EP0198570A2 - Verfahren zur Herstellung dünnwandiger Röhren aus einer Zirkonium-Niob-Legierung - Google Patents
Verfahren zur Herstellung dünnwandiger Röhren aus einer Zirkonium-Niob-Legierung Download PDFInfo
- Publication number
- EP0198570A2 EP0198570A2 EP86300259A EP86300259A EP0198570A2 EP 0198570 A2 EP0198570 A2 EP 0198570A2 EP 86300259 A EP86300259 A EP 86300259A EP 86300259 A EP86300259 A EP 86300259A EP 0198570 A2 EP0198570 A2 EP 0198570A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- niobium
- zirconium
- process according
- temperature
- tube shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GFUGMBIZUXZOAF-UHFFFAOYSA-N niobium zirconium Chemical compound [Zr].[Nb] GFUGMBIZUXZOAF-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910001257 Nb alloy Inorganic materials 0.000 title claims abstract description 19
- 239000010955 niobium Substances 0.000 claims abstract description 31
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 30
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000005482 strain hardening Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 14
- 238000000137 annealing Methods 0.000 claims abstract description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 abstract description 26
- 230000007797 corrosion Effects 0.000 abstract description 26
- 238000001125 extrusion Methods 0.000 abstract description 6
- 238000010791 quenching Methods 0.000 abstract description 4
- 230000001747 exhibiting effect Effects 0.000 abstract description 2
- 229910045601 alloy Inorganic materials 0.000 description 17
- 239000000956 alloy Substances 0.000 description 17
- 229910001093 Zr alloy Inorganic materials 0.000 description 13
- 239000000203 mixture Substances 0.000 description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- 238000005253 cladding Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 208000021017 Weight Gain Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/186—High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
Definitions
- This invention relates to a process for fabricating thin-walled tubing such as nuclear fuel cladding, from a zirconium-niobium alloy such that the alloys of the. resultant products have a particular microstructure which enables the material to resist corrosion in high temperature aqueous environments.
- Zero-Nb alloys have been traditionally of interest to the nuclear industry because of their high strengths. It is this feature, in conjunction with reasonably good corrosion resistance, which ultimately led to the selection of the alloy of zirconium containing 2.5 per cent by weight niobium, as the standard pressure- tube material for present generation Canadian Deuterium Uranium (CANDU) reactors. Although it was originally believed that the zirconium-niobium alloys had inferior resistance to irradiation enhanced corrosion relative to existing alloys, such as Zircaloy-2 or Zircaloy-4, it ultimately became apparent that they actually had superior in-pile corrosion properties when properly heat treated, as described by J. E. LeSurf, ASTM STP-458, p. 286. As a result of this finding, there has been increasing interest in zirconium-niobium alloys as potential fuel cladding materials in future generation, high performance, light water reactors.
- zirconium-niobium alloys can be fabricated into thin-walled tubing, of about 0.040 inch or less in wall thickness, which exhibits excellent corrosion resistance, by a process that does not require extensively long final annealing times, by the use of relatively low temperature anneals between cold working steps and a final low temperature anneal.
- thin-walled tubing can be fabricated that has a microstructure where second phase beta-niobium particles are homogeneously dispersed in the zirconium matrix in extremely fine particle size to provide excellent corrosion resistance of the resultant article under both in-pile and out-of-pile conditions.
- the present invention resides in a process for fabricating thin-walled tubing from a zirconium-niobium alloy containing from 1 to 2.5 per cent by weight niobium as homogeneously dispersed finely divided particles characterized by beta-treating a zirconium-niobium alloy billet containing from 1 to 2.5 per cent by weight niobium; extruding said beta-treated billet at a temperature no higher than 650°C to form a tube shell; further deforming said tube shell by cold working the same in a plurality of cold working stages; annealing said tube shell, between each of said stages of cold working, at a temperature below 650°C; and final annealing the resultant tubing at a temperature below 600°C, so as to produce a microstructure of the material having niobium particles of a size below about 800 angstroms homogeneously dispersed therein.
- the fabrication of thin-walled tubing from a zirconium-niobium alloy is effected according to the present invention with the production of tubing exhibiting excellent corrosion resistance and resistance to hydride formation.
- zirconium alloys containing 1.0 per cent by weight and 2.5 per cent by weight niobium.
- the zirconium-niobium alloys may contain a minor amount, up to 0.5 per cent by weight of a third element, such as copper, iron, molybdenum, nickel, tungsten, vanadium and chromium.
- a third element such as copper, iron, molybdenum, nickel, tungsten, vanadium and chromium.
- An example of such an alloy is one containing zirconium with 2.5 per cent niobium and 0.5 per cent copper.
- the alloys are first subjected to a beta-treatment by heating the alloy to from 950-1000°C and water-quenching the same to a temperature below the alpha + beta to alpha transus temperature.
- the billet is then prepared for extrusion by drilling an axial hole along the center line of the billet, machining the outside diameter to desired dimensions, and applying a lubricant to the surfaces of the billet.
- the billet diameter is then reduced by extrusion at a lower than conventional temperature, below 700°C, through a frustoconical die and over a mandrel.
- a beta-anneal of the extruded tube shell may then be effected, depending upon the alloy, by heating to from 850-1050°C, followed by rapid cooling.
- the billet may then be cold worked by pilgering, at a source of primary fabrication, to reduce the wall thickness and outside diameter.
- This intermediate production is called a TREX (Tube Reduced Extrusion), which may then be sent to a tube mill for fabrication by cold working, intermediate low temperature annealing, and a final anneal under the fabricating steps of the present invention to produce the desired thin-walled tubing.
- the material is preferably cold worked by pilgering, and 3 to 5 stages of cold working effected, preferably 3 to 4 stages.
- the present invention produces thin-walled zirconium alloy tubing wherein the alloying elements are homogeneously dispersed throughout the zirconium in a finely divided state.
- the particles, homogeneously dispersed are of an average particle size below 800 angstroms, and preferably the average particle size is below about 500 angstroms.
- niobium-containing zirconium alloy (A) ingot containing 1.0 per cent by weight niobium and the balance zirconium, was conventionally broken down in billets of about six inches in diameter (Step 1).
- a six-inch diameter billet was then given a beta treatment, Step 2, which comprised holding the billet in a furnace at about 968-996°C (1775-1825°F) for about fifteen minutes and then water quenching the billet.
- the beta-treated billet was machined, bore-holed and inspected in preparation for extrusion.
- the hollow niobium-containing zirconium alloy billet was then heated to about 649°C (1200°F) and extruded (Step 3) to a hollow tube having an outside diameter of 2.5 inches and a wall thickness of 0.43 inch.
- the extruded hollow tube was beta-annealed (Step 4) at 954°C (17500F) for a period of fifteen minutes in preparation for a first cold working step (a pilgering reduction), (Step 5).
- the beta-annealed extrusion was pilgered in Step 5 to a TREX having an outside diameter of 1.75 inches and a wall thickness of 0.3 inch.
- the TREX was then annealed, (Step 6), at 500°C (932°F) for a period of 8 hours. Following the annealing of the TREX, the same was then cold pilgered to a tube shell having an outside diameter of 1.25 inches and a wall thickness of 0.16 inch, (Step 7).
- the tube shell was then further annealed and cold worked according to the following sequence.
- the tube shell was annealed, (Step 8), at about 524°C (975°F) for 7.5 hours and further cold pilgered, (Step 9), to reduce the tube shell to one having an outside diameter of 0.875 inch and a wall thickness of 0.085 inch.
- This tube shell was again annealed at about 524°C (975°F) for 7.5 hours, (Step 10).
- the annealed tube shell was again further cold pilgered, (Step 11), to give a tube shell having an outside diameter of 0.602 inch and a wall thickness of 0.045 inch.
- the tube was then subjected to a final anneal at about 427°C (800°F) for 4 hours, (Step 14).
- the cold working anneal for the tubes formed from composition B were effected at about 580°C (1076°F) for 8 hours (rather than 524°C (975°F) for 7.5 hours as with A).
- the remaining treatment steps, including the final anneal were the same as those used with composition A.
- the TREX was then annealed in Step 6 at 600°C (1112°F) for a period of 8 hours.
- the material was therefore subjected to an additional anneal for 3 hours at about 685°C (1265°F) and the material then subjected to Step 7 with successful pilgering.
- the first cold working anneal, Step 8 was carried out at about 593°C (1100 0 F) for a period of 8 hours.
- Step 13 the tube was subjected to a final anneal, Step 14, for 7.5 hours at about 480°C (896°F).
- niobium-containing zirconium alloy tubes of the present invention have in-pile corrosion resistance superior to that of Zircaloy-4. This is a property which, in the past, has been attributed only to "heat treated” 2.5% Nb-zirconium alloys (see “The Effect of Aging and Irradiation on the Corrosion of Zr-2.5 wt % Nb", V. F. Urbanic, J. E. LeSurf and A. B. Johnson, Jr.: Corrosion 31 (1975) 15).
- FIG. 2 Further evidence of the superiority of the tubing prepared according to the present invention is illustrated in Figure 2 where two groups of corrosion data are presented for a zirconium alloy containing 1 per cent by weight niobium.
- the first group of data (dash lines: 350, 400 and 450°C) were reported for sheet material which was fabricated via standard Russian processing techniques (see A. A. Kiselev, et al., AECL-1724, 1963).
- the second group of data solid lines: 360 and 427°C
- the superiority of the present tubing is demonstrated by the fact that the same exhibits lower weight gains at 360 and 427°C than the Russion material does, even though the latter was exposed at lower corrosion temperatures 350 and 400°C respectively.
- the present processing provides uniform distribution of very fine precipitate particles in the microstructure of niobium-containing zirconium alloys.
- the microstructure of the fully annealed tubing is illustrated in Figures 3A, B, C and D for composition "A”; 4A, B, C and D for composition "B”; and 5A, B, C and D for composition "C”.
- TEM transmission electron micrographs
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Metal Extraction Processes (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Forging (AREA)
- Extrusion Of Metal (AREA)
- Compositions Of Oxide Ceramics (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69354685A | 1985-01-22 | 1985-01-22 | |
US693546 | 1985-01-22 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0198570A2 true EP0198570A2 (de) | 1986-10-22 |
EP0198570A3 EP0198570A3 (en) | 1987-10-14 |
EP0198570B1 EP0198570B1 (de) | 1990-08-29 |
Family
ID=24785106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86300259A Expired - Lifetime EP0198570B1 (de) | 1985-01-22 | 1986-01-16 | Verfahren zur Herstellung dünnwandiger Röhren aus einer Zirkonium-Niob-Legierung |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0198570B1 (de) |
JP (1) | JPS61210166A (de) |
KR (1) | KR930009986B1 (de) |
ES (1) | ES8708021A1 (de) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2576322A1 (fr) * | 1985-01-22 | 1986-07-25 | Westinghouse Electric Corp | Procede pour le formage d'articles a partir d'alliages de zirconium |
EP0425465A1 (de) * | 1989-10-27 | 1991-05-02 | Sandvik Aktiebolag | Verfahren zur Herstellung von Kapselrohren für Brennstäbe von Kernreaktoren |
EP0495978A1 (de) * | 1990-08-03 | 1992-07-29 | Teledyne Industries Inc | Herstellung von zircaloy-mahlprodukten für verbesserte mikrostruktur und eigenschaften |
EP0559096A1 (de) * | 1992-03-06 | 1993-09-08 | Westinghouse Electric Corporation | Zirlo-Legierung und Herstellungsverfahren |
EP1223587A1 (de) * | 2001-01-09 | 2002-07-17 | Mitsubishi Materials Corporation | Brennstoffhüllrohr aus Zr-Nb-Legierung für Kernreaktor |
WO2004040587A1 (en) | 2002-10-30 | 2004-05-13 | Westinghouse Electric Sweden Ab | Method, use and device concerning cladding tubes for nuclear fuel and a fuel assembly for a nuclear pressure water reactor |
WO2006004499A1 (en) * | 2004-07-06 | 2006-01-12 | Westinghouse Electric Sweden Ab | Fuel box in a boiling water nuclear reactor |
CN103650659B (zh) * | 2005-12-27 | 2010-03-10 | 西北有色金属研究院 | 一种核反应堆用锆基合金板材的制备方法 |
US8070892B2 (en) | 2007-02-09 | 2011-12-06 | Korea Atomic Energy Research Institute | High Fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof |
US8105448B2 (en) | 2004-07-06 | 2012-01-31 | Westinghouse Electric Sweden Ab | Fuel box in a boiling water nuclear reactor |
US20120145287A1 (en) * | 2008-02-29 | 2012-06-14 | Korea Atomic Energy Research Institute | Zirconium alloy compositions having excellent corrosion resistance by the control of various metal-oxide and precipitate and preparation method thereof |
US8320515B2 (en) | 2006-08-24 | 2012-11-27 | Westinghouse Electric Sweden Ab | Water reactor fuel cladding tube |
CN104550311A (zh) * | 2014-12-05 | 2015-04-29 | 宁夏东方钽业股份有限公司 | 一种生产超导铌管材的方法 |
WO2017131260A1 (ko) | 2016-01-27 | 2017-08-03 | 한전원자력연료 주식회사 | 다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법 |
CN112775203A (zh) * | 2020-12-23 | 2021-05-11 | 西部新锆核材料科技有限公司 | 一种锆或锆合金挤压型材的制备方法 |
WO2021125439A1 (ko) * | 2019-12-18 | 2021-06-24 | 한전원자력연료 주식회사 | 페라이트계 합금 및 이를 이용한 핵연료 피복관의 제조방법 |
CN113201666A (zh) * | 2021-04-08 | 2021-08-03 | 中广核研究院有限公司 | 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管 |
CN113976657A (zh) * | 2021-10-21 | 2022-01-28 | 西安赛特思迈钛业有限公司 | 一种超大口径钛合金薄壁无缝管材的制备方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62180047A (ja) * | 1986-02-03 | 1987-08-07 | Hitachi Ltd | ジルコニウム基合金部材の製造法 |
FR2688232B1 (fr) * | 1992-03-04 | 1994-04-22 | Cezus Co Europ Zirconium | Procede de fabrication de tubes a base de zirconium formes de couches de composition differente. |
KR100382997B1 (ko) † | 2001-01-19 | 2003-05-09 | 한국전력공사 | 고연소도 핵연료 용 니오븀 함유 지르코늄 합금 관재 및판재의 제조방법 |
ITMI20061223A1 (it) * | 2006-06-26 | 2007-12-27 | Snam Progetti | Tubo bimetallico resistente alla corrosione e suo utilizzo in apparecchiature a fascio tubiwero |
KR101552514B1 (ko) | 2014-04-25 | 2015-09-14 | 한전원자력연료 주식회사 | 냉간 필거 압연기의 필거 다이 조립체의 갭 조절장치 |
CN109692880B (zh) * | 2018-12-19 | 2021-01-01 | 西部超导材料科技股份有限公司 | 一种Zr-2.5Nb合金棒材及其挤压加工方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2894866A (en) * | 1958-01-21 | 1959-07-14 | Marion L Picklesimer | Method for annealing and rolling zirconium-base alloys |
LU41401A1 (de) * | 1961-03-23 | 1962-05-17 | ||
US3341373A (en) * | 1962-09-26 | 1967-09-12 | Imp Metal Ind Kynoch Ltd | Method of treating zirconium-base alloys |
US3865635A (en) * | 1972-09-05 | 1975-02-11 | Sandvik Ab | Method of making tubes and similar products of a zirconium alloy |
EP0071193A1 (de) * | 1981-07-29 | 1983-02-09 | Hitachi, Ltd. | Verfahren zur Herstellung einer Legierung auf der Basis von Zirkonium |
EP0085553A2 (de) * | 1982-01-29 | 1983-08-10 | Westinghouse Electric Corporation | Herstellungsverfahren für Zirkoniumlegierungen |
FR2576322A1 (fr) * | 1985-01-22 | 1986-07-25 | Westinghouse Electric Corp | Procede pour le formage d'articles a partir d'alliages de zirconium |
-
1986
- 1986-01-16 EP EP86300259A patent/EP0198570B1/de not_active Expired - Lifetime
- 1986-01-20 ES ES551049A patent/ES8708021A1/es not_active Expired
- 1986-01-22 JP JP61011802A patent/JPS61210166A/ja active Pending
- 1986-01-22 KR KR1019860000376A patent/KR930009986B1/ko not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2894866A (en) * | 1958-01-21 | 1959-07-14 | Marion L Picklesimer | Method for annealing and rolling zirconium-base alloys |
LU41401A1 (de) * | 1961-03-23 | 1962-05-17 | ||
US3341373A (en) * | 1962-09-26 | 1967-09-12 | Imp Metal Ind Kynoch Ltd | Method of treating zirconium-base alloys |
US3865635A (en) * | 1972-09-05 | 1975-02-11 | Sandvik Ab | Method of making tubes and similar products of a zirconium alloy |
EP0071193A1 (de) * | 1981-07-29 | 1983-02-09 | Hitachi, Ltd. | Verfahren zur Herstellung einer Legierung auf der Basis von Zirkonium |
EP0085553A2 (de) * | 1982-01-29 | 1983-08-10 | Westinghouse Electric Corporation | Herstellungsverfahren für Zirkoniumlegierungen |
FR2576322A1 (fr) * | 1985-01-22 | 1986-07-25 | Westinghouse Electric Corp | Procede pour le formage d'articles a partir d'alliages de zirconium |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2576322A1 (fr) * | 1985-01-22 | 1986-07-25 | Westinghouse Electric Corp | Procede pour le formage d'articles a partir d'alliages de zirconium |
EP0425465A1 (de) * | 1989-10-27 | 1991-05-02 | Sandvik Aktiebolag | Verfahren zur Herstellung von Kapselrohren für Brennstäbe von Kernreaktoren |
EP0495978A1 (de) * | 1990-08-03 | 1992-07-29 | Teledyne Industries Inc | Herstellung von zircaloy-mahlprodukten für verbesserte mikrostruktur und eigenschaften |
EP0495978A4 (en) * | 1990-08-03 | 1993-01-27 | Teledyne Industries Inc | Fabrication of zircaloy mill products for improved microstructure and properties |
EP0559096A1 (de) * | 1992-03-06 | 1993-09-08 | Westinghouse Electric Corporation | Zirlo-Legierung und Herstellungsverfahren |
EP1223587A1 (de) * | 2001-01-09 | 2002-07-17 | Mitsubishi Materials Corporation | Brennstoffhüllrohr aus Zr-Nb-Legierung für Kernreaktor |
WO2004040587A1 (en) | 2002-10-30 | 2004-05-13 | Westinghouse Electric Sweden Ab | Method, use and device concerning cladding tubes for nuclear fuel and a fuel assembly for a nuclear pressure water reactor |
US7473329B2 (en) * | 2002-10-30 | 2009-01-06 | Westinghouse Electric Sweden Ab | Method, use and device concerning cladding tubes for nuclear fuel and a fuel assembly for a nuclear pressure water reactor |
WO2006004499A1 (en) * | 2004-07-06 | 2006-01-12 | Westinghouse Electric Sweden Ab | Fuel box in a boiling water nuclear reactor |
US8105448B2 (en) | 2004-07-06 | 2012-01-31 | Westinghouse Electric Sweden Ab | Fuel box in a boiling water nuclear reactor |
CN103650659B (zh) * | 2005-12-27 | 2010-03-10 | 西北有色金属研究院 | 一种核反应堆用锆基合金板材的制备方法 |
US8320515B2 (en) | 2006-08-24 | 2012-11-27 | Westinghouse Electric Sweden Ab | Water reactor fuel cladding tube |
US8070892B2 (en) | 2007-02-09 | 2011-12-06 | Korea Atomic Energy Research Institute | High Fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof |
US20120145287A1 (en) * | 2008-02-29 | 2012-06-14 | Korea Atomic Energy Research Institute | Zirconium alloy compositions having excellent corrosion resistance by the control of various metal-oxide and precipitate and preparation method thereof |
CN104550311A (zh) * | 2014-12-05 | 2015-04-29 | 宁夏东方钽业股份有限公司 | 一种生产超导铌管材的方法 |
WO2017131260A1 (ko) | 2016-01-27 | 2017-08-03 | 한전원자력연료 주식회사 | 다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법 |
WO2021125439A1 (ko) * | 2019-12-18 | 2021-06-24 | 한전원자력연료 주식회사 | 페라이트계 합금 및 이를 이용한 핵연료 피복관의 제조방법 |
US11603584B2 (en) | 2019-12-18 | 2023-03-14 | Kepco Nuclear Fuel Co., Ltd. | Ferritic alloy and method of manufacturing nuclear fuel cladding tube using the same |
CN112775203A (zh) * | 2020-12-23 | 2021-05-11 | 西部新锆核材料科技有限公司 | 一种锆或锆合金挤压型材的制备方法 |
CN112775203B (zh) * | 2020-12-23 | 2024-01-19 | 西部新锆核材料科技有限公司 | 一种锆或锆合金挤压型材的制备方法 |
CN113201666A (zh) * | 2021-04-08 | 2021-08-03 | 中广核研究院有限公司 | 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管 |
CN113976657A (zh) * | 2021-10-21 | 2022-01-28 | 西安赛特思迈钛业有限公司 | 一种超大口径钛合金薄壁无缝管材的制备方法 |
CN113976657B (zh) * | 2021-10-21 | 2024-04-23 | 西安赛特思迈钛业有限公司 | 一种超大口径钛合金薄壁无缝管材的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
ES551049A0 (es) | 1987-09-01 |
ES8708021A1 (es) | 1987-09-01 |
EP0198570B1 (de) | 1990-08-29 |
EP0198570A3 (en) | 1987-10-14 |
JPS61210166A (ja) | 1986-09-18 |
KR860005894A (ko) | 1986-08-16 |
KR930009986B1 (ko) | 1993-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0198570B1 (de) | Verfahren zur Herstellung dünnwandiger Röhren aus einer Zirkonium-Niob-Legierung | |
JP2575644B2 (ja) | スズおよび第3の合金元素を含有するジルコニウムーニオブ合金からなる物品の製造方法 | |
US4450020A (en) | Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors | |
US5437747A (en) | Method of fabricating zircalloy tubing having high resistance to crack propagation | |
KR100205916B1 (ko) | 지르코늄 합금재료 처리방법 및 지르코늄 합금 가공물 생산방법 | |
US4584030A (en) | Zirconium alloy products and fabrication processes | |
US6514360B2 (en) | Method for manufacturing a tube and a sheet of niobium-containing zirconium alloy for a high burn-up nuclear fuel | |
US4450016A (en) | Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors | |
US6811746B2 (en) | Zirconium alloy having excellent corrosion resistance and mechanical properties for nuclear fuel cladding tube | |
EP0085553B1 (de) | Herstellungsverfahren für Zirkoniumlegierungen | |
US5245645A (en) | Structural part for a nuclear reactor fuel assembly and method for producing this structural part | |
US5618356A (en) | Method of fabricating zircaloy tubing having high resistance to crack propagation | |
US5854818A (en) | Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup | |
US4671826A (en) | Method of processing tubing | |
EP0899747B1 (de) | Verfahren zur Herstellung von Zirkonium-Zinn-Eisen-Legierungen für Kernreaktorbrennstäbe und Bauteile, die einen hohen Abbrand ermöglichen | |
JP2940558B2 (ja) | ジルコニウム合金からなる管の製造方法 | |
US4452648A (en) | Low in reactor creep ZR-base alloy tubes | |
JPS5825467A (ja) | ジリコニウム基合金のクラツド管の製造方法 | |
US4717434A (en) | Zirconium alloy products | |
JP2921783B2 (ja) | 水素遅延破壊抵抗性ジルコニウム合金無継目圧力管とその製造方法 | |
JPS5822365A (ja) | ジルコニウム基合金の製造方法 | |
JPS6026650A (ja) | 原子炉燃料用被覆管 | |
JPH07173587A (ja) | ジルコニウム合金溶接部材の製造方法 | |
EP0065816A2 (de) | Zirkoniumlegierung | |
JPS58204144A (ja) | ジルコニウム合金及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19880411 |
|
17Q | First examination report despatched |
Effective date: 19890421 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
ITTA | It: last paid annual fee | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN Effective date: 19910527 Opponent name: G.I.E. FRAGEMA Effective date: 19910524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19921215 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19921221 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19930105 Year of fee payment: 8 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19930115 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 930115 |