EP0198570B1 - Verfahren zur Herstellung dünnwandiger Röhren aus einer Zirkonium-Niob-Legierung - Google Patents

Verfahren zur Herstellung dünnwandiger Röhren aus einer Zirkonium-Niob-Legierung Download PDF

Info

Publication number
EP0198570B1
EP0198570B1 EP86300259A EP86300259A EP0198570B1 EP 0198570 B1 EP0198570 B1 EP 0198570B1 EP 86300259 A EP86300259 A EP 86300259A EP 86300259 A EP86300259 A EP 86300259A EP 0198570 B1 EP0198570 B1 EP 0198570B1
Authority
EP
European Patent Office
Prior art keywords
niobium
zirconium
per cent
tube shell
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86300259A
Other languages
English (en)
French (fr)
Other versions
EP0198570A2 (de
EP0198570A3 (en
Inventor
George Paul Sabol
Samuel Gilbert Mcdonald Iii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24785106&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0198570(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of EP0198570A2 publication Critical patent/EP0198570A2/de
Publication of EP0198570A3 publication Critical patent/EP0198570A3/en
Application granted granted Critical
Publication of EP0198570B1 publication Critical patent/EP0198570B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Definitions

  • This invention relates to a process for fabricating thin-walled tubing such as nuclear fuel cladding, from a zirconium-niobium alloy such that the alloys of the resultant products have a particular microstructure which enables the material to resist corrosion in high temperature aqueous environments.
  • Zero-Nb alloys have been traditionally of interest to the nuclear industry because of their high strengths. It is this feature, in conjuction with reasonably good corrosion resistance, which ultimately led to the selection of the alloy of zirconium containing 2.5 per cent by weight niobium, as the standard pressure tube material for present generation Canadian Deuterium Uranium (CANDU) reactors. Although it was orginally believed that the zirconium-niobium alloys had inferior resistance to irradiation enhanced corrosion relative to existing alloys, such as Zircaloy-2 or Zircaloy-4, it ultimately became apparent that they actually had superior in-pile corrosion properties when properly heat treated, as described by J. E. LeSurf, ASTM STP-458, p. 286. As a result of this finding, there has been increasing interest in zirconium-niobium alloys as potential fuel cladding materials in future generation, high performance, light water reactors.
  • zirconium-niobium alloys can be fabricated into thin-walled tubing, of about 1.106 mm (0.040 inch) or less in wall thickness, which exhibits excellent corrosion resistance, by a process that does not require extensively long final annealing times, by the use of relatively low temperature anneals between cold working steps and a final low temperature anneal.
  • thin-walled tubing can be fabricated that has a microstructure where second phase beta- niobium particles are homogeneously dispersed in the zirconium matrix in extremely fine particle size to provide excellent corrosion resistance of the resultant article under both in-pile and out-of-pile conditions.
  • the present invention resides in a process for fabricating thin-walled tubing having a wall thickness of about 1 mm or less from a zirconium-niobium alloy containing from 1 to 2.5 per cent by weight niobium as homogeneously dispersed finely divided particles and optionally up to 0.5% by weight of Cu, Fe, Mo, Ni, W, V or Cr as a third element, balance, apart from impurities, zirconium, characterized by beta-treating a zirconium-niobium alloy billet containing from 1 to 2.5 per cent by weight niobium; extruding said beta-treated billet at a temperature no higher than 650°C to form a tube shell; further deforming said tube shell by cold working the same in a plurality of cold working stages; annealing said tube shell, between each of said stages of cold working, at a temperature below 650°C; and final annealing the resultant tubing at a temperature below 600°C, so as to produce a microstructure of
  • the fabrication of thin-walled tubing from a zirconium-niobium alloy is effected according to the present invention with the production of tubing exhibiting excellent corrosion resistance and resistance to hydride formation.
  • zirconium alloys containing 1.0 per cent by weight and 2.5 per cent by weight niobium.
  • the zirconium-niobium alloys may contain a minor amount, up to 0.5 per cent by weight of a third element, such as copper, iron, molybdenum, nickel, tungsten, vanadium and chromium.
  • a third element such as copper, iron, molybdenum, nickel, tungsten, vanadium and chromium.
  • An example of such an alloy is one containing zirconium with 2.5 per cent niobium and 0.5 per cent copper.
  • the alloys are first subjected to a beta-treatment by heating the alloy to form 950 ⁇ 1000°C and water-quenching the same to a temperature below the alpha + beta to alpha transus temperature.
  • the billet is then prepared for extrusion by drilling an axial hole along the centre line of the billet, machining the outside diametre to desired dimensions, and applying a lubricant to the surfaces of the billet.
  • the billet diameter is then reduced by extrusion at a lower than covnentional temperature, below 700°C, through a frustoconical die and over a mandrel.
  • a beta-anneal of the extruded tube shell may then be effected, depending upon the alloy, by heating to form 85G-1050°C, followed by rapid cooling.
  • the billet may then be cold worked by pilgering, at a source of primary fabrication, to reduce the wall thickness and outside diameter.
  • This intermediate production is called a TREX (Tube Reduced Extrusion), which may then be sent to a tube mill for fabrication by cold working, intermediate low temperature annealing, and a final anneal under the fabricating steps of the present invention to produce the desired thin-walled tubing.
  • the material is preferably cold worked by pilgering, and 3 to 5 stages of cold working effected, preferably 3 to 4 stages.
  • the present invention produces thin-walled zirconium alloy tubing wherein the alloying elements are homogeneously dispersed throughout the zirconium in a finely divided state.
  • the particles, homogeneously dispersed are of an average particle size below 800 angstroms (80 nm) and preferably the average particle size is below about 500 angstroms (50 nm).
  • a niobium-containing zirconium alloy (A) ingot containing 1.0 per cent by weight niobium and the balance zirconium, was conventionally broken down in billets of about 152.4 mm (six inches) in diameter (Step 1).
  • a 152.4 mm (six-inch) diameter billet was then given a beta treatment, Step 2, which comprised holding the billet in a furnace at about 968-996°C (1775-1825°F) for about fifteen minutes and then water quencing the billet.
  • the beta-treated billet was machined, bore-holed and inspected in preparation for extrusion.
  • the hollow niobium-containing zirconium alloy billet was then heated to about 649°C (1200°F) and extruded (Step 3) to a hollow tube having an outside diameter of 163.5 mm (2.5 inches) and a wall thickness of 10.92 mm (0.43 inch).
  • the extruded hollow tube was beta-annealed (Step 4) at 954°C (1750°F) for a period of fifteen minutes in preparation for a first cold working step (a pilgering reduction), (Step 5).
  • the beta-annealed extrusion was pilgered in Step 5 to a TREX having an outside diamtere of 1.75 inches and a wall thickness of 0.3 inch.
  • the TREX was then annealed, (Step 6), at 500°C (932°F) for a period of 8 hours.
  • Step 7 The tube shell was then further annealed and cold worked according to the following sequence.
  • the tube shell was annealed, (Step 8), at about 524°C (975°F) for 7.5 hours and further cold pilgered, (Step 9) to reduce the tube shell to one having an outside diameter of 22,225 mm (0.875 inch) and a wall thickness of 2.16 mm (0.085 inch).
  • This tube shell was again annealed at about 524°C (975°F) for 7.5 hours, (Step 10).
  • the annealed tube shell was again further cold pilgered, (Step 11), to give a tube shell having an outside diameter of 15.29 mm (0.602 inch) and a wall thickness of 1,14 mm (0.045 inch).
  • a further cold working anneal, (Step 12), was effected at about 524°C (975°F) for 7.5 hours and the tube shell finally cold pilgered, (Step 13), to give a tube having an outside diameter of 10.74 mm (0.423 inch) and a wall thickness of 0.635 mm (0.025 inch).
  • the tube was then subjected to a final anneal at about 427°C (800°F) for 4 hours, (Step 14).
  • the cold working anneal for the tubes formed from composition B were effected at about 580°C (1076°F) for 8 hours (rather than 524°C (975°F) for 7.5 hours as with A).
  • the remaining treatment steps, including the final anneal were the same as those used with composition A.
  • the TREX was then annealed in Step 6 at 600°C (1112°F) for a period of 8 hours.
  • the material was therefore subjected to an additional anneal for 3 hours at about 685°C (1265°F) and the material then subjected to Step 7 with successful pilgering.
  • the first cold working anneal, Step 8 was carried out at about 593°C (1100°F) for a period of 8 hours.
  • Step 13 the tube was subjected to a final anneal, Step 14, for 7.5 hours at about 480°C (896°F).
  • niobium-containing zirconium alloy tubes of the present invention have in-pile corrosion resistance superior to that of Zircaloy-4. This is a property which, in the past, has been attributed only to "heat treated” 2.5% Nb-zirconium alloys (see “The Effect of Aging and Irradiation on the Corrosion of Zr-2.5 wt% Nb", V. F. Urbanic, J. E. LeSurf and A. B. Johnson, Jr.: Corrosion 31 (1975) 15).
  • FIG. 2 Further evidence of the superiority of the tubing prepared according to the present invention is illustrated in Figure 2 where two groups of corrosion data are presented for a zirconium alloy containing 1 per cent by weight niobium.
  • the first group of data (dash lines: 350,400 and 450°C) were reported for sheet material which was fabricated via standard Russian processing techniques (see A. A. Kiselev, et al., AECL-1724, 1963).
  • the second group of data solid lines: 360 and 427°C
  • the superiority of the present tubing is demonstrated by the fact that the same exhibits lowr weight gains at 360 and 427°C than the Russion material does, even though the latter was exposed at lower corrosion temperatures 350 and 400°C respectively.
  • the present processing provides uniform distribution of very fine precipitate particles in the microstructure of niobium-containing zirconium alloys.
  • the microstructure of the fully annealed tubing is illustrated in Figures 3A, B, C and D for composition "A”; 4A, B, C and D for composition "B”; and 5A, B, C and D for composition "C”.
  • TEM transmission electron micrographs

Claims (10)

1. Ein Verfahren zur Herstellung dünnwandiger Röhren mit einer Wandstärke von etwa 1 mm oder weniger, bestehend aus einer Zirkonium-Niobium-Legierung, in der 1 bis 2,5 Gew.-% fein verteilte Niobium-Partikel homogen dispergiert sind und die wahlweise bis zu 0,5 Gew.-% Kupfer, Eisen, Molybdän, Nickel, Wolfram, Vanadium oder Chrom als drittes Element enthält, dadurch gekennzeichnet, dass man einen Barren aus Zirkonium-Niobium-Legierung, die 1 bis 2,5 Gew.-% Niobium enthält, einer Beta-Behandlung unterwirft; diese beta-behandelten Barren bei einer Temperatur von nicht mehr als 650°C extrudiert und eine Rohrhülse bildet; weiter diese Rohrhülse in mehreren Kaltbearbeitungsstufen kaltverformt; wobei zwischen jeder Kaltbearbeitungsstufe die Rohrhülse bei einer Temperatur unter 650°C vergütet wird; und eine Endvergütung der enhaltenen Rohrhülse bei einer Temperatur unter 600°C erfolgt, so dass eine Mikrostruktur des Materials gebildet wird, in dem Niobium-Partikel von unter etwa 800 Anström (80 nm) homogen dispergiert sind.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zirkonium-Niobium-Legierung 1 oder 2,5 Gew.-% Niobium enthält.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Vergütung der Rohrhülse bei einer Temperatur von 500° bis 600°C erfolgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Vergütung der Rohrhülse bei einer Temperatur von etwa 524°C übber etwa 7 1/1 Sunden erfolgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Endvergütung bei einer Temperatur unter 500°C erfolgt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Endvergütung bei einer Temperatur von etwa 427°C über etwa 4 Stunden erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass anschließend an das Extrudieren und vor der weiteren Verformung die Rohrhülse durch Erhitzen bei einer Temperatur im Bereich von 850°C bis 1050°C beta-vergütet und sehr schnell wird.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zirkonium-Niobium-Legierung 2,5 Gew.-% Niobium und 0,5 Gew.-% Kupfer enthält und dass die erste Vergütung bei einer Temperatur von etwa 480°C über 7,5 Stunden erfolgt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die weitere Verformung der Rohrhülse in drei bis fünf Stufen erfolgt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die weitere Verformung der Rohrhülse durch Pilgern erfolgt.
EP86300259A 1985-01-22 1986-01-16 Verfahren zur Herstellung dünnwandiger Röhren aus einer Zirkonium-Niob-Legierung Expired - Lifetime EP0198570B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69354685A 1985-01-22 1985-01-22
US693546 1991-04-30

Publications (3)

Publication Number Publication Date
EP0198570A2 EP0198570A2 (de) 1986-10-22
EP0198570A3 EP0198570A3 (en) 1987-10-14
EP0198570B1 true EP0198570B1 (de) 1990-08-29

Family

ID=24785106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86300259A Expired - Lifetime EP0198570B1 (de) 1985-01-22 1986-01-16 Verfahren zur Herstellung dünnwandiger Röhren aus einer Zirkonium-Niob-Legierung

Country Status (4)

Country Link
EP (1) EP0198570B1 (de)
JP (1) JPS61210166A (de)
KR (1) KR930009986B1 (de)
ES (1) ES8708021A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040587A1 (en) * 2002-10-30 2004-05-13 Westinghouse Electric Sweden Ab Method, use and device concerning cladding tubes for nuclear fuel and a fuel assembly for a nuclear pressure water reactor
EP1225243B2 (de) 2001-01-19 2013-09-04 Korea Atomic Energy Research Institute Verfahren zur Herstellung eines Bleches oder eines Rohres aus Niob entaltenden Zirkonium-Legierung für Kernbrennstoff mit hohem Abbrand
KR101630403B1 (ko) 2016-01-27 2016-06-14 한전원자력연료 주식회사 다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649023A (en) * 1985-01-22 1987-03-10 Westinghouse Electric Corp. Process for fabricating a zirconium-niobium alloy and articles resulting therefrom
JPS62180047A (ja) * 1986-02-03 1987-08-07 Hitachi Ltd ジルコニウム基合金部材の製造法
SE463790B (sv) * 1989-10-27 1991-01-21 Sandvik Ab Metod foer framstaellning av kapslingsroer foer braenslestavar i kaernreaktorer
JPH05500539A (ja) * 1990-08-03 1993-02-04 テラダイン インダストリーズ、インコーポレイテッド 良好な微細構造及び物性を有するジルカロイ粉砕生成物の成形
FR2688232B1 (fr) * 1992-03-04 1994-04-22 Cezus Co Europ Zirconium Procede de fabrication de tubes a base de zirconium formes de couches de composition differente.
US5266131A (en) * 1992-03-06 1993-11-30 Westinghouse Electric Corp. Zirlo alloy for reactor component used in high temperature aqueous environment
US20020159559A1 (en) * 2001-01-09 2002-10-31 Takeshi Isobe Fuel cladding pipe made of Zr alloy for nuclear reactor
EP1771591B1 (de) * 2004-07-06 2016-12-07 Westinghouse Electric Sweden AB Brennstoffkasten in einem siedewasser-kernreaktor
SE528120C2 (sv) 2004-07-06 2006-09-05 Westinghouse Electric Sweden Förfarande för framställning av plåt för användning i en kokarvattenkärnreaktor, plåt samt förfarande för framställning av bränslebox, samt bränslebox
CN103650659B (zh) * 2005-12-27 2010-03-10 西北有色金属研究院 一种核反应堆用锆基合金板材的制备方法
ITMI20061223A1 (it) * 2006-06-26 2007-12-27 Snam Progetti Tubo bimetallico resistente alla corrosione e suo utilizzo in apparecchiature a fascio tubiwero
SE530673C2 (sv) 2006-08-24 2008-08-05 Westinghouse Electric Sweden Vattenreaktorbränslekapslingsrör
KR20080074568A (ko) 2007-02-09 2008-08-13 한국원자력연구원 우수한 내식성을 갖는 고농도 철 함유 지르코늄 합금조성물 및 이의 제조방법
KR100999387B1 (ko) * 2008-02-29 2010-12-09 한국원자력연구원 다양한 산소화합물 및 석출상의 제어를 통한 우수한내식성을 갖는 지르코늄 합금 조성물 및 이의 제조방법
KR101552514B1 (ko) 2014-04-25 2015-09-14 한전원자력연료 주식회사 냉간 필거 압연기의 필거 다이 조립체의 갭 조절장치
CN104550311B (zh) * 2014-12-05 2017-06-13 宁夏东方钽业股份有限公司 一种生产超导铌管材的方法
CN109692880B (zh) * 2018-12-19 2021-01-01 西部超导材料科技股份有限公司 一种Zr-2.5Nb合金棒材及其挤压加工方法
KR102324087B1 (ko) * 2019-12-18 2021-11-10 한전원자력연료 주식회사 페라이트계 합금 및 이를 이용한 핵연료 피복관의 제조방법
CN112775203B (zh) * 2020-12-23 2024-01-19 西部新锆核材料科技有限公司 一种锆或锆合金挤压型材的制备方法
CN113201666A (zh) * 2021-04-08 2021-08-03 中广核研究院有限公司 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管
CN113976657B (zh) * 2021-10-21 2024-04-23 西安赛特思迈钛业有限公司 一种超大口径钛合金薄壁无缝管材的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2894866A (en) * 1958-01-21 1959-07-14 Marion L Picklesimer Method for annealing and rolling zirconium-base alloys
DE1207096B (de) * 1961-03-23 1965-12-16 Euratom Verfahren zur Verbesserung der Korrosionsbestaendigkeit von Zirkoniumlegierungen
GB988069A (en) * 1962-09-26 1965-04-07 Imp Metal Ind Kynoch Ltd Improvements in or relating to zirconium-base alloys
CA1025335A (en) * 1972-09-05 1978-01-31 Ake S.B. Hofvenstam Method of making tubes and similar products of a zirconium alloy
EP0071193B1 (de) * 1981-07-29 1988-06-01 Hitachi, Ltd. Verfahren zur Herstellung einer Legierung auf der Basis von Zirkonium
CA1214978A (en) * 1982-01-29 1986-12-09 Samuel G. Mcdonald Zirconium alloy products and fabrication processes
US4649023A (en) * 1985-01-22 1987-03-10 Westinghouse Electric Corp. Process for fabricating a zirconium-niobium alloy and articles resulting therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1225243B2 (de) 2001-01-19 2013-09-04 Korea Atomic Energy Research Institute Verfahren zur Herstellung eines Bleches oder eines Rohres aus Niob entaltenden Zirkonium-Legierung für Kernbrennstoff mit hohem Abbrand
WO2004040587A1 (en) * 2002-10-30 2004-05-13 Westinghouse Electric Sweden Ab Method, use and device concerning cladding tubes for nuclear fuel and a fuel assembly for a nuclear pressure water reactor
US7473329B2 (en) 2002-10-30 2009-01-06 Westinghouse Electric Sweden Ab Method, use and device concerning cladding tubes for nuclear fuel and a fuel assembly for a nuclear pressure water reactor
KR101630403B1 (ko) 2016-01-27 2016-06-14 한전원자력연료 주식회사 다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법

Also Published As

Publication number Publication date
JPS61210166A (ja) 1986-09-18
KR930009986B1 (ko) 1993-10-13
EP0198570A2 (de) 1986-10-22
KR860005894A (ko) 1986-08-16
ES551049A0 (es) 1987-09-01
ES8708021A1 (es) 1987-09-01
EP0198570A3 (en) 1987-10-14

Similar Documents

Publication Publication Date Title
EP0198570B1 (de) Verfahren zur Herstellung dünnwandiger Röhren aus einer Zirkonium-Niob-Legierung
JP2575644B2 (ja) スズおよび第3の合金元素を含有するジルコニウムーニオブ合金からなる物品の製造方法
US4450020A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
US4584030A (en) Zirconium alloy products and fabrication processes
EP1225243B2 (de) Verfahren zur Herstellung eines Bleches oder eines Rohres aus Niob entaltenden Zirkonium-Legierung für Kernbrennstoff mit hohem Abbrand
US5437747A (en) Method of fabricating zircalloy tubing having high resistance to crack propagation
US4689091A (en) Process for producing zirconium-based alloy
KR100205916B1 (ko) 지르코늄 합금재료 처리방법 및 지르코늄 합금 가공물 생산방법
US4450016A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
US6811746B2 (en) Zirconium alloy having excellent corrosion resistance and mechanical properties for nuclear fuel cladding tube
EP1111623B1 (de) Zirkonium-Niob-Zinn-Legierungen für Kernreaktorbrennstäbe und Bauteile, die einen hohen Abbrand ermöglichen
EP0085553B1 (de) Herstellungsverfahren für Zirkoniumlegierungen
JPH08239740A (ja) 核燃料集合体用の管の製造方法及びこれによって得られる管
US5245645A (en) Structural part for a nuclear reactor fuel assembly and method for producing this structural part
US4360389A (en) Zirconium alloy heat treatment process
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US5835550A (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
JPS6234095A (ja) 核燃料被覆管
CA1080513A (en) Zirconium alloy heat treatment process and product
SE513488C2 (sv) Sätt att tillverka rör av zirkoniumbaslegering för kärnreaktorer och användning av sättet vid tillverkning av sådana rör
JPS5825467A (ja) ジリコニウム基合金のクラツド管の製造方法
JPS5825466A (ja) ジリコニウム基合金のクラツド管の製造方法
US4717434A (en) Zirconium alloy products
JPH03209191A (ja) 核燃料棒用クラッドチューブの製法
JP2921783B2 (ja) 水素遅延破壊抵抗性ジルコニウム合金無継目圧力管とその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE FR GB IT

17P Request for examination filed

Effective date: 19880411

17Q First examination report despatched

Effective date: 19890421

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE FR GB IT

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
ITTA It: last paid annual fee
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19910527

Opponent name: G.I.E. FRAGEMA

Effective date: 19910524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921215

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930105

Year of fee payment: 8

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19930115

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 930115