CN113201666A - 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管 - Google Patents

用于燃料组件的锆合金及其制作方法、燃料组件的包壳管 Download PDF

Info

Publication number
CN113201666A
CN113201666A CN202110378108.4A CN202110378108A CN113201666A CN 113201666 A CN113201666 A CN 113201666A CN 202110378108 A CN202110378108 A CN 202110378108A CN 113201666 A CN113201666 A CN 113201666A
Authority
CN
China
Prior art keywords
fuel assembly
zirconium alloy
zirconium
alloy
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110378108.4A
Other languages
English (en)
Inventor
石林
高长源
陈敏莉
陈刘涛
陈汉森
徐杨
王旭
邹红
聂立红
邓勇军
陈建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
China Nuclear Power Technology Research Institute Co Ltd
CGN Power Co Ltd
Lingao Nuclear Power Co Ltd
China Nuclear Power Institute Co Ltd
Original Assignee
China General Nuclear Power Corp
China Nuclear Power Technology Research Institute Co Ltd
CGN Power Co Ltd
Lingao Nuclear Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, China Nuclear Power Technology Research Institute Co Ltd, CGN Power Co Ltd, Lingao Nuclear Power Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN202110378108.4A priority Critical patent/CN113201666A/zh
Publication of CN113201666A publication Critical patent/CN113201666A/zh
Priority to PCT/CN2021/117833 priority patent/WO2022213543A1/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明公开了一种用于燃料组件的锆合金及其制作方法、燃料组件的包壳管,锆合金包括以下质量百分比的成分:铌1.20%~1.40%、钒0.03%~0.07%、氧0.12%~0.15%,余量为锆。本发明的锆合金,具有优异的抗腐蚀性能,能够显著降低吸氢量,改善抗高温氧化淬火性能,相较于现有的Zr‑4合金具有更优良的耐腐蚀性能、更好的抗吸氢性能和更好的高温氧化淬火后抗脆化性能,适用于核电站反应堆燃料组件,作为燃料组件的包壳材料,提高燃料组件的服役性能和安全性。

Description

用于燃料组件的锆合金及其制作方法、燃料组件的包壳管
技术领域
本发明涉及核燃料技术领域,尤其涉及一种用于燃料组件的锆合金及其制作方法、燃料组件的包壳管。
背景技术
锆合金材料由于中子吸收截面小且具有优异的耐腐蚀性能和力学性能,因而被普遍用作压水堆核电站核燃料组件包壳材料。核燃料组件用锆合金自上世纪50年代研发以来,形成了Zr-Sn、Zr-Sn-Nb和Zr-Nb三大体系。其中Zr-Sn体系中主要是早期的标准Zr-4合金、低锡Zr-4合金和优化Zr-4合金。随着核电技术发展,燃料组件燃耗提高,而Zr-4合金已不能满足高燃耗的使用要求。为了提高锆合金的性能,许多国家进行了锆合金的优化研究,在Zr-Sn的基础上衍生了Zr-Sn-Nb和Zr-Nb两大体系。Zr-Nb体系中主要有俄罗斯的E110合金、法国的M5合金、韩国的HANA合金等,相比于Zr-4合金,腐蚀和吸氢性能均有明显的改善,但M5合金在高Li浓度环境下耐腐蚀性能较差。Zr-Sn-Nb体系主要是俄罗斯的E635合金、美国的ZIRLO及优化ZIRLO合金等,相比于Zr-4合金,腐蚀和吸氢以及蠕变性能均有一定的改善,但ZIRLO合金的耐腐蚀和吸氢性能仍然存在提高的空间。
随着锆合金的发展,核工业界对锆合金在失水事故下包壳行为的关注越来越高。上世纪90年代后期,美国核管会开展了锆合金包壳事故工况下行为研究,结果显示锆合金在腐蚀过程中吸入的氢对包壳材料的脆性有很大影响,且吸氢量越大,对脆性的影响越大。那么,在新锆合金研发时需优化合金成分配比,降低其吸氢量,提高其在事故工况下的塑性。
发明内容
本发明要解决的技术问题在于,提供一种具有优异的抗腐蚀吸氢性能、抗高温氧化淬火后脆化性能的用于燃料组件的锆合金及其制作方法、用该锆合金制成的燃料组件的包壳管。
本发明解决其技术问题所采用的技术方案是:提供一种用于燃料组件的锆合金,包括以下质量百分比的成分:铌1.20%~1.40%、钒0.03%~0.07%、氧0.12%~0.15%,余量为锆。
优选地,所述锆合金中,C≤100ppm,N≤45ppm。
本发明还提供一种上述的锆合金的制作方法,包括以下步骤:
S1、提供分别含有铌、钒和锆成分的原料,根据锆合金中各成分所占的质量百分比称取原料;
S2、将所述原料熔炼成铸锭;
S3、将所述铸锭锻造成坯料;
S4、将所述坯料进行β相淬火;
S5、将经过β相淬火后的坯料进行多道次冷轧,每道次冷轧之间进行中间退火;
S6、将经过多道次冷轧后的坯料进行完全再结晶退火,制得锆合金。
优选地,步骤S3中,所述锻造的温度为850℃-1100℃。
优选地,步骤S4中,所述β相淬火的温度为950℃-1100℃。
优选地,步骤S5中,将所述坯料进行至少4道次冷轧;所述中间退火的温度为550℃-600℃。
优选地,步骤S6中,将所述坯料在500℃-600℃下进行完全再结晶退火。
本发明还提供一种燃料组件的包壳管,采用以上任一项所述的锆合金制成。
本发明的锆合金,具有优异的抗腐蚀性能,能够显著降低吸氢量,改善抗高温氧化淬火(LOCA)性能,相较于现有的Zr-4合金具有更优良的耐腐蚀性能、更好的抗吸氢性能和更好的高温氧化淬火后抗脆化性能,适用于核电站反应堆燃料组件,作为燃料组件的包壳材料,提高燃料组件的服役性能和安全性。
具体实施方式
本发明的用于燃料组件的锆合金,包括以下质量百分比的成分:铌(Nb)1.20%~1.40%、钒(V)0.03%~0.07%、氧(O)0.125%~0.150%,余量为锆(Zr)。
该锆合金还包括杂质C(碳)、N(氮),C和N需要控制在一定含量以下。其中,将C≤100ppm、N≤45ppm。可以理解地,锆合金中还包括一些不可避免且量少的杂质成分。
本发明的锆合金中,限制锆合金元素种类,且通过限制锆合金元素总量,保证该锆合金有足够的高温氧化淬火后抗脆化性能,避免过多元素种类和含量对锆合金失水事故下包壳塑性有明显的损害作用。
其中,钒(V)的含量<0.1%,钒(V)元素的添加使得该锆合金具有优异的抗吸氢性能。Nb元素含量控制在1.20%~1.40%,既保证了锆合金具有优异的耐腐蚀性能,同时又保证了锆合金可加工性。
氧(O)的加入能够提高锆合金的强度和抗蠕变性能,但随着氧含量的升高,锆合金的可加工性会降低,特别是抗冲压性能。因此,氧的含量控制在0.125%~0.150%。
本发明的锆合金的制作方法,可包括以下步骤:
S1、提供分别含有铌、钒和锆成分的原料,根据锆合金中各成分所占的质量百分比称取原料(配料计算)。
例如,其中的锆原料使用核级海绵锆。铌、锡、铁和钒元素以纯金属或中间合金的形式添加。
S2、将原料熔炼成铸锭。
将所有原料放入真空熔炼炉中进行熔炼,调节O、C和N的含量,最后制得铸锭。
S3、将铸锭在850℃-1100℃的温度下锻造成坯料。
S4、将坯料进行β相淬火。
其中,β相淬火的温度为950℃-1100℃,并保温足够长时间使坯料整体到达淬火温度。
S5、将经过β相淬火后的坯料进行多道次冷轧,每道次冷轧之间进行中间退火。
其中,根据所要形成的锆合金形态(如管材等)在冷轧之前,将坯料进行挤压或热轧,再将坯料进行至少4道次冷轧。中间退火的温度为550℃-600℃。
S6、将经过多道次冷轧后的坯料在500℃-600℃下进行完全再结晶退火,制得锆合金。
锆合金可根据应用产品需要制成型材、板材或管材。
在一应用实施方式中,将上述的锆合金制成燃料组件的包壳管。
以下通过具体实施例对本发明作进一步说明。
根据本发明的制作方法制得实施例1-实施例3的锆合金,实施例1-实施例3的锆合金中各成分含量如表1所示。
表1
Figure BDA0003012082560000051
将实施例1-实施例3制得的锆合金进行高压釜腐蚀及吸氢量测量试验:腐蚀条件为360℃/18.6MPa/去离子水,试验时间为130天;腐蚀增重及吸氢量结果如表2所示。
作为对比,在表中列出Zr-4合金(Zr-1.30Sn-0.20Fe-0.10Cr-0.12O)在相同试验条件下的试验数据。
表2
实施例 腐蚀量(mg/dm<sup>2</sup>) 吸氢量(μg/g)
1 48.30 29.0
2 47.20 28.0
3 46.00 27.0
Zr-4 63.30 81.0
从表2所示数据可知,本发明的锆合金较于Zr-4合金具有较高的耐腐蚀及吸氢性能。
将实施例1-实施例3制得的锆合金进行氧化淬火后环压试验,以观察其抗LOCA性能。氧化淬火过程为:试验温度为1204℃,保温一定时间,使样品的CP-ECR(通过CP公式计算出的等效锆反应量)达到18%时,使样品在200s内缓冷到800℃,再进行淬火。淬火后样品进行环向压缩试验,得到补偿应变值。结果如下表3所示。
作为对比,在表中列出Zr-4合金(Zr-1.30Sn-0.20Fe-0.10Cr-0.12O)在相同试验条件下的试验数据。
表3
实施例 补偿应变(%)
1 8.2
2 7.8
3 7.5
Zr-4 4.0
补偿应变值反映试验材料淬火后的残余塑性,从表3所示数据可知,本发明的锆合金较于Zr-4合金具有优异的抗LOCA性能。
可以理解地,本发明除了上述各实施例外,在本发明各成分含量范围内的锆合金,均具有优异的耐腐蚀吸氢性能和抗LOCA性能,适用做核电站反应堆包壳材料。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种用于燃料组件的锆合金,其特征在于,包括以下质量百分比的成分:铌1.20%~1.40%、钒0.03%~0.07%、氧0.125%~0.150%,余量为锆。
2.根据权利要求1所述的用于燃料组件的锆合金,其特征在于,所述锆合金中,C≤100ppm,N≤45ppm。
3.一种权利要求1或2所述的锆合金的制作方法,其特征在于,包括以下步骤:
S1、提供分别含有铌、钒和锆成分的原料,根据锆合金中各成分所占的质量百分比称取原料;
S2、将所述原料熔炼成铸锭;
S3、将所述铸锭锻造成坯料;
S4、将所述坯料进行β相淬火;
S5、将经过β相淬火后的坯料进行多道次冷轧,每道次冷轧之间进行中间退火;
S6、将经过多道次冷轧后的坯料进行完全再结晶退火,制得锆合金。
4.根据权利要求3所述的锆合金的制作方法,其特征在于,步骤S3中,所述锻造的温度为850℃-1100℃。
5.根据权利要求3所述的锆合金的制作方法,其特征在于,步骤S4中,所述β相淬火的温度为950℃-1100℃。
6.根据权利要求3所述的锆合金的制作方法,其特征在于,步骤S5中,将所述坯料进行至少4道次冷轧;所述中间退火的温度为550℃-600℃。
7.根据权利要求3所述的锆合金的制作方法,其特征在于,步骤S6中,将所述坯料在500℃-600℃下进行完全再结晶退火。
8.一种燃料组件的包壳管,其特征在于,采用权利要求1或2所述的锆合金制成。
CN202110378108.4A 2021-04-08 2021-04-08 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管 Pending CN113201666A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110378108.4A CN113201666A (zh) 2021-04-08 2021-04-08 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管
PCT/CN2021/117833 WO2022213543A1 (zh) 2021-04-08 2021-09-10 锆合金及其制作方法、包壳管及燃料组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110378108.4A CN113201666A (zh) 2021-04-08 2021-04-08 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管

Publications (1)

Publication Number Publication Date
CN113201666A true CN113201666A (zh) 2021-08-03

Family

ID=77026443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110378108.4A Pending CN113201666A (zh) 2021-04-08 2021-04-08 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管

Country Status (2)

Country Link
CN (1) CN113201666A (zh)
WO (1) WO2022213543A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115961175A (zh) * 2022-11-25 2023-04-14 岭澳核电有限公司 一种燃料组件用低锡高铌锆合金及其制备方法、燃料组件的包壳管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0154559A2 (en) * 1984-03-08 1985-09-11 Hitachi, Ltd. Zirconium-base alloy structural member and process for its preparation
EP0198570A2 (en) * 1985-01-22 1986-10-22 Westinghouse Electric Corporation Process for producing a thin-walled tubing from a zirconium-niobium alloy
CN1366089A (zh) * 2001-01-19 2002-08-28 韩国原子力研究所 制造高燃耗核燃料所用含铌锆合金管和薄片的方法
CN1871371A (zh) * 2003-10-08 2006-11-29 欧洲塞扎斯“锆”公司 生产扁平锆合金产品的方法、由此获得的扁平产品和由所述扁平产品制造的核电站中反应堆的栅格
US20100126636A1 (en) * 2006-12-01 2010-05-27 Areva Np Zirconium alloy resistant to corrosion in drop shadows for a fuel assembly component for a boiling water reactor, component produced using said alloy, fuel assembly, and use of same
CN105018795A (zh) * 2015-07-31 2015-11-04 西部新锆核材料科技有限公司 一种耐腐蚀性能优良的核反应堆燃料包壳用锆基合金
JP2018514646A (ja) * 2016-01-27 2018-06-07 ケプコ ニュークリア フューエル カンパニー リミテッド 多段熱間圧延を適用した核燃料用ジルコニウム部品の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3805124A1 (de) * 1988-02-18 1989-08-31 Siemens Ag Kernreaktorbrennelement
US9378850B2 (en) * 2004-06-01 2016-06-28 Areva Np Method for operating a nuclear reactor and use of a specific fuel rod cladding alloy in order to reduce damage caused by pellet/cladding interaction
CN101413073B (zh) * 2008-12-03 2011-03-16 西北有色金属研究院 一种用于核反应堆燃料包壳的含镁的锆铌合金

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0154559A2 (en) * 1984-03-08 1985-09-11 Hitachi, Ltd. Zirconium-base alloy structural member and process for its preparation
EP0198570A2 (en) * 1985-01-22 1986-10-22 Westinghouse Electric Corporation Process for producing a thin-walled tubing from a zirconium-niobium alloy
CN1366089A (zh) * 2001-01-19 2002-08-28 韩国原子力研究所 制造高燃耗核燃料所用含铌锆合金管和薄片的方法
CN1871371A (zh) * 2003-10-08 2006-11-29 欧洲塞扎斯“锆”公司 生产扁平锆合金产品的方法、由此获得的扁平产品和由所述扁平产品制造的核电站中反应堆的栅格
US20100126636A1 (en) * 2006-12-01 2010-05-27 Areva Np Zirconium alloy resistant to corrosion in drop shadows for a fuel assembly component for a boiling water reactor, component produced using said alloy, fuel assembly, and use of same
CN105018795A (zh) * 2015-07-31 2015-11-04 西部新锆核材料科技有限公司 一种耐腐蚀性能优良的核反应堆燃料包壳用锆基合金
JP2018514646A (ja) * 2016-01-27 2018-06-07 ケプコ ニュークリア フューエル カンパニー リミテッド 多段熱間圧延を適用した核燃料用ジルコニウム部品の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115961175A (zh) * 2022-11-25 2023-04-14 岭澳核电有限公司 一种燃料组件用低锡高铌锆合金及其制备方法、燃料组件的包壳管

Also Published As

Publication number Publication date
WO2022213543A1 (zh) 2022-10-13

Similar Documents

Publication Publication Date Title
US7364631B2 (en) Zirconium-based alloy having a high resistance to corrosion and to hydriding by water and steam and process for the thermomechanical transformation of the alloy
JP2914457B2 (ja) Zirlo型材料
US6811746B2 (en) Zirconium alloy having excellent corrosion resistance and mechanical properties for nuclear fuel cladding tube
CN113249616A (zh) 燃料组件用锆合金及其制备方法、燃料组件的包壳管
EP0198570B1 (en) Process for producing a thin-walled tubing from a zirconium-niobium alloy
KR20060123781A (ko) 개선된 부식저항력을 지닌 지르코늄합금 및 그에 관련된제조방법
US4908071A (en) Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
JPH11194189A (ja) 耐食性およびクリープ特性にすぐれた原子炉燃料被覆管用Zr合金管の製造方法
CN103650659B (zh) 一种核反应堆用锆基合金板材的制备方法
CN106987780A (zh) 一种核反应堆包壳用FeCrAl基合金材料及其制备方法
JP2018514650A (ja) 優れた耐食性及びクリープ抵抗性を有するジルコニウム合金、及びその製造方法
US5972288A (en) Composition of zirconium alloy having high corrosion resistance and high strength
CN113201666A (zh) 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管
CN101654752A (zh) 一种核反应堆用锆-锡-铌系锆合金
CN113201665A (zh) 燃料组件包壳用锆合金及其制作方法、燃料组件的包壳管
KR20090092489A (ko) 우수한 수소취화 저항성을 갖는 지르코늄 합금 조성물 및이의 제조방법
CN110195191B (zh) 核反应堆燃料元件包壳材料用Fe-Cr-Al合金及其制备方法
CN101413074A (zh) 一种核反应堆用锆基合金
CN107217197A (zh) 一种先进核燃料元件包壳用FeCrAl基合金材料及其制备方法
US10221475B2 (en) Zirconium alloys with improved corrosion/creep resistance
CN112981273A (zh) 铁素体合金及利用其制造核燃料包壳管的方法
CN102220519B (zh) 一种用作核压水反应堆结构材料的锆合金
CN107236904A (zh) 一种核反应堆堆芯用FeCrAl基合金材料及其制备方法
US10119181B2 (en) Treatment process for a zirconium alloy, zirconium alloy resulting from this process and parts of nuclear reactors made of this alloy
CN115961175A (zh) 一种燃料组件用低锡高铌锆合金及其制备方法、燃料组件的包壳管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210803