EP0235750B1 - Vorrichtung zur magnetischen Ermittlung von Position oder Geschwindigkeit eines bewegten Körpers - Google Patents

Vorrichtung zur magnetischen Ermittlung von Position oder Geschwindigkeit eines bewegten Körpers Download PDF

Info

Publication number
EP0235750B1
EP0235750B1 EP87102740A EP87102740A EP0235750B1 EP 0235750 B1 EP0235750 B1 EP 0235750B1 EP 87102740 A EP87102740 A EP 87102740A EP 87102740 A EP87102740 A EP 87102740A EP 0235750 B1 EP0235750 B1 EP 0235750B1
Authority
EP
European Patent Office
Prior art keywords
elements
moving body
speed
pairs
element pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87102740A
Other languages
English (en)
French (fr)
Other versions
EP0235750A3 (en
EP0235750A2 (de
Inventor
Tadashi Takahashi
Seizi Yamashita
Kunio Miyashita
Syooichi Kawamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of EP0235750A2 publication Critical patent/EP0235750A2/de
Publication of EP0235750A3 publication Critical patent/EP0235750A3/en
Application granted granted Critical
Publication of EP0235750B1 publication Critical patent/EP0235750B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets

Definitions

  • This invention relates to an apparatus for magnetically detecting the position or speed of a moving body by using a magnetoresistive element, and more particularly to an apparatus for obtaining a sine wave output signal for detecting the position or speed of a moving body.
  • This invention can be applied to even a rotationally moving body, a linearly moving body and a sinuously moving body.
  • this invention is directed to an apparatus for detecting the angle of rotation of various types of rotary shafts, to say nothing of the angle of rotation and speed of, for example, a motor.
  • the apparatuses, to which the present invention can be applied to detect the position or speed of a linearly moving body include a position detector in a printing head of a printer and a head of a magnetic disc drive.
  • the present invention can be utilized widely for a speed controlling apparatus or various types of positioning apparatus.
  • An apparatus for detecting the position and angle of a moving body by using a magnetoresistive element (which will hereinafter be referred to as an MR element) which is adapted to sense magnetism and cause variation in the internal electric resistance thereof is known well.
  • the invention disclosed in USP No. 4,319,188 is also an example of an apparatus for detecting the angle of a moving body by using an MR element.
  • the internal electric resistance of an MR element varies depending upon the intensity of a magnetic field working thereon. Therefore, when the air gap between an MR element and a magnetic medium having a plurality of magnetic poles and moving as it is opposed to the MR element varies, an output signal of the MR element also varies based on the variation of the internal electric resistance .
  • the true circularity of a rotary magnetic medium cannot be obtained even if the magnetic medium is manufactured with the highest possible accuracy.
  • the magnetic medium also has unbalanced mass and causes the rotary system to have play and eccentricity. Consequently, when the magnetic medium is rotated, the air gap varies in each turn thereof to cause an output signal from the MR element to be distorted.
  • the air gap mentioned above In order to obtain a high-level output signal from an MR element, the air gap mentioned above must be reduced. However, if the air gap is reduced excessively, the MR element is magnetically saturated to cause its output waveform to be largely distorted, so that the output waveform becomes dissimilar to a sine waveform. Namely, in general, a magnetic sensor utilizing an MR element has the following characteristics. When the originally narrow air gap varies slightly the output amplitude does not vary but the output waveform is distorted due to the magnetic saturation. Conversely, when the air gap is originally wide the waveform of an output from the senor is not distorted but the output amplitude varies when the air gap varies.
  • An object of the present invention is to provide an apparatus for magnetically detecting the position or speed of a moving body, which is capable of obtaining an output signal of a sine waveform containing no major higher harmonics and having no distortion even when the air gap between a magnetic medium and a magnetic sensor is reduced.
  • a feature of the present invention resides in the arrangement of MR elements constituting a magnetic sensor, which is capable of eliminating the major higher harmonics by which the waveform of an output signal is distorted.
  • the feature of the present invention resides in an apparatus for magnetically detecting the relative position or speed of moving and stationary bodies, consisting of a magnetic medium provided in either a moving body or a stationary body, a plurality of magnetic poles arranged successively with a predetermined pitch on the magnetic medium, a plurality of MR elements which are provided on the other of the moving body and stationary body so as to be opposed to the magnetic medium, and are adapted to sense a magnetic field generated by the magnetic poles and thereby cause the electric resistance thereof to vary, and an output circuit connected electrically to the MR elements and adapted to convert the variations in the electric resistance of each MR element into an electric signal which is outputted as a signal representative of the relative position or speed of the moving and stationary bodies, the MR elements forming a plurality of MR element pairs each of which consists of two MR elements
  • the distortion of an output signal waveform due to the magnetic saturation can be eliminated. Since the distortion of an output signal waveform due to the magnetic saturation can be eliminated, it is possible to increase the amplitude of an output signal by reducing the air gap between the magnetic medium and magnetic sensor in advance.
  • the present invention capable of obtaining an output signal of a large amplitude having no distortion in the waveform thereof enables an apparatus, which has high accuracy and resolution, for magnetically detecting the position or speed, of a moving body to be provided.
  • Fig. 1 shows the construction of an embodiment of the detecting apparatus according to the present invention, in which a rotary drum 2 is mounted fixedly on a rotary shaft 1 which is rotated by a movement of a moving body with a magnetic medium 3, which has magnetic signals recorded with magnetic poles N and S of a pitch ⁇ provided at the outer circumferential portion of the rotary drum 2.
  • the magnetic medium 3 in this embodiment consists usually of magnetic powder solidified with a resin, and magnetic poles 31 fixed magnetically to the solidified body.
  • This magnetic medium 3 may consist of a plurality of permanent magnets arranged in order.
  • a magnetic sensor 4, in which MR elements are arranged at predetermined intervals, is fixed in opposition to the magnetic medium 3 with a clearance l g provided therebetween.
  • Reference numeral 41 denotes a substrate, on which the MR elements are fixed, of the sensor.
  • the concrete relation between the magnetic medium 3 and magnetic sensor 4 in Fig. 1 is shown in expansion plan in Fig. 2.
  • the magnetic poles 31 are recorded with a recording pitch ⁇ on the recording medium 3.
  • the magnetic sensor 4 consists of two MR element pairs, a first pair of which is composed of elements R11, R12, and a second pair of which is composed of elements R21, R22.
  • the elements R11, R21 are spaced at ⁇ /6, the elements R11, R12 at ⁇ /2, and the elements R12, R22 at ⁇ /6. Accordingly, the distance between the elements R21, R22 is also ⁇ /2.
  • MR elements are bridge-connected as shown in Fig. 3.
  • the MR elements R11, R12, and the MR elements R22, R21, which are series-connected, respectively, are connected in parallel with each other to a power source, to which MR element pairs a voltage V is applied.
  • the output terminals O1, O2 of the bridge are connected to the positive and negative input terminals of a differential amplifier OPA through resistors R i1 , R i2 .
  • a resistor R f is a feedback resistor. Accordingly, the outputs obtained from the output terminals O1, O2 of the bridge are amplified differentially by the differential amplifier OPA, and an output representative of a detected position appears at an output terminal O0.
  • each MR element on the magnetic sensor 4 varies with respect to the intensity of a magnetic field, the MR element being made by forming a film of a ferromagnetic material, such as NiFe and NiCo on the surface of glass by vapor deposition.
  • the electric resistance of the MR element varies in proportion to the intensity of a magnetic field irrespective of the direction thereof as shown in Fig. 4 but this variation becomes saturated at a certain level.
  • the resistances of the MR elements R11, R21, R12, R22 vary as shown in Figs. 5a to 5d.
  • the waveforms of the resistance variations of the MR elements have short flat portions corresponding to the minimum portions of the resistance.
  • the output voltages v01, v02 from the output terminals O1, O2 of the bridge circuit have distorted signal waveforms as shown by solid lines in Figs. 5e and 5f.
  • one pitch ( ⁇ ) of the magnetic poles 31 corresponds to one cycle of these voltages v01, v02.
  • the distortion of an output voltage, which occurs due to the saturation of the MR elements, from the magnetic sensor can be offset.
  • the variation of fundamental wave components with respect to that of the air gap is as shown by a broken line in Fig. 6. Accordingly, if the MR elements are used within the range C, in which the output variation is very small, the output variation with respect to the air gap also becomes very small.
  • Fig. 7 shows an example of the connection of MR elements, in which the MR elements R21, R22 are connected in the contrary manner as compared with the corresponding MR elements shown in Fig. 3, whereby the phase of the voltage v02 at the output terminal O2 becomes opposite to that of the voltage v01.
  • the two outputs v01, v02 are added simply to each other by the differential amplifier OPA to thereby offset the third harmonic components.
  • Reference letters V R denote an offset compensation voltage, which may be added by dividing a power source voltage V by resistances.
  • Fig. 8 shows an example of three-terminal connection of MR elements, in which the MR elements R11, R21; R12, R22, which are connected in series, respectively, are further connected in series to a power source V with an output terminal O0 connected to an intermediate node as shown in the drawing.
  • the resistance variations of the MR elements are as shown in Figs. 5a to 5d. Accordingly, the resistance of the elements R11+R21 on the upper side of the three terminal connection varies as shown in Fig. 9a, and the resistance of R12+R22 on the lower side thereof as shown in Fig. 9b, so that an output voltage obtained from the output terminal O0 is a sine wave output as shown by a reference letter v0 in Fig. 9c.
  • An amplifier which is not used in this example, may be used in a subsequent stage, whereby DC components can be removed.
  • Figs. 10 to 12 show some examples of arrangement of MR elements, which examples are obtained by further modifying the arrangement of MR elements of Fig. 2.
  • the methods shown in any of Figs. 3, 7 and 8 of connecting MR elements to form an output circuit may be employed in these examples.
  • Fig. 10 shows an example, in which the distance between the elements R11, R12 in the first MR element pair and the distance between the elements R21, R22 in the second MR element pair are set to (1+ 1/2) ⁇ , the relation between the first elements R11, R21 and between the second elements R12, R22 in these MR element pairs being identical with that in the example of Fig. 2.
  • the phase of variations of the resistances of the elements R11, R12; R21, R22 are shifted by 2 ⁇ from those of the variations of the resistances of the corresponding elements in the example of Fig. 2.
  • Fig. 11 shows an example, in which the distances between the first element R11, R21 and between the second elements R12, R22 in the MR element pairs are set to (1+ 1/6) ⁇ , the distances between the elements R11, R12 and between the elements R21, R22 being equal to those ⁇ /2 between the corresponding elements of Fig. 2.
  • the phase of variation of resistances of the elements R11, R21 and the phase of variation of resistances of the elements R12, R22 are shifted by 2 ⁇ from those of variation of resistances of the corresponding elements of Fig. 2.
  • the waveforms of the elements R21, R22 with respect to those of the elements R11, R12 are identical with those of the corresponding elements shown in Figs. 5a to 5d, and these elements operate in the same way as the MR elements arranged as shown in Fig. 2.
  • Fig. 12 shows an example, in which the distances between the first elements R11, R21 and between the second elements R12, R22 in the MR element pairs are set to (1- 1/6) ⁇ , the distances between the elements R11, R12 and between the elements R21, R22 being ⁇ /2 which is equal to the level shown in Fig. 2.
  • the phase of variation of the resistances of the elements R11, R21 and that of variation of the resistances of the elements R12, R22 in this example is 5 ⁇ /3
  • those of variation of the resistances of the corresponding elements of the example of Fig. 2 is ⁇ /3.
  • the phase differences between the elements R11, R21; R12, R22 are 2 ⁇ /3 .
  • the phase of the element R11 is shifted by ⁇ /3, and the relation between the elements R22, R21 is also considered identical. Therefore, the difference between the phases of the voltages v01, v02 at the output terminals O1, O2 in Fig. 3 becomes identical with that between the phases of the voltages v01, v02 in mutually substituted state, the waveforms of which are shown in Fig. 5, so that the level of an output v0 are representative of a detected position becomes equal to that of an output from the example of Fig. 2.
  • the above examples can be summarized as follows.
  • the MR element pairs R11, R21; R12, R22 each of which pairs consists of two MR elements are provided in opposition to a magnetic medium 3 having magnetic poles provided successively with a predetermined pitch ⁇ .
  • the two elements in each MR element pairs are arranged with a distance therebetween set to (m+1/2) ⁇ , wherein m is an integer, and the two MR element pairs have a distance therebetween of (n ⁇ 1/6) ⁇ , wherein n is an integer.
  • These MR elements are connected in the following manner to form an output circuit.
  • Fig. 13 is an expansion plan of an example of a structure having magnetic medium 3 and a magnetic sensor 4, for practicing this method.
  • six magnetic resistance elements R11, R12, R21, R22, R31, R32 are arranged at such intervals that are shown in the drawing in opposition to the magnetic signals spaced with the recording pitch ⁇ .
  • the element R21 is set in a position ⁇ /9 away from the element R11.
  • the elements R21, R31; R12, R22; R22, R32 are also set in positions ⁇ /9 away from each other.
  • the elements R11, R12; R21, R22; R31, R32 are away from each other by ⁇ /2.
  • the MR elements thus arranged are connected as shown in Fig. 14. Namely, the elements R11, R12; R21, R22; R31, R32 are connected in series. They are further connected to a power source V, and outputs are obtained from the respective nodes O1, O2, O3. These three outputs are synthesized and amplified in an amplifier OPA, and an output representative of a detected position is obtained from an output terminal O0.
  • Reference symbols R i1 , R i2 , R i3 denote input resistors for the amplifier, R f a feedback resistor, and V R a voltage for removing a DC bias voltage of an input.
  • the resistances of the MR elements vary.
  • the variations of the resistances of these MR elements are as shown in Figs. 15a to 15f.
  • the voltages v01 to v03 obtained from the output terminals O1 to O3 vary as shown by solid lines v01 to v03 in Figs. 15g to 15i. If these output voltage signals v01 to v03 are decomposed into fundamental waves and higher harmonics, the waves shown by broken lines in the drawings are obtained, which are fundamental waves v011, v021, v031 and third harmonic waves v012, v022, v032. The difference between the phases of the fundamental waves is 2 ⁇ /9 .
  • the difference between the phases of the third harmonic waves v012 to v032 is 2 ⁇ /3 in terms of electric angle thereof. Accordingly, when the voltages v01 to v03 obtained from the output terminals O1 to O2 are added, the third harmonic components becomes zero, and the remainder consists of synthesized fundamental components, a sine wave v0 which is shown in Fig. 15j being obtained from the output terminal O0 of the amplifier OPA.
  • k pairs (k is an integer larger than one) of MR elements each of which pairs consists of two MR elements, are provided in opposition to a magnetic medium having magnetic poles arranged continuously with the predetermined recording pitch ⁇ .
  • the two MR elements in each pair are arranged in positions spaced at (m+1/2) ⁇ , wherein m is an integer, and these MR element pairs are spaced from each other at (n ⁇ 1/3k) ⁇ , wherein n is an integer.
  • These MR elements are connected in the following manner to form an output circuit.
  • the k pairs of voltages are generated so that the third harmonic components therein have a 2 ⁇ /k phase, on the basis of the resistance variation in each MR element, which occurs in accordance with the movement, of the magnetic medium, and these k pairs of voltages are synthesized so as to offset the third harmonic components one another.
  • the distortion of an output waveform due to the saturation of the magnetic resistance elements can be eliminated, so that an output representative of a detected position can be obtained as a signal of a sine waveform.
  • This enables the air gap to be minimized, and the level of an output to thereby increase.
  • the amplitude variation of an output of a fundamental wave can be minimized, a highly accurate position detecting apparatus can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Claims (11)

  1. Gerät zum magnetischen Erfassen der relativen Position oder der Geschwindigkeit von sich bewegenden und stationären Körpern, die ein magnetisches Medium (3) aufweisen, das in entweder einem sich bewegenden Körper oder einem stationären Körper vorgesehen ist, eine Vielzahl magnetischer Pole (31), die kontinuierlich mit einem vorbestimmten Abstand λ an dem magnetischen Medium (3) angeordnet sind, eine Vielzahl magnetoresistiver (MR) Elemente (R₁₁, R₁₂, R₂₁, R₂₂, R₁₁, R₁₂, R₂₁, R₂₂, R₃₁, R₃₂), die an dem anderen sich bewegenden und stationären Körper angeordnet sind, um dem magnetischen Medium (3) gegenüberzustehen, und das geeignet ist, ein magnetisches Feld zu erfassen, daß durch die magnetischen Pole (31) erzeugt ist, und dadurch den elektrischen Widerstand davon zu verändern, und einen Ausgangsschaltkreis (Ri1, Ri2, RF, OPA; VR, Ri1, Ri2, RF, OPA; Ri1, ... Ri3, RF, OPA, VR) der elektrisch mit den MR-Elementen verbunden ist und geeignet ist, die Veränderungen des elektrischen Widerstands jedes MR-Elements in ein elektrisches Signal umzuwandeln, das als ein Signal ausgegeben wird, das die relative Position oder Geschwindigkeit der sich bewegenden und stationären Körner repräsentiert,

    dadurch gekennzeichnet,

    daß die MR-Elemente k Sätze von MR-Elementen paaren (R₁₁, R₁₂; R₂₁, R₂₂; und R₃₁, R₃₂) bilden (wobei k eine ganze Zahl größer als eins ist), wobei zwei MR-Elemente in jedem Paar in Positionen angeordnet sind, die um (m+1/2) λ beabstandet sind, wobei m eine ganze Zahl ist, die MR-Elementenpaare voneinander um (n ± 1/3 k) λ beabstandet sind, wobei n eine ganze Zahl ist, bzw. wobei der Ausgangsschaltkreis k Sätze elektrischer Signale erzeugt, so daß dritte Harmonische (V₀₁₂, V₀₂₂, V₀₁₂, V₀₂₂, V₀₃₂) darin eine Phasendifferenz von 2π/k haben, und die k Sätze elektrischer Signale (V₀₁, v₀₂; V₀₁, V₀₂; V₀₃) sind synthetisiert, um die dritten harmonischen Komponenten gegenseitig zu versetzen, die in den elektrischen Signalen enthalten sind.
  2. Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 1, wobei die MR-Elemente zwei MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) bilden, wobei zwei MR-Elemente in jedem Paar in Positionen angeordnet sind, die um λ/2 beabstandet sind, und wobei die MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) voneinander um λ/6 beabstandet paare (R₁₁, R₁₂ und R₂₁, R₂₂) voneinander um λ/6 beabstandet sind.
  3. Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 1, wobei die MR-Elemente zwei MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) bilden, wobei zwei MR-Elemente in jedem Paar in Positionen angeordnet sind, die um 3 λ/2 beabstandet sind, und wobei die MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) voneinander um λ/6 beabstandet sind.
  4. Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 1, wobei die MR-Elemente zwei MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) bilden, wobei zwei MR-Elemente in jedem Paar in Positionen angeordnet sind, die um λ/2 beabstandet sind, und wobei die MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) voneinander um 7 λ/6 beabstandet sind.
  5. Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 1, wobei die MR-Elemente zwei MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) bilden, wobei zwei MR-Elemente in jedem Paar in Positionen angeordnet sind, die um λ/2 beabstandet sind, und wobei die MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) voneinander um 5 λ/6 beabstandet sind.
  6. Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 1, wobei die MR-Elemente drei MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂ und R₃₁, R₃₂) bilden, wobei zwei MR-Elemente in jedem Paar in Positionen angeordnet sind, die voneinander um λ/2 beabstandet sind, und wobei die MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂ und R₃₁, R₃₂) voneinander um λ/9 beabstandet sind.
  7. Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 1, wobei die MR-Elemente zwei MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) bilden, und wobei der Ausgangsschaltkreis (VR, Ri1, Ri2, OPA, RF) aus überbrückten MR-Elementenpaaren besteht.
  8. Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 7, wobei zwei MR-Elemente in jedem MR-Elementenpaar (R₁₁, R₁₂ und R₂₁, R₂₂) seriell verbunden sind, wobei die zwei Paare seriell verbundener MR-Elemente mit einer Leistungsquelle (VR) parallel verbunden sind, ein elektrisches Signal, das von einem Knoten jedes der zwei Paare seriell verbundener MR-Elemente erhalten wird, in einen Differentialverstärker (OPA) eingegeben wird und ein Ausgang (OO) von dem Differentialverstärker (OPA) als ein Signal abgleitet wird, das die Position oder Geschwindigkeit des sich bewegenden Körpers repräsentiert.
  9. Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 8, wobei die MR-Elemente in den zwei Paaren seriell verbundener MR-Elemente so verbunden sind, daß die Phasen der dritten harmonischen Komponenten, die in den elektrischen Signalen enthalten sind, die von den Knoten davon erhalten werden, entgegengesetzt zueinander werden, und daß die elektrischen Signale miteinander addiert werden.
  10. Ein Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 9, wobei die addierten elektrischen Signale in einem Anschluß des Verstärkers (DPA) eingegeben werden, und zwar mit einer Offsetspannung (VR), die an den anderen Anschluß davon angelegt ist.
  11. Gerät zum magnetischen Erfassen der Position oder Geschwindigkeit eines sich bewegenden Körpers nach Anspruch 1, wobei die MR-Elemente zwei MR-Elementenpaare (R₁₁, R₁₂ und R₂₁, R₂₂) bilden, der Ausgangsschaltkreis (VR, OPA, Ri1, Ri2, RF) einen ersten Anschluß aufweist, der durch ein elektrisches Verbinden erster Elemente in erste und zweite MR-Elementenpaare miteinander gebildet wird, so daß die dritten harmonischen Komponenten, die in den elektrischen Signalen enthalten sind, die in den jeweiligen Elementen auftreten, zueinander versetzt sind, und eine zweite Verbindung aufweist, die durch ein elektrisches Verbinden zweiter Elemente in die ersten und zweiten MR-Elementenpaare miteinander gebildet wird, so daß die dritten harmonischen Komponenten, die in den elektrischen Signalen enthalten sind, die in den jeweiligen Elementen auftreten, zueinander versetzt sind, und die zwei Anschlüsse miteinander seriell verbunden sind, und desweiteren mit der Leistungsquelle, um das Signal zu erhalten, das die Position oder Geschwindigkeit des sich bewegenden Körpers darstellt, und zwar von einem Knoten der zwei seriell verbundenen Anschlüsse.
EP87102740A 1986-03-05 1987-02-26 Vorrichtung zur magnetischen Ermittlung von Position oder Geschwindigkeit eines bewegten Körpers Expired EP0235750B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61046185A JPS62204118A (ja) 1986-03-05 1986-03-05 磁気的に位置あるいは速度を検出する装置
JP46185/86 1986-03-05

Publications (3)

Publication Number Publication Date
EP0235750A2 EP0235750A2 (de) 1987-09-09
EP0235750A3 EP0235750A3 (en) 1989-07-05
EP0235750B1 true EP0235750B1 (de) 1992-05-13

Family

ID=12739981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87102740A Expired EP0235750B1 (de) 1986-03-05 1987-02-26 Vorrichtung zur magnetischen Ermittlung von Position oder Geschwindigkeit eines bewegten Körpers

Country Status (5)

Country Link
US (1) US4818939A (de)
EP (1) EP0235750B1 (de)
JP (1) JPS62204118A (de)
CA (1) CA1287985C (de)
DE (1) DE3778931D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602593A1 (de) * 2011-12-05 2013-06-12 Sensitec GmbH Sensor zum Messen eines periodischen Signals mit mehreren Harmonien
EP2602594A1 (de) * 2011-12-05 2013-06-12 NTN-SNR Roulements Sensor zum Messen eines periodischen Signals mit mehreren Harmonien

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067056B2 (ja) * 1988-04-06 1994-01-26 日本ビクター株式会社 位置及び速度検出装置
JPH01297507A (ja) * 1988-05-26 1989-11-30 Hitachi Ltd 磁気的に位置や速度を検出する装置
DE3870879D1 (de) * 1988-10-13 1992-06-11 Siemens Ag Anordnung zur beruehrungsfreien erfassung der drehzahl eines rotierenden zahnrades.
JPH02264818A (ja) * 1989-04-05 1990-10-29 Seiko Epson Corp 磁気エンコーダー
ATE120145T1 (de) * 1989-11-01 1995-04-15 Electromotive Systems Inc Vorrichtung und verfahren zur bestimmung eines oder mehrerer betriebsdaten eines schienengebundenen fahrzeuges.
FR2659437B1 (fr) * 1990-03-07 1994-03-25 Caoutchouc Manufacture Plastique Moyen de reperage lineaire de longueur, de vitesse ou de positionnement pour article souple de grande longeur.
JP2787783B2 (ja) * 1990-06-08 1998-08-20 ソニー・プレシジョン・テクノロジー株式会社 位置検出装置
JPH04113222A (ja) * 1990-09-04 1992-04-14 Hitachi Metals Ltd 塗布型磁気記録体と磁気エンコーダ
FR2669728B1 (fr) * 1990-11-28 1993-02-12 Skf France Dispositif a capteur actif pour la surveillance de l'etat de pneumatique d'une roue de vehicule et la mesure des caracteristiques de rotation de la roue.
FR2670889B1 (fr) * 1990-11-30 1995-05-24 Skf France Escaliers bois cremaillere anglaise, poteaux, lisses, gardecorps a fabrication et pose simplifiee.
US5208535A (en) * 1990-12-28 1993-05-04 Research Development Corporation Of Japan Mr position detecting device
JPH04282417A (ja) * 1991-03-08 1992-10-07 Hitachi Metals Ltd 磁気センサ
JP2990822B2 (ja) * 1991-03-14 1999-12-13 ソニー・プレシジョン・テクノロジー株式会社 磁気センサ
JP2924236B2 (ja) * 1991-03-20 1999-07-26 ソニー・プレシジョン・テクノロジー株式会社 磁気センサおよび位置検出装置
JP2978582B2 (ja) * 1991-03-29 1999-11-15 株式会社小松製作所 電磁気特性変化部の検出方法および装置
EP0541829B1 (de) * 1991-11-04 1995-01-11 Dr. Johannes Heidenhain GmbH Vorrichtung zur Erzeugung oberwellenfreier periodischer Signale
DE69231388T2 (de) * 1991-11-29 2001-01-25 Cosmo System Corp., Matsumoto Positionsdetektor bei einer Transportvorrichtung und Antriebsregler für ein Transportelement
JP2720681B2 (ja) * 1992-01-06 1998-03-04 株式会社村田製作所 移動体の移動検出装置
US5293125A (en) * 1992-01-17 1994-03-08 Lake Shore Cryotronics, Inc. Self-aligning tachometer with interchangeable elements for different resolution outputs
JP3259316B2 (ja) * 1992-02-07 2002-02-25 ソニー株式会社 位置検出装置、レンズ装置、ビデオカメラ
US5336994A (en) * 1992-11-20 1994-08-09 Lake Shore Cryotronics, Inc. Magneto-resistive tachometer assembly with reversible cover and related method
US5495758A (en) * 1993-06-17 1996-03-05 Lake Shore Cryotronics, Inc. Tachometer assembly with integral internal wrench
EP0729562B1 (de) * 1993-11-17 1998-04-29 Eisschiel, Heinz Positionsmelder für die automation
AT407196B (de) * 1993-11-17 2001-01-25 Amo Automatisierung Messtechni Positionsmelder für automatisierung
US5514955A (en) * 1994-03-11 1996-05-07 Lake Shore Cryotronics, Inc. Slim profile digital tachometer including planar block and rotor having spokes and clamp
US5602681A (en) * 1994-04-11 1997-02-11 Sony Corporation Lens barrel for a video camera, and linear feeding system thereof
US5680042A (en) * 1994-12-30 1997-10-21 Lake Shore Cryotronics, Inc. Magnetoresistive sensor with reduced output signal jitter
US6246233B1 (en) 1994-12-30 2001-06-12 Northstar Technologies Inc. Magnetoresistive sensor with reduced output signal jitter and temperature compensation
JPH08321984A (ja) * 1995-03-22 1996-12-03 Sony Corp 自動追尾撮像装置
DE59508231D1 (de) 1995-06-22 2000-05-31 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung
JP3610420B2 (ja) * 1996-10-22 2005-01-12 日立金属株式会社 磁気センサ
US6097183A (en) * 1998-04-14 2000-08-01 Honeywell International Inc. Position detection apparatus with correction for non-linear sensor regions
US6222899B1 (en) 1998-07-30 2001-04-24 The United States Of America As Represented By The Secretary Of The Navy System for determining the deployed length of a flexible tension element
DE10041087A1 (de) * 2000-08-22 2002-03-07 Bosch Gmbh Robert Magnetoresistiver Sensor zur Abtastung eines magnetischen Multipolrades
US6960974B2 (en) * 2002-11-14 2005-11-01 Honeywell International Inc. Magnetoresistive smart switch
DE102005009923B4 (de) * 2005-03-04 2016-11-24 Sensitec Gmbh Magnetoresistiver Sensor zur Bestimmung einer Position des Sensors
JP2008128740A (ja) 2006-11-17 2008-06-05 Furukawa Electric Co Ltd:The 回転センサ
JP4321611B2 (ja) * 2007-03-13 2009-08-26 オムロン株式会社 スイッチ
DE102007029819B4 (de) * 2007-06-28 2012-02-02 Infineon Technologies Ag Sensor und Sensoranordnung
GB0903550D0 (en) 2009-03-02 2009-04-08 Rls Merilna Tehnika D O O Position encoder apparatus
DE102010019485B4 (de) * 2010-05-05 2012-10-31 Austriamicrosystems Ag Sensoranordnung und Verfahren zum Betreiben einer Sensoranordnung
DE102010019484B9 (de) * 2010-05-05 2012-12-06 Austriamicrosystems Ag Sensoranordnung und Verfahren zum Betreiben einer Sensoranordnung
JP5762567B2 (ja) 2011-12-20 2015-08-12 三菱電機株式会社 回転角度検出装置
JP2015114138A (ja) * 2013-12-10 2015-06-22 日本電産サンキョー株式会社 磁気センサ装置、磁気式エンコーダ装置、および磁気センサ
US9733317B2 (en) * 2014-03-10 2017-08-15 Dmg Mori Seiki Co., Ltd. Position detecting device
FR3039269B1 (fr) * 2015-07-21 2017-08-11 Electricfil Automotive Capteur de mesure de la position absolue d'un mobile
JP2018054510A (ja) * 2016-09-29 2018-04-05 トヨタ自動車株式会社 角速度測定装置および相対角速度測定装置
ES2923414T3 (es) 2020-05-06 2022-09-27 Heidenhain Gmbh Dr Johannes Dispositivo magnético de medición de posición
CN115265605B (zh) * 2021-12-01 2024-03-12 苏州纳芯微电子股份有限公司 传感器电路及运动数据检测装置
CN115077571A (zh) * 2021-12-09 2022-09-20 苏州纳芯微电子股份有限公司 运动数据检测装置及其传感器电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045804B2 (ja) * 1978-02-28 1985-10-12 日本電気株式会社 角度検出器
JPS5976265A (ja) * 1982-10-26 1984-05-01 Sharp Corp インクジエツト記録装置
US4663588A (en) * 1983-07-27 1987-05-05 Sony Magnescale Incorporation Detector for use for measuring dimensions of an object
EP0151002B1 (de) * 1984-01-25 1991-08-28 Matsushita Electric Industrial Co., Ltd. Magnetmessaufnehmer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602593A1 (de) * 2011-12-05 2013-06-12 Sensitec GmbH Sensor zum Messen eines periodischen Signals mit mehreren Harmonien
EP2602594A1 (de) * 2011-12-05 2013-06-12 NTN-SNR Roulements Sensor zum Messen eines periodischen Signals mit mehreren Harmonien

Also Published As

Publication number Publication date
DE3778931D1 (de) 1992-06-17
EP0235750A3 (en) 1989-07-05
CA1287985C (en) 1991-08-27
EP0235750A2 (de) 1987-09-09
JPS62204118A (ja) 1987-09-08
US4818939A (en) 1989-04-04

Similar Documents

Publication Publication Date Title
EP0235750B1 (de) Vorrichtung zur magnetischen Ermittlung von Position oder Geschwindigkeit eines bewegten Körpers
US4603365A (en) Magnetic detection apparatus
US6300758B1 (en) Magnetoresistive sensor with reduced output signal jitter
US4725776A (en) Magnetic position detector using a thin film magnetoresistor element inclined relative to a moving object
KR910006670B1 (ko) 개량된 비 접촉형 패턴 센서
US5621320A (en) Magnetoresistance type sensor device for detecting change of magnetic field
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
US5680042A (en) Magnetoresistive sensor with reduced output signal jitter
US4649342A (en) Apparatus using inclined sensor for detecting relative displacement
US4791366A (en) Apparatus including a pair of angularly spaced sensors for detecting angle of rotation of a rotary member
JP2529960B2 (ja) 磁気的位置検出装置
USRE34443E (en) Apparatus magnetically detecting position or speed of moving body utilizing bridge circuit with series connected MR elements
JP3047099B2 (ja) 位置検出装置
US5043660A (en) Signal processing circuit for movement tracking encoder including positive and negative feedback means to reduce distortion
US6307366B1 (en) Object position sensor using magnetic effect device
JPH1019602A (ja) 磁気エンコーダ
JPH0552583A (ja) 磁気エンコーダ
JPS63205514A (ja) 磁気的に位置や速度を検出する装置
JPH0618279A (ja) 位置検出装置
JPH0432969B2 (de)
JPH0682268A (ja) 磁気式位置検出装置
JP2767281B2 (ja) 磁気センサ
JP2764521B2 (ja) 回転角度検出装置
JPH0348119A (ja) 位置検出装置
JPH04223218A (ja) 磁気センサ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870226

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19910114

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3778931

Country of ref document: DE

Date of ref document: 19920617

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030124

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030310

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040226