WO2017131260A1 - 다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법 - Google Patents

다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법 Download PDF

Info

Publication number
WO2017131260A1
WO2017131260A1 PCT/KR2016/000967 KR2016000967W WO2017131260A1 WO 2017131260 A1 WO2017131260 A1 WO 2017131260A1 KR 2016000967 W KR2016000967 W KR 2016000967W WO 2017131260 A1 WO2017131260 A1 WO 2017131260A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
rolling
rolled
cold
ingot
Prior art date
Application number
PCT/KR2016/000967
Other languages
English (en)
French (fr)
Inventor
목용균
김윤호
정태식
이성용
장훈
이충용
나연수
최민영
고대균
이승재
김재익
Original Assignee
한전원자력연료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한전원자력연료 주식회사 filed Critical 한전원자력연료 주식회사
Priority to EP16882803.6A priority Critical patent/EP3241920B1/en
Priority to US15/538,798 priority patent/US20180105915A1/en
Priority to JP2017548874A priority patent/JP6535752B2/ja
Priority to CN201680023859.1A priority patent/CN107532240B/zh
Publication of WO2017131260A1 publication Critical patent/WO2017131260A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method for manufacturing a zirconium part for nuclear fuel, and more particularly, to a method for manufacturing a zirconium part for performing hot rolling of an ingot in multiple stages.
  • the zirconium alloy is used as a core material for core structures as well as the fuel cladding constituting the fuel assembly in consideration of neutron absorption in terms of neutron economy.
  • Zircaloy-4 developed in the early 1950s, 1.20 to 1.70 wt% tin, 0.18 to 0.24 wt% iron, 0.07 to 1.13 wt% chromium, 900 to 1500 ppm oxygen, nickel ⁇ 0.007 wt%, zirconium balance Alloys have been used in light water reactors since the 1970s and have since been replaced by alloys with niobium (Nb).
  • ZIRLO developed in the late 1980s in the United States
  • M5 developed in the early 1990s in France
  • ZIRLO is an example of the corrosion resistance in the furnace, which is significantly lower than the oxidation rate of Zircaloy-4. It has been commercially produced as a component for nuclear fuel and used for commercial nuclear power generation.
  • a nuclear power plant is required for a fuel that can be flexibly operated according to demand for economic electricity production.
  • repeated load application and release over time result in crack formation and fracture due to fatigue behavior. Therefore, the development of nuclear fuel with excellent fatigue resistance is a characteristic that can help economic operation in terms of nuclear power plant operation.
  • European Patent No. 1225243 adds 0.05 to 1.8% by weight of niobium to zirconium and further adds tin, iron, chromium, copper, manganese, silicon, and oxygen to accumulate heat treatment index ⁇ A (Accumulated), which is a function of heat treatment time and temperature.
  • the annealing parameter was limited to 1.0 ⁇ 10 -18 hr or less to obtain the precipitates of less than 80 nm.
  • high-burning zirconium alloy tubes and plates with high corrosion resistance and mechanical properties were fabricated.
  • EP 198,570 adds 1 to 2.5% by weight of niobium to zirconium to produce tubes with a thickness of less than 1 mm with improved corrosion resistance and further copper, iron, molybdenum, nickel, tungsten, vanadium or chromium.
  • the manufacturing process was improved for the alloy containing.
  • the intermediate heat treatment temperature did not exceed 650 ° C. and the final heat treatment was performed below 600 ° C. to obtain homogeneously distributed Nb-containing precipitates of 80 nm or less.
  • U.S. Patent No. 4,649,023 adds niobium 0.5 to 2.0% by weight, up to 1.5% by weight of tin and up to 0.25% by weight of iron, chromium, molybdenum, vanadium, to produce an alloy exhibiting excellent corrosion resistance in high temperature hydrochemical environments. Hot rolling and heat treatment were carried out at a temperature not exceeding 650 ° C. further comprising one of copper, nickel and tungsten.
  • U. S. Patent No. 6,902, 634 adds 0.5 to 2.0 wt% of niobium, up to 1.5 wt% of tin, and up to 0.25 wt% of iron, chromium, molybdenum, vanadium, to produce an alloy that exhibits excellent corrosion resistance in high temperature hydrochemical environments.
  • a zirconium alloy composition was prepared further comprising one of copper, nickel and tungsten. At this time, while maintaining the intermediate heat treatment temperature between the cold working temperature below 580 °C to produce a precipitate of 50 ⁇ 80 nm size.
  • Korean Patent No. 10-265261 in order to manufacture a zirconium alloy having excellent corrosion resistance and high strength, an alloy composition containing 0.95 to 1.3% by weight of niobium, tin, chromium, copper, and oxygen is divided into two stage heat treatments after cold working. By obtaining the average precipitate of 40 ⁇ 60 nm bands smaller than the 70 ⁇ 90 nm precipitates of the conventional manufacturing method.
  • the properties of the material usually result from microstructure.
  • the properties of the zirconium alloy are also controlled by the microstructure, which is controlled by the type and amount of alloying elements, as well as by heat treatment temperatures and rolling methods to produce the final parts.
  • mechanical properties as well as corrosion resistance, as in the prior inventions have been improved by reducing the size of precipitates.
  • the present invention improves the manufacturing process of zirconium (Zr) -niobium (Nb) -based alloys, and thus, the zirconium for nuclear fuel having high fatigue resistance under severe operating conditions in which high temperature oxidation resistance and output increase and decrease are repeated under emergency conditions in case of an accident.
  • Zr zirconium
  • Nb niobium
  • the present invention improves the manufacturing process of zirconium (Zr) -niobium (Nb) -based alloys, and thus, the zirconium for nuclear fuel having high fatigue resistance under severe operating conditions in which high temperature oxidation resistance and output increase and decrease are repeated under emergency conditions in case of an accident.
  • a multi-stage hot rolling process was developed in a continuous cooling process.
  • the present invention is to provide a method for producing a zirconium component for nuclear fuel having a high temperature oxidation resistance and fatigue resistance by generating a fine precipitate of less than 35nm on the average through multi-stage compression deformation during hot rolling.
  • a method for manufacturing a nuclear fuel zirconium part according to the present invention comprises the steps of dissolving zirconium and constituent alloying elements to form a zirconium alloy ingot (step 1);
  • step 2 Heat treating the ingot prepared in step 1 at a zirconium beta phase temperature and then quenching (step 2);
  • step 3 Preheating the ingot quenched in step 2 before hot rolling (step 3);
  • a multi-stage hot rolling step (step 4) of performing primary hot rolling immediately after the preheating is completed in step 3, followed by secondary hot rolling during air cooling;
  • step 5 First cold rolling after the first intermediate heat treatment of the multi-stage hot rolled rolling material in step 4 (step 5);
  • step 6 Performing a second intermediate heat treatment of the first cold rolled rolled material in step 5, followed by secondary cold rolling (step 6);
  • step 8 A final heat treatment of the third cold rolled rolled material in step 7 is performed (step 8).
  • a method for manufacturing a zirconium component for nuclear fuel having excellent high temperature oxidation resistance and fatigue resistance can form a finer precipitate of 35 nm or less on average than that of the same zirconium alloy sheet manufactured by the prior art, thereby improving corrosion resistance in a high temperature steam atmosphere.
  • a method for manufacturing a zirconium component for nuclear fuel having excellent high temperature oxidation resistance and fatigue resistance can form a finer precipitate of 35 nm or less on average than that of the same zirconium alloy sheet manufactured by the prior art, thereby improving corrosion resistance in a high temperature steam atmosphere.
  • by increasing the resistance to fatigue failure due to crack formation due to repeated loads it is possible to increase safety in an accident situation due to leakage of coolant in the reactor furnace, and also to improve mechanical health against fatigue failure due to power-intensification operation. .
  • Figure 2 is a flow chart schematically showing the procedure of manufacturing zirconium alloy according to the present invention
  • 3 is a graph showing a binary equilibrium diagram of zirconium and niobium
  • Figure 4 is a graph showing the concept of multi-stage hot rolling proposed in the present invention.
  • Figure 5 is a TEM (transmission electron microscope) microstructure photograph showing the precipitate of Example 6 prepared by the present invention and Comparative Example 6 prepared by the existing method for the same alloy composition,
  • a method for manufacturing a zirconium component for nuclear fuel produced by multi-stage hot rolling is prepared by dissolving zirconium and constituent alloy elements to form a zirconium alloy ingot.
  • the fourth step of performing multi-stage hot rolling which is secondary hot rolling, the fifth step of first cold-rolling after the first intermediate heat treatment of the multi-stage hot rolled rolling material in the fourth step, and the first to fifth step
  • the first step of the zirconium alloy sheet manufacturing step is to prepare a zirconium alloy ingot by mixing the alloying elements in a predetermined ratio and then casting.
  • Ingot in the first step is preferably prepared by melting by vacuum arc melting method (VAR: Vacuum Arc Remelting), specifically, in the VAR when the surrounding atmosphere is maintained at 1 ⁇ 10 -5 torr to make a state close to vacuum, In the state of injecting argon gas again, a current of 200 to 1,000 A is applied to the electrode of the VAR device, an arc is generated to dissolve the alloying elements, and then cooled to manufacture a button-shaped ingot. In this way, it is desirable to repeat dissolution of the ingot 2 to 4 times using VAR and to evenly distribute impurities in the ingot and remove impurities.
  • VAR vacuum arc melting method
  • the alloy composition of the first step is 1.3 to 1.8% by weight of niobium (Nb); 0.1 wt% tin (Sn); Chromium (Cr) 0.1-0.3 wt%; Consisting of 600-1000 ppm of oxygen (O) and the balance of zirconium (Zr) or niobium (Nb) 1.3-1.8 wt%; 0.1% to 0.3% by weight of copper (Cu); It is preferably made of 600 to 1000 ppm of oxygen (O) and the balance of zirconium (Zr).
  • Niobium (Nb) is a beta-phase Zr stabilizing element. When niobium (Nb) is added below the solid solution of niobium (Nb) in the Zr matrix, niobium (Nb) is known to exhibit high corrosion resistance without being affected by the heat treatment history.
  • Zircaloy-4 In PWR atmosphere, Zircaloy-4 is known to have excellent corrosion resistance as the precipitate is coarse.However, in the case of zirconium alloy composition in which niobium (Nb) is added above the solid solution, high concentration of niobium (Nb) of small size It is said that distribution of these precipitates should be evenly distributed to improve corrosion resistance.
  • niobium (Nb) when chromium (Cr), which forms a precipitate together with niobium (Nb), is 0.3 wt% or less, niobium (Nb) should be added to 1.8 wt% or less to obtain coarse precipitate formation. It can be prevented and added at 1.3 wt% or more to have sufficient corrosion resistance. Therefore, niobium (Nb) is preferably added 1.3 to 1.8% by weight.
  • Tin (Sn) is a substitutional element of up to 4.0% by weight in the alpha phase Zr, which is solid-solution in the zirconium base to give a solid solution.
  • niobium (Nb) to the solid solution or higher to add an additional 0.1% by weight of tin (Sn) in a state in which an appropriate amount of mechanical strength is secured to further increase the mechanical strength.
  • Chromium (Cr) is added primarily to increase the corrosion resistance and mechanical properties of zirconium (Zr) alloys.
  • chromium (Cr) is precipitated together with about 500 ppm of iron (Fe) present in the zirconium sponge as an impurity.
  • Niobium (Cr) is contained in the solid solution at a higher ratio according to a certain ratio of iron (Fe) / chromium (Cr). It is known to improve corrosion resistance by promoting Nb) to be fine precipitated.
  • chromium (Cr) is preferably added at 0.1 to 0.3% by weight.
  • Zirconium (Zr) has a small amount of copper (Cu), so it may be added in more than 0.1% by weight to fine precipitate with iron (Fe) to help the corrosion resistance. It can also be added in an amount of 0.3% by weight or less to avoid coarse precipitate formation, thereby preventing workability degradation. Therefore, it is preferable to add copper (Cu) at 0.1 to 0.3 wt%.
  • Oxygen (O) is an alpha phase Zr stabilizing element and is an element that is dissolved in a zirconium (Zr) alloy to improve mechanical properties such as creep and tensile strength but does not affect the corrosion properties.
  • an oxygen (O) content in the range of 600 to 1000 ppm.
  • step 2 of the zirconium alloy sheet manufacturing step is a beta phase heat treatment and rapid cooling step of homogenizing the matrix composition of the ingot produced in the step (step 1).
  • heat treatment is performed at 1,000 to 1,100 ° C. for 10 to 40 minutes, followed by rapid cooling with water. That is, the ingot is heat-treated in the beta-phase region temperature range in order to prevent partial segregation or intermetallic generation that may occur even after ingot fabrication through repeated dissolution in the step (step 1).
  • the temperature range of 1,000 ⁇ 1,100 °C is the temperature at which the zirconium alloy phase becomes the beta phase region, and precipitates generated after ingot production can be sufficiently dissolved and cause a rapid diffusion rate of the alloying elements to have a homogeneous concentration distribution in the matrix.
  • the heat treatment time is preferably about 10 to 40 minutes required for dissolution of precipitates and homogenization of concentration distribution.
  • cooling after heat treatment should be performed at a very high speed, so it is preferable to quench with water.
  • the third step of the zirconium alloy sheet manufacturing step in the present invention is preheated to hot-roll the ingot.
  • Preheating is a temperature range where the alpha zirconium phase and the beta zirconium phase are mixed, and the temperature zone is easy to process and can create a pre-rolling state suitable to destroy the ingot structure.
  • Figure 3 shows the equilibrium state of zirconium and niobium, wherein the beta phase zirconium grains are present around the alpha phase only when preheated above the monotectoid temperature (610 ° C) in which the beta phase zirconium is present, and long in the rolling direction during hot rolling. It has an elongated film form and forms fine beta phase precipitates around the alpha phase [R.
  • preheating is carried out for 20 to 40 minutes at temperatures below 660 ° C. in order to reduce unnecessary heat treatment costs resulting in excessive preheating. Therefore, preheating is preferably performed for 20 to 40 minutes at 620 ⁇ 660 °C.
  • step of the zirconium alloy sheet manufacturing step in the present invention is a step of hot rolling the pre-heated zirconium alloy ingot at a preheating temperature.
  • the primary hot rolling can destroy the ingot structure formed in the ingot manufacturing step and produce a rolled plate suitable for the cold rolling to be followed.
  • the primary hot rolling is preferably hot rolling at a reduction ratio of 30 to 50%.
  • Secondary hot rolling also promotes the formation of additional fine precipitates as the grain refines.
  • This may be referred to as secondary hot rolling by performing additional hot rolling during cooling in the conventional method in which only primary hot rolling was performed.
  • the characteristics of the secondary hot rolling are to induce dynamic recrystallization due to an increase in internal energy due to mechanical deformation through additional rolling at an appropriate high temperature to form fine grains and to increase the grain boundary area acting as a nucleation site first.
  • the nucleation of the supersaturated transition metal elements according to this is promoted to form fine precipitates.
  • the high-temperature oxidation and fatigue destruction were performed by finely controlling the average precipitate size of the zirconium alloy to which niobium (Nb), chromium (Cr), tin (Sn), copper (Cu), and oxygen (O) were added through this manufacturing step. Enhances excellent resistance performance.
  • the temperature applied for secondary hot rolling is preferably 580 to 610 ° C. to maintain sufficient thermal activation energy for dynamic recrystallization to occur. At a temperature of 610 ° C. or more, the formation of additional precipitating phases is facilitated, and coarsening of the precipitates may proceed by subsequent cooling and subsequent heat treatment. Moreover, at the temperature below 580 degreeC, workability falls by hardening of the already rolled material processed.
  • the reduction ratio of the secondary hot rolling is preferably performed at 10 to 30%. If the reduction ratio is less than 10% in the temperature range, it is less than the minimum strain required to generate the dynamic recrystallization. If the reduction ratio exceeds 30%, cracking of the tip portion occurs due to the deterioration of workability of the rolled material.
  • step 4 is a diagram illustrating the multi-stage hot rolling of step 4.
  • step 5 of the zirconium alloy sheet manufacturing step in the present invention is a step of first cold rolling after the first intermediate heat treatment of the second hot rolled rolling material in step 4.
  • the first intermediate heat treatment of step 5 should preferably be carried out at 560 ⁇ 600 °C 2 to 4 hours. This is to make the processed structure generated in step 4 into a recrystallized structure through heat treatment to make it suitable for cold processing. If the heat treatment is less than 560 °C processability is lowered, if the 600 °C or more beta phase zirconium may occur, there is a problem that the corrosion resistance is lowered. If the heat treatment time is less than 2 hours, it is difficult to obtain homogeneous recrystallization throughout the matrix, and if it exceeds 4 hours, precipitation coarsening is caused. Primary cold rolling is performed at 40 to 60% reduction to obtain the proper thickness of the final product of the zirconium alloy sheet. In this case, when the processing is less than 40%, the target alloy plate thickness cannot be obtained, and when the processing exceeds 60%, the plate cracking phenomenon occurs due to excessive deformation.
  • Step 6 of the zirconium alloy sheet manufacturing step in the present invention is a step of second cold rolling after the second intermediate heat treatment of the rolled material rolled in the step 5.
  • Step 6 is a step of cold rolling at a 40 ⁇ 60% reduction rate after the intermediate heat treatment for a rolling material having a processing structure for 2 to 4 hours at 560 ⁇ 600 °C in the same process as in step 5.
  • Step 7 of the zirconium alloy sheet manufacturing step in the present invention is a step of cold rolling after the third intermediate heat treatment of the rolled material rolled in the step 6.
  • Step 7 is a step of cold rolling at 40 to 60% reduction rate after the intermediate heat treatment of the rolled material having a work structure at 560 ⁇ 600 °C for 2 to 4 hours as in the steps 5 to 6.
  • Step 8 of the zirconium alloy sheet manufacturing step in the present invention is a step of the final heat treatment of the rolled material rolled in step 7.
  • step 8 residual stress can be removed and recrystallization can be controlled through the final heat treatment of the third cold-rolled rolled material.
  • Preferred final heat treatment is carried out at 440 ⁇ 480 °C for 7 to 9 hours. At this time, if the temperature heat treatment is less than 440 °C creep resistance is reduced according to the high creep rate, and if the temperature exceeds 480 °C tensile strength is lowered. In addition, when the heat treatment time is less than 7 hours, the later workability of the component due to the remaining residual stress is lowered, and if it exceeds 9 hours, the corrosion resistance performance due to the coarse precipitated phase is reduced.
  • a zirconium alloy ingot was prepared in the form of a button of g.
  • the zirconium (Zr) used was a nuclear grade sponge conforming to the ASTM B349 / B349M-09 standard and used a product purified at high purity of 99.99% or more.
  • Ingot dissolution and coagulation using VAR were repeated three times for partial alloy element segregation and impurity removal.
  • ingot was injected with high purity argon gas of 99.99% in a vacuum close to 1 ⁇ 10 -5 torr.
  • a current of A was applied to the tungsten electrode rod to prepare a ⁇ 74 mm button type ingot corresponding to the alloy composition having a weight of 300 g.
  • the solution was subjected to solution treatment for 30 minutes in the beta ( ⁇ ) phase temperature region of 1,020 ° C to homogeneously improve partially inhomogeneous composition in the ingot, and then drop the ingot into a water bath. It was quenched to produce an ingot having a martensite structure.
  • the rolled material from which the oxide film was removed was subjected to a primary intermediate heat treatment in an atmosphere of 1 ⁇ 10 ⁇ 5 torr at 580 ° C. for 3 hours, and then cooled.
  • Primary cold rolling was cold rolled using a 350 ton capacity rolling mill with a total reduction of 50%.
  • the secondary intermediate heat treatment was performed by heating at 580 ° C. in an atmosphere of 1 ⁇ 10 ⁇ 5 torr for 2 hours, and cold-rolling the secondary cold rolling at a 50% reduction ratio.
  • the third intermediate heat treatment was heat-treated at 580 ° C. in an atmosphere of 1 ⁇ 10 ⁇ 5 torr for 2 hours, and the third cold treatment was cold rolled at a 60% reduction ratio.
  • the final heat treatment was performed at 470 ° C. for 8 hours in an atmosphere of 1 ⁇ 10 ⁇ 5 torr to partially remove residual stress and recrystallize the rolled material.
  • the thickness of the final rolled roll was about 1 mm.
  • a zirconium alloy plate was manufactured in the composition of Examples 2 to 12 shown in Table 1 using the same method as the preparation method of Example 1.
  • Example 1 Only the hot rolled part of the manufacturing method of Example 1 was changed to the method shown in Comparative Examples 1 to 12 of Table 1 to prepare a zirconium alloy sheet material of the composition of Comparative Examples 1 to 12.
  • the microstructure photographs of the zirconium (Zr) matrix and the precipitates of Examples 1 to 12 and Comparative Examples 1 to 12 of the nuclear fuel zirconium alloy composition according to the present invention were observed using a transmission electron microscope (TEM). The average precipitate size of the examples was measured. A focused ion beam (FIB) was used for specimen fabrication, and the precipitate size was measured by Image analysis software. Measurement results and precipitate photographs (Example 6, Comparative Example 6) are shown in Table 2 and FIG. 5, respectively.
  • TEM transmission electron microscope
  • Table 2 shows the average sizes of the precipitates of the first hot rolled Examples 1 to 12 and the first hot rolled Comparative Examples 1 to 12.
  • Examples 1 to 12 range from 24.6 to 36.5 nm and Comparative Examples 1 to 12 range from 66.3 to 85.1 nm. This indicates that the alloy sheet produced by multi-stage hot rolling produced precipitates reduced to about 50% or less in size compared to the alloy sheet produced by single hot rolling. Looking at the actual microstructure picture through Figure 5 can be seen the appearance of precipitates sharply reduced in Example 6 compared to Comparative Example 6.
  • the alloy plates prepared by the above Examples and Comparative Examples were processed to a size of 20 mm ⁇ 10 mm ⁇ 1 mm and then mechanically polished to 2,000 times using silicon carbide abrasive paper, and volume ratio of water: nitric acid: hydrofluoric acid 40 It was immersed in the etching solution of 50:10 and chemically polished the surface.
  • the weight increase per unit surface area (1043.5 ⁇ 1143.1 mg / dm 2 ) of the Examples 1 to 12 made of the alloy composition produced by the present invention is the weight per unit surface area of Comparative Examples 1 to 12 Since it has an increase amount lower than the increase amount (1215.3 ⁇ 1358.3 mg / dm 2 ), it exhibits excellent high temperature oxidation resistance.
  • a fatigue test was performed by applying 400 MPa (load) in an axial direction at 20 Hz intervals in accordance with ASTM E466 using a universal testing machine having a capacity of 10 tons at room temperature. The test was conducted.
  • Table 4 and Figure 7 shows the number of repetitions until failure due to repeated loads at room temperature of the Examples and Comparative Examples, the fracture by the axial load fatigue test of the zirconium alloy composition sheet material for nuclear fuel according to the present invention The cycle was 20 times more than the comparative examples (16,515 to 18,954 times) and the improved mechanical fatigue characteristics of the examples (20,231 to 24,109 times).
  • the first hot rolling is hot rolled at a reduction ratio of 30% to 50% in the fourth step, and the second hot rolling is 10% at 580 to 600 ° C.
  • the multi-stage hot rolling is applied by hot rolling at a reduction ratio of 30% to 30%, the particles of precipitates become finer and the high temperature corrosion performance is greatly improved, and the number of times of repeated loads until fatigue failure is remarkably high. It can be seen that there is a significant effect that the mechanical performance is improved at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 다단 열간압연 공정을 통해 평균 35 nm 이하 크기의 석출물이 기지 내에 고루 분포 되는 것을 특징으로 하는 지르코늄 합금 부품의 제조방법을 제공한다. 구체적인 본 발명의 제조방법은 니오븀이 함유된 지르코늄 합금의 잉곳을 만드는 단계(단계 1); 상기 단계 1에서 제조된 잉곳을 지르코늄 베타상 온도에서 열처리 한 후 급랭하는 단계(단계 2); 상기 단계 2에서 급랭 된 잉곳을 열간압연 전 예열하는 단계(단계 3); 상기 단계 3에서 예열이 끝난 직후 1차 열간압연하고 공냉 중 이어서 2차 열간압연하는 다단 열간압연 단계(단계 4); 상기 단계 4에서 다단 열간압연 된 압연재를 1차 중간 열처리 한 후 1차 냉간압연하는 단계(단계 5); 상기 단계 5에서 1차 냉간압연된 압연재를 2차 중간 열처리 한 후 2차 냉간압연하는 단계(단계 6); 상기 단계 6에서 2차 냉간압연된 압연재를 3차 중간 열처리 한 후 3차 냉간압연하는 단계(단계 7); 및 상기 단계 7에서 3차 냉간압연된 압연재를 최종 열처리하는 단계(단계 8)를 포함하는 것을 특징으로 하는 지르코늄 합금 부품의 제조방법을 제공한다. 본 발명에 따른 제조방법을 이용하여 핵연료용 지르코늄 합금 판재를 제조함으로써, 미세한 석출물들을 기지 내에 형성시켜 고온 수증기 조건에서 내부식 성능이 향상되고 피로파괴에 대한 저항성이 높아진다.

Description

다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법
본 발명은 핵연료용 지르코늄 부품의 제조방법에 관한 것으로, 특히 잉곳의 열간 압연을 다단계로 수행하는 지르코늄 부품의 제조방법에 관한 것이다.
원자력발전소 노심에서는 중성자 경제성 측면에서 중성자 흡수성을 고려해 지르코늄 합금을 핵연료 집합체를 구성하는 핵연료 피복관 뿐만 아니라 여러 노심 구조재의 재질로 사용한다. 과거 1950년 초 개발 된 지르칼로이-4(Zircaloy-4, 주석 1.20 ~ 1.70 중량%, 철 0.18 ~ 0.24 중량%, 크롬 0.07 ~ 1.13 중량%, 산소 900 ~ 1500 ppm, 니켈 < 0.007 중량%, 지르코늄 잔부)합금은 1970년대부터 경수로에서 사용되었고, 이후 니오븀(Nb)이 첨가된 합금들로 대체되었다. 특히 미국에서 1980년대 후반에 개발된 ZIRLO와 프랑스에서 1990년대 초에 개발된 M5가 그 대표적인 예이며 이들은 Zircaloy-4의 산화속도 보다 현저히 낮은 노내 부식거동을 보였으며, 이로 인해 현재까지 과거 Zircaloy-4를 대체하여 핵연료용 부품 재질로 상용 생산이 되고 있으며 상업 원자력 발전에 이용되고 있다.
하지만 최근 안전성을 기반으로 경제성 있는 상업운전이 원자력 발전소에서 요구되고 있으며 이는 추후 개발되는 핵연료 및 그 외 노내부품의 성능요건으로 반영되고 있는 실정이다. 즉, 노심제어 사고에서도 방사능 물질 누출 및 원자로의 건전성을 보장할 수 있는 사고안전성과 시시각각으로 변화하는 전력 수요대처를 위해 부하추종 운전을 통한 발전량을 조절함으로써 경제적인 탄력적 연소에 필요한 내구성을 지닌 핵연료 개발이 요구되고 있다.
사고안전성 측면에서 고온산화가 중요한 이유는 지르코늄의 폭발적인 산화반응에 따른 핵연료 건전성 악화에 따른 핵물질 방출뿐만 아니라 수증기와의 반응에 의한 대량수소 발생에 따른 폭발로 원자로와 격납건물 자체의 건전성을 위협할 수 있기 때문이다. 일반적으로 노심은 인간이 개입하지 않아도 피동냉각(Passive cooling)되게끔 설계가 되어 있지만, LOCA 사고와 같은 냉각수 유출에 의한 노심의 수증기 분위기내 노출은 지르코늄의 산화속도를 급격히 증가시키므로 최근 사고저항성 측면에서 핵연료가 가져야할 조건으로 우수한 고온산화 저항성은 핵연료 집합체를 구성하는 부품의 필수특성으로 간주된다.
또한, 원자력 발전소에서는 경제적인 전기 생산을 위해 수요에 따른 탄력적 운전이 가능한 핵연료가 요구되고 있는 실정이다. 즉, 제어봉과 붕산수로 제어되는 노심출력의 시간에 따른 가변적 조절을 통해 핵연료 가동기간을 연장할 수는 있지만 그에 따른 핵연료봉 및 구조재들의 기계적 건전성이 위협을 받게 된다. 특히 시간에 따른 반복적인 하중인가와 해소는 피로 거동에 따른 크랙형성과 파괴에 이르는 결과가 나타난다. 따라서 내피로성이 우수한 핵연료 개발은 원자력발전소 운영 측면에서 경제적인 운전을 도울 수 있는 특성이다.
따라서 이러한 원인에서 최근 개발되는 핵연료용 합금들에 대해 상용발전을 위한 인허가 기준은 시장의 요구에서뿐만 아니라 규제기관에서도 엄격히 제시되고 있기 때문에, 기존 Zircaloy-4, ZIRLO, M5 보다 개선된 성능을 발휘할 수 있는 핵연료집합체 부품 개발이 현재 활발히 이루어지고 있다.
우수한 성능을 가지는 핵연료 개발을 위해 현재까지도 지르코늄(Zr)-니오븀(Nb) 계열의 합금 조성물 연구가 많이 수행되었을 뿐만 아니라 제조방법 또한 특성 개선을 위해 다수 개발되었다. 종래 발명들은 제조방법 개선을 통해 지르코늄(Zr)-니오븀(Nb) 합금 내 미세 석출물들을 기지 내 고루 분포시켜 그 목적을 달성하고 있다. 이는 일반적으로 노내의 고온, 고압의 냉각수에 의한 핵연료부품들의 산화와 기계적 변형에 대한 높은 저항성을 가지는 미세조직을 가지게끔 하기 위함이다. 종래 기술로는 다음과 같은 열처리 온도 조절 및 열처리 방법에 관한 기술들이 제시되어 있다.
유럽등록특허 제1225243호에서는 지르코늄에 니오븀을 0.05 ~ 1.8 중량% 첨가시키고 추가로 주석, 철, 크롬, 구리, 망간, 규소 및 산소를 첨가하여 열처리 시간과 온도의 함수인 누적열처리지수 ∑A(Accumulated annealing parameter)를 1.0 × 10-18 hr 이하로 제한하여 열처리를 수행함으로써 80 nm이하의 석출물을 얻을 수 있었으며 결국 높은 부식저항성과 기계적 성질이 우수한 고연소도 지르코늄 합금튜브와 판재를 제작하였다.
유럽등록특허 제198,570호에서는 내식성이 향상된 1 mm 이하의 두께를 가지는 튜브를 생산하기 위해 지르코늄에 1 ~ 2.5 중량% 니오븀을 첨가시키고 추가로 구리, 철, 몰리브덴, 니켈, 텅스텐, 바나듐 또는 크롬을 더 포함하한 합금에 대해 제조공정을 개선하였다. 중간 열처리 온도는 650℃를 넘지 않고 최종열처리는 600℃ 아래에서 수행하여 80 nm 이하의 균질하게 분포된 Nb가 함유된 석출물들을 얻었다.
미국등록특허 제4,649,023호에서는 고온 수화학 환경에서 우수한 부식 저항성을 보이는 합금을 제조하기 위해 니오븀 0.5 ~ 2.0 중량%, 주석 최대 1.5 중량%를 첨가하고 최대 0.25 중량%의 철, 크롬, 몰리브덴, 바나듐, 구리, 니켈 및 텅스텐 중 하나의 원소를 더 포함하여 650℃를 넘지 않는 온도에서 열간압연 및 열처리를 수행하였다.
미국등록특허 제6,902,634호에서는 고온 수화학 환경에서 우수한 부식 저항성을 보이는 합금을 제조하기 위해 니오븀 0.5 ~ 2.0 중량%, 주석 최대 1.5 중량%를 첨가하고 최대 0.25 중량%의 철, 크롬, 몰리브덴, 바나듐, 구리, 니켈 및 텅스텐 중 하나의 원소를 더 포함하여 지르코늄 합금 조성물을 제작하였다. 이때 냉간가공 사이 중간 열처리 온도를 580℃ 이하 온도로 유지하며 50~80 nm 크기의 석출물을 생성시켰다.
한국등록특허 제10-265261호에서는 우수한 내식성과 고강도를 가지는 지르코늄합금을 제조하기 위해 0.95 ~ 1.3중량% 니오븀과 주석, 크롬, 구리, 산소를 첨가한 합금 조성물을 냉간가공 후 2단 열처리로 나눠 열처리를 함으로써 기존 제조방법의 70 ~ 90 nm대의 석출물 보다 작은 40 ~ 60 nm 대 크기의 평균 석출물을 얻었다.
재료가 가지는 특성은 보통 미세조직으로부터 기인된다. 지르코늄 합금의 특성 또한 미세조직에 의해 조절되며, 이러한 미세조직은 합금원소의 종류, 양 뿐만 아니라 최종 부품을 제조하기 위한 열처리 온도, 압연과 같은 제조방법으로 조절된다. 지르코늄 합금에서는 종래 발명들에서처럼 내식성뿐만 아니라 기계적 성질을 석출물의 크기 감소를 통해 개선하였다.
그러므로 본 발명에서는 지르코늄(Zr)-니오븀(Nb) 계열 합금의 제조과정을 개선하여 사고발생 시 비상조건하에서도 우수한 고온산화 저항성과 출력증감이 반복되는 가혹한 운전조건에서 높은 내피로성을 가지는 핵연료용 지르코늄 합금의 성능 개선을 도모하기 위해 연속냉각 공정에서 다단 열간압연 제조방법을 개발하였다.
도 1은 종래 기술로 제조한 지르코늄 합금들에 형성된 석출물 크기 범위와 본 발명에서의 석출물 크기 범위를 비교하여 도시하였다. 종래 기술에 의한 석출물 크기 범위보다 확연히 작은 평균 35 nm 이하의 석출물을 생성시킬 수 있는 핵연료용 지르코늄 부품의 제조방법을 본 발명을 통해 완성하였다.
[선행기술문헌]
유럽 등록특허공보 제1225243호(등록일자: 2013.09.04.)
유럽 등록특허공보 제198570호(등록일자: 1990.08.29.)
미국등록특허공보 제4,649,023호(등록일자: 1987.03.10.)
미국등록특허공보 제6,902,634호(등록일자: 2005.06.07.)
한국등록특허공보 제10-1265261호(등록일자: 2013.05.10.)
이에 본 발명은 열간압연시 다단압축 변형을 통해 평균 35nm 이하 크기의 미세한 석출물이 생성됨으로써 높은 고온산화 저항성과 내피로성을 가지는 핵연료용 지르코늄 부품의 제조방법을 제공하고자 한다.
이러한 목적을 달성하기 위한 본 발명에 따른 핵연료용 지르코늄 부품의 제조방법은 상기 목적을 달성하기 위하여, 지르코늄과 구성 합금원소들을 용해하여 지르코늄 합금 잉곳을 만드는 단계(단계 1);
상기 단계 1에서 제조된 잉곳을 지르코늄 베타상 온도에서 열처리 한 후 급랭하는 단계(단계 2);
상기 단계 2에서 급랭 된 잉곳을 열간압연 전 예열하는 단계(단계 3);
상기 단계 3에서 예열이 끝난 직후 1차 열간압연하고 공냉 중 이어서 2차 열간압연하는 다단 열간압연 단계(단계 4);
상기 단계 4에서 다단 열간압연 된 압연재를 1차 중간 열처리 한 후 1차 냉간압연하는 단계(단계 5);
상기 단계 5에서 1차 냉간압연된 압연재를 2차 중간 열처리 한 후 2차 냉간압연하는 단계(단계 6);
상기 단계 6에서 2차 냉간압연된 압연재를 3차 중간 열처리 한 후 3차 냉간압연하는 단계(단계 7); 및
상기 단계 7에서 3차 냉간압연된 압연재를 최종 열처리하는 단계(단계 8)로 이루어진다.
본 발명에 따른 고온산화 저항성 및 내 피로능이 우수한 핵연료용 지르코늄 부품의 제조방법은 종래의 기술에 의해 제조된 동일 지르코늄 합금 판재보다 더욱 미세한 평균 35nm 이하 크기의 석출물을 형성시켜 고온 수증기 분위기에서 내식성이 향상되고, 반복하중에 의한 크랙 형성에 따른 피로파괴의 저항성이 강화됨으로써, 원자로 노내 냉각수 누출에 의한 사고 상황시 안전성을 높일 수 있으며, 또한 출력증강 운전에 따른 피로파괴에 대한 기계적 건전성을 향상시킬 수 있다.
도 1은 종래 발명의 기술들로 얻은 석출물 크기 및 본 발명의 제조방법에 의한 석출물 크기 분포이고,
도 2는 본 발명에 따른 지르코늄 합금 제조방법 순서를 개략적으로 나타낸 순서도이며,
도 3은 지르코늄과 니오븀의 이원계 평형상태도를 나타낸 그래프이고,
도 4는 본 발명에서 제시한 다단 열간압연의 개념을 나타낸 그래프이며,
도 5는 동일 합금 조성물에 대해 본 발명으로 제조된 실시예 6과 기존 제조방법을 통해 제조된 비교예 6의 석출물을 나타낸 TEM(투과전자현미경) 미세조직 사진이고,
도 6는 실시예 및 비교예의 평균 석출물 크기와 고온산화 무게증가량 결과를 나타내는 그래프이며,
도 7은 실시예 및 비교예의 평균 석출물 크기와 피로파단까지의 반복하중 횟수 결과를 나타내는 그래프이다.
본 발명에 의한 다단 열간압연으로 제조되는 핵연료용 지르코늄 부품의 제조방법은 도 2에 도시된 바와 같이, 지르코늄과 구성 합금원소들을 용해하여 지르코늄 합금 잉곳을 만드는 제1단계와, 제1단계에서 제조된 잉곳을 지르코늄 베타상 온도에서 열처리 한 후 급랭하는 제2단계와, 제2단계에서 급랭 된 잉곳을 열간압연 전 예열하는 제3단계와, 제3단계에서 예열이 끝난 직후 1차 열간압연하고 공냉 중 이어서 2차 열간압연하는 다단 열간압연을 수행하는 제4단계와, 제4단계에서 다단 열간압연 된 압연재를 1차 중간 열처리 한 후 1차 냉간압연하는 제5단계와, 제5단계에서 1차 냉간압연된 압연재를 2차 중간 열처리 한 후 2차 냉간압연하는 단계 제6단계와, 제6단계에서 2차 냉간압연된 압연재를 3차 중간 열처리 한 후 3차 냉간압연하는 제7단계와, 제7단계에서 3차 냉간압연된 압연재를 최종 열처리하는 제8단계로 이루어진다.
지르코늄 합금 판재의 구체적인 제조방법과 해당 합금의 조성을 이하 상술하고 종래기술과는 다른 열간압연의 기술적 요소에 해당하는 부분과 그에 따른 결과를 부연 설명함으로써 해당 발명의 독창성을 설명한다.
먼저, 본 발명에 있어서 지르코늄 합금 판재 제조단계 중 제1단계는 해당 합금원소들을 일정한 비율로 혼합한 후 주조하여 지르코늄 합금 잉곳을 제조하는 단계이다.
제1단계에서 잉곳은 진공아크용해법(VAR: Vacuum Arc Remelting)으로 용해하여 제조하는 것이 바람직하며, 구체적으로는 VAR시 주변 분위기를 1 × 10-5 torr로 유지하여 진공에 가까운 상태로 만든 후, 다시 아르곤 가스를 주입한 상태로 VAR 장비의 전극봉에 200 ~ 1,000 A의 전류를 걸어주며 아크를 발생시켜 합금원소들을 용해시킨 후 냉각시켜 버튼 형태의 잉곳을 제조한다. 이러한 방식으로 VAR을 이용한 2 ~ 4회 잉곳 용해를 반복하며 불순물 제거와 균질한 합금조성이 잉곳 내에 고루 분포하게끔 하는 것이 바람직하다.
제1단계의 합금 조성물은 니오븀(Nb) 1.3 ~ 1.8 중량%; 주석(Sn) 0.1 중량%; 크롬(Cr) 0.1 ~ 0.3 중량%; 산소(O) 600 ~ 1000 ppm 및 지르코늄(Zr) 잔부로 이루어지거나, 니오븀(Nb) 1.3 ~ 1.8 중량%; 구리(Cu) 0.1 ~ 0.3 중량%; 산소(O) 600 ~ 1000 ppm 및 지르코늄(Zr) 잔부로 이루어지는 것이 바람직하다.
(1) 니오븀(Nb)
니오븀(Nb)은 베타상 Zr 안정화 원소이며, Zr 기지내 니오븀(Nb) 고용도 이하로 첨가되면, 열처리 이력에 영향을 받지 않고, 높은 내부식성을 보이는 것으로 알려져 있다.
또한 고용도 이상으로 첨가되었을 경우 고용되지 않고 석출된 니오븀(Nb)에 의한 석출강화 효과로 인해 강도증가를 유발할 수 있다. 하지만, 이 경우 충분한 열처리가 이어지지 않는다면 베타상 Zr의 존재로 인해 내부식성 감소를 동반한다.
가압경수로(PWR) 분위기에서 지르칼로이-4는 석출물이 조대해질수록 내부식성이 우수한 것으로 알려져 있지만, 니오븀(Nb)이 고용도 이상으로 첨가된 지르코늄 합금 조성물의 경우 작은 크기의 고농도의 니오븀(Nb)이 함유된 석출물들을 고루 분포시켜야 내부식성 향상을 도모할 수 있다고 한다.
따라서 본 발명에 따른 핵연료용 지르코늄 합금 조성물에서는 니오븀(Nb)과 함께 석출물을 형성하는 원소인 크롬(Cr)이 0.3 중량% 이하인 경우 1.8 중량% 이하로 니오븀(Nb)을 첨가하여야만 조대한 석출물 형성을 방지할 수 있고, 1.3 중량% 이상으로 첨가하여야만 충분한 부식저항성을 가진다. 따라서 니오븀(Nb)은 1.3 ~ 1.8 중량% 첨가하는 것이 바람직하다.
(2) 주석(Sn)
주석(Sn)은 알파상 Zr에서는 4.0 중량%까지 높은 치환 형 원소로 지르코늄 기지에 고용되어 고용강화효과를 낸다.
특히 강도 및 고온 크리프와 같은 지르코늄 합금의 기계적 성질을 유지함에 있어 필수적인 원소이지만, 내 부식성에 악영향을 끼치므로 내 부식성 증가를 위해 소량 첨가한다. 니오븀(Nb) 첨가량을 고용도 이상으로 첨가하여 적당량의 기계적 강도를 확보한 상태에서 추가 0.1 중량% 정도의 주석(Sn)을 첨가함으로써 내식성에 최소한 영향을 끼치며 기계적 강도를 추가적으로 증가시키는 것이 바람직하다.
(3) 크롬(Cr)
크롬(Cr)은 주로 지르코늄(Zr) 합금의 내 부식성과 기계적 성질을 증가시키는 목적으로 첨가된다.
특히, 크롬(Cr)은 지르코늄 스펀지에 불순물 형태로 존재하는 500ppm 가량의 철(Fe)과 함께 석출이 되는데, 철(Fe)/크롬(Cr)의 일정한 비에 따라 고용도 이상으로 함유된 니오븀(Nb)을 미세 석출되도록 촉진시킴으로 내 부식성을 향상시키는 것으로 알려져 있다.
반대로, 너무 미량이나 많은 양이 첨가되면 내 부식성이 감소되거나 가공성 저하를 초래한다.
따라서 크롬(Cr)은 0.1 ~ 0.3 중량%으로 첨가하는 것이 바람직하다.
(4) 구리(Cu)
1950년대 고온가스로에서 사용할 목적으로 연구가 수행된 바 있으며, 지르코늄(Zr) 내에 합금되어 고온에서는 높은 내식성능을 발휘하지만 저온에서는 낮은 내식성을 유발시킨다고 보고된다[J. K. Chakravartty and G. K. Dey, Characterization of hot deformation behavior of Zr-2.5Nb-0.5Cu using processing maps. Sep.(1994)].
하지만 철(Fe)과 함께 지르코늄(Zr)에 합금되었을 경우 지르칼로이-2보다 높은 부식저항성을 나타낸다[G. C. Imarisio, M. Cocchi and G. Faini/J. Nucl. Mater. 37, (1970) p.257].
지르코늄(Zr)은 구리(Cu)의 고용도를 미소량 가지므로 0.1 중량% 이상으로 첨가하여 철(Fe)과 함께 미세 석출되어 부식저항성 도움을 줄 수 있다. 또한 조대한 석출물 형성을 피하기 위해 0.3 중량% 이하로 첨가하여 가공성 저하를 막을 수 있다. 따라서 구리(Cu)는 0.1 ~ 0.3 중량%으로 첨가하는 것이 바람직하다.
(5) 산소(O)
산소(O)는 알파 상 Zr 안정화 원소이며, 지르코늄(Zr) 합금에 고용되어 크리프(creep) 및 인장과 같은 기계적 특성을 향상시키지만 부식 특성에는 영향을 미치지 않는 원소이다.
따라서 니오븀(Nb), 크롬(Cr)이 첨가된 내 부식성능이 향상된 합금의 높은 기계적 성질과 제조성을 동시에 확보하기 위해서는 산소(O) 함량을 600 ~ 1000 ppm 범위로 첨가하는 것이 바람직하다.
만약, 산소(O)의 첨가량이 상기 하한 범위를 이하로 첨가되었을 경우 기계적 강도가 저하되며 상한 범위로 첨가되었을 경우 제조성이 떨어진다.
본 발명에 있어서 지르코늄 합금 판재 제조단계 중 단계 2에서는 상기 단계(단계 1)에서 제작된 잉곳의 기지 내 조성을 균질화 처리하는 베타 상 열처리 및 급랭(rapid cooling) 단계이다.
잉곳 기지 내 조성을 균질화 처리하기 위하여 1,000 ~ 1,100℃에서 10 ~ 40분 동안 열처리한 후, 물로 급랭한다. 즉, 상기 단계(단계 1)에서 반복적인 용해를 통한 잉곳 제작 후에도 발생할 수 있는 부분적인 편석 또는 금속간 화합물 발생을 방지하기 위하여 잉곳을 베타 상 영역 온도범위에서 열처리한다. 1,000 ~ 1,100℃ 영역은 지르코늄 합금의 상이 베타 상 영역이 되는 온도이며 잉곳제조 후 생겨난 석출물들이 충분히 용해되고 합금 원소들의 빠른 확산속도를 유발하여 기지 내 균질한 농도분포를 가질 수 있게 할 수 있다. 이때 열처리 시간은 석출물 용해와 농도분포 균질화를 위해 필요한 10 ~ 40분 정도가 바람직하다. 베타 상 영역에서의 균질한 조성과 고용된 합금 원소들의 상태를 상온에서도 유지하기 위해 열처리 후 냉각은 아주 빠른 속도로 이루어져야 하므로 물로 급랭하는 것이 바람직하다.
본 발명에 있어서 지르코늄 합금 판재 제조단계 중 제3단계에서는 잉곳을 열간압연하기 위해 예열을 한다. 예열은 알파 지르코늄 상과 베타 지르코늄 상이 혼재하는 온도 영역으로, 해당 온도 영역 대는 가공이 용이하며 주괴조직을 파괴하기에 적절한 압연 전 상태를 만들 수 있다. 도 3은 지르코늄과 니오븀의 평형 상태도를 나타낸 것으로, 이때 베타 상 지르코늄이 존재하는 monotectoid 온도(610℃) 이상으로 예열이 되어야 베타 상 지르코늄 결정립들이 알파상 주위에 존재하게 되고 열간 압연 시 압연 방향으로 길게 늘어난 필름 형태를 띠며 알파상 주위에서 미세한 베타 상 석출물을 형성 시킨다[R. Tewari et al., J. Nucl. Mater. 383(2008) 153, Y.H. Jeong et al., J. Nucl. Mater. 302(2002) 9]. 또한 과도한 예열에 들어가는 불필요한 열처리 비용을 절감하기 위해 660℃ 이하의 온도에서 20 ~ 40분 동안 예열을 수행한다. 따라서 예열은 620 ~ 660℃에서 20 ~ 40 분간 수행하는 것이 바람직하다.
본 발명에 있어서 지르코늄 합금 판재 제조단계 중 제4단계에서는 예열된 지르코늄 합금 잉곳을 예열온도에서 유지 후 다단 열간 압연하는 단계이다.
1차 열간압연을 통해 잉곳 제조단계에서 형성된 주괴조직을 파괴하고 후행에 있을 냉간압연에 적합한 압연재(rolled plate)를 제조할 수 있다. 또한, 베타 상 지르코늄을 압연 방향으로 가늘고 길쭉한 조직으로 변형시킴으로써 판재에 고루 분포한 미세한 베타상 석출물의 생성을 도모할 수 있다[Y.H. Jeong et al., J. Nucl. Mater. 302(2002) 9]. 이때 1차 열간압연은 30 ~ 50%의 압하율로 열간압연하는 것이 바람직하다.
또한 2차 열간압연은 결정립 미세화에 따른 추가 미세 석출물 생성을 촉진시킨다. 이는 일반적으로 1차 열간압연만 수행되었던 기존의 방법에 냉각 중 추가적인 열간압연을 수행하는 것으로 2차 열간압연이라고 칭할 수 있다. 상기 2차 열간압연의 특징은 적정 고온에서 추가적인 압연을 통해 기계적 변형에 의한 기지 내 내부에너지 증가로 인해 동적재결정(Dynamic Recrystallization)을 유발시켜 미세 결정립들을 형성시키고 우선 핵생성처로 작용되는 결정립계 면적 증가에 따른 과포화된 전이금속 원소들의 핵생성이 촉진되어 미세 석출물들을 형성시키는 것이다. 결과적으로 본 제조단계를 통해 니오븀(Nb), 크롬(Cr), 주석(Sn), 구리(Cu), 산소(O)가 첨가된 지르코늄 합금의 평균 석출물 크기를 미세하게 제어하여 고온산화와 피로파괴에 우수한 저항 성능을 강화시킨다.
2차 열간압연을 위해 가하는 온도는 580 ~ 610℃가 바람직하며 이는 동적재결정이 일어나기에 충분한 열적 활성화 에너지를 유지하기 위함이다. 610℃ 이상의 온도에서는 추가적인 조기 석출 상들의 생성이 도모되어 계속되는 냉각과정과 후행 열처리에 의해 석출물의 조대화가 진행될 수 있으므로 합금특성이 저하될 우려가 있다. 또한, 580℃ 미만의 온도에서는 이미 가공된 압연재의 경화에 의해 가공성이 저하된다. 2차 열간압연의 압하율은 10 ~ 30%로 수행하는 것이 바람직하다. 이는 해당 온도 범위에서 10% 미만으로 압하율을 줄 경우 동적재결정을 일으키기에 필요한 최소 변형률에 미달하며 30%를 초과하는 압하율을 가할 경우 압연재의 가공성 저하에 따른 선단부분 깨짐 현상이 발생한다.
상기 단계 4의 다단 열간압연을 나타내는 그림을 도 4에 나타내었다.
이어서, 본 발명에 있어서 지르코늄 합금 판재 제조단계 중 단계 5는 단계 4에서 2차 열간 압연된 압연재를 1차 중간 열처리 한 후 1차 냉간 압연하는 단계이다.
상기 단계 5의 1차 중간 열처리는 바람직하게 560 ~ 600℃에서 2 ~ 4시간 수행되어야 한다. 이는 단계 4에서 발생한 가공조직을 열처리를 통해 재결정 조직으로 만들어 냉간가공에 적절한 상태로 만들기 위함이다. 상기 열처리가 560℃ 미만일 경우 가공성이 저하되며, 600℃ 이상일 경우 베타상 지르코늄이 생길 수 있으므로 내식성이 저하되는 문제가 있다. 열처리 시간이 2시간 미만일 경우 기지 조직 내 전체적으로 균질한 재결정도를 얻기 어렵고 4시간을 초과할 경우 석출상의 조대화가 유발된다. 최종 제품인 지르코늄 합금판재의 적절한 두께를 얻기 위해 1차 냉간압연을 40 ~ 60% 압하율로 수행한다. 이때 40% 미만으로 가공하였을 경우 목표 합금판재 두께를 얻을 수 없으며 60% 초과하여 가공할 경우 과도한 변형으로 인한 판재 깨짐 현상이 발생한다.
본 발명에 있어서 지르코늄 합금 판재 제조단계 중 단계 6은 상기 단계 5에서 압연된 압연재를 2차 중간 열처리를 한 후 2차 냉간압연하는 단계이다.
상기 단계 6은 상기 단계 5에서와 마찬가지로 동일한 공정으로 가공조직을 가진 압연재를 560 ~ 600℃에서 2 ~ 4시간 동안 중간 열처리 한 후 40 ~ 60% 압하율로 냉간압연하는 단계이다.
본 발명에 있어서 지르코늄 합금 판재 제조단계 중 단계 7은 상기 단계 6에서 압연된 압연재를 3차 중간열처리를 한 후 3차 냉간압연하는 단계이다.
상기 단계 7은 상기 단계 5 내지 단계 6에서와 마찬가지로 가공조직을 가진 압연재를 560 ~ 600℃에서 2 ~ 4시간 동안 중간 열처리 한 후 40 ~ 60% 압하율로 냉간압연하는 단계이다.
본 발명에 있어서 지르코늄 합금 판재 제조단계 중 단계 8은 단계 7에서 압연된 압연재를 최종 열처리하는 단계이다.
상기 단계 8에서는 3차 냉간압연 된 압연재의 가공조직을 최종 열처리를 통해 잔류응력 제거 및 재결정도 조절이 가능하다. 바람직한 최종 열처리는 440 ~ 480℃에서 7 ~ 9시간 동안 수행한다. 이때 상기 온도 열처리가 440℃ 미만일 경우 높은 크립율에 따른 크립 저항성이 저하되며 480℃를 초과할 경우 인장강도가 떨어진다. 또한, 상기 열처리 시간을 7시간 미만으로 할 경우 잔존하는 잔류응력에 의한 추후 부품가공성이 저하되고 9시간을 초과할 경우 조대한 석출상 생성에 따른 내부식 성능이 저하된다.
이하, 본 발명을 다양한 실시예를 통해 좀 더 상세히 설명한다.
지르코늄 합금판재의 제조
(1) 잉곳(Ingot) 제조
니오븀(Nb) 1.3 중량%, 주석(Sn) 0.1 중량%, 크롬(Cr) 0.1 중량%, 산소(O) 600 ppm과 잔부인 지르코늄(Zr)을 진공아크용해법(VAR: Vacuum Arc Remelting)으로 300 g의 버튼 형태로 지르코늄 합금 잉곳을 제조하였다.
이때 사용된 지르코늄(Zr)은 ASTM B349/B349M-09 규격에 적합한 원자력급 스펀지(sponge)로서 99.99% 이상의 고순도로 정제된 제품을 사용하였다.
VAR을 이용한 잉곳 용해 및 응고는 부분적인 합금원소 편석과 불순물 제거를 위하여 3회 반복 실시하였으며, 용해 시 1 × 10-5 torr의 진공에 가까운 분위기에 99.99%의 고순도 아르곤 가스를 주입한 상태에서 450 A의 전류를 텅스텐 전극봉에 인가하여 300 g의 중량을 가지는 상기 합금조성에 해당하는 Φ74 mm 버튼형 잉곳을 제조하였다.
(2) 베타 열처리 및 급랭
3회에 걸친 용해 및 응고 후에도 잉곳 내 부분적인 불균질한 조성을 균질하게 개선하기 위해 베타(β)상 온도영역인 1,020℃에서 30분간 용체화 처리를 수행하였으며, 이어서 물이 든 수조로 잉곳을 낙하시켜 급랭하여 마르텐사이트 조직을 가진 잉곳을 제작하였다.
(3) 다단 열간압연
열간압연 전 640℃에서 30분간 예열하고 350톤 용량 압연기를 이용해 40% 압하율로 1차 열간압연 한 후, 공랭하였다. 공랭하는 중 590℃에서 20% 압하율로 2차 열간압연 하였으며 연속적으로 공랭하였다.
이때, 발생한 표면 산화막을 제거하기 위해 전동 와이어 브러쉬(wire brush)를 이용해 기계적 표면연마를 하였으며, 물 : 질산 : 불산의 부피비 40 : 50 : 10인 에칭용액에 침지 시켜 화학적으로 표면연마를 진행하여 표면 산화막을 제거하였다.
(4) 냉간압연 및 중간 열처리
산화막이 제거된 압연재를 580℃에서 3시간 동안 1 × 10-5 torr의 분위기에서 1차 중간 열처리를 하고 노냉시켰다.
1차 냉간압연은 350톤 용량 압연기를 이용해 총 50%의 압하율로 냉간압연 하였다.
2차 중간 열처리는 2시간 동안 1 × 10-5 torr의 분위기에서 580℃에서 열처리를 하고 노냉하였으며, 2차 냉간압연은 50% 압하율로 냉간압연하였다.
3차 중간 열처리는 2시간 동안 1 × 10-5 torr의 분위기에서 580℃에서 열처리를 하고 노냉하였으며, 3차 냉간압연은 60% 압하율로 냉간압연하였다.
(5) 최종열처리
3차 냉간압연 후 압연재의 잔류응력 제거 및 재결정을 부분적으로 생성시키기 위해 1 × 10-5 torr의 분위기에서 470℃, 8시간 동안 최종 열처리하였다.
최종 압연된 압연재의 두께는 약 1 mm이었다.
<실시예 2 ~ 12> 지르코늄 합금의 제조 2 ~ 12
상기 실시예 1의 제조방법과 동일한 방법을 이용해 표 1에 나타난 실시예 2 ~ 12의 조성으로 지르코늄 합금 판재를 제조하였다.
<비교예 1 ~ 12>
상기 실시예 1의 제조방법 중 열간압연 부분만 표 1의 비교예 1 내지 12에 나타난 방법으로 변경하여 비교예 1 ~ 12의 조성의 지르코늄 합금 판재를 제조하였다.
표 1
Figure PCTKR2016000967-appb-T000001
<실험예 1> 투과전자현미경을 이용한 석출물 크기 측정
본 발명에 따른 핵연료용 지르코늄 합금 조성물의 실시예 1 내지 12, 비교예 1 내지 12의 지르코늄(Zr) 기지상과 석출물들의 미세조직 사진을 투과전자현미경(TEM)을 이용해 관찰하였고, 각 실시예 및 비교예들의 평균 석출물 크기를 측정하였다. 시편 제작을 위해 집속이온빔(FIB)을 사용하였으며, 석출물 크기는 Image analysis 소프트웨어로 측정하였다. 측정 결과 및 석출물 사진(실시예6, 비교예 6)은 표 2와 도 5에 각각 나타내었다.
표 2
Figure PCTKR2016000967-appb-T000002
상기 표 2는 2차 열간압연된 실시예 1 내지 12와 1차 열간압연된 비교예 1 내지 12의 석출물 평균 크기를 나타내고 있다. 실시예 1 내지 12는 24.6 ~ 36.5 nm 범위에 있으며 비교예 1 내지 12는 66.3 ~ 85.1 nm 범위에 속한다. 이는 다단 열간압연으로 제조된 합금 판재가 단일 열간압연으로 제조된 합금 판재에 비해 약 50% 이하 크기로 줄어든 석출물을 생성하였음을 나타낸다. 도 5를 통해 실제 미세조직 사진을 확인해 보면 비교예 6에 비해 실시예 6에서 급격히 작아진 석출물들의 모습을 확인할 수 있다.
이를 통해 총 압하율(다단 열간압연: 52%, 종래 1차 열간압연: 50%)은 비슷하더라도 열간압연 횟수를 증가시킨 본 발명의 제조방법 의해 미세한 석출물들이 생성되는 것을 확인할 수 있다.
<실험예 2> 고온산화 실험
상기 실시예로 제작된 합금들의 고온산화 저항성을 알아보기 위해 하기와 같은 고온산화 실험을 수행하였다.
상기 실시예 및 비교예에 의해 제조된 합금 판재들을 20 mm × 10 mm × 1 mm 크기로 가공을 한 후 실리콘카바이드 연마지를 이용해 2,000번까지 표면을 기계적으로 연마하였으며, 물 : 질산 : 불산의 부피비 40 : 50 : 10인 에칭용액에 담궈 화학적으로 표면을 미려하게 연마하였다.
단위표면적당 무게증가량을 측정하기 위해 각 합금들의 초기무게와 표면적을 측정하였고, 열중량동시분석기(TGA, Thermogravitmetric analysis)를 이용하여 1기압 하 1200℃에서 3600초 동안 수증기를 4 g/h 유량으로 흘려주며 시료표면이 산화되며 증가하는 무게를 측정하였다. 각 실시예 및 비교예에 해당하는 합금 판재들의 표면적 대비 무게증가를 측정한 결과 값을 표 3에 나타냈다.
표 3
Figure PCTKR2016000967-appb-T000003
표 3 및 도 6의 결과에서 확인할 수 있듯이, 본 발명으로 제작된 합금 조성물로 이루어진 실시예 1 내지 12의 단위표면적당 무게증가량(1043.5 ~ 1143.1 mg/dm2)은 비교예 1 내지 12의 단위표면적당 무게증가량(1215.3 ~ 1358.3 mg/dm2) 보다 낮은 증가량을 가지므로 우수한 고온산화 저항성을 나타내고 있다.
<실험예 3> 피로실험
상기 실시예 및 비교예에 의해 제조된 합금들의 피로 파단주기를 측정하기 위해 상온에서 10톤 용량의 만능재료시험기를 이용하여 ASTM E466 규격에 따라 20 Hz 주기로 400 MPa(하중)을 축 방향으로 가하여 피로시험을 실시하였다.
표 4
Figure PCTKR2016000967-appb-T000004
표 4 및 도 7은 각 실시예들과 비교예들의 상온에서의 반복하중에 의한 파단 될 때까지의 반복횟수를 나타낸 것으로, 본 발명에 따른 핵연료용 지르코늄 합금 조성물 판재의 축 하중 피로시험에 의한 파단주기는 실시예들(20,231 ~ 24,109회)이 비교예들(16,515 ~ 18,954회) 보다 높은 횟수를 보이며 향상된 기계적 피로 특성을 보였다.
따라서 표 1 내지 4와 도 6 및 도 7에 나타난 바와 같이 제4단계에서 1차 열간압연을 30% 내지 50%의 압하율로 열간압연한 다음, 2차 열간압연을 580 ~ 600℃에서 10% 내지 30%의 압하율로 열간압연함으로써 다단 열간 압연을 적용하는 경우, 석출물들의 입자는 미세해지면서 고온부식성능이 대폭 향상되고, 또한 피로파단까지의 반복하중횟수는 현저하게 높아짐으로써 내 부식성능과 기계적 성능이 동시에 향상되는 현저한 효과가 있음을 알 수 있다.
본 발명의 명세서에 기재한 바람직한 실시예는 예시적인 것으로서 한정적인 것은 아니며, 본 발명의 범위는 첨부된 특허청구범위에 의해서 나타나 있고, 그들 특허청구범위의 의미 중에 들어가는 모든 변형예는 본 발명에 포함되는 것이다.

Claims (5)

  1. 지르코늄과 구성 합금원소들을 용해하여 지르코늄 합금 잉곳을 만드는 단계(단계 1);
    상기 단계 1에서 제조된 잉곳을 지르코늄 베타상 온도에서 열처리 한 후 급랭하는 단계(단계 2);
    상기 단계 2에서 급랭 된 잉곳을 열간압연 전 예열하는 단계(단계 3);
    상기 단계 3에서 예열이 끝난 직후 1차 열간압연하고 공냉 중 이어서 2차 열간압연하는 다단 열간압연 단계(단계 4);
    상기 단계 4에서 다단 열간압연 된 압연재를 1차 중간 열처리 한 후 1차 냉간압연하는 단계(단계 5);
    상기 단계 5에서 1차 냉간압연된 압연재를 2차 중간 열처리 한 후 2차 냉간압연하는 단계(단계 6);
    상기 단계 6에서 2차 냉간압연된 압연재를 3차 중간 열처리 한 후 3차 냉간압연하는 단계(단계 7); 및
    상기 단계 7에서 3차 냉간압연된 압연재를 최종 열처리하는 단계(단계 8)로 수행하되, 기지 내 평균 석출물 크기가 35 nm 이하로 제어하는 것을 특징으로 하는 핵연료용 지르코늄 부품의 제조방법.
  2. 제1항에 있어서,
    상기 지르코늄 합금 잉곳은 니오븀(Nb) 1.3 ~ 1.8 중량%; 주석(Sn) 0.1 중량%; 크롬(Cr) 0.1 ~ 0.3 중량%; 산소(O) 600 ~ 1,000 ppm 및 잔부인 지르코늄(Zr)으로 구성됨을 특징으로 하는 핵연료용 지르코늄 부품의 제조방법.
  3. 제1항에 있어서,
    상기 지르코늄 합금 잉곳은 니오븀(Nb) 1.3 ~ 1.8 중량%; 구리(Cu) 0.1 ~ 0.3 중량%; 산소(O) 600 ~ 1,000 ppm 및 잔부인 지르코늄(Zr)으로 구성됨을 특징으로 하는 핵연료용 지르코늄 부품의 제조방법.
  4. 제1항에 있어서,
    상기 단계 4에서 1차 열간압연을 40% 압하율로 열간압연하는 것을 특징으로 하는 핵연료용 지르코늄 부품의 제조방법.
  5. 제1항에 있어서,
    상기 단계 4에서 2차 열간압연을 580 ~ 600℃에서 20% 압하율로 열간압연하는 것을 특징으로 하는 핵연료용 지르코늄 부품의 제조방법.
PCT/KR2016/000967 2016-01-27 2016-01-29 다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법 WO2017131260A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16882803.6A EP3241920B1 (en) 2016-01-27 2016-01-29 Method for manufacturing nuclear fuel zirconium part by using multi-stage hot-rolling
US15/538,798 US20180105915A1 (en) 2016-01-27 2016-01-29 Method of manufacturing zirconium nuclear fuel component using multi-pass hot rolling
JP2017548874A JP6535752B2 (ja) 2016-01-27 2016-01-29 多段熱間圧延を適用した核燃料用ジルコニウム部品の製造方法
CN201680023859.1A CN107532240B (zh) 2016-01-27 2016-01-29 使用多级热轧的核燃料用锆部件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160009933A KR101630403B1 (ko) 2016-01-27 2016-01-27 다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법
KR10-2016-0009933 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017131260A1 true WO2017131260A1 (ko) 2017-08-03

Family

ID=56192050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000967 WO2017131260A1 (ko) 2016-01-27 2016-01-29 다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법

Country Status (6)

Country Link
US (1) US20180105915A1 (ko)
EP (1) EP3241920B1 (ko)
JP (1) JP6535752B2 (ko)
KR (1) KR101630403B1 (ko)
CN (1) CN107532240B (ko)
WO (1) WO2017131260A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264466B1 (ko) * 2019-11-06 2021-06-16 한국생산기술연구원 중성자 흡수체 및 그 제조 방법
CZ2020658A3 (cs) * 2020-12-08 2022-04-27 Univerzita Karlova Vysokopevnostní zirkoniová slitina a způsob jejího zpracování
CN113201666A (zh) * 2021-04-08 2021-08-03 中广核研究院有限公司 用于燃料组件的锆合金及其制作方法、燃料组件的包壳管
CN115896496B (zh) * 2022-11-21 2024-03-29 河北工业大学 一种高强韧锆铁二元合金及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198570A2 (en) 1985-01-22 1986-10-22 Westinghouse Electric Corporation Process for producing a thin-walled tubing from a zirconium-niobium alloy
US4649023A (en) 1985-01-22 1987-03-10 Westinghouse Electric Corp. Process for fabricating a zirconium-niobium alloy and articles resulting therefrom
EP1225243A1 (en) 2001-01-19 2002-07-24 Korea Atomic Energy Research Institute Method for manufacturing a tube and a sheet of niobium-containing zirconium alloy for a high burn-up nuclear fuel
US6902634B2 (en) 2001-11-02 2005-06-07 Korea Atomic Energy Research Institute Method for manufacturing zirconium-based alloys containing niobium for use in nuclear fuel rod cladding
KR20060122823A (ko) * 2003-10-08 2006-11-30 꽁빠니 유로삔느 뒤 지르꼬니움-세쥐 편평 지르코늄 합금 제품을 제조하는 방법과, 이로 인해얻어진 편평 제품 및 이러한 편평 제품으로부터 제조된원자력 발전소 반응기 그리드
KR20090117414A (ko) * 2008-05-09 2009-11-12 한국원자력연구원 보호성 산화막을 형성하는 핵연료피복관용 지르코늄 합금조성물, 이를 이용하여 제조한 지르코늄 합금 핵연료피복관및 이의 제조방법
KR20120102969A (ko) * 2011-03-09 2012-09-19 한국원자력연구원 우수한 내식성 및 고강도를 가지는 지르코늄합금의 제조방법
KR20140118949A (ko) * 2014-08-25 2014-10-08 한국원자력연구원 가혹한 원자로 가동조건에서 내산화성이 우수한 핵연료피복관용 지르코늄 합금 조성물 및 이를 이용한 지르코늄 합금 핵연료 피복관의 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1027781A (en) * 1975-05-06 1978-03-14 Brian A. Cheadle High strength sn-mo-nb-zr alloy tubes and method of making same
EP1771591B1 (en) * 2004-07-06 2016-12-07 Westinghouse Electric Sweden AB Fuel box in a boiling water nuclear reactor
SE528120C2 (sv) * 2004-07-06 2006-09-05 Westinghouse Electric Sweden Förfarande för framställning av plåt för användning i en kokarvattenkärnreaktor, plåt samt förfarande för framställning av bränslebox, samt bränslebox
US9139895B2 (en) * 2004-09-08 2015-09-22 Global Nuclear Fuel—Americas, LLC Zirconium alloy fuel cladding for operation in aggressive water chemistry
KR100831578B1 (ko) * 2006-12-05 2008-05-21 한국원자력연구원 원자력용 우수한 내식성을 갖는 지르코늄 합금 조성물 및이의 제조방법
CN101935778B (zh) * 2010-08-17 2011-12-28 苏州热工研究院有限公司 一种用于核反应堆的锆基合金及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198570A2 (en) 1985-01-22 1986-10-22 Westinghouse Electric Corporation Process for producing a thin-walled tubing from a zirconium-niobium alloy
US4649023A (en) 1985-01-22 1987-03-10 Westinghouse Electric Corp. Process for fabricating a zirconium-niobium alloy and articles resulting therefrom
EP1225243A1 (en) 2001-01-19 2002-07-24 Korea Atomic Energy Research Institute Method for manufacturing a tube and a sheet of niobium-containing zirconium alloy for a high burn-up nuclear fuel
KR20020062052A (ko) * 2001-01-19 2002-07-25 한국원자력연구소 고연소도 핵연료 용 니오븀 함유 지르코늄 합금 관재 및판재의 제조방법
US6902634B2 (en) 2001-11-02 2005-06-07 Korea Atomic Energy Research Institute Method for manufacturing zirconium-based alloys containing niobium for use in nuclear fuel rod cladding
KR20060122823A (ko) * 2003-10-08 2006-11-30 꽁빠니 유로삔느 뒤 지르꼬니움-세쥐 편평 지르코늄 합금 제품을 제조하는 방법과, 이로 인해얻어진 편평 제품 및 이러한 편평 제품으로부터 제조된원자력 발전소 반응기 그리드
KR20090117414A (ko) * 2008-05-09 2009-11-12 한국원자력연구원 보호성 산화막을 형성하는 핵연료피복관용 지르코늄 합금조성물, 이를 이용하여 제조한 지르코늄 합금 핵연료피복관및 이의 제조방법
KR20120102969A (ko) * 2011-03-09 2012-09-19 한국원자력연구원 우수한 내식성 및 고강도를 가지는 지르코늄합금의 제조방법
KR101265261B1 (ko) 2011-03-09 2013-05-16 한국수력원자력 주식회사 우수한 내식성 및 고강도를 가지는 지르코늄합금의 제조방법
KR20140118949A (ko) * 2014-08-25 2014-10-08 한국원자력연구원 가혹한 원자로 가동조건에서 내산화성이 우수한 핵연료피복관용 지르코늄 합금 조성물 및 이를 이용한 지르코늄 합금 핵연료 피복관의 제조방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G. C. IMARISIO; M. COCCHI; G. FAINI, J. NUCL. MATER., vol. 37, 1970, pages 257
J. K. CHAKRAVARTTY; G. K. DEY, CHARACTERIZATION OF HOT DEFORMATION BEHAVIOR OF ZR-2.5NB-0.5CU USING PROCESSING MAPS, 1994
R. TEWARI ET AL., J. NUCL. MATER., vol. 383, 2008, pages 153
Y.H. JEONG ET AL., J. NUCL. MATER., vol. 302, 2002, pages 9

Also Published As

Publication number Publication date
CN107532240B (zh) 2019-12-20
JP2018514646A (ja) 2018-06-07
EP3241920A1 (en) 2017-11-08
EP3241920A4 (en) 2018-01-24
EP3241920B1 (en) 2020-03-04
KR101630403B1 (ko) 2016-06-14
JP6535752B2 (ja) 2019-06-26
CN107532240A (zh) 2018-01-02
US20180105915A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2020085697A1 (ko) 고강도 고인성 중엔트로피 합금 및 그 제조방법
EP1256634B1 (en) Zirconium alloy having excellent corrosion resistance and mechanical properties and method for preparing nuclear fuel cladding tube by zirconium alloy
WO2020013524A1 (en) Lightweight medium-entropy alloys using spinodal decomposition
WO2017131260A1 (ko) 다단 열간압연을 적용한 핵연료용 지르코늄 부품의 제조방법
WO2018074743A1 (ko) 고강도 Fe-Cr-Ni-Al 멀티플렉스 스테인리스강 및 이의 제조방법
US20080131306A1 (en) Zirconium alloy composition having excellent corrosion resistance for nuclear applications and method of preparing the same
WO2020085755A1 (ko) 하이엔트로피 합금을 포함하는 복합 구리 합금 및 그 제조 방법
WO2020080660A1 (ko) 중엔트로피 합금 및 그 제조방법
WO2016167397A1 (ko) 우수한 내식성 및 크리프 저항성을 갖는 지르코늄 합금과 그 제조방법
KR20130098618A (ko) 사고조건 하의 원자로 내에서 우수한 내산화성을 나타내는 핵연료 피복관용 지르코늄 합금 조성물, 이를 이용하여 제조한 지르코늄 합금 핵연료 피복관 및 이의 제조방법
WO2016167404A1 (ko) 우수한 부식저항성을 갖는 핵연료 피복관용 지르코늄 합금 및 그 제조방법
KR101378066B1 (ko) 합금원소의 첨가량을 낮추어 부식저항성을 향상시킨 핵연료 피복관용 지르코늄 합금 조성물 및 이를 이용한 지르코늄 합금 핵연료 피복관의 제조방법
US20100108204A1 (en) Zirconium alloy composition for nuclear fuel cladding tube forming protective oxide film, zirconium alloy nuclear fuel cladding tube manufactured using the composition, and method of manufacturing the zirconium alloy nuclear fuel cladding tube
WO2021100959A1 (ko) 균일하게 분포하는 나노 크기의 석출물을 다량 함유한 오스테나이트계 스테인리스강 및 이의 제조방법
JPS60100655A (ja) 耐応力腐食割れ性のすぐれた高Cr含有Νi基合金部材の製造法
WO2021025499A1 (ko) 고강도 고성형성 베타 타이타늄 합금
CN113215459B (zh) Al-Cu-Mn纳米结构耐热变形铝合金及制备方法
WO2021125439A1 (ko) 페라이트계 합금 및 이를 이용한 핵연료 피복관의 제조방법
CN105886982B (zh) β型γ‑TiAl基合金获得细小全片层组织的方法
KR101265261B1 (ko) 우수한 내식성 및 고강도를 가지는 지르코늄합금의 제조방법
WO2016167400A1 (ko) 고온산화 및 부식 저항성이 우수한 지르코늄 합금 조성물 및 이의 제조방법
WO2022239886A1 (ko) 고강도 및 고연성을 갖는 순수 타이타늄 및 그 제조 방법
KR20140118949A (ko) 가혹한 원자로 가동조건에서 내산화성이 우수한 핵연료피복관용 지르코늄 합금 조성물 및 이를 이용한 지르코늄 합금 핵연료 피복관의 제조방법
EP2943597B1 (en) Treatment process for a zirconium alloy
KR20130098621A (ko) 가혹한 원자로 가동조건에서 내산화성이 우수한 핵연료피복관용 지르코늄 합금 조성물 및 이를 이용한 지르코늄 합금 핵연료 피복관의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15538798

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016882803

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017548874

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE