EP0240664B1 - Vessel for transporting fluid aromatic hydrocarbons melting at a high temperature - Google Patents
Vessel for transporting fluid aromatic hydrocarbons melting at a high temperature Download PDFInfo
- Publication number
- EP0240664B1 EP0240664B1 EP87101617A EP87101617A EP0240664B1 EP 0240664 B1 EP0240664 B1 EP 0240664B1 EP 87101617 A EP87101617 A EP 87101617A EP 87101617 A EP87101617 A EP 87101617A EP 0240664 B1 EP0240664 B1 EP 0240664B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tank
- tanks
- double
- ship according
- hulled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002844 melting Methods 0.000 title claims description 9
- 150000004945 aromatic hydrocarbons Chemical class 0.000 title claims description 5
- 230000008018 melting Effects 0.000 title claims description 5
- 239000012530 fluid Substances 0.000 title claims 3
- 239000011261 inert gas Substances 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 12
- 239000011295 pitch Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 7
- 238000013016 damping Methods 0.000 claims description 3
- 239000011280 coal tar Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000003643 water by type Substances 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 241000190019 Guaiacum Species 0.000 claims 1
- 235000004440 Guaiacum sanctum Nutrition 0.000 claims 1
- 238000007654 immersion Methods 0.000 claims 1
- 229910010272 inorganic material Inorganic materials 0.000 claims 1
- 239000011147 inorganic material Substances 0.000 claims 1
- 230000002000 scavenging effect Effects 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 13
- 239000010426 asphalt Substances 0.000 description 11
- 239000003921 oil Substances 0.000 description 9
- 238000011010 flushing procedure Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 3
- 239000011490 mineral wool Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- -1 coal tar pitches Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011494 foam glass Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J2/00—Arrangements of ventilation, heating, cooling, or air-conditioning
- B63J2/12—Heating; Cooling
- B63J2/14—Heating; Cooling of liquid-freight-carrying tanks
Definitions
- the invention relates to a ship for the transport of liquid, high-melting aromatic hydrocarbons at a temperature of at least 100 K above the melting point, in particular for the transport of liquid coal tar pitch, but also for fractions with a high solidification point, such as fluoranthene fractions (above 90 ° C.),
- bitumen the temperature range in which it is easy to pump is depending on the grade: for waste bitumen between 67 and 90 ° C, for distilled bitumen between 105 and 135 ° C and for blown bitumen between 165 and 200 ° C.
- Bitumen ships are built for this temperature range. However, the temperature of the bitumen transported is normally not higher than 180 ° C. As bitumens only contain up to 0.5% by weight of solids, the tank rooms are provided with floor heating. Due to the double hull design, direct cooling of the tank walls by the sea water is avoided. No further insulation is planned; the heat losses are compensated by the floor heating. As the bitumen is only used in the construction industry, the minor changes in properties due to heating and contact with the air are insignificant for the given temperature ranges and the relatively short exposure time. The bitumen ships therefore have tank rooms that are open to the atmosphere. Of course, this makes loading and unloading the cargo easier. The level can be measured, for example, with a measuring plate from a manhole on the deck.
- the filling and emptying of the tank rooms takes place via pumps, which are housed in an external pump room in the hull of the ship. Since the refineries are mainly located in the coastal area, only seagoing vessels are built for bitumen transport. Seagoing vessels that have such a shallow draft that they can also sail the larger inland waterways are only known for general cargo.
- the task therefore is to develop a ship for the liquid transport of high-melting aromatic hydrocarbons that meets the special requirements of these substances.
- ballast tanks (17) Since the ship cannot hold ballast water in the tanks during the empty voyage, because ge If there are small amounts of water when filling with the hot liquid hydrocarbons to form an enormous amount of foam, additional ballast tanks (17) must be arranged between the inner and outer hull of the ship.
- the hydrocarbons are filled into the tanks at a temperature between 180 and 300 ° C, preferably 220 to 260 ° C.
- the tank walls expand by about 3.8 mm per m.
- the tanks are on plain bearings, preferably made of pockwood or another water-resistant, heat-insulating bearing material with sufficient heat resistance, and are guided laterally with such bearings. In order to achieve good lateral guidance, it makes sense to equip these bearings with spring elements such as disc springs or pneumatic springs.
- a transverse bulkhead (22) is located between the tanks, so that the individual tank sections are hermetically sealed from one another.
- each tank section In order to be able to immediately detect any leaks or fires, a temperature measuring point can be provided in each tank section. There must also be the possibility of possible fires from the inside, for. B. to delete immediately with C0 2 .
- the individual tank sections must also be accessible, either through manholes from the starboard or port side ballast tanks or through manholes with direct access from the open deck.
- Pneumatic or hydraulic damping elements (15) with a gas spring can be arranged between the transverse bulkhead (22) and the unfixed adjacent tank wall, so that the mass forces are transferred more evenly to the hull when there is strong movement and partially filled tanks.
- the tank bottom preferably has an inclination of 3 to 5 ° C. towards a corner, at which a tank sump is optionally arranged.
- the tank insulation (16) consists of inorganic insulating material such as rock wool, foam glass and the like. Insulating mats made of rock or slag wool are primarily intended for the pipelines. The insulation must be covered from the outside to prevent it from getting wet. The thickness of the tank insulation should be such that the average temperature drop in the tank at an average temperature of 250 ° C. is not more than 10 K / d, in particular less than 5 K / d.
- Indirect heating of the tanks with thermal oil is controlled using standard temperature sensors, while the heating of the entire pipeline can be switched on manually if necessary.
- thermal oil which is compatible with aromatics is preferably used as the thermal oil, so that no flocculation can occur in the event of leaks.
- a methylnaphthalene oil is particularly suitable for this.
- the submersible pump must be suitable for high-melting, high-solids liquids, i.e. H. it should not contain any valves and should start up slowly so that the drive shaft is not sheared off at low temperatures.
- Thyristor-controlled positive displacement pumps with a bypass overflow valve are suitable, such as rotary lobe or capsule pumps, in particular Viking pumps or spindle pumps, or centrifugal pumps with back blading to avoid cavitation and a smooth housing without guide devices.
- a three-way valve (18) is connected to the pressure side of the submersible pump (5) and connects the pressure side either to the flushing line or to the line for emptying or filling the tank.
- the flushing line is provided in the corners distant from the suction side of the pump at the deepest point of the tank with outlet openings, preferably nozzles (19), which are directed so that no solid deposition can take place in the corners of the tank, and the tank contents into a rotating one Current is displaced.
- outlet openings preferably nozzles (19)
- the product is pressed directly into the flushing line via the three-way valve when the pump is switched off. It is of course also possible to run a separate filling line directly to the bottom of the tank.
- the inertization of the tanks is extremely important.
- the tendency of aromatic mixtures, especially pitches, to oxidize in the specified temperature range is known.
- the surface of the tanks according to the invention becomes constant due to constant pumping over and the ship's own movement renewed.
- the change in viscosity caused by oxidation leads to difficulties in further processing and has a negative effect on the wetting and filtering behavior of the pitches.
- the tanks must therefore be carefully rendered inert with a non-oxidizing gas, preferably nitrogen, and air ingress avoided.
- a gas suspension line that connects the tanks to the land tanks, which are also rendered inert, during filling and emptying. Additional Lich, the tanks are connected via an inert gas line with an internal gas generator such. G. connected to a stucco generator, which constantly ensures a controlled low inert gas overpressure in the tanks. In this way, air ingress is prevented even with certain leaks on the flanges or on the manhole cover.
- the tanks can be divided by partition walls in the longitudinal direction of the ship into several, preferably two chambers, which are filled or emptied at the same time in order to prevent thermal stresses.
- the invention is explained in more detail by way of example in FIGS. 1 and 2.
- Fig. 1 shows a section of the ship without the outer hull, deck and upper tank insulation.
- Fig. 2 shows the section A-B in Fig. 1.
- the fully insulated tank (1) is divided by the wall (20) amidships into two tank rooms.
- a transverse bulkhead (22) is located between the tanks (1).
- the tank is firmly connected to the hull by the supports (2).
- Slide bearings (3) support the tank (1) and give it lateral guidance. They consist of steel brackets connected to the hull, on which the pockwood blocks connected to the tank (1), which protrude from the insulation (16), can move.
- Hydraulic damping elements (15) with gas springs are arranged between the transverse bulkhead (22) and the unfixed end wall of the tanks (1).
- heat exchangers (4) are flanged, which have vertically arranged heat exchanger surfaces and extend far into the tanks (1). They are connected in parallel to the thermal oil circuit (21) by means of valves that can be operated both manually and optionally controlled via a temperature sensor (not shown). In this way, individual heat exchangers can be pulled without having to interrupt the thermal oil circuit. It is also possible to use two manually operated shut-off devices and one temperature-controlled one for each heat exchanger.
- the tank bottom is inclined diagonally from an outer corner towards the center by about 3 to 5 °.
- the suction port of the submersible pump (5) is located at the lowest point, the preferably heated sump.
- the drive shaft and the pressure port are pulled out of the tank (1) and connected to the tank roof via a flange.
- the encapsulated thyristor-controlled motor is located above the deck.
- the submersible pump (5) is inserted from above into a holder located in the tank (5) (not shown).
- the pressure port of the pump (5), the flushing line (6) and the product line (7) for filling and emptying are connected to each other via a three-way valve (18).
- the product is pumped through the rinsing line (6), which is provided with nozzles (19) directed into the corners.
- the tap (18) is switched over and the pressure nozzle is connected to the product line (7) and when filling the product line (7) to the flush line (6).
- Pumps with reversible flow direction can also be filled via the pressure port.
- the flushing line (6) is fixed to the floor by means of fork-like holders. The filling and emptying process is controlled via a ntcm mechanical level indicator (13).
- the tanks (1) are also connected to the respective inertized land tank via a gas suspension line (8), so that the inert gases - possibly loaded with aromatic vapors - do not have to be blown off into the free atmosphere or burned off using a torch and thus the inert gas consumption is kept as low as possible can.
- the tank is connected to an inert gas line (9) if larger amounts of inert gas are required in the event of a sudden drop in pressure.
- the same or a different tank nozzle receives an overpressure (10) and a vacuum safety valve (11).
- the overpressure safety valve (10) is provided with a flame arrester (12).
- the vacuum safety valve (11) is connected to the inert gas line (9).
- each tank room is provided with at least one insulated manhole (14) through the deck. In order to ensure the necessary stability when empty, the ship is equipped with ballast tanks (17) between the two hulls.
- the ships are also to operate on inland waters, they must have a relatively shallow draft and must comply with the rules of inland navigation, which roughly correspond to the ADNR rules for Rhine shipping. In terms of equipment, the ships must comply with the safety regulations for K1 ships.
- All pipe systems including the gas pipes, are provided with trace heating, for example with thermal oil, and are well insulated.
- the tanks In contrast to crude oil tankers, the tanks cannot be cleaned with water but only with solvents.
- Good pitch solvents such as, for example, anthracene oil, which are preferably heated to about 80 ° C., are particularly suitable for this purpose.
- the tank to be cleaned is partially filled with the solvent, which is conveyed by means of the submersible pump (5) into one or more rotating washing guns which were hung into the manholes from the deck. The solvent is circulated throughout the washing process.
- the contaminated solvent is then pumped into a separate tank, from where it can be pumped off for reprocessing.
- it makes sense to carry out tank cleaning in the port where the solvent in the tank truck can be started up and the one that is contaminated with pitch residues can be removed directly for processing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
Die Erfindung betrifft ein Schiff für den Transport flüssiger, hochschmelzender aromatischer Kohlenwasserstoffe bei einer Temperatur von mindestens 100 K oberhalb des Schmelzpunktes, insbesondere für den Transport von flüssigen Steinkohlenteerpechen, aber auch für Fraktionen mit hohem Erstarrungspunkt wie Fluoranthenfraktionen (über 90 °C),The invention relates to a ship for the transport of liquid, high-melting aromatic hydrocarbons at a temperature of at least 100 K above the melting point, in particular for the transport of liquid coal tar pitch, but also for fractions with a high solidification point, such as fluoranthene fractions (above 90 ° C.),
Spezialschiffe für den Transport von brennbaren Flüssigkeiten sind an sich bekannt. Neben Rohöltankern mit Einfachhülle gibt es Flüssiggasschiffe mit isolierten dreischaligen Kugeltanks und aufwendigen Sicherheitseinrichtungen. Diese Schiffe befördern die brennbaren Flüssigkeiten jedoch bei Umgebungstemperatur oder bei niedrigeren Temperaturen, die beispielsweise bei flüssigem Erdgas (LNG) im Bereich von -165 °C liegen. Die Flüssigkeiten sind im allgemeinen frei von Sedimenten und verändern ihre Eigenschaften während des Transportes nicht. Beheizte Tankschiffe mit Doppelrumpf für den Transport von flüssigem Bitumen sind ebenfalls bekannt. Bei Bitumen liegt der Temperaturbereich, in dem es gut pumpbar ist, je nach Sorte: für Verschnittbitumenzwischen 67 und 90 °C, für destilliertes Bitumenzwischen 105 und 135 °C und für geblasenes Bitumenzwischen 165 und 200 °C.Special ships for the transport of flammable liquids are known per se. In addition to crude oil tankers with a single hull, there are liquid gas ships with insulated triple-shell spherical tanks and complex safety devices. However, these ships transport the flammable liquids at ambient temperature or at lower temperatures, which for example in the case of liquid natural gas (LNG) are in the range of -165 ° C. The liquids are generally free of sediments and do not change their properties during transport. Heated tankers with double hulls for the transport of liquid bitumen are also known. For bitumen, the temperature range in which it is easy to pump is depending on the grade: for waste bitumen between 67 and 90 ° C, for distilled bitumen between 105 and 135 ° C and for blown bitumen between 165 and 200 ° C.
Für diesen Temperaturbereich werden Bitumenschiffe gebaut. Normalerweise liegt die Temperatur des transportierten Bitumens jedoch nicht höher als 180 °C. Da Bitumina nur etwa bis zu 0,5 Gew.-% Feststoffe enthalten, werden die Tankräume mit einer Bodenheizung versehen. Durch die Doppelrumpfbauweise wird eine Direktkühlung der Tankraumaußenwände durch das Seewasser vermieden. Eine weitere Isolierung ist nicht vorgesehen; die Wärmeverluste werden durch die Bodenbeheizung ausgeglichen. Da das Bitumen nur in der Bauindustrie verwendet wird, sind die geringfügigen Eigenschaftsänderungen durch die Beheizung und den Kontakt mit der Luft bei den gegebenen Temperaturbereichen und der relativ kurzen Einwirkdauer unerheblich. Die Bitumenschiffe haben daher zur Atmosphäre hin offene Tankräume. Dies erleichtert natürlich das Laden und Löschen der Fracht. Der Füllstand kann beispielsweise mit einer Meßplatte von einem Mannloch an Deck aus gemessen werden. Das Füllen und Entleeren der Tankräume erfolgt über Pumpen, die in einem außenliegenden Pumpenraum im Rumpf des Schiffes untergebracht sind. Da die Raffinerien überwiegend im Küstenbereich liegen, werden ausschließlich Seeschiffe für den Bitumentransport gebaut. Seeschiffe, die einen so geringen Tiefgang haben, daß sie auch die größeren Binnenwasserstraßen befahren können, sind nur für Stückgut bekannt.Bitumen ships are built for this temperature range. However, the temperature of the bitumen transported is normally not higher than 180 ° C. As bitumens only contain up to 0.5% by weight of solids, the tank rooms are provided with floor heating. Due to the double hull design, direct cooling of the tank walls by the sea water is avoided. No further insulation is planned; the heat losses are compensated by the floor heating. As the bitumen is only used in the construction industry, the minor changes in properties due to heating and contact with the air are insignificant for the given temperature ranges and the relatively short exposure time. The bitumen ships therefore have tank rooms that are open to the atmosphere. Of course, this makes loading and unloading the cargo easier. The level can be measured, for example, with a measuring plate from a manhole on the deck. The filling and emptying of the tank rooms takes place via pumps, which are housed in an external pump room in the hull of the ship. Since the refineries are mainly located in the coastal area, only seagoing vessels are built for bitumen transport. Seagoing vessels that have such a shallow draft that they can also sail the larger inland waterways are only known for general cargo.
An Schiffe für den Flüssigtransport hochschmelzender aromatischer Kohlenwasserstoffe, wie beispielsweise Steinkohlenteerpeche, sind wesentlich andere Anforderungen als an Bitumenschiffe zu stellen. Hierbei sind neben der häufigeren Lage der Teerraffinerien im Landesinneren die Eigenschaften der Peche und ihre Verwendung zu berücksichtigen. So haben Hartpeche Erweichungspunkte von mehr als 150 °C (Kraemer-Sarnow). Elektrodenpeche enthalten bei einem Erweichungspunkt von etwa 100 °C bis zu 19 Gew.-% chinolinunlösliche Bestandteile und einen entsprechend hohen Feststoffanteil. Sie sind sehr reaktiv gegenüber Sauerstoff und auch temperaturempfindlich. So kann bereits bei Temperaturen unterhalb von 350 °C die Bildung von höhermolekularen chemischen Verbindungen, gekennzeichnet beispielsweise durch einen steigenden Gehalt an Toluolunlöslichem, einsetzen. Diese neugebildeten Verbindungen verändern jedoch das Viskositäts- und Benetzungsverhalten von Elektrodenpechen in unerwünschtem Maße. Wegen der gesundheitsgefährdenden Wirkung von Aromatendämpfen sind außerdem besondere Sicherheitsvorkehrungen erforderlich.Ships for the liquid transport of high-melting aromatic hydrocarbons, such as coal tar pitches, have to meet significantly different requirements than bitumen ships. In addition to the more frequent location of the tar refineries in the interior, the properties of the pitches and their use must be taken into account. Hartpeche has softening points of more than 150 ° C (Kraemer-Sarnow). At a softening point of approximately 100 ° C., electrode pitches contain up to 19% by weight of quinoline-insoluble constituents and a correspondingly high solids content. They are very reactive to oxygen and also sensitive to temperature. For example, the formation of higher molecular weight chemical compounds, characterized, for example, by an increasing content of insoluble in toluene, can begin at temperatures below 350 ° C. However, these newly formed compounds undesirably change the viscosity and wetting behavior of electrode pitches. Due to the health-threatening effects of aromatic vapors, special safety precautions are also required.
Alle bekannten Schiffe für den Transport flüssiger Güter erfüllen die Summe der notwendigen Maßnahmen nicht, wie sie für den Transport von beispielsweise Flüssigpech erforderlich sind.All known ships for the transport of liquid goods do not meet the sum of the necessary measures, as are necessary for the transport of liquid pitch, for example.
Es besteht daher die Aufgabe, für den Flüssigtransport hochschmelzender aromatischer Kohlenwasserstoffe ein Schiff zu entwickeln, das den besonderen Anforderungen dieser Stoffe genügt.The task therefore is to develop a ship for the liquid transport of high-melting aromatic hydrocarbons that meets the special requirements of these substances.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Doppelrumpfschiff mit
- a) mittig eingesetzten, vollständig isolierten Tanks (1), die jeweils von einem Punkt (2), insbesondere in der Mitte der dem Bug oder dem Heck zugewandten Tankwand, fest mit dem Schiffsrumpf verbunden sind und von Gleitlagern (3) geführt bzw. getragen werden;
- b) mindestens einem von oben in jeden Tank eingeführten, mit einem mit Thermalöl beheizbaren Wärmetauscher (4) mit überwiegend senkrechten Wärmetauscherflächen, der über eine Temperaturmeßstelle geregelt wird;
- c) mindestens einer von oben in jeden Tank eingesetzte Tauchpumpe (5), an die sowohl die Spülleitung (6) wie auch die Produktleitung (7) zum Füllen und Entleeren des Tanks angeschlossen ist;
- d) einer mit den Tanks wahlweise verbundene Gaspendelleitung (8);
- e) einer mit jedem Tank wahlweise verbundene Inertgasleitung (9), die über einen Druckwächter geregelt Inertgas in den jeweiligen Tank einspeist;
- f) mindestens einem Sicherheitsventil (10, 11) für Über- und Unterdruck mit
Flammrückschlagssicherung (12) am Überdruckaustritt und Inertgasanschluß an der Unterdrucköffnung; - g) mindestens einer nicht mechanischen Füllstandsmeßvorrichtung (13) und einem bei einem Füllgrad von 96 bis 98 % einen Alarm auslösenden Sicherheitssystem in jedem der Tanks;
- h) einer Begleitbeheizung für alle Produkt- und Gasleitungen einschließlich der Flansche, Regel-und Absperrorgane
- i) und einem beheizten, isolierten Mannloch (14) auf jedem Tankraum.
- a) fully insulated tanks (1) inserted in the center, each of which is firmly connected to the hull from a point (2), in particular in the middle of the tank wall facing the bow or stern, and guided or carried by plain bearings (3) will;
- b) at least one introduced into each tank from above, with a heat exchanger (4) which can be heated with thermal oil and which has predominantly vertical heat exchanger surfaces and which is controlled via a temperature measuring point;
- c) at least one submersible pump (5) inserted into each tank from above, to which both the flushing line (6) and the product line (7) for filling and emptying the tank are connected;
- d) a gas suspension line (8) optionally connected to the tanks;
- e) an inert gas line (9) optionally connected to each tank, which feeds inert gas to the respective tank in a controlled manner via a pressure switch;
- f) with at least one safety valve (10, 11) for overpressure and underpressure
Flame arrester (12) at the overpressure outlet and inert gas connection at the vacuum opening; - g) at least one non-mechanical fill level measuring device (13) and a safety system in each of the tanks which triggers an alarm at a fill level of 96 to 98%;
- h) an auxiliary heating for all product and gas lines including the flanges, control and shut-off devices
- i) and a heated, insulated manhole (14) on each tank space.
Da das Schiff auf der Leerfahrt in den Tanks kein Ballastwasser aufnehmen kann, weil bereits geringe Wassermengen beim Befüllen mit den heißen flüssigen Kohlenwasserstoffen zu einer enormen Schaumbildung führen, müssen zusätzliche Ballasttanks (17) zwischen dem inneren und äußeren Rumpf des Schiffes angeordnet werden.Since the ship cannot hold ballast water in the tanks during the empty voyage, because ge If there are small amounts of water when filling with the hot liquid hydrocarbons to form an enormous amount of foam, additional ballast tanks (17) must be arranged between the inner and outer hull of the ship.
Die Kohlenwasserstoffe werden mit einer Temperatur zwischen 180 und 300 °C, vorzugsweise 220 bis 260 °C, in die Tanks gefüllt. Dabei dehnen sich die Tankwände um etwa 3,8 mm je m aus. Um Spannungen im Schiffsrumpf und den Tankwänden zu vermeiden, die gegebenenfalls zu Undichtigkeiten führen könnten, stehen die Tanks auf Gleitlagern, vorzugsweise aus Pockholz oder einem anderen wasserbeständigen, wärmeisolierenden Lagermaterial mit ausreichender Warmfestigkeit, und werden seitlich mit solchen Lagern geführt. Um eine gute seitliche Führung zu erreichen, ist es sinnvoll, diese Lager mit Federelementen wie Tellerfedern oder pneumatischen Federn auszurüsten. Zwischen den Tanks befindet sich ein Querschott (22), so daß die einzelnen Tanksektionen hermetisch gegeneinander abgeschottet sind. Um irgendwelche Leckagen oder Brände sofort erfassen zu können, kann in jeder Tanksektion eine Temperaturmeßstelle vorgesehen werden. Es muß außerdem die Möglichkeit bestehen, eventuelle Brände von innen z. B. mit C02 sofort löschen zu können. Die einzelnen Tanksektionen müssen zudem begehbar sein, entweder über Mannlöcher von den steuer- oder backbordseitigen Ballasttanks oder über Mannlöcher mit direktem Zugang vom offenen Deck. Zwischen dem Querschott (22) und der nicht fixierten benachbarten Tankwand können pneumatische oder hydraulische Dämpfungselemente (15) mit Gasfeder angeordnet sein, damit bei starker Bewegung und teilgefüllten Tanks die Massenkräfte gleichmäßiger auf den Schiffsrumpf übertragen werden. Der Tankboden hat vorzugsweise eine Neigung von 3 bis 5 °C zu einer Ecke hin, an der gegebenenfalls ein Tanksumpf angeordnet ist.The hydrocarbons are filled into the tanks at a temperature between 180 and 300 ° C, preferably 220 to 260 ° C. The tank walls expand by about 3.8 mm per m. In order to avoid tension in the hull and the tank walls, which could possibly lead to leaks, the tanks are on plain bearings, preferably made of pockwood or another water-resistant, heat-insulating bearing material with sufficient heat resistance, and are guided laterally with such bearings. In order to achieve good lateral guidance, it makes sense to equip these bearings with spring elements such as disc springs or pneumatic springs. A transverse bulkhead (22) is located between the tanks, so that the individual tank sections are hermetically sealed from one another. In order to be able to immediately detect any leaks or fires, a temperature measuring point can be provided in each tank section. There must also be the possibility of possible fires from the inside, for. B. to delete immediately with C0 2 . The individual tank sections must also be accessible, either through manholes from the starboard or port side ballast tanks or through manholes with direct access from the open deck. Pneumatic or hydraulic damping elements (15) with a gas spring can be arranged between the transverse bulkhead (22) and the unfixed adjacent tank wall, so that the mass forces are transferred more evenly to the hull when there is strong movement and partially filled tanks. The tank bottom preferably has an inclination of 3 to 5 ° C. towards a corner, at which a tank sump is optionally arranged.
Die Tankisolierung (16) besteht aus anorganischem Isoliermaterial wie Steinwolle, Schaumglas und ähnlichem. Für die Rohrleitungen sind vor allem Isoliermatten aus Stein- oder Schlackenwolle vorgesehen. Die Isolierungen sind von außen mit einer Verkleidung zu versehen, um ein Durchfeuchten zu verhindern. Die Dicke der Tankisolierung soll so bemessen sein, daß der mittlere Temperaturabfall im Tank bei einer Durchschnittstemperatur von 250 °C nicht mehr als 10 K/d, insbesondere weniger als 5 K/d beträgt.The tank insulation (16) consists of inorganic insulating material such as rock wool, foam glass and the like. Insulating mats made of rock or slag wool are primarily intended for the pipelines. The insulation must be covered from the outside to prevent it from getting wet. The thickness of the tank insulation should be such that the average temperature drop in the tank at an average temperature of 250 ° C. is not more than 10 K / d, in particular less than 5 K / d.
Um der Wärmedehnung Rechnung zu tragen, sind alle Tankanschlüsse bei Decksdurchführung über dünnwandige Wellrohre (Metallfaltenbälge) mit dem Deck verbunden. Ebenso erhalten alle Rohre Kompensatoren, die die Wärmedehnung aufnehmen können.In order to take thermal expansion into account, all tank connections are connected to the deck when the deck is led through thin-walled corrugated pipes (metal bellows). All pipes are also equipped with expansion joints that can absorb thermal expansion.
Die indirekte Beheizung der Tanks mit Thermalöl wird über übliche Temperaturfühler geregelt, während die Beheizung der kompletten Rohrleitungen im Bedarfsfall von Hand eingeschaltet werden kann.Indirect heating of the tanks with thermal oil is controlled using standard temperature sensors, while the heating of the entire pipeline can be switched on manually if necessary.
Als Thermalöl wird vorzugsweise ein mit Aromaten verträgliches, thermisch beständiges Öl verwendet, damit bei Undichtigkeiten keine Ausflockungen auftreten können. Besonders geeignet ist hierfür ein Methylnaphthalinöl.A thermal oil which is compatible with aromatics is preferably used as the thermal oil, so that no flocculation can occur in the event of leaks. A methylnaphthalene oil is particularly suitable for this.
Die Tauchpumpe muß für hochschmelzende, feststoffreiche Flüssigkeiten geeignet sein, d. h. sie sollte keine Ventile enthalten und langsam anlaufen, damit bei niedriger Temperatur die Antriebswelle nicht abgeschert wird. Geeignet sind thyristorgesteuerte Verdrängerpumpen mit Überströmventil im Bypass, wie beispielsweise Drehkolben- oder Kapselpumpen, insbesondere Vikingpumpen oder Spindelpumpen, oder auch Kreiselpumpen mit Rückbeschaufelung zur Vermeidung der Kavitation und glattem Gehäuse ohne Leitvorrichtungen. An der Druckseite der Tauchpumpe (5) ist ein Dreiwegehahn (18) angeschlossen, der die Druckseite wahlweise mit der Spülleitung oder mit der Leitung zum Entleeren oder Füllen des Tanks verbindet. Die Spülleitung ist in den von der Saugseite der Pumpe an der tiefsten Stelle des Tanks entfernten Ecken mit Austrittsöffnungen, vorzugsweise Düsen (19) versehen, die so gerichtet sind, daß in den Ecken des Tanks keine Feststoffablagerung stattfinden kann, und der Tankinhalt in eine rotierende Strömung versetzt wird. Beim Befüllen des Tanks wird das Produkt bei abgeschalteter Pumpe über den Dreiwegehahn direkt in die Spülleitung gedrückt. Es ist natürlich auch möglich, eine separate Fülleitung direkt bis auf den Tankboden zu führen.The submersible pump must be suitable for high-melting, high-solids liquids, i.e. H. it should not contain any valves and should start up slowly so that the drive shaft is not sheared off at low temperatures. Thyristor-controlled positive displacement pumps with a bypass overflow valve are suitable, such as rotary lobe or capsule pumps, in particular Viking pumps or spindle pumps, or centrifugal pumps with back blading to avoid cavitation and a smooth housing without guide devices. A three-way valve (18) is connected to the pressure side of the submersible pump (5) and connects the pressure side either to the flushing line or to the line for emptying or filling the tank. The flushing line is provided in the corners distant from the suction side of the pump at the deepest point of the tank with outlet openings, preferably nozzles (19), which are directed so that no solid deposition can take place in the corners of the tank, and the tank contents into a rotating one Current is displaced. When filling the tank, the product is pressed directly into the flushing line via the three-way valve when the pump is switched off. It is of course also possible to run a separate filling line directly to the bottom of the tank.
Für die Füllstandsmessung sind mechanische Meßvorrichtungen, wie beispielsweise Schwimmer, weniger geeignet, da der Tank gegen den Luftsauerstoff abgedichtet sein soll, und außerdem wegen des hohen Schmelzpunktes der Aromaten Verkrustungen an der Schwimmerführung befürchtet werden müssen. Aus diesem Grund werden nicht mechanische Meßvorrichtungen verwendet, wie beispielsweise temperaturbeständige kapazitive oder induktive Füllstandsmesser. Auch die Füllstandsmessung durch Absorption schwach radioaktiver Strahlung (y-Strahler) hat sich bewährt. Für das Alarm auslösende Sicherheitssystem gegen Überfüllen der Tanks können auch schwimmergesteuerte elektrische Schalter verwendet werden.Mechanical measuring devices, such as floats, are less suitable for level measurement, since the tank should be sealed against atmospheric oxygen and, because of the high melting point of the aromatics, incrustations on the float guide must be feared. For this reason, mechanical measuring devices are not used, such as temperature-resistant capacitive or inductive level meters. The level measurement by absorption of weakly radioactive radiation (y-emitter) has also proven itself. Float-controlled electrical switches can also be used for the alarm system that prevents the tank from overfilling.
Von außerordentlicher Wichtigkeit ist die Inertisierung der Tanks. Die Oxidationsneigung von Aromatengemischen, insbesondere von Pechen, in dem angegebenen Temperaturbereich ist bekannt. Im Gegensatz zu Landtanks, bei denen eine Oberflächenerneuerung im allgemeinen kaum zu befürchten ist - allenfalls kann es zu einer geringen Thermosyphonströmung bei beheizten Tanks durch thermische Konvektion kommen -, wird bei den Tanks nach der Erfindung die Oberfläche durch ständiges Umpumpen und die Eigenbewegung des Schiffes ständig erneuert. Insbesondere bei Elektroden- und Imprägnierpechen führt die durch Oxidation bedingte Viskositätsänderung zu Schwierigkeiten bei der Weiterverarbeitung und beeinflußt das Benetzungs- und Filtrierverhalten der Peche negativ. Die Tanks müssen daher sorgfältig mit einem nicht oxidierenden Gas, vorzugsweise mit Stickstoff, inertisiert und ein Lufteinbruch vermieden werden. Dies wird durch eine Gaspendelleitung, die die Tanks beim Befüllen und Entleeren mit den ebenfalls inertisierten Landtanks verbindet, erreicht. Zusätzlich sind die Tanks über eine Inertgasleitung mit einem Inengaserzeuger wie z. g. einem Stuckstoffgenerator verbunden, der ständig für einen geregelten geringen Inertgasüberdruck in den Tanks sorgt. Auf diese Weise wird ein Lufteinbruch auch bei gewissen Undichtigkeiten an Flanschen oder am Mannlochdeckel verhindert.The inertization of the tanks is extremely important. The tendency of aromatic mixtures, especially pitches, to oxidize in the specified temperature range is known. In contrast to land tanks, in which a surface renewal is generally not to be feared - at most there may be a low thermosyphon flow in heated tanks due to thermal convection - the surface of the tanks according to the invention becomes constant due to constant pumping over and the ship's own movement renewed. In the case of electrode and impregnating pitches in particular, the change in viscosity caused by oxidation leads to difficulties in further processing and has a negative effect on the wetting and filtering behavior of the pitches. The tanks must therefore be carefully rendered inert with a non-oxidizing gas, preferably nitrogen, and air ingress avoided. This is achieved by means of a gas suspension line that connects the tanks to the land tanks, which are also rendered inert, during filling and emptying. Additional Lich, the tanks are connected via an inert gas line with an internal gas generator such. G. connected to a stucco generator, which constantly ensures a controlled low inert gas overpressure in the tanks. In this way, air ingress is prevented even with certain leaks on the flanges or on the manhole cover.
Die Tanks können durch Zwischenwände in Längsrichtung des Schiffes in mehrere, vorzugsweise zwei Kammern unterteilt sein, die gleichzeitig befüllt oder entleert werden, um Wärmespannungen zu verhindern. Die Erfindung wird beispielhaft an den Fig. 1 und 2 näher erläutert.The tanks can be divided by partition walls in the longitudinal direction of the ship into several, preferably two chambers, which are filled or emptied at the same time in order to prevent thermal stresses. The invention is explained in more detail by way of example in FIGS. 1 and 2.
Fig. 1 zeigt einen Ausschnitt des Schiffes ohne äußeren Rumpf, Deck und oberer Tankisolierung. Fig. 2 stellt den Schnitt A-B in Fig. 1 dar. Der vollständig isolierte Tank (1) ist durch die Wand (20) mittschiffs in zwei Tankräume unterteilt. Zwischen den Tanks (1) befindet sich ein Querschott (22). Durch die Auflager (2) ist der Tank fest mit dem Schiffsrumpf verbunden. Gleitlager (3) stützen den Tank (1) ab und geben ihm eine seitliche Führung. Sie bestehen aus mit dem Schiffsrumpf verbundenen Stahlkonsolen, auf denen sich die mit dem Tank (1) verbundenen Pockholzklötze, die aus der Isolierung (16) herausragen, bewegen können. Zwischen dem Querschott (22) und der nicht fixierten Stirnwand der Tanks (1) sind hydraulische Dämpfungselemente (15) mit Gasfedern angeordnet. Auf den Tankdächern sind Wärmetauscher (4) angeflanscht, die senkrecht angeordnete Wärmetauscherflächen haben und weit in die Tanks (1) hineinreichen. Sie sind in Parallelschaltung über Ventile, die sowohl von Hand betätigt als auch über einen nicht gezeichneten Temperaturfühler wahlweise gesteuert werden können, mit dem Thermalölkreislauf (21) verbunden. So können einzelne Wärmetauscher gezogen werden, ohne daß der Thermalölkreislauf unterbrochen werden muß. Es ist auch möglich, je Wärmetauscher zwei handbetätigte Absperrorgane und ein temperaturgesteuertes zu verwenden.Fig. 1 shows a section of the ship without the outer hull, deck and upper tank insulation. Fig. 2 shows the section A-B in Fig. 1. The fully insulated tank (1) is divided by the wall (20) amidships into two tank rooms. A transverse bulkhead (22) is located between the tanks (1). The tank is firmly connected to the hull by the supports (2). Slide bearings (3) support the tank (1) and give it lateral guidance. They consist of steel brackets connected to the hull, on which the pockwood blocks connected to the tank (1), which protrude from the insulation (16), can move. Hydraulic damping elements (15) with gas springs are arranged between the transverse bulkhead (22) and the unfixed end wall of the tanks (1). On the tank roofs, heat exchangers (4) are flanged, which have vertically arranged heat exchanger surfaces and extend far into the tanks (1). They are connected in parallel to the thermal oil circuit (21) by means of valves that can be operated both manually and optionally controlled via a temperature sensor (not shown). In this way, individual heat exchangers can be pulled without having to interrupt the thermal oil circuit. It is also possible to use two manually operated shut-off devices and one temperature-controlled one for each heat exchanger.
Der Tankboden ist von einer äußeren Ecke aus zur Mitte hin diagonal geneigt um etwa 3 bis 5 °. An der tiefsten Stelle, dem vorzugsweise beheizten Sumpf, sitzt der Ansaugstutzen der Tauchpumpe (5). Die Antriebswelle und der Druckstutzen sind aus dem Tank (1) herausgezogen und über einen Flansch mit dem Tankdach verbunden. Der gekapseite thyristorgesteuerte Motor befindet sich oberhalb des Decks. Die Tauchpumpe (5) wird von oben in eine im Tank (5) befindliche Halterung eingesetzt (nicht gezeichnet). Über einen Dreiwegehahn (18) sind der Druckstutzen der Pumpe (5), die Spülleitung (6) und die Produktleitung (7) für das Befüllen und Entleeren miteinander verbunden. Während der Fahrt wird das Produkt über die Spülleitung (6), die mit in die Ecken gerichteten Düsen (19) versehen ist, umgepumpt. Beim Entleeren wird der Hahn (18) umgestellt und der Druckstutzen mit der Produktleitung (7) und beim Befüllen die Produktleitung (7) mit der Spülleitung (6) verbunden. Bei Pumpen mit umkehrbarer Förderrichtung kann auch über den Druckstutzen gefüllt werden. Die Spülleitung (6) ist am Boden mittels gabelartiger Halterungen fixiert. Der Füll- und Entleerungsvorgang wird über einen ntcm mechanisch wirkenden Füllstandsanzeiger (13) kontrolliert. Die Tanks (1) werden außerdem über eine Gaspendelleitung (8) mit dem jeweiligen inertisierten Landtank verbunden, damit die - gegebenenfalls mit Aromatendämpfen beladenen - Inertgase nicht in die freie Atmosphäre abgeblasen oder über eine Fackel abgebrannt werden müssen und damit der Inertgasverbrauch möglichst klein gehalten werden kann. Außerdem ist der Tank mit einer Inertgasleitung (9) verbunden, falls bei einem plötzlichen Druckabfall größere Inertgasmengen benötigt werden. Der gleiche oder auch ein anderer Tankstutzen erhält ein Überdruck- (10) und ein Unterdrucksicherheitsventil (11). Das Überdrucksicherheitsventil (10) ist mit einer Flammrückschlagsicherung (12) versehen. Das Unterdrucksicherheitsventil (11) ist an die Inertgasleitung (9) angeschlossen. Für Inspektions- und Reparaturzwecke erhält jeder Tankraum mindestens ein durch das Deck geführtes, isoliertes Mannloch (14). Um die nötige Stabilität bei der Leerfahrt zu gewährleisten, ist das Schiff mit Ballasttanks (17) zwischen den beiden Rümpfen ausgerüstet.The tank bottom is inclined diagonally from an outer corner towards the center by about 3 to 5 °. The suction port of the submersible pump (5) is located at the lowest point, the preferably heated sump. The drive shaft and the pressure port are pulled out of the tank (1) and connected to the tank roof via a flange. The encapsulated thyristor-controlled motor is located above the deck. The submersible pump (5) is inserted from above into a holder located in the tank (5) (not shown). The pressure port of the pump (5), the flushing line (6) and the product line (7) for filling and emptying are connected to each other via a three-way valve (18). During the journey, the product is pumped through the rinsing line (6), which is provided with nozzles (19) directed into the corners. When emptying, the tap (18) is switched over and the pressure nozzle is connected to the product line (7) and when filling the product line (7) to the flush line (6). Pumps with reversible flow direction can also be filled via the pressure port. The flushing line (6) is fixed to the floor by means of fork-like holders. The filling and emptying process is controlled via a ntcm mechanical level indicator (13). The tanks (1) are also connected to the respective inertized land tank via a gas suspension line (8), so that the inert gases - possibly loaded with aromatic vapors - do not have to be blown off into the free atmosphere or burned off using a torch and thus the inert gas consumption is kept as low as possible can. In addition, the tank is connected to an inert gas line (9) if larger amounts of inert gas are required in the event of a sudden drop in pressure. The same or a different tank nozzle receives an overpressure (10) and a vacuum safety valve (11). The overpressure safety valve (10) is provided with a flame arrester (12). The vacuum safety valve (11) is connected to the inert gas line (9). For inspection and repair purposes, each tank room is provided with at least one insulated manhole (14) through the deck. In order to ensure the necessary stability when empty, the ship is equipped with ballast tanks (17) between the two hulls.
Wenn die Schiffe auch auf Binnengewässern verkehren sollen, dürfen sie nur einen relativ geringen Tiefgang haben und müssen den Regeln der Binnenschiffahrt entsprechen, die etwa den ADNR-Regeln für die Rheinschiffahrt entsprechen. Bezüglich der Ausrüstung müssen die Schiffe den Sicherheitsbestimmungen für K1-Schiffe entsprechen.If the ships are also to operate on inland waters, they must have a relatively shallow draft and must comply with the rules of inland navigation, which roughly correspond to the ADNR rules for Rhine shipping. In terms of equipment, the ships must comply with the safety regulations for K1 ships.
Alle Leitungssysteme einschließlich der Gasleitungen sind mit einer Begleitheizung, beispielsweise mit Thermalöl, versehen und gut isoliert.All pipe systems, including the gas pipes, are provided with trace heating, for example with thermal oil, and are well insulated.
Im Gegensatz zu Rohöltankern können die Tanks nicht mit Wasser sondern nur mit Lösungsmitteln gereinigt werden. Insbesondere sind gute Pechlösungsmittel wie beispielsweise Anthracenöl hierfür geeignet, die vorzugsweise auf etwa 80 °C erwärmt werden. Der zu reinigende Tank wird teilweise mit dem Lösungsmittel gefüllt, das mittels der Tauchpumpe (5) in eine oder mehrere rotierende Waschkanonen gefördert wird, die von Deck aus in die Mannlöcher eingehängt wurden. Das Lösungsmittel wird während des ganzen Waschvorganges im Kreislauf gefahren. Anschließend wird das verunreinigte Lösungsmittel in einen separaten Tank gepumpt, von wo aus es für die Wiederaufarbeitung abgepumpt werden kann. Um Tankkapazität zu sparen ist es sinnvoll, die Tankreinigung im Hafen durchzuführen, wo das Lösungsmittel im Tankwagen angefahren und das mit Pechresten verunreinigte direkt zur Aufarbeitung abgefahren werden kann.In contrast to crude oil tankers, the tanks cannot be cleaned with water but only with solvents. Good pitch solvents such as, for example, anthracene oil, which are preferably heated to about 80 ° C., are particularly suitable for this purpose. The tank to be cleaned is partially filled with the solvent, which is conveyed by means of the submersible pump (5) into one or more rotating washing guns which were hung into the manholes from the deck. The solvent is circulated throughout the washing process. The contaminated solvent is then pumped into a separate tank, from where it can be pumped off for reprocessing. In order to save tank capacity, it makes sense to carry out tank cleaning in the port, where the solvent in the tank truck can be started up and the one that is contaminated with pitch residues can be removed directly for processing.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19863611920 DE3611920A1 (en) | 1986-04-09 | 1986-04-09 | SHIP FOR THE LIQUID TRANSPORT OF HIGH-MELTING AROMATIC HYDROCARBONS |
DE3611920 | 1986-04-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0240664A2 EP0240664A2 (en) | 1987-10-14 |
EP0240664A3 EP0240664A3 (en) | 1988-09-21 |
EP0240664B1 true EP0240664B1 (en) | 1990-09-12 |
Family
ID=6298305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87101617A Expired - Lifetime EP0240664B1 (en) | 1986-04-09 | 1987-02-06 | Vessel for transporting fluid aromatic hydrocarbons melting at a high temperature |
Country Status (9)
Country | Link |
---|---|
US (1) | US4744321A (en) |
EP (1) | EP0240664B1 (en) |
JP (1) | JP2695159B2 (en) |
CA (1) | CA1283003C (en) |
DE (2) | DE3611920A1 (en) |
DK (1) | DK179487A (en) |
ES (1) | ES2017942B3 (en) |
NO (1) | NO871479L (en) |
PL (1) | PL154663B1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4037577A1 (en) * | 1990-11-26 | 1992-05-27 | Paraskevopoulos George | TANKER |
US5379711A (en) * | 1992-09-30 | 1995-01-10 | The United States Of America As Represented By The Secretary Of The Navy | Retrofittable monolithic box beam composite hull system |
DE4414852C1 (en) * | 1994-04-28 | 1995-07-27 | Kaefer Isoliertechnik | Cold storage hold in ship |
EP2134346B1 (en) * | 2007-03-13 | 2011-09-21 | Merck Sharp & Dohme Corp. | Inhibitors of janus kinases and/or 3-phosphoinositide-dependent protein kinase-1 |
CN101668677B (en) | 2007-04-26 | 2013-11-06 | 埃克森美孚上游研究公司 | Independent corrugated LNG tank |
NO332142B1 (en) * | 2011-03-03 | 2012-07-02 | Ulmatec Pyro As | Tank heating system |
US20140041566A1 (en) * | 2012-08-09 | 2014-02-13 | Martin Operating Partnership LP | Complete integral tank double-hull cargo containment system vessel in maritime service |
US9302562B2 (en) | 2012-08-09 | 2016-04-05 | Martin Operating Partnership L.P. | Heating a hot cargo barge using recovered heat from another vessel using an umbilical |
US9045194B2 (en) | 2012-08-09 | 2015-06-02 | Martin Operating Partnership L.P. | Retrofitting a conventional containment vessel into a complete integral tank double-hull cargo containment vessel |
US20140318630A1 (en) * | 2013-04-24 | 2014-10-30 | Vopak North America, Inc. | Handling Bituminous Crude Oil in Tank Cars |
CN103661911B (en) * | 2013-11-29 | 2017-05-03 | 大连船舶重工集团有限公司 | Heating system of fuel oil deep tank of ship |
KR101499902B1 (en) * | 2014-06-10 | 2015-03-10 | 대우조선해양 주식회사 | Marine structure with a regasification apparatus and method for operating an lng storage tank in the marine structure |
CN105253265A (en) * | 2015-10-21 | 2016-01-20 | 上海船舶研究设计院 | Double-sided wall type floatation stopping device for asphalt ship |
CN106813259A (en) * | 2017-03-22 | 2017-06-09 | 福建省环境工程有限公司 | A kind of device and method for tar processing |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2738749A (en) * | 1955-01-17 | 1956-03-20 | Ingalls Shipbuilding Corp | Cargo vessel for transporting heated cargo and general cargo |
US3147728A (en) * | 1959-06-20 | 1964-09-08 | Nippon Kokan Kk | Ship for the transportation of high temperature molten material |
NL262656A (en) * | 1960-03-22 | |||
US3064612A (en) * | 1960-10-20 | 1962-11-20 | Maryland Shipbuilding And Dryd | Carrier constructions for bulk fluids |
AT232439B (en) * | 1961-08-23 | 1964-03-25 | Becker Kg Westhydraulik | Supply and storage containers with indirect heating |
US3425583A (en) * | 1966-09-07 | 1969-02-04 | Mcmullen John J | Arrangement for keying liquefied gas storage tanks within a transport vessel |
NO121316B (en) * | 1968-10-23 | 1971-02-08 | Patents & Developments A S | |
US3767150A (en) * | 1970-05-22 | 1973-10-23 | J Tabata | Apparatus for mounting low temperature liquid storage tanks |
US3833014A (en) * | 1972-11-15 | 1974-09-03 | Hy Way Heat Systems | Asphalt storage tank with inert gas seal |
JPS5855956B2 (en) * | 1978-12-26 | 1983-12-12 | 日本鋼管株式会社 | chemical tanker |
GB2156285B (en) * | 1981-06-16 | 1986-05-08 | Hitachi Shipbuilding Eng Co | Ship for transporting coal slurry |
-
1986
- 1986-04-09 DE DE19863611920 patent/DE3611920A1/en not_active Withdrawn
-
1987
- 1987-02-06 EP EP87101617A patent/EP0240664B1/en not_active Expired - Lifetime
- 1987-02-06 ES ES87101617T patent/ES2017942B3/en not_active Expired - Lifetime
- 1987-02-06 DE DE8787101617T patent/DE3764840D1/en not_active Expired - Lifetime
- 1987-03-23 US US07/028,933 patent/US4744321A/en not_active Expired - Lifetime
- 1987-04-07 PL PL1987265042A patent/PL154663B1/en unknown
- 1987-04-07 CA CA000534029A patent/CA1283003C/en not_active Expired - Lifetime
- 1987-04-08 DK DK179487A patent/DK179487A/en not_active Application Discontinuation
- 1987-04-08 NO NO871479A patent/NO871479L/en unknown
- 1987-04-09 JP JP62085909A patent/JP2695159B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US4744321A (en) | 1988-05-17 |
DE3764840D1 (en) | 1990-10-18 |
CA1283003C (en) | 1991-04-16 |
JPS62244785A (en) | 1987-10-26 |
JP2695159B2 (en) | 1997-12-24 |
ES2017942B3 (en) | 1991-03-16 |
NO871479L (en) | 1987-10-12 |
EP0240664A2 (en) | 1987-10-14 |
EP0240664A3 (en) | 1988-09-21 |
NO871479D0 (en) | 1987-04-08 |
DE3611920A1 (en) | 1987-10-22 |
DK179487D0 (en) | 1987-04-08 |
PL154663B1 (en) | 1991-09-30 |
PL265042A1 (en) | 1988-03-03 |
DK179487A (en) | 1987-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0240664B1 (en) | Vessel for transporting fluid aromatic hydrocarbons melting at a high temperature | |
CN103502092A (en) | Method to utilize ship in novel way and multi-purpose ship | |
DE2411475A1 (en) | SEA LOADING PLANT FOR CRYOGENIC SUBSTANCES | |
DE2529717A1 (en) | SHIP FOR TRANSPORTING LIQUID CARGO | |
KR840001547B1 (en) | Oil tenker segregated ballact perpheral tank grid | |
DE1244658B (en) | Oil storage facility at sea | |
WO2013091772A1 (en) | Floating body, in particular container ship | |
GB2041895A (en) | Fluid venting systems for tanker vessels | |
DE1506270A1 (en) | Tanker for low-boiling liquid gases | |
CA1216121A (en) | Modification to floating roof tank design | |
US3050951A (en) | Shipping container and method for transporting liquefied gases and the like | |
US2908393A (en) | Oil separator raft | |
Crawford | Marine and offshore pumping and piping systems | |
US3339367A (en) | Method and apparatus for insulated submerged oil storage | |
US5101750A (en) | Tanker ship hull for reducing cargo spillage | |
US3113544A (en) | Underdeck tunnel for tankers | |
Shackleton et al. | Pollution of the Sea by Oil | |
DE3323775A1 (en) | Device for alternately transporting and storing different types of liquids | |
DE2312014A1 (en) | SUBMERGING PROCEDURE FOR LOWERING A LARGE CONCRETE CONTAINER AND UNDERWATER CONTAINER | |
DE1053342B (en) | Loading and unloading device for a vehicle | |
Gallagher et al. | Floating-Roof Tanks: Design and Operation in the Petroleum Industry | |
DE4007512C2 (en) | ||
EP0611692A1 (en) | Method for transporting cargoes of petroleum by ship and tanks for performing said method | |
KR820001051B1 (en) | Liquid cargo tank construction | |
Textor | Oil Shortages Caused by the Inherent Properties of Petroleum Cargoes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES FR GB IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE ES FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19881019 |
|
17Q | First examination report despatched |
Effective date: 19890609 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT NL SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3764840 Country of ref document: DE Date of ref document: 19901018 |
|
ET | Fr: translation filed | ||
ITTA | It: last paid annual fee | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19940228 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
EAL | Se: european patent in force in sweden |
Ref document number: 87101617.6 |
|
NLS | Nl: assignments of ep-patents |
Owner name: RUETGERSWERKE AKTIENGESELLSCHAFT TE FRANKFORT A.D. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950207 |
|
NLS | Nl: assignments of ep-patents |
Owner name: MICHAEL PFEUFFER TE KREFELD, BONDSREPUBLIEK DUITSL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19990301 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060201 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060205 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20060207 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060413 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070206 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20070206 |
|
EUG | Se: european patent has lapsed |