EP0240664B1 - Schiff für den Flüssigtransport hochschmelzender aromatischer Kohlenwasserstoffe - Google Patents

Schiff für den Flüssigtransport hochschmelzender aromatischer Kohlenwasserstoffe Download PDF

Info

Publication number
EP0240664B1
EP0240664B1 EP87101617A EP87101617A EP0240664B1 EP 0240664 B1 EP0240664 B1 EP 0240664B1 EP 87101617 A EP87101617 A EP 87101617A EP 87101617 A EP87101617 A EP 87101617A EP 0240664 B1 EP0240664 B1 EP 0240664B1
Authority
EP
European Patent Office
Prior art keywords
tank
tanks
double
ship according
hulled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87101617A
Other languages
English (en)
French (fr)
Other versions
EP0240664A3 (en
EP0240664A2 (de
Inventor
Michael Pfeuffer
Arnold Dr. Alscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICHAEL PFEUFFER TE KREFELD, BONDSREPUBLIEK DUITSL
Original Assignee
Verkaufsgesellschaft fur Teererzeugnisse (Vft) MbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verkaufsgesellschaft fur Teererzeugnisse (Vft) MbH filed Critical Verkaufsgesellschaft fur Teererzeugnisse (Vft) MbH
Publication of EP0240664A2 publication Critical patent/EP0240664A2/de
Publication of EP0240664A3 publication Critical patent/EP0240664A3/de
Application granted granted Critical
Publication of EP0240664B1 publication Critical patent/EP0240664B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • B63J2/14Heating; Cooling of liquid-freight-carrying tanks

Definitions

  • the invention relates to a ship for the transport of liquid, high-melting aromatic hydrocarbons at a temperature of at least 100 K above the melting point, in particular for the transport of liquid coal tar pitch, but also for fractions with a high solidification point, such as fluoranthene fractions (above 90 ° C.),
  • bitumen the temperature range in which it is easy to pump is depending on the grade: for waste bitumen between 67 and 90 ° C, for distilled bitumen between 105 and 135 ° C and for blown bitumen between 165 and 200 ° C.
  • Bitumen ships are built for this temperature range. However, the temperature of the bitumen transported is normally not higher than 180 ° C. As bitumens only contain up to 0.5% by weight of solids, the tank rooms are provided with floor heating. Due to the double hull design, direct cooling of the tank walls by the sea water is avoided. No further insulation is planned; the heat losses are compensated by the floor heating. As the bitumen is only used in the construction industry, the minor changes in properties due to heating and contact with the air are insignificant for the given temperature ranges and the relatively short exposure time. The bitumen ships therefore have tank rooms that are open to the atmosphere. Of course, this makes loading and unloading the cargo easier. The level can be measured, for example, with a measuring plate from a manhole on the deck.
  • the filling and emptying of the tank rooms takes place via pumps, which are housed in an external pump room in the hull of the ship. Since the refineries are mainly located in the coastal area, only seagoing vessels are built for bitumen transport. Seagoing vessels that have such a shallow draft that they can also sail the larger inland waterways are only known for general cargo.
  • the task therefore is to develop a ship for the liquid transport of high-melting aromatic hydrocarbons that meets the special requirements of these substances.
  • ballast tanks (17) Since the ship cannot hold ballast water in the tanks during the empty voyage, because ge If there are small amounts of water when filling with the hot liquid hydrocarbons to form an enormous amount of foam, additional ballast tanks (17) must be arranged between the inner and outer hull of the ship.
  • the hydrocarbons are filled into the tanks at a temperature between 180 and 300 ° C, preferably 220 to 260 ° C.
  • the tank walls expand by about 3.8 mm per m.
  • the tanks are on plain bearings, preferably made of pockwood or another water-resistant, heat-insulating bearing material with sufficient heat resistance, and are guided laterally with such bearings. In order to achieve good lateral guidance, it makes sense to equip these bearings with spring elements such as disc springs or pneumatic springs.
  • a transverse bulkhead (22) is located between the tanks, so that the individual tank sections are hermetically sealed from one another.
  • each tank section In order to be able to immediately detect any leaks or fires, a temperature measuring point can be provided in each tank section. There must also be the possibility of possible fires from the inside, for. B. to delete immediately with C0 2 .
  • the individual tank sections must also be accessible, either through manholes from the starboard or port side ballast tanks or through manholes with direct access from the open deck.
  • Pneumatic or hydraulic damping elements (15) with a gas spring can be arranged between the transverse bulkhead (22) and the unfixed adjacent tank wall, so that the mass forces are transferred more evenly to the hull when there is strong movement and partially filled tanks.
  • the tank bottom preferably has an inclination of 3 to 5 ° C. towards a corner, at which a tank sump is optionally arranged.
  • the tank insulation (16) consists of inorganic insulating material such as rock wool, foam glass and the like. Insulating mats made of rock or slag wool are primarily intended for the pipelines. The insulation must be covered from the outside to prevent it from getting wet. The thickness of the tank insulation should be such that the average temperature drop in the tank at an average temperature of 250 ° C. is not more than 10 K / d, in particular less than 5 K / d.
  • Indirect heating of the tanks with thermal oil is controlled using standard temperature sensors, while the heating of the entire pipeline can be switched on manually if necessary.
  • thermal oil which is compatible with aromatics is preferably used as the thermal oil, so that no flocculation can occur in the event of leaks.
  • a methylnaphthalene oil is particularly suitable for this.
  • the submersible pump must be suitable for high-melting, high-solids liquids, i.e. H. it should not contain any valves and should start up slowly so that the drive shaft is not sheared off at low temperatures.
  • Thyristor-controlled positive displacement pumps with a bypass overflow valve are suitable, such as rotary lobe or capsule pumps, in particular Viking pumps or spindle pumps, or centrifugal pumps with back blading to avoid cavitation and a smooth housing without guide devices.
  • a three-way valve (18) is connected to the pressure side of the submersible pump (5) and connects the pressure side either to the flushing line or to the line for emptying or filling the tank.
  • the flushing line is provided in the corners distant from the suction side of the pump at the deepest point of the tank with outlet openings, preferably nozzles (19), which are directed so that no solid deposition can take place in the corners of the tank, and the tank contents into a rotating one Current is displaced.
  • outlet openings preferably nozzles (19)
  • the product is pressed directly into the flushing line via the three-way valve when the pump is switched off. It is of course also possible to run a separate filling line directly to the bottom of the tank.
  • the inertization of the tanks is extremely important.
  • the tendency of aromatic mixtures, especially pitches, to oxidize in the specified temperature range is known.
  • the surface of the tanks according to the invention becomes constant due to constant pumping over and the ship's own movement renewed.
  • the change in viscosity caused by oxidation leads to difficulties in further processing and has a negative effect on the wetting and filtering behavior of the pitches.
  • the tanks must therefore be carefully rendered inert with a non-oxidizing gas, preferably nitrogen, and air ingress avoided.
  • a gas suspension line that connects the tanks to the land tanks, which are also rendered inert, during filling and emptying. Additional Lich, the tanks are connected via an inert gas line with an internal gas generator such. G. connected to a stucco generator, which constantly ensures a controlled low inert gas overpressure in the tanks. In this way, air ingress is prevented even with certain leaks on the flanges or on the manhole cover.
  • the tanks can be divided by partition walls in the longitudinal direction of the ship into several, preferably two chambers, which are filled or emptied at the same time in order to prevent thermal stresses.
  • the invention is explained in more detail by way of example in FIGS. 1 and 2.
  • Fig. 1 shows a section of the ship without the outer hull, deck and upper tank insulation.
  • Fig. 2 shows the section A-B in Fig. 1.
  • the fully insulated tank (1) is divided by the wall (20) amidships into two tank rooms.
  • a transverse bulkhead (22) is located between the tanks (1).
  • the tank is firmly connected to the hull by the supports (2).
  • Slide bearings (3) support the tank (1) and give it lateral guidance. They consist of steel brackets connected to the hull, on which the pockwood blocks connected to the tank (1), which protrude from the insulation (16), can move.
  • Hydraulic damping elements (15) with gas springs are arranged between the transverse bulkhead (22) and the unfixed end wall of the tanks (1).
  • heat exchangers (4) are flanged, which have vertically arranged heat exchanger surfaces and extend far into the tanks (1). They are connected in parallel to the thermal oil circuit (21) by means of valves that can be operated both manually and optionally controlled via a temperature sensor (not shown). In this way, individual heat exchangers can be pulled without having to interrupt the thermal oil circuit. It is also possible to use two manually operated shut-off devices and one temperature-controlled one for each heat exchanger.
  • the tank bottom is inclined diagonally from an outer corner towards the center by about 3 to 5 °.
  • the suction port of the submersible pump (5) is located at the lowest point, the preferably heated sump.
  • the drive shaft and the pressure port are pulled out of the tank (1) and connected to the tank roof via a flange.
  • the encapsulated thyristor-controlled motor is located above the deck.
  • the submersible pump (5) is inserted from above into a holder located in the tank (5) (not shown).
  • the pressure port of the pump (5), the flushing line (6) and the product line (7) for filling and emptying are connected to each other via a three-way valve (18).
  • the product is pumped through the rinsing line (6), which is provided with nozzles (19) directed into the corners.
  • the tap (18) is switched over and the pressure nozzle is connected to the product line (7) and when filling the product line (7) to the flush line (6).
  • Pumps with reversible flow direction can also be filled via the pressure port.
  • the flushing line (6) is fixed to the floor by means of fork-like holders. The filling and emptying process is controlled via a ntcm mechanical level indicator (13).
  • the tanks (1) are also connected to the respective inertized land tank via a gas suspension line (8), so that the inert gases - possibly loaded with aromatic vapors - do not have to be blown off into the free atmosphere or burned off using a torch and thus the inert gas consumption is kept as low as possible can.
  • the tank is connected to an inert gas line (9) if larger amounts of inert gas are required in the event of a sudden drop in pressure.
  • the same or a different tank nozzle receives an overpressure (10) and a vacuum safety valve (11).
  • the overpressure safety valve (10) is provided with a flame arrester (12).
  • the vacuum safety valve (11) is connected to the inert gas line (9).
  • each tank room is provided with at least one insulated manhole (14) through the deck. In order to ensure the necessary stability when empty, the ship is equipped with ballast tanks (17) between the two hulls.
  • the ships are also to operate on inland waters, they must have a relatively shallow draft and must comply with the rules of inland navigation, which roughly correspond to the ADNR rules for Rhine shipping. In terms of equipment, the ships must comply with the safety regulations for K1 ships.
  • All pipe systems including the gas pipes, are provided with trace heating, for example with thermal oil, and are well insulated.
  • the tanks In contrast to crude oil tankers, the tanks cannot be cleaned with water but only with solvents.
  • Good pitch solvents such as, for example, anthracene oil, which are preferably heated to about 80 ° C., are particularly suitable for this purpose.
  • the tank to be cleaned is partially filled with the solvent, which is conveyed by means of the submersible pump (5) into one or more rotating washing guns which were hung into the manholes from the deck. The solvent is circulated throughout the washing process.
  • the contaminated solvent is then pumped into a separate tank, from where it can be pumped off for reprocessing.
  • it makes sense to carry out tank cleaning in the port where the solvent in the tank truck can be started up and the one that is contaminated with pitch residues can be removed directly for processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

  • Die Erfindung betrifft ein Schiff für den Transport flüssiger, hochschmelzender aromatischer Kohlenwasserstoffe bei einer Temperatur von mindestens 100 K oberhalb des Schmelzpunktes, insbesondere für den Transport von flüssigen Steinkohlenteerpechen, aber auch für Fraktionen mit hohem Erstarrungspunkt wie Fluoranthenfraktionen (über 90 °C),
  • Pyrenfraktionen (über 110 °C) usw.
  • Spezialschiffe für den Transport von brennbaren Flüssigkeiten sind an sich bekannt. Neben Rohöltankern mit Einfachhülle gibt es Flüssiggasschiffe mit isolierten dreischaligen Kugeltanks und aufwendigen Sicherheitseinrichtungen. Diese Schiffe befördern die brennbaren Flüssigkeiten jedoch bei Umgebungstemperatur oder bei niedrigeren Temperaturen, die beispielsweise bei flüssigem Erdgas (LNG) im Bereich von -165 °C liegen. Die Flüssigkeiten sind im allgemeinen frei von Sedimenten und verändern ihre Eigenschaften während des Transportes nicht. Beheizte Tankschiffe mit Doppelrumpf für den Transport von flüssigem Bitumen sind ebenfalls bekannt. Bei Bitumen liegt der Temperaturbereich, in dem es gut pumpbar ist, je nach Sorte: für Verschnittbitumenzwischen 67 und 90 °C, für destilliertes Bitumenzwischen 105 und 135 °C und für geblasenes Bitumenzwischen 165 und 200 °C.
  • Für diesen Temperaturbereich werden Bitumenschiffe gebaut. Normalerweise liegt die Temperatur des transportierten Bitumens jedoch nicht höher als 180 °C. Da Bitumina nur etwa bis zu 0,5 Gew.-% Feststoffe enthalten, werden die Tankräume mit einer Bodenheizung versehen. Durch die Doppelrumpfbauweise wird eine Direktkühlung der Tankraumaußenwände durch das Seewasser vermieden. Eine weitere Isolierung ist nicht vorgesehen; die Wärmeverluste werden durch die Bodenbeheizung ausgeglichen. Da das Bitumen nur in der Bauindustrie verwendet wird, sind die geringfügigen Eigenschaftsänderungen durch die Beheizung und den Kontakt mit der Luft bei den gegebenen Temperaturbereichen und der relativ kurzen Einwirkdauer unerheblich. Die Bitumenschiffe haben daher zur Atmosphäre hin offene Tankräume. Dies erleichtert natürlich das Laden und Löschen der Fracht. Der Füllstand kann beispielsweise mit einer Meßplatte von einem Mannloch an Deck aus gemessen werden. Das Füllen und Entleeren der Tankräume erfolgt über Pumpen, die in einem außenliegenden Pumpenraum im Rumpf des Schiffes untergebracht sind. Da die Raffinerien überwiegend im Küstenbereich liegen, werden ausschließlich Seeschiffe für den Bitumentransport gebaut. Seeschiffe, die einen so geringen Tiefgang haben, daß sie auch die größeren Binnenwasserstraßen befahren können, sind nur für Stückgut bekannt.
  • An Schiffe für den Flüssigtransport hochschmelzender aromatischer Kohlenwasserstoffe, wie beispielsweise Steinkohlenteerpeche, sind wesentlich andere Anforderungen als an Bitumenschiffe zu stellen. Hierbei sind neben der häufigeren Lage der Teerraffinerien im Landesinneren die Eigenschaften der Peche und ihre Verwendung zu berücksichtigen. So haben Hartpeche Erweichungspunkte von mehr als 150 °C (Kraemer-Sarnow). Elektrodenpeche enthalten bei einem Erweichungspunkt von etwa 100 °C bis zu 19 Gew.-% chinolinunlösliche Bestandteile und einen entsprechend hohen Feststoffanteil. Sie sind sehr reaktiv gegenüber Sauerstoff und auch temperaturempfindlich. So kann bereits bei Temperaturen unterhalb von 350 °C die Bildung von höhermolekularen chemischen Verbindungen, gekennzeichnet beispielsweise durch einen steigenden Gehalt an Toluolunlöslichem, einsetzen. Diese neugebildeten Verbindungen verändern jedoch das Viskositäts- und Benetzungsverhalten von Elektrodenpechen in unerwünschtem Maße. Wegen der gesundheitsgefährdenden Wirkung von Aromatendämpfen sind außerdem besondere Sicherheitsvorkehrungen erforderlich.
  • Alle bekannten Schiffe für den Transport flüssiger Güter erfüllen die Summe der notwendigen Maßnahmen nicht, wie sie für den Transport von beispielsweise Flüssigpech erforderlich sind.
  • Es besteht daher die Aufgabe, für den Flüssigtransport hochschmelzender aromatischer Kohlenwasserstoffe ein Schiff zu entwickeln, das den besonderen Anforderungen dieser Stoffe genügt.
  • Die Aufgabe wird erfindungsgemäß gelöst durch ein Doppelrumpfschiff mit
    • a) mittig eingesetzten, vollständig isolierten Tanks (1), die jeweils von einem Punkt (2), insbesondere in der Mitte der dem Bug oder dem Heck zugewandten Tankwand, fest mit dem Schiffsrumpf verbunden sind und von Gleitlagern (3) geführt bzw. getragen werden;
    • b) mindestens einem von oben in jeden Tank eingeführten, mit einem mit Thermalöl beheizbaren Wärmetauscher (4) mit überwiegend senkrechten Wärmetauscherflächen, der über eine Temperaturmeßstelle geregelt wird;
    • c) mindestens einer von oben in jeden Tank eingesetzte Tauchpumpe (5), an die sowohl die Spülleitung (6) wie auch die Produktleitung (7) zum Füllen und Entleeren des Tanks angeschlossen ist;
    • d) einer mit den Tanks wahlweise verbundene Gaspendelleitung (8);
    • e) einer mit jedem Tank wahlweise verbundene Inertgasleitung (9), die über einen Druckwächter geregelt Inertgas in den jeweiligen Tank einspeist;
    • f) mindestens einem Sicherheitsventil (10, 11) für Über- und Unterdruck mit
      Flammrückschlagssicherung (12) am Überdruckaustritt und Inertgasanschluß an der Unterdrucköffnung;
    • g) mindestens einer nicht mechanischen Füllstandsmeßvorrichtung (13) und einem bei einem Füllgrad von 96 bis 98 % einen Alarm auslösenden Sicherheitssystem in jedem der Tanks;
    • h) einer Begleitbeheizung für alle Produkt- und Gasleitungen einschließlich der Flansche, Regel-und Absperrorgane
    • i) und einem beheizten, isolierten Mannloch (14) auf jedem Tankraum.
  • Da das Schiff auf der Leerfahrt in den Tanks kein Ballastwasser aufnehmen kann, weil bereits geringe Wassermengen beim Befüllen mit den heißen flüssigen Kohlenwasserstoffen zu einer enormen Schaumbildung führen, müssen zusätzliche Ballasttanks (17) zwischen dem inneren und äußeren Rumpf des Schiffes angeordnet werden.
  • Die Kohlenwasserstoffe werden mit einer Temperatur zwischen 180 und 300 °C, vorzugsweise 220 bis 260 °C, in die Tanks gefüllt. Dabei dehnen sich die Tankwände um etwa 3,8 mm je m aus. Um Spannungen im Schiffsrumpf und den Tankwänden zu vermeiden, die gegebenenfalls zu Undichtigkeiten führen könnten, stehen die Tanks auf Gleitlagern, vorzugsweise aus Pockholz oder einem anderen wasserbeständigen, wärmeisolierenden Lagermaterial mit ausreichender Warmfestigkeit, und werden seitlich mit solchen Lagern geführt. Um eine gute seitliche Führung zu erreichen, ist es sinnvoll, diese Lager mit Federelementen wie Tellerfedern oder pneumatischen Federn auszurüsten. Zwischen den Tanks befindet sich ein Querschott (22), so daß die einzelnen Tanksektionen hermetisch gegeneinander abgeschottet sind. Um irgendwelche Leckagen oder Brände sofort erfassen zu können, kann in jeder Tanksektion eine Temperaturmeßstelle vorgesehen werden. Es muß außerdem die Möglichkeit bestehen, eventuelle Brände von innen z. B. mit C02 sofort löschen zu können. Die einzelnen Tanksektionen müssen zudem begehbar sein, entweder über Mannlöcher von den steuer- oder backbordseitigen Ballasttanks oder über Mannlöcher mit direktem Zugang vom offenen Deck. Zwischen dem Querschott (22) und der nicht fixierten benachbarten Tankwand können pneumatische oder hydraulische Dämpfungselemente (15) mit Gasfeder angeordnet sein, damit bei starker Bewegung und teilgefüllten Tanks die Massenkräfte gleichmäßiger auf den Schiffsrumpf übertragen werden. Der Tankboden hat vorzugsweise eine Neigung von 3 bis 5 °C zu einer Ecke hin, an der gegebenenfalls ein Tanksumpf angeordnet ist.
  • Die Tankisolierung (16) besteht aus anorganischem Isoliermaterial wie Steinwolle, Schaumglas und ähnlichem. Für die Rohrleitungen sind vor allem Isoliermatten aus Stein- oder Schlackenwolle vorgesehen. Die Isolierungen sind von außen mit einer Verkleidung zu versehen, um ein Durchfeuchten zu verhindern. Die Dicke der Tankisolierung soll so bemessen sein, daß der mittlere Temperaturabfall im Tank bei einer Durchschnittstemperatur von 250 °C nicht mehr als 10 K/d, insbesondere weniger als 5 K/d beträgt.
  • Um der Wärmedehnung Rechnung zu tragen, sind alle Tankanschlüsse bei Decksdurchführung über dünnwandige Wellrohre (Metallfaltenbälge) mit dem Deck verbunden. Ebenso erhalten alle Rohre Kompensatoren, die die Wärmedehnung aufnehmen können.
  • Die indirekte Beheizung der Tanks mit Thermalöl wird über übliche Temperaturfühler geregelt, während die Beheizung der kompletten Rohrleitungen im Bedarfsfall von Hand eingeschaltet werden kann.
  • Als Thermalöl wird vorzugsweise ein mit Aromaten verträgliches, thermisch beständiges Öl verwendet, damit bei Undichtigkeiten keine Ausflockungen auftreten können. Besonders geeignet ist hierfür ein Methylnaphthalinöl.
  • Die Tauchpumpe muß für hochschmelzende, feststoffreiche Flüssigkeiten geeignet sein, d. h. sie sollte keine Ventile enthalten und langsam anlaufen, damit bei niedriger Temperatur die Antriebswelle nicht abgeschert wird. Geeignet sind thyristorgesteuerte Verdrängerpumpen mit Überströmventil im Bypass, wie beispielsweise Drehkolben- oder Kapselpumpen, insbesondere Vikingpumpen oder Spindelpumpen, oder auch Kreiselpumpen mit Rückbeschaufelung zur Vermeidung der Kavitation und glattem Gehäuse ohne Leitvorrichtungen. An der Druckseite der Tauchpumpe (5) ist ein Dreiwegehahn (18) angeschlossen, der die Druckseite wahlweise mit der Spülleitung oder mit der Leitung zum Entleeren oder Füllen des Tanks verbindet. Die Spülleitung ist in den von der Saugseite der Pumpe an der tiefsten Stelle des Tanks entfernten Ecken mit Austrittsöffnungen, vorzugsweise Düsen (19) versehen, die so gerichtet sind, daß in den Ecken des Tanks keine Feststoffablagerung stattfinden kann, und der Tankinhalt in eine rotierende Strömung versetzt wird. Beim Befüllen des Tanks wird das Produkt bei abgeschalteter Pumpe über den Dreiwegehahn direkt in die Spülleitung gedrückt. Es ist natürlich auch möglich, eine separate Fülleitung direkt bis auf den Tankboden zu führen.
  • Für die Füllstandsmessung sind mechanische Meßvorrichtungen, wie beispielsweise Schwimmer, weniger geeignet, da der Tank gegen den Luftsauerstoff abgedichtet sein soll, und außerdem wegen des hohen Schmelzpunktes der Aromaten Verkrustungen an der Schwimmerführung befürchtet werden müssen. Aus diesem Grund werden nicht mechanische Meßvorrichtungen verwendet, wie beispielsweise temperaturbeständige kapazitive oder induktive Füllstandsmesser. Auch die Füllstandsmessung durch Absorption schwach radioaktiver Strahlung (y-Strahler) hat sich bewährt. Für das Alarm auslösende Sicherheitssystem gegen Überfüllen der Tanks können auch schwimmergesteuerte elektrische Schalter verwendet werden.
  • Von außerordentlicher Wichtigkeit ist die Inertisierung der Tanks. Die Oxidationsneigung von Aromatengemischen, insbesondere von Pechen, in dem angegebenen Temperaturbereich ist bekannt. Im Gegensatz zu Landtanks, bei denen eine Oberflächenerneuerung im allgemeinen kaum zu befürchten ist - allenfalls kann es zu einer geringen Thermosyphonströmung bei beheizten Tanks durch thermische Konvektion kommen -, wird bei den Tanks nach der Erfindung die Oberfläche durch ständiges Umpumpen und die Eigenbewegung des Schiffes ständig erneuert. Insbesondere bei Elektroden- und Imprägnierpechen führt die durch Oxidation bedingte Viskositätsänderung zu Schwierigkeiten bei der Weiterverarbeitung und beeinflußt das Benetzungs- und Filtrierverhalten der Peche negativ. Die Tanks müssen daher sorgfältig mit einem nicht oxidierenden Gas, vorzugsweise mit Stickstoff, inertisiert und ein Lufteinbruch vermieden werden. Dies wird durch eine Gaspendelleitung, die die Tanks beim Befüllen und Entleeren mit den ebenfalls inertisierten Landtanks verbindet, erreicht. Zusätzlich sind die Tanks über eine Inertgasleitung mit einem Inengaserzeuger wie z. g. einem Stuckstoffgenerator verbunden, der ständig für einen geregelten geringen Inertgasüberdruck in den Tanks sorgt. Auf diese Weise wird ein Lufteinbruch auch bei gewissen Undichtigkeiten an Flanschen oder am Mannlochdeckel verhindert.
  • Die Tanks können durch Zwischenwände in Längsrichtung des Schiffes in mehrere, vorzugsweise zwei Kammern unterteilt sein, die gleichzeitig befüllt oder entleert werden, um Wärmespannungen zu verhindern. Die Erfindung wird beispielhaft an den Fig. 1 und 2 näher erläutert.
  • Fig. 1 zeigt einen Ausschnitt des Schiffes ohne äußeren Rumpf, Deck und oberer Tankisolierung. Fig. 2 stellt den Schnitt A-B in Fig. 1 dar. Der vollständig isolierte Tank (1) ist durch die Wand (20) mittschiffs in zwei Tankräume unterteilt. Zwischen den Tanks (1) befindet sich ein Querschott (22). Durch die Auflager (2) ist der Tank fest mit dem Schiffsrumpf verbunden. Gleitlager (3) stützen den Tank (1) ab und geben ihm eine seitliche Führung. Sie bestehen aus mit dem Schiffsrumpf verbundenen Stahlkonsolen, auf denen sich die mit dem Tank (1) verbundenen Pockholzklötze, die aus der Isolierung (16) herausragen, bewegen können. Zwischen dem Querschott (22) und der nicht fixierten Stirnwand der Tanks (1) sind hydraulische Dämpfungselemente (15) mit Gasfedern angeordnet. Auf den Tankdächern sind Wärmetauscher (4) angeflanscht, die senkrecht angeordnete Wärmetauscherflächen haben und weit in die Tanks (1) hineinreichen. Sie sind in Parallelschaltung über Ventile, die sowohl von Hand betätigt als auch über einen nicht gezeichneten Temperaturfühler wahlweise gesteuert werden können, mit dem Thermalölkreislauf (21) verbunden. So können einzelne Wärmetauscher gezogen werden, ohne daß der Thermalölkreislauf unterbrochen werden muß. Es ist auch möglich, je Wärmetauscher zwei handbetätigte Absperrorgane und ein temperaturgesteuertes zu verwenden.
  • Der Tankboden ist von einer äußeren Ecke aus zur Mitte hin diagonal geneigt um etwa 3 bis 5 °. An der tiefsten Stelle, dem vorzugsweise beheizten Sumpf, sitzt der Ansaugstutzen der Tauchpumpe (5). Die Antriebswelle und der Druckstutzen sind aus dem Tank (1) herausgezogen und über einen Flansch mit dem Tankdach verbunden. Der gekapseite thyristorgesteuerte Motor befindet sich oberhalb des Decks. Die Tauchpumpe (5) wird von oben in eine im Tank (5) befindliche Halterung eingesetzt (nicht gezeichnet). Über einen Dreiwegehahn (18) sind der Druckstutzen der Pumpe (5), die Spülleitung (6) und die Produktleitung (7) für das Befüllen und Entleeren miteinander verbunden. Während der Fahrt wird das Produkt über die Spülleitung (6), die mit in die Ecken gerichteten Düsen (19) versehen ist, umgepumpt. Beim Entleeren wird der Hahn (18) umgestellt und der Druckstutzen mit der Produktleitung (7) und beim Befüllen die Produktleitung (7) mit der Spülleitung (6) verbunden. Bei Pumpen mit umkehrbarer Förderrichtung kann auch über den Druckstutzen gefüllt werden. Die Spülleitung (6) ist am Boden mittels gabelartiger Halterungen fixiert. Der Füll- und Entleerungsvorgang wird über einen ntcm mechanisch wirkenden Füllstandsanzeiger (13) kontrolliert. Die Tanks (1) werden außerdem über eine Gaspendelleitung (8) mit dem jeweiligen inertisierten Landtank verbunden, damit die - gegebenenfalls mit Aromatendämpfen beladenen - Inertgase nicht in die freie Atmosphäre abgeblasen oder über eine Fackel abgebrannt werden müssen und damit der Inertgasverbrauch möglichst klein gehalten werden kann. Außerdem ist der Tank mit einer Inertgasleitung (9) verbunden, falls bei einem plötzlichen Druckabfall größere Inertgasmengen benötigt werden. Der gleiche oder auch ein anderer Tankstutzen erhält ein Überdruck- (10) und ein Unterdrucksicherheitsventil (11). Das Überdrucksicherheitsventil (10) ist mit einer Flammrückschlagsicherung (12) versehen. Das Unterdrucksicherheitsventil (11) ist an die Inertgasleitung (9) angeschlossen. Für Inspektions- und Reparaturzwecke erhält jeder Tankraum mindestens ein durch das Deck geführtes, isoliertes Mannloch (14). Um die nötige Stabilität bei der Leerfahrt zu gewährleisten, ist das Schiff mit Ballasttanks (17) zwischen den beiden Rümpfen ausgerüstet.
  • Wenn die Schiffe auch auf Binnengewässern verkehren sollen, dürfen sie nur einen relativ geringen Tiefgang haben und müssen den Regeln der Binnenschiffahrt entsprechen, die etwa den ADNR-Regeln für die Rheinschiffahrt entsprechen. Bezüglich der Ausrüstung müssen die Schiffe den Sicherheitsbestimmungen für K1-Schiffe entsprechen.
  • Alle Leitungssysteme einschließlich der Gasleitungen sind mit einer Begleitheizung, beispielsweise mit Thermalöl, versehen und gut isoliert.
  • Im Gegensatz zu Rohöltankern können die Tanks nicht mit Wasser sondern nur mit Lösungsmitteln gereinigt werden. Insbesondere sind gute Pechlösungsmittel wie beispielsweise Anthracenöl hierfür geeignet, die vorzugsweise auf etwa 80 °C erwärmt werden. Der zu reinigende Tank wird teilweise mit dem Lösungsmittel gefüllt, das mittels der Tauchpumpe (5) in eine oder mehrere rotierende Waschkanonen gefördert wird, die von Deck aus in die Mannlöcher eingehängt wurden. Das Lösungsmittel wird während des ganzen Waschvorganges im Kreislauf gefahren. Anschließend wird das verunreinigte Lösungsmittel in einen separaten Tank gepumpt, von wo aus es für die Wiederaufarbeitung abgepumpt werden kann. Um Tankkapazität zu sparen ist es sinnvoll, die Tankreinigung im Hafen durchzuführen, wo das Lösungsmittel im Tankwagen angefahren und das mit Pechresten verunreinigte direkt zur Aufarbeitung abgefahren werden kann.

Claims (10)

1. Doppelrumpfschiff für den Transport flüssiger, hochschmelzender aromatischer Kohlenwasserstoffe bei Temperaturen von mindestens 100 K oberhalb des Schmelzpunktes dieser Stoffe, insbesondere für flüssige Steinkohlenteerpeche, dadurch aekennzeichnet, daß das Schiff ausgerüstet ist mit
a) mittig eingesetzten, vollständig isolierten Tanks (1), die jeweils an einem Punkt (2), insbesondere in der Mitte der dem Bug oder Heck zugewandten Tankwand, fest mit dem Schiffsrumpf verbunden sind und von Gleitlagern (3) geführt bzw. getragen werden;
b) mindestens einem von oben in jeden Tank eingeführten, mit Thermalöl beheizbaren Wärmetauscher (4) mit überwiegend senkrechten Wärmetauscherflächen, der über eine Temperaturmeßstelle geregelt wird;
c) mindestens einer von oben in jeden Tank eingesetzten Tauchpumpe (5), an die sowohl die Spülleitung (6) wie auch die Produktleitung (7) zum Füllen und Entleeren des Tanks angeschlossen ist;
d) einer mit den Tanks wahlweise verbundenen Gaspendelleitung (8);
e) einer mit jedem Tank verbundenen Inertgasleitung (9), die über einen Druckwächter geregelt Inertgas in den jeweiligen Tank einspeist;
f) mindestens einem Sicherheitsventil (10, 11) für Uber- und Unterdruck mit Flammrückschlagssicherung (12) am Überdruckaustritt und Inertgasanschluß an der Unterdrucköffnung;
g) mindestens einer nicht mechanischen Füllstandsmeßvorrichtung (13) und einem bei einem Füllgrad von 96 bis 98 % einen Alarm auslösenden Sicherheitssystem in jedem der Tanks;
h) einer Begleitbeheizung für alle Produkt- und Gasleitungen einschließlich der Flansche, Regel-und Absperrorgane
i) und einem beheizten, isolierten Mannloch (14) auf jedem Tankraum.
2. Doppelrumpfschiff nach Anspruch 1, dadurch gekennzeichnet, daß die Tanks für Temperaturen zwischen 180 und 300 °C, insbesondere zwischen 220 und 260 °C, ausgelegt sind.
3. Doppelrumpfschiff nach den Ansprüchen 1 und 2, dadurch aekennzeichnet, daß zwischen dem inneren und äußeren Rumpf Ballasttanks (17) angeordnet sind und sich Querschotts (22) zwischen den Tanks (1) befinden.
4. Doppelrumpfschiff nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Gleitlager an den Tanks aus Pockholz bestehen, die bei der seitlichen Führung mit Federelementen versehen sind.
5. Doppelrumpfschiff nach den Ansprüchen 1 bis 4, dadurch aekennzeichnet, daß zwischen Querschott (22) und der nicht fixierten benachbarten Tankwand pneumatische oder hydraulische Dämpfungselemente (15) mit Gasfeder eingebaut sind.
6. Doppelrumpfschiff nach den Ansprüchen 1 bis 5, dadurch aekennzeichnet, daß der Tankboden eine Neigung von 3 bis 5 0 hat und an der tiefsten Stelle ein beheizbarer Sumpf eingebaut ist.
7. Doppelrumpfschiff nach den Ansprüchen 1 bis 6, dadurch aekennzeichnet, daß die Tankisolierung aus anorganischem Material besteht und so bemessen ist, daß der mittlere Temperaturabfall im Tank bei einer Durchschnittstemperatur von 250 °C nicht mehr als 10 K/d, insbesondere weniger als 5 K/d beträgt.
8. Doppelrumpfschiff nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß alle Tankanschlüsse bei Decksdurchführung über dünnwandige Wellrohre mit dem Deck verbunden und die Rohrleitungen mit Kompensatoren versehen sind.
9. Doppelrumpfschiff nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß es ein seetüchtiges Schiff ist, mit dem auch Binnengewässer befahren werden können.
10. Doppelrumpfschiff nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß die durch Querschott und innerem Rumpf begrenzten Segmente begehbar sind und mit einer Temperaturmeßstelle und einer Löschvorrichtung versehen sind.
EP87101617A 1986-04-09 1987-02-06 Schiff für den Flüssigtransport hochschmelzender aromatischer Kohlenwasserstoffe Expired - Lifetime EP0240664B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3611920 1986-04-09
DE19863611920 DE3611920A1 (de) 1986-04-09 1986-04-09 Schiff fuer den fluessigtransport hochschmelzender aromatischer kohlenwasserstoffe

Publications (3)

Publication Number Publication Date
EP0240664A2 EP0240664A2 (de) 1987-10-14
EP0240664A3 EP0240664A3 (en) 1988-09-21
EP0240664B1 true EP0240664B1 (de) 1990-09-12

Family

ID=6298305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87101617A Expired - Lifetime EP0240664B1 (de) 1986-04-09 1987-02-06 Schiff für den Flüssigtransport hochschmelzender aromatischer Kohlenwasserstoffe

Country Status (9)

Country Link
US (1) US4744321A (de)
EP (1) EP0240664B1 (de)
JP (1) JP2695159B2 (de)
CA (1) CA1283003C (de)
DE (2) DE3611920A1 (de)
DK (1) DK179487A (de)
ES (1) ES2017942B3 (de)
NO (1) NO871479L (de)
PL (1) PL154663B1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4037577A1 (de) * 1990-11-26 1992-05-27 Paraskevopoulos George Tankschiff
US5379711A (en) * 1992-09-30 1995-01-10 The United States Of America As Represented By The Secretary Of The Navy Retrofittable monolithic box beam composite hull system
DE4414852C1 (de) * 1994-04-28 1995-07-27 Kaefer Isoliertechnik Laderaum eines Kühlschiffes
CA2679694A1 (en) * 2007-03-13 2008-09-18 Merck & Co., Inc. Inhibitors of janus kinases and/or 3-phosphoinositide-dependent protein kinase-1
CN101668677B (zh) 2007-04-26 2013-11-06 埃克森美孚上游研究公司 独立的皱褶液化天然气储罐
NO332142B1 (no) * 2011-03-03 2012-07-02 Ulmatec Pyro As Tank heating system
US9302562B2 (en) 2012-08-09 2016-04-05 Martin Operating Partnership L.P. Heating a hot cargo barge using recovered heat from another vessel using an umbilical
US20140041566A1 (en) * 2012-08-09 2014-02-13 Martin Operating Partnership LP Complete integral tank double-hull cargo containment system vessel in maritime service
US9045194B2 (en) 2012-08-09 2015-06-02 Martin Operating Partnership L.P. Retrofitting a conventional containment vessel into a complete integral tank double-hull cargo containment vessel
US20140318630A1 (en) * 2013-04-24 2014-10-30 Vopak North America, Inc. Handling Bituminous Crude Oil in Tank Cars
CN103661911B (zh) * 2013-11-29 2017-05-03 大连船舶重工集团有限公司 一种船舶燃油深舱加热系统
KR101499902B1 (ko) * 2014-06-10 2015-03-10 대우조선해양 주식회사 재기화장치를 갖는 해양구조물 및 상기 해양구조물에서 lng 저장탱크를 운용하는 방법
CN105253265A (zh) * 2015-10-21 2016-01-20 上海船舶研究设计院 一种用于沥青船的双侧壁式止浮装置
CN106813259A (zh) * 2017-03-22 2017-06-09 福建省环境工程有限公司 一种用于焦油处理的装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2738749A (en) * 1955-01-17 1956-03-20 Ingalls Shipbuilding Corp Cargo vessel for transporting heated cargo and general cargo
US3147728A (en) * 1959-06-20 1964-09-08 Nippon Kokan Kk Ship for the transportation of high temperature molten material
NL262656A (de) * 1960-03-22
US3064612A (en) * 1960-10-20 1962-11-20 Maryland Shipbuilding And Dryd Carrier constructions for bulk fluids
AT232439B (de) * 1961-08-23 1964-03-25 Becker Kg Westhydraulik Vorrats- und Lagerbehälter mit indirekter Beheizung
US3425583A (en) * 1966-09-07 1969-02-04 Mcmullen John J Arrangement for keying liquefied gas storage tanks within a transport vessel
NO121316B (de) * 1968-10-23 1971-02-08 Patents & Developments A S
US3767150A (en) * 1970-05-22 1973-10-23 J Tabata Apparatus for mounting low temperature liquid storage tanks
US3833014A (en) * 1972-11-15 1974-09-03 Hy Way Heat Systems Asphalt storage tank with inert gas seal
JPS5855956B2 (ja) * 1978-12-26 1983-12-12 日本鋼管株式会社 ケミカルタンカ−
GB2156285B (en) * 1981-06-16 1986-05-08 Hitachi Shipbuilding Eng Co Ship for transporting coal slurry

Also Published As

Publication number Publication date
NO871479L (no) 1987-10-12
ES2017942B3 (es) 1991-03-16
DK179487A (da) 1987-10-10
EP0240664A3 (en) 1988-09-21
JP2695159B2 (ja) 1997-12-24
DE3764840D1 (de) 1990-10-18
JPS62244785A (ja) 1987-10-26
DK179487D0 (da) 1987-04-08
CA1283003C (en) 1991-04-16
NO871479D0 (no) 1987-04-08
PL265042A1 (en) 1988-03-03
US4744321A (en) 1988-05-17
PL154663B1 (en) 1991-09-30
DE3611920A1 (de) 1987-10-22
EP0240664A2 (de) 1987-10-14

Similar Documents

Publication Publication Date Title
EP0240664B1 (de) Schiff für den Flüssigtransport hochschmelzender aromatischer Kohlenwasserstoffe
CN103502092B (zh) 一种以新的方式利用船的方法及一种多用船
DE2411475A1 (de) See-verladeanlage fuer kryogene stoffe
DE2529717A1 (de) Schiff zum transport von fluessigen ladungen
KR840001547B1 (ko) 탱크격자 주변에 설치된 유조선의 분리발러스트
DE1244658B (de) OElspeichereinrichtung auf See
KR800000016B1 (ko) 선체를 변형한 유조선
GB2041895A (en) Fluid venting systems for tanker vessels
DE1506270A1 (de) Tankschiff fuer tiefsiedende Fluessiggase
CA1216121A (en) Modification to floating roof tank design
US3050951A (en) Shipping container and method for transporting liquefied gases and the like
US2908393A (en) Oil separator raft
US5101750A (en) Tanker ship hull for reducing cargo spillage
US3113544A (en) Underdeck tunnel for tankers
DE3323775A1 (de) Vorrichtung zum wechselweisen transport bzw. lagerung verschiedenartiger fluessigkeiten
JPS5455988A (en) Double-bottom structure for tanker
DE1053342B (de) Lade- und Entladeeinrichtung fuer ein Fahrzeug
Gallagher et al. Floating-Roof Tanks: Design and Operation in the Petroleum Industry
DE4007512C2 (de)
KR820001051B1 (ko) 액체 화물 탱크 구조
Textor Oil Shortages Caused by the Inherent Properties of Petroleum Cargoes
Rosochowicz et al. Ecological floating dock
DE1556972C (de) Anordnung zum Füllen und Entleeren eines Flüssiggastankschiffs
JPS5967195A (ja) 船舶の石炭石油混合物用タンク
SE464016B (sv) Anordning vid skottport

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19881019

17Q First examination report despatched

Effective date: 19890609

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3764840

Country of ref document: DE

Date of ref document: 19901018

ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19940228

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

EAL Se: european patent in force in sweden

Ref document number: 87101617.6

NLS Nl: assignments of ep-patents

Owner name: RUETGERSWERKE AKTIENGESELLSCHAFT TE FRANKFORT A.D.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950207

NLS Nl: assignments of ep-patents

Owner name: MICHAEL PFEUFFER TE KREFELD, BONDSREPUBLIEK DUITSL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990301

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060201

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060205

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060207

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060413

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070206

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20070206

EUG Se: european patent has lapsed