it.
  • the arrangement 3 comprises, in a manner known per se, a hot cathode 5, which consists of two separately switchable parts.
  • an anode plate 7 In front of the arrangement 4 there is an anode plate 7 opposite the cathode 5. Electron beams 6, which emanate from the cathode 5, thus reach the focal spot path of the anode plate 6, which is connected via an axis to a rotor 8 used for driving in a known manner.
  • the tube 2 is assigned a stator 9 from the outside at the point where the rotor 8 is located.
  • the tube hood 1 has a radiation outlet tube 10 on the side facing the radiation outlet of the tube 2.
  • the entire hood 1 is supported via a support arm 11 in a known manner, for example locally on an X-ray device.
  • the operating voltages are supplied via connections 14 to 16 and 17 to 19. These come from an electrical operating device known per se which can be fed from the mains.
  • a housing 20 of a circulation pump is attached at the upper end. It contains a rotor 21 which is mounted in bearings 22 on an axis 23. Inside the rotor 21 there is also a propeller 24 to promote the oil filled in the hood 1.
  • the rotor 21 is set in motion by means of a stator 25 which is located on the outside of the housing 20. For this purpose, the stator receives the drive current via lines 26, 27, which is supplied to the stator 9 of the tube 2 via lines 17 and 18.
  • the propeller 24 is set in motion, and oil is pressed out of the hood 1 into a line 30, which opens into the end 31 of the hood 1 opposite the pump 20, so that when the pump is operating, a recirculation of the one filled in the hood 1 takes place Coolant is done.
  • the rotor 21 consists of a 1.5 mm thick and 52 mm clear tube 32 made of copper, on the inside of which is a 1 mm thick tube 33 made of iron. Supports 35 are provided to hold the bearing 23 on the housing 20.
  • cooling water can be passed through a pipe 36 as indicated by arrows 37 and 38.
  • the pump is brought into the form of a centrifugal pump, in which the stator 25 corresponds to that according to 4, 1 and 3 and is attached to the outside of the pump housing 20.
  • the rotor 21 is free of pumping means and is guided on its axis 23 in bearings 22.
  • the wings 40 of a centrifugal pump are placed on top of the rotor 21 as the pumping means, so that, as indicated by an arrow 41, the coolant is pressed into the discharge line, which is expanded in a funnel shape as indicated at 30 and 4, so that A coolant circuit is also achieved here.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft einen Röntgenstrahler nach dem Oberbegriff des Anspruches 1. Derartige Anordnungen sind etwa bekannt aus G.J. van der Plaats M.D. "Medical X-Ray Technique" Principles and Applications in Philips Technical Library 1961, Seiten 31 bis 34.
  • Bei Röntgenstrahlern treten im Betrieb gewöhnlich von der Anode ausgehend hohe Temperaturen auf. Diese entstehen bekanntlich bei der Abbremsung der Elektronen auf der Anode. Zum Abstransport dieser Wärme baut man die Röntgenröhre in einen Behälter, den sogenannten Röhrenkolben, ein, der zugleich die Abgabe von Röntgenstrahlen in unerwünschte Richtungen verhindert. Der dabei in der Röhrenhaube freibleibende Raum wird mit elektrisch isolierender Flüssigkeit, insbesondere Öl, gefüllt. Die von der Röhre auf die Flüssigkeit gelangende Wärme wird durch einfache Wärmeleitung abgeführt (statische Kühlung). Diese Art von Kühlung kann aber noch verbessert werden, indem Kühlmittel, wie etwa eine von Kühlwasser durchflossene Röhre, in den Behälter gebracht sind (statische Zwangskühlung). Es kann aber auch eine Umwälzung der in der Röhrenhaube vorhandenen Flüssigkeit vorgenommen werden, indem sie aus der Haube heraus- und über einen Kühlblock wieder zurückgepumpt wird (durch Zirkulation erzwungene Kühlung). Die statische Kühlung weist insbesondere bei hoher Belastung der Röhre nur geringe Wirkung auf, während eine Zwangskühlung komplizierten Aufbau erfordert, der insbesondere dann störend ins Gewicht fällt, wenn die Anordnung wie bei der Compu- tertomographie(CT) während der Aufnahme in Bewegung gehalten werden soll.
  • Die Erfindung hat sich daher die Aufgabe gestellt, bei einer Röntgenstrahlenquelle der eingangs genannten Art eine hochwirksame und gleichzeitig raumsparende sowie mit dem Strahler kompakt vereinigbare Kühlvorrichtung anzugeben. Diese Aufgabe wird erfindungsgemäß durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Maßnahmen gelöst. In den Unteransprüchen sind vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung angegeben.
  • Die Erfindung geht davon aus, daß es vorteilhaft und für die Kühlung der Röhre günstig ist, wenn man das Kühlmittel, also etwa ein in die Haube eingefülltes Öl, mittels einer Umwälzpumpe in Bewegung hält. Dazu hat es sich als zweckmäßig erwiesen, die Pumpe baulich mit der Haube zu vereinigen, weil dann insbesondere eine Behinderung der Bewegung des Strahlers, wie sie etwa bei CT durchgeführt werden muß, unterbleibt. Es sind keine zusätzlichen Zuführungen etc. möglich. Die elektrische Beschaltung der Haube ist für die Erzeugung der Röntgenstrahlen ohnehin erforderlich.
  • Als zweckmäßig hat es sich dabei erwiesen, die Pumpe und ihren Antriebsmotor zu vereinigen, indem ein Kurzschlußläufermotor verwendet wird, dessen Rotor zugleich als Fördermittel der Pumpe wirksam wird, d.h. die Pumpe ist gleichzeitig Teil des Antriebsmotors. Dies wird auf einfache Weise erreicht, indem der Rotor des Motors in der Form eines Rohres ausgebildet wird, das die Pumpmittel trägt, etwa einen in der Form einer Schiffsschraube ausgebildeten Propeller umschließt oder indem auf das eine Ende des Rotors die Flügel des Rotors einer Kreiselpumpe aufgesetzt sind. Der Rotor selbst kann in der von Röntgenröhren her bekannten Weise aus einem Zweischichtenmaterial hergestellt sein, von welchem das eine Kupfer und das andere Eisen ist. Eine günstige Konstruktion wird erhalten, indem über ein Eisenrohr ein Kupferrohr gezogen wird. Der Durchmesser des Rotors wird dabei zweckmäßigerweise dem geforderten Durchfluß angepaßt.
  • Der Rotor kann an einer Achse in Kugellagern geführt werden, die ihrerseits über Ausleger an einem den Rotor umschließenden Rohr aus Edelstahl befestigt sind. An der Außenseite dieses Rohres kann der Stator angebracht werden. Dieser kann insbesondere in der Art ausgebildet sein wie derjenige, der für den Antrieb der Anode von Röntgenröhren verwendet wird. Der Rotor kann wie bei Röntgenröhren in der Röhrenhaube untergebracht sein, so daß er vom isolierenden Kühlmittel umschlossen ist. Die Pumpe kann aber auch an die Haube angesetzt sein, so daß der Rotor dann außerhalb der Haube liegt.
  • Zum Antrieb der Pumpe kann Netzwechselstrom von 50 oder 60 Hz verwendet werden, wie er für den Antrieb der Anode von Röntgenröhren auch benutzt wird. So braucht bei Drehanoden-Röntgenröhren für die Pumpe keine zusätzliche Stromversorgung vorgesehen zu werden, da ein Antrieb für die Drehanode ohnehin vorhanden sein muß.
  • Weitere Einzelheiten und Vorteile der Erfindung werden nachfolgend anhand der in den Figuren dargestellten Ausführungsbeispiele weiter erläutert.
  • In der Figur 1 ist teilweise aufgebrochen ein Röntgenstrahler gezeichnet, bei welchem in der Haube eine Pumpe vorgesehen ist, deren Pumpmittel ein Propeller ist,
  • in der Figur 2 eine Draufsicht auf die Pumpe unter Wegnahme des einen Lagers des Rotors,
  • in der Figur 3 die Verwendung einer an die Röhrenhaube angesetzten Pumpe, bei welcher der Stator außerhalb der Röhrenhaube liegt, und
  • in der Figur 4 die Ausbildung der Pumpe als Kreiselpumpe.
  • In der Figur 1 ist teilweise aufgebrochen eine Röhrenhaube 1 gezeichnet, die eine Drehanoden-Röntgenröhre 2 enthält. Diese Röhre 2 hat am einen hinteren Ende ihres Kolbens eine Kathodenanordnung 3 und ihr gegenüber eine Anodenanordnung 4. Dabei umfaßt die Anordnung 3 in an sich bekannter Weise eine Glühkathode 5, die aus zwei getrennt schaltbaren Teilen besteht. Vor der Anordnung 4 liegt ein Anodenteller 7 gegenüber der Kathode 5. Elektronenstrahlen 6, die von der Kathode 5 ausgehen, erreichen so die Brennfleckbahn des Anodentellers 6, der über eine Achse mit einem in bekannter Weise zum Antrieb verwendeten Rotor 8 verbunden ist.
  • Der Röhre 2 ist von außen an der Stelle, an der sich der Rotor 8 befindet, ein Stator 9 zugeordnet. Die Röhrenhaube 1 weist an der dem Strahlenaustritt der Röhre 2 zugewandten Seite einen Strahlenaustrittstubus 10 auf. Die gesamte Haube 1 wird über einen Tragarm 11 in bekannter Weise etwa an einem Röntgengerät örtlich einstellbar gehaltert.
  • Die Zuführung der Betriebsspannungen erfolgt über Anschlüsse 14 bis 16 und 17 bis 19. Diese kommen von einem an sich bekannten elektrischen Betriebsgerät, das vom Netz gespeist werden kann.
  • In der Röhrenhaube 1 ist am oberen Ende ein Gehäuse 20 einer Umwälzpumpe angebracht. Sie enthält einen Rotor 21, der in Lagern 22 an einer Achse 23 gelagert ist. Im Inneren des Rotors 21 befindet sich außerdem noch ein Propel ler 24 zur Förderung des in der Haube 1 eingefüllten Öles. Der Rotor 21 wird mittels eines Stators 25, der außen am Gehäuse 20 liegt, in Bewegung gesetzt. Dazu erhält der Stator über Leitungen 26, 27 den Antriebsstrom, der über die Leitungen 17 und 18 dem Stator 9 der Röhre 2 zugeführt wird. Dadurch wird der Propeller 24 in Bewegung gesetzt, und aus der Haube 1 wird ÖI in eine Leitung 30 gedrückt, die innerhalb des der Pumpe 20 gegenüberliegenden Abschlusses 31 der Haube 1 mündet, so daß beim Betrieb der Pumpe eine Umwälzung des in der Haube 1 eingefüllten Kühlmittels erfolgt. Der Rotor 21 besteht dabei aus einem 1,5 mm starken und 52 mm lichte Weite aufweisenden Rohr 32 aus Kupfer, an dessen Innenseite ein 1 mm starkes Rohr 33 aus Eisen liegt. Zur Halterung des Lagers 23 am Gehäuse 20 sind Abstützungen 35 vorgesehen.
  • Zur Kühlung des in der Haube 1 eingefüllten Isoliermittels kann durch ein Rohr 36 entsprechend der Andeutung durch Pfeile 37 und 38 Kühlwasser geleitet werden.
  • In der Figur 3 ist die Pumpe an das in der Figur 1 mit der Kappe 31 verschlossene Ende der Haube 1 verlegt. Ansonsten besteht Übereinstimmung mit der Ausführung nach Figur 1. Durch die Leitung 30 wird das Kühlmittel lediglich am oberen Ende der Haube abgesaugt und mittels der Pumpe 20 am unteren Ende in die Haube gepreßt, so daß auch hier ein Kreislauf des Kühlmittels hervorgerufen wird.
  • Bei der Ausführung nach Figur 4 ist die Pumpe in die Form einer Kreiselpumpe gebracht, bei welcher der Stator 25 mit demjenigen nach 4, 1 und 3 übereinstimmt und an der Außenseite des Pumpengehäuses 20 angebracht ist. Der Rotor 21 ist frei von Pumpmitteln und an seiner Achse 23 in Lagern 22 geführt. Als Pumpmittel sind oben auf den Rotor 21 die Flügel 40 einer Kreiselpumpe aufgesetzt, so daß, wie durch einen Pfeil 41 angedeutet, das Kühlmittel in die Ableitung, die oben, wie mit 30 und 4 angedeutet, trichterförmig ausgeweitet ist, gedrückt wird, so daß auch hier ein Kreislauf des Kühlmittels erreicht wird.

Claims (9)

1. Röntgenstrahler mit einer Röntgenröhre, die in einem Schutzgehäuse montiert ist, wobei der Innenraum zwischen Röntgenröhre und Schutzgehäuse mit elektrisch isolierender Flüssigkeit, insbesondere Öl, gefüllt ist, dadurch gekennzeichnet, daß in das Gehäuse eine Umwälzpumpe für die Flüssigkeit integriert ist.
2. Röntgenstrahler nach Anspruch 1, dadurch gekennzeichnet, daß die Umwälzpumpe in das Gehäuse eingebaut ist.
3. Röntgenstrahler nach Anspruch 1, dadurch gekennzeichnet, daß die Umwälzpumpe an das Gehäuse angesetzt ist.
4. Röntgenstrahler nach Anspruch 1, dadurch gekennzeichnet, daß die Pumpe einen elektrischen Kurzschlußläufermotor aufweist, in welchem der Rotor die Form eines Rohrstutzens hat, der einen die Form einer Schiffsschraube nachbildenden Propeller als Fördermittel der Flüssigkeit umschließt.
5. Röntgenstrahler nach Anspruch 4, dadurch gekennzeichnet, daß der Rotor aus zwei Schichten besteht, von denen die innere aus Eisen und die äußere aus Kupfer besteht, wobei die erstere eine Dicke von 1 mm bis 3 mm, insbesondere 1 mm, und die zweite eine Dicke von 1 mm bis 33, insbesondere 1,5 mm, aufweist.
6. Röntgenstrahler nach Anspruch 5, dadurch gekennzeichnet, daß der Rotor aus einem Eisenrohr besteht, über das ein Kupferrohr gezogen ist.
7. Röntgenstrahler nach Anspruch 1, dadurch gekennzeichnet, daß auf das eine Ende des Rotors die Flügel einer Kreiselpumpe aufgesetzt sind.
8. Röntgenstrahler nach Anspruch 1, dadurch gekennzeichnet, daß das Gehäuse die Form eines Rohres hat, an dessen Außenseite eine Leitung verlegt ist, die die beiden verschlossenen Enden des Gehäuses miteinander verbindet, wobei einem der Enden der Umlaufleitung die Pumpe zugeordnet ist.
9. Röntgenstrahler nach Anspruch 1, dadurch gekennzeichnet, daß im Gehäuse ein an der Innenwand geführtes Rohr vorhanden ist, das Anschlüsse an eine Kühlwasserleitung aufweist.
EP86114903A 1985-11-07 1986-10-27 Röntgenstrahler Expired EP0225463B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8531503U DE8531503U1 (de) 1985-11-07 1985-11-07
DE8531503U 1985-11-07

Publications (2)

Publication Number Publication Date
EP0225463A1 EP0225463A1 (de) 1987-06-16
EP0225463B1 true EP0225463B1 (de) 1989-05-31

Family

ID=6787040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86114903A Expired EP0225463B1 (de) 1985-11-07 1986-10-27 Röntgenstrahler

Country Status (4)

Country Link
US (1) US4841557A (de)
EP (1) EP0225463B1 (de)
JP (1) JPS6281400U (de)
DE (2) DE8531503U1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185774A (en) * 1990-11-23 1993-02-09 Pxt Technology, Inc. X-ray tube construction
US5596622A (en) * 1993-07-13 1997-01-21 David V. Habif, Jr. Method and system for extending the service life of an x-ray tube
US5732123A (en) * 1993-07-13 1998-03-24 David V. Habif, Jr. Method and system for extending the service life of an x-ray tube
US5440608A (en) * 1993-07-13 1995-08-08 David V. Habif, Jr. Method and system for extending the service life of an x-ray tube
US5802140A (en) * 1997-08-29 1998-09-01 Varian Associates, Inc. X-ray generating apparatus with integral housing
US6254272B1 (en) 1999-02-05 2001-07-03 Maurice D. Dilick Method and apparatus for extending the life of an x-ray tube
US6361208B1 (en) 1999-11-26 2002-03-26 Varian Medical Systems Mammography x-ray tube having an integral housing assembly
US6411042B1 (en) 1999-12-29 2002-06-25 Honeywell International Inc. Display cold spot temperature regulator
US7079624B1 (en) 2000-01-26 2006-07-18 Varian Medical Systems, Inc. X-Ray tube and method of manufacture
US7209546B1 (en) 2002-04-15 2007-04-24 Varian Medical Systems Technologies, Inc. Apparatus and method for applying an absorptive coating to an x-ray tube
US7543987B2 (en) * 2004-12-29 2009-06-09 Varian Medical Systems, Inc. Modular cooling unit for x-ray device
US7376218B2 (en) * 2006-08-16 2008-05-20 Endicott Interconnect Technologies, Inc. X-ray source assembly
CN108717893A (zh) * 2018-03-14 2018-10-30 苏州博思得电气有限公司 变压器、组合机头及射线影像设备
CN108257837B (zh) * 2018-03-14 2019-11-15 苏州博思得电气有限公司 组合机头及射线影像设备
DE102020208976A1 (de) * 2020-07-17 2022-01-20 Siemens Healthcare Gmbh Röntgenquellenvorrichtung umfassend eine Anode zur Erzeugung von Röntgenstrahlen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2259037A (en) * 1940-02-23 1941-10-14 Picker X Ray Corp Waite Mfg Cooling x-ray tubes
SE362571B (de) * 1971-12-02 1973-12-10 Ericsson Telefon Ab L M
DE2204894A1 (de) * 1972-02-02 1973-08-16 Siemens Ag Roentgenroehreneinheit
GB1527813A (en) * 1976-06-02 1978-10-11 Emi Ltd Cooling x-ray apparatus
DE2813860A1 (de) * 1978-03-31 1979-10-04 Philips Patentverwaltung Eintank-roentgengenerator
JPS5546408A (en) * 1978-09-29 1980-04-01 Toshiba Corp X-ray device
US4369517A (en) * 1980-02-20 1983-01-18 Litton Industrial Products, Inc. X-Ray tube housing assembly with liquid coolant manifold
FR2575329B1 (fr) * 1984-12-21 1987-01-16 Thomson Cgr Gaine equipee a convection forcee pour tube radiogene a anode tournante

Also Published As

Publication number Publication date
JPS6281400U (de) 1987-05-25
DE3663765D1 (en) 1989-07-06
US4841557A (en) 1989-06-20
DE8531503U1 (de) 1987-03-05
EP0225463A1 (de) 1987-06-16

Similar Documents

Publication Publication Date Title
EP0225463B1 (de) Röntgenstrahler
DE60026801T2 (de) Mammographieröntgenröhre mit integralem Gehäuse
DE102006033683B4 (de) Elektrische rotierende Maschine mit integriertem Wechselrichter
EP3017528B1 (de) Elektrische maschine mit einer wärmeleitvorrichtung
EP0520333A1 (de) Pumpenaggregat
DE19956918C2 (de) Elektrische Maschine
EP0248976B1 (de) Flüssigkeitsgekühlter Röntgenstrahler mit einer Umlaufkühleinrichtung
EP0328951B1 (de) Röntgenröhre
EP0182040A1 (de) Kühlvorrichtung für einen Computertomographen
EP1775541A1 (de) Wärmetauscher für einen diagnostischen Röntgengenerator mit einer Drehanodenröhre
DE19845756A1 (de) Computertomographie-Anlage mit gekühlter Gantry
DE102009044587A1 (de) Röntgenröhre mit flüssigkeitsgekühlten Lagern und flüssigkeitsgekühlten Targets
DE102005063243A1 (de) Gekühlte Strahlungsemissionsvorrichtung
DE102004049642A1 (de) Kühlungsvorrichtung für Röntgenröhrenfenster
DE102008034568A1 (de) Röntgenröhre
DE738508C (de) Roentgenroehre mit Glaswandung und elektromagnetisch angetriebener Drehanode
DE102007014888A1 (de) Kühlungsanordnung für Röntgenröhre
DE748187C (de) Roentgenroehre mit auf Kugeln gelagerter Drehanode
DE3016102C2 (de)
DE19913199A1 (de) Verfahren und Vorrichtung zur Kühlung einer elektrischen Maschine mit einem Stator und einem Rotor
DE2833661A1 (de) Heizungsanlage mit waermepumpe
DE102020208976A1 (de) Röntgenquellenvorrichtung umfassend eine Anode zur Erzeugung von Röntgenstrahlen
DE19607072A1 (de) Kompakte medizinische Röntgenröhre mit einem Fluid-gekühlten thermischen Strahlungsrezeptor
DE19744422A1 (de) Elektromotor mit variabler Geschwindigkeit
DE102006033202A1 (de) Röntgenstrahler mit Drehanode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR LI

17P Request for examination filed

Effective date: 19870708

17Q First examination report despatched

Effective date: 19880914

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI

REF Corresponds to:

Ref document number: 3663765

Country of ref document: DE

Date of ref document: 19890706

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921016

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951218

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960118

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961031

Ref country code: CH

Effective date: 19961031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701