EP0084084A1 - Ölgedichtete Vakuumpumpe - Google Patents

Ölgedichtete Vakuumpumpe Download PDF

Info

Publication number
EP0084084A1
EP0084084A1 EP82109588A EP82109588A EP0084084A1 EP 0084084 A1 EP0084084 A1 EP 0084084A1 EP 82109588 A EP82109588 A EP 82109588A EP 82109588 A EP82109588 A EP 82109588A EP 0084084 A1 EP0084084 A1 EP 0084084A1
Authority
EP
European Patent Office
Prior art keywords
oil
pump
pressure
vacuum pump
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82109588A
Other languages
English (en)
French (fr)
Other versions
EP0084084B1 (de
Inventor
Hanns-Peter Dr. Berges
Peter Frieden
Wolfgang Leier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold Heraeus GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Heraeus GmbH filed Critical Leybold Heraeus GmbH
Publication of EP0084084A1 publication Critical patent/EP0084084A1/de
Application granted granted Critical
Publication of EP0084084B1 publication Critical patent/EP0084084B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/02Liquid sealing for high-vacuum pumps or for compressors

Definitions

  • the invention relates to an oil-sealed vacuum pump with an oil circuit for supplying the bearings and the pump chamber with oil and a valve arranged in the oil circuit for shutting off the oil supply to the pump chamber when the pump is at a standstill.
  • An oil-sealed vacuum pump of this type is known from GB-PS 875 444.
  • the oil pump of the oil circuit sucks the oil from the oil supply in the pump housing and conveys it to a kind of check valve, the closing piece of which is under the action of a very weak spring, so that the oil pressure in the oil circuit is only slightly above the ambient pressure. From the valve, which opens against the spring pressure, the excess oil pumped by the oil pump passed through the bearing of the pump shaft into the pump chamber and from there is fed back to the oil reservoir via the outlet valve.
  • the disadvantage of this is that no oil can be supplied to the bearings with a pressure that is significantly above the ambient pressure, which is desirable for safe and continuous bearing lubrication.
  • the present invention has for its object to provide an oil-sealed vacuum pump of the type mentioned, in which despite safe bearing lubrication Pressure oil a pump operation up to 1000 mbar suction pressure is guaranteed without unnecessary loading of the pumped gases with oil vapors.
  • this object is achieved in that the oil circuit serving to supply the bearings of the pump chamber with oil has a pressure stage for reducing the excess pressure generated by the oil pump to the ambient pressure, and in that the branches leading to the bearings - based on the direction of the flowing oil - upstream of the pressure stage and the branch line leading to the pump chamber as well as the shut-off valve behind the pressure stage.
  • the oil pump and the pressure stage can be used to maintain a relatively high pressure in the first part of the oil circuit from which the bearings are supplied with lubricating oil.
  • the pump room is supplied with pressure-relieved oil, so that the pump works as a self-priming pump.
  • Such a pump sucks little oil at high suction pressures, and a lot of oil during final pressure operation.
  • the increased oil consumption and the disturbing environmental impact at high suction pressures are therefore greatly reduced.
  • the oil supply to the bearings from an oil circuit with a relatively high pressure allows an oil filter to be switched on in this part of the oil line, via which a relatively high pressure difference drops, so that only cleaned oil can be supplied to the bearings. It is also possible to monitor the pump via the oil pressure, which allows a clear statement about the operating state of the pump.
  • the supply of oil to the pump chamber from the subsequent pressure-relieved part of the oil circuit has the advantage that only cleaned oil gets into the pump chamber.
  • the shut-off valve ensures that when the pump is switched off, the amount of oil that remains inside the pump chamber is reliably limited. This gives decisive advantages when the pump is cold started, which has a direct influence on the dimensioning of the motor of the pump. An undesirable increase in oil in the pump and in the suction port when the pump is accidentally reversed is also reliably prevented.
  • the oil circuit of the pump is formed by the suction line 11, via which oil is conveyed from the oil supply 2 into the oil pressure line 13 by means of the oil pump 12.
  • a throttle 15 is arranged, which is used for the maintenance the desired oil pressure (between 1.5 and 2 bar, preferably 1.7 bar) and via which the pressure is reduced to the pressure in the oil box 1.
  • the bearings in the pump are supplied with pressure oil via branches 16, 17, 18.
  • Three oil supply lines (16, 17, 18) are required in the case of a two-stage pump, in which two end bearings and an intermediate bearing of the two rotors have to be supplied with oil. In the case of a single-stage pump, two of the three branch lines are sufficient. After flowing through the bearings, the oil that has entered the branch lines 16, 17, 18 returns to the oil reservoir 2.
  • An oil filter 19 is switched on in the pressure oil line 13 immediately behind the oil pump 12, so that it is ensured that only cleaned oil flows through the line 13 and through the branch lines connected to it.
  • Another branch line 21 opens into the control cylinder 22, in which the control piston 23 is located.
  • the pressure medium line 24 opens into the cylinder 22, the other end of which is connected to the cylinder 9 on the side of the piston 8 facing away from the valve plate 7.
  • the inlet opening 25 of the pressure medium line 24 in the cylinder 22 is designed as a valve seat.
  • a plug 26 with a sealing bead 27 is inserted into the inlet opening 25.
  • the end face 28 of a cylindrical projection 29 on the control piston 23 with a reduced diameter compared to the control piston serves as the closure member.
  • the control piston 23 is under the action of a spring 31, which is arranged between the control piston 23 and the end wall 32 with the inlet opening 25 of the pressure medium line 24 and is designed as a compression spring.
  • the cylindrical projection 29 can be screwed into the control piston 23 by means of the thread 33, so that in the Closing state of the control valve 27, 28 acting force of the spring 31 can be influenced.
  • a further line 34 opens into the cylinder 22 and is connected to an oil reservoir 35 of small volume which is open at the top.
  • the junction of the line 34 in the cylinder 22 lies on the side of the control piston 23 opposite the junction of the line 21.
  • the oil pump 12 conveys oil from the oil reservoir 2 into the oil pressure line 13.
  • the oil pump 12 can be designed as a rotary vane pump or gear pump and coupled in a known manner to the pump shaft as a drive (cf.
  • the delivery properties of the pump 12 and the size of the throttle 15 are dimensioned such that the desired oil pressure builds up and is maintained in the line 13 after the vacuum pump has started. This pressure acts on the piston 23 and overcomes the force of the spring 31, so that the inlet opening 25 of the pressure medium line 24 is closed.
  • the suction nozzle valve 4 is in its open position, so that the recipient connected to the suction nozzle 3 is evacuated.
  • the pump is switched off, the amount of oil delivered by the oil pump 12 decreases at the same time, so that the oil pressure in the line 13 decreases.
  • the inlet opening 25 is opened so that, owing to the atmospheric pressure prevailing on the surface of the oil in the oil reservoir 35, oil is pressed into the pressure medium line 24 and reaches the cylinder 9 under the piston 8.
  • the amount of oil located below the piston 23 and in the oil reservoir 35 is so small that the oil entering the cylinder 9 essentially serves only to seal the piston 8 against its cylinder wall.
  • the actual pressure medium for actuating the piston 8 is the air which, following the oil, passes through the oil supply 35 into the pressure medium line 24.
  • the total amount of oil in the cylinder 2 and in the oil reservoir 35 is a few cm 3 . It should be low so that it essentially serves only to seal the gap existing between the piston 8 and the cylinder 9. These processes cause the suction nozzle valve 4 to close without the undesirable air intake. After the suction nozzle valve 4 is closed and the urging air has displaced the oil located between the piston 8 and the cylinder wall 9, the pump chamber is ventilated.
  • the function of the suction nozzle valve control is independent of the existence of an oil filter 19, ie, even in an oil circuit without an oil filter 19 (cf. line section 20 shown in broken lines), the suction nozzle valve and its control means work perfectly.
  • a particular advantage of the described embodiment of the suction nozzle valves 4 and its control means which operate as a function of the oil pressure is that both cylinder-piston devices 8, 9 and 22, 23 are hardly susceptible to tolerances because of the desired gap between the piston and the cylinder and therefore without special costs can be produced.
  • the control means can be adjusted in such a way that the inlet opening 25 of the pressure medium line 24 is opened even with relatively small pressure drops in the oil circuit (e.g. a drop in the target pressure from approximately 1.7 bar to 1.5 bar).
  • the response time of the intake port valve 4 is so short due to the hydro-pneumatic actuation that it is ensured that the intake port valve is closed before the vacuum pump finally runs out.
  • the control of the suction port valve by the oil pressure in an oil circuit which is supplied by an oil pump arranged on the pump shaft, has the advantage of a fast and safe mode of operation, since the operating state of the pump can clearly be derived from the oil pressure in the oil circuit.
  • the outlet opening 14 of the line 13 is assigned a resilient cover 41 which - together with a special design of the wall 42 in the region of the outlet opening 14 - fulfills several functions.
  • the outlet opening 14 is surrounded by a concentric groove 43 in the wall 42, which extends into a bore 44 through which the oil serving to supply the pump chamber passes.
  • This bore is also equipped with a throttle 45, the size of which is adapted to the suction power of the respective pump.
  • the resilient cover 41 which preferably consists of an elastic steel band section, covers both the outlet opening 14 of the oil pressure line 13 and the bore 44. Their force and the distance of the fastening points 46, 47 from the oil channels 13, 44 are selected so that they represents a pressure level of a negligible pressure difference for the oil emerging from the outlet opening 14.
  • the oil emerges from the outlet opening 14 with the pressure of the oil box.
  • it also applies at this point in the oil circuit that it is operated with excess oil, that is to say that even when the pump is operating at the end pressure, more oil passes through the outlet opening emerges as is sucked in by the pump through the bore 44 or throttle 45.
  • the pressure oil is expanded to the pressure in the oil box as a result of the throttle 15 and initially flows into the groove 43 surrounding the outlet opening 14. Part of the oil flows out of this groove, which is connected to the bore 44, as a result of the Suction effect of the pump chamber through the bore 44 or throttle 45. Excess oil is returned to oil reservoir 2.
  • the resilient cover 41 ensures that only such oil flows through the bore 44 and the throttle 45 that has emerged from the outlet opening 14. Therefore, only oil that has flowed through the oil filter 19 enters the pump chamber. The pump room is therefore no longer affected by dirty oil. Nevertheless, the pump works like a self-priming pump, i.e. that is, it determines the amount of oil it needs itself. B. small amounts of oil through the throttle 45, so that undesirably high oil vapor shares .n the conveyed media emerging from the pump are not available. Regardless of this, it is ensured that the bearings are supplied with pressure oil.
  • the resilient cover and the special groove design ensure that the oil is shut off when the pump is at a standstill.
  • the negative pressure acting through the bore 44 in the pump chamber causes the resilient cover to bear tightly against the wall 42.
  • the cover completely blocks the bore 44, so that the oil supply to the vacuum pump does not occur.
  • This solution has another advantage. There is generally the problem that an accidental reverse running of the pump (due to incorrect power connection) leads to an undesirable increase in oil in the suction nozzle. This arrangement reliably prevents this increase in oil.
  • Fig. 2 shows a rotary vane vacuum pump.
  • the conveyed gases pass through the suction port 3, the open suction port valve 4, via the suction channel 51, which is not visible in the plane of the drawing and is therefore shown as an arrow, into the pump chamber 52, in which the rotor 53 with the slides 54 is located.
  • the compressed gases pass through the outlet channel 55 into the oil box 1, which is filled with oil up to the line 56, so that the resilient cover 41 lies below the oil level.
  • the actual exhaust pipe is not shown.
  • the resilient cover 41 (shown in broken lines in FIG. 2) is fastened on the end wall 42 by means of the screws 46, 47. It covers the two openings 14 and 44 and the groove 43 surrounding the opening 14.
  • the nozzle 15 is produced by drilling the end wall 42 on both sides.
  • the nozzle 45 is screwed into the end wall 42 by means of a thread 59, so that different nozzles can be used depending on the suction power of the pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Bei einer ölgedichteten Vakuumpumpe mit einem Ölkreislauf zur Versorgung der Lagerungen und des Pumpenraumes mit Öl und einem im Ölkreislauf angeordneten Ventil für die Absperrung der Ölzufuhr zum Pumpenraum bei stillstehender Pumpe weist der Ölkreislauf eine Druckstufe (15) zum Abbau des von der Ölpumpe (12) erzeugten Überdrucks auf den Umgebungsdruck auf; bezogen auf die Richtung des im Ölkreislauf strömenden Öls liegen die zu den Lagerungen führenden Abzweigungen (16, 17, 18) vor der Druckstufe und die zum Pumpenraum führende Zweigleitung (44) sowie das Absperrventil (14, 41) hinter der Druckstufe.

Description

  • Die Erfindung bezieht sich auf eine ölgedichtete Vakuumpumpe mit einem ölkreislauf zur Versorgung der Lagerungen und des Pumpenraumes mit öl und einem im ölkreislauf angeordneten Ventil für die Absperrung der ölzufuhr zum Pumpenraum bei stillstehender Pumpe.
  • Aus der GB-PS 875 444 ist eine ölgedichtete Vakuumpumpe dieser Art bekannt. Die ölpumpe des ölkreislaufs saugt das öl aus dem im Pumpengehäuse befindlichen ölvorrat und fördert es zu einer Art Rückschlagventil, dessen Verschlußstück unter der Wirkung einer sehr schwachen Feder steht, so daß der öldruck im ölkreislauf nur wenig über dem Umgebungsdruck liegt. Vom sich gegen den Federdruck öffnenden Ventil gelang das im Überschuß von der Ölpumpe geförderte öl über die Lagerung der Pumpenwelle in den Pumpenraum und wird von dort aus über das Auslaßventil dem ölvorrat wieder zugeführt. Nachteilig daran ist, daß den Lagerungen kein öl mit einem deutlich über dem Umgebungsdruck liegenden Druck zugeführt werden kann, was für eine sichere und kontinuierliche Lagerschmierung wünschenswert ist. Es wäre denkbar, die Stärke der Feder des Rückschlagventils größer zu wählen, so daß der öldruck im ölkreislauf ansteigt. Das würde jedoch bedeuten, daß das der Abdichtung des Drehkolbens dienende öl ständig mit erhöhtem Druck in den Pumpenraum eingespritzt wird. Daran wäre nachteilig, daß in die bei hohen Ansaugdrücken in großer Menge geförderten Gase unnötig viel öl eingespritzt wird, was nicht nur den ölverbrauch beim Betrieb der Pumpe mit hohen Ansaugdrücken unnötig steigert, sondern auch eine störende Umweltbelastung infolge der hohen ölanteile im von der Pumpe ausgestoßenen Gas darstellt.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine ölgedichtete Vakuumpumpe der eingangs genannten Art zu schaffen, bei der trotz sicherer Lagerschmierung mit Drucköl ein Pumpenbetrieb bis zu 1000 mbar Ansaugdruck ohne unnötige Belastung der geförderten Gase mit öldämpfen gewährleistet ist.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß der der Versorgung der Lagerungen des Pumpenraumes mit öl dienende ölkreislauf eine Druckstufe zum Abbau des von der ölpumpe erzeugten Überdruckes auf den Umgebungsdruck aufweist und daß die zu den Lagerungen führenden Abzweigungen - bezogen auf die Richtung des strömenden Öls - vor der Druckstufe und die zum Pumpenraum führende Abzweigleitung sowie das Absperrventil hinter der Druckstufe angeordnet sind. Bei einer in dieser Weise ausgebildeten Vakuumpumpe kann mit Hilfe der ölpumpe und der Druckstufe ein relativ hoher Druck im ersten Teil des ölkreislaufs aufrechterhalten werden, von dem aus die Versorgung der Lagerungen mit Schmieröl erfolgt. Die Versorgung des Pumpenraumes erfolgt mit druckentlastetem Öl, so daß die Pumpe als selbstansaugende Pumpe arbeitet. Eine derartige Pumpe saugt bei hohen Ansaugdrücken wenig öl, bei Enddruckbetrieb viel öl an Der erhöhte ölverbrauch und die störende Umweltbelastung bei hohen Ansaugdrücken sind deshalb stark reduziert. Ferner erlaubt die ölversorgung der Lagerungen aus einem ölkreislauf mit relativ.hohem Druck, in diesem Teil der Ölleitung ein ölfilter einzuschalten, über den eine relativ hohe Druckdifferenz abfällt, so daß den Lagerungen nur gereinigte Öl zugeführt werden kann. Auch die Überwachung der Pumpe über den Öldruck, der eine eindeutige Aussage über den Betriebszustand der Pumpe zuläßt, ist möglich. Schließlich hat die Versorgung des Pumpenraumes mit öl aus dem sich anschließenden druckentlasteten Teil des Ölkreislaufs den Vorteil, daß auch in den Pumpenraum ausschließlich gereinigtes öl gelangt. Durch das Absperrventil ist sichergestellt, daß beim Abstellen der Pumpe die ölmenge, die innerhalb des Pumpenraumes bleibt, zuverlässig begrenzt ist. Dies ergibt entscheidende Vorteile beim Kaltstart der Pumpe, was einen direkten Einfluß auf die Dimensionierung des Motors der Pumpe hat. Ein unerwünschter ölanstieg in der Pumpe und im Saugstutzen bei versehentlichem Rückwärtslauf der Pumpe ist ebenfalls zuverlässig verhindert.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 bis 4 dargestellten Ausführungsbeispielen erläutert werden. Es zeigen:
    • Fig. 1 ein.Schema eines ölkreislaufs in einer Vakuumpumpe nach der Erfindung mit hydro-pneumatisch gesteuertem Saugstutzenventil,
    • Fig. 2 ein Ausführungsbeispiel für eine Vakuumpumpe nach der Erfindung, teilweise im Schnitt, teilweise in Ansicht der vorderen Stirnwand des Pumpenkörpers,
    • Fig. 3 einen Schnitt durch die Stirnwand des Pumpenkörpers nach der Linie III-III in Fig. 2 und
    • Fig. 4 einen Schnitt durch die Stirnwand des Pumpenkörpers nach der Linie IV-IV in Fig. 2.
  • Beim Schema nach Fig. 1 sind im wesentlichen nur diejenigen Teile der erfindungsgemäßen Vakuumpumpe dargestellt, die im Rahmen der Erfindung eine besondere Rolle spielen. Mit 1 ist der ölkasten oder das äußere Pumpengehäuse bezeichnet,.das teilweise mit öl 2 gefüllt ist. Im Schnitt dargestellt ist weiterhin der Saugstutzen 3 mit dem Saugstutzenventil 4, das von dem plattenförmigen Ventilsitz 5 mit der Öffnung 6 und dem Ventilteller 7 gebildet wird. Der Ventilteller 7 steht mit einem Kolben 8 in Verbindung, der im Zylinder 9 verschiebbar angeordnet ist.
  • Der Ölkreislauf der Pumpe wird gebildet von der Ansaugleitung 11, über die mittels der ölpumpe 12 öl aus dem ölvorrat 2 in die Öldruckleitung 13 gefördert wird. Im Bereich der Austrittsöffnung 14 der öldruckleitung 13 ist eine Drossel 15 angeordnet, welche für die Aufrechterhaltung des gewünschten öldruckes (zwischen 1,5 und 2 bar, vorzugsweise 1,7 bar) sorgt und über die der Abbau des Druckes auf den Druck im ölkasten 1 erfolgt. Über Abzweigungen 16, 17, 18 erfolgt die Versorgung der in der Pumpe vorhandenen Lagerungen mit Drucköl. Drei ölversorgungsleitungen (16, 17, 18) sind im Falle einer zweistufigen Pumpe erforderlich, bei der zwei Endlager und ein Zwischenlager der beiden Rotoren mit öl versorgt werden müssen. Im Falle einer einstufigen Pumpe reichen zwei der drei Abzweigleitungen aus. Nach dem Durchströmen der Lagerungen gelangt das in die Abzweigleitungen 16, 17, 18 eingetretene öl wieder in den ölvorrat 2.
  • In die Druckölleitung 13 ist unmittelbar hinter der ölpumpe 12 ein ölfilter 19 eingeschaltet, so daß sichergestellt ist, daß ausschließlich gereinigtes öl durch die Leitung 13 und durch die daran angeschlossenen Abzweigleitungen strömt.
  • Eine weitere Abzweigleitung 21 mündet in den Steuerzylinder 22, in dem sich der Steuerkolben 23 befindet. Auf der der Einmündung der Leitung 21 gegenüberliegenden Seite des Kolbens 23 mündet die Druckmittelleitung 24 in den Zylinder 22, deren anderes Ende mit dem Zylinder 9 auf der dem Ventilteller 7 abgewandten Seite-des Kolbens 8 verbunden ist. Die Eintrittsöffnung 25 der Druckmittelleitung 24 in den Zylinder 22 ist als Ventilsitz ausgebildet. Dazu ist in die Eintrittsöffnung 25 ein Stöpsel 26 mit einem Dichtwulst 27 eingesteckt. Als Verschlußglied dient die Stirnseite 28 eines zylindrischen Ansatzes 29 am Steuerkolben 23 mit gegenüber dem Steuerkolben verringertem Durchmesser. Der Steuerkolben 23 steht unter der Wirkung einer Feder 31, die zwischen dem Steuerkolben 23 und der Stirnwand 32 mit der Eintrittsöffnung 25 der Druckmittelleitung 24 angeordnet und als Druckfeder ausgebildet ist. Der zylindrische Ansatz 29 ist mittels des Gewindes 33 in den Steuerkolben 23 einschraubbar, so daß auf die im Schließzustand des Steuerventils 27, 28 wirkende Kraft der Feder 31 Einfluß genommen werden kann.
  • In den Zylinder 22 mündet eine weitere Leitung 34, die mit einem oben offenen ölvorratsgefäß 35 geringen Volumens verbunden ist. Die Einmündung der Leitung 34 in den Zylinder 22 liegt auf der der Einmündung der Leitung 21 entgegengesetzten Seite des Steuerkolbens 23.
  • Während des Betriebs einer nach diesem Schema aufgebauten Pumpe fördert die ölpumpe 12 öl aus dem ölvorrat 2 in die öldruckleitung 13. Die ölpumpe 12 kann als Drehschieberpumpe oder Zahnradpumpe ausgebildet sein und in bekannter Weise mit der Pumpenwelle als Antrieb gekoppelt (vgl.
  • GB-PS 875 444). Die Fördereigenschaften der Pumpe 12 und die Größe der Drossel 15 sind so bemessen, daß sich nach dem Anlaufen der Vakuumpumpe der gewünschte öldruck in der Leitung 13 aufbaut und gehalten wird. Dieser Druck wirkt auf den Kolben 23 und überwindet die Kraft der Feder 31, so daß die Eintrittsöffnung 25 der Druckmittelleitung 24 verschlossen ist. Das Saugstutzenventil 4 befindet sich in seiner Offenstellung, so daß der an den Saugstutzen 3 angeschlossene Rezipient evakuiert wird.
  • Während dieses Betriebszustandes strömen durch die öldruckleitung 13 bestimmte ölmengen, die mit Q1, Q2 und Q3 bezeichnet sind. Der Kolben 23 bildet mit der Wand des Zylinders 22 einen relativ großen Spalt 36, so daß sich der Zylinderraum 22 unterhalb des Kolbens 23 und der ölvorratsraum 35 mit öl füllen. Wegen des Spaltes 36 wird ein ständiger ölstrom mit der Menge Q4 aufrechterhalten. überschüssiges öl gelangt vom ölvorrat 35 wieder in den ölvorrat 2. Die ölpumpe 12 ist so dimensioniert, daß der gesamte ölkreislauf mit Überschußöl gefahren wird, d. h., zu jeder Zeit strömt mehr öl durch den ölkreislauf, als von der Pumpe benötigt wird.
  • Wird die Pumpe abgestellt, nimmt gleichzeitig die von der ölpumpe 12 geförderte ölmenge ab, so daß der öldruck in der Leitung 13 nachläßt. Bei Unterschreiten eines bestimmten Druckes wird die Eintrittsöffnung 25 freigegeben, so daß infolge des auf der Oberfläche des Öls in dem ölvorrat 35 herrschenden Atmosphärendruckes öl in die Druckmittelleitung 24 gedrückt wird und unter den Kolben 8 in den Zylinder 9 gelangt. Die unterhalb des Kolbens 23 und im ölvorrat 35 befindliche ölmenge ist so gering, daß das in den Zylinder 9 gelangende öl im wesentlichen nur der Abdichtung des Kolbens 8 gegenüber seiner Zylinderwand dient. Das eigentliche Druckmittel zur Betätigung des Kolbens 8 ist die Luft, die im Anschluß an das Öl durch den ölvorrat 35 in die Druckmittelleitung 24 gelangt. Die gesamte im Zylinder 2 und im Ölvorratsgefäß 35 befindliche Ölmenge beträgt einige cm3. Sie soll sa gering sein, daß sie im wesentlichen nur der Abdichtung des zwischen dem Kolben 8 und dem Zylinder 9 bestehenden Spaltes dient. Diese Vorgänge bewirken ein Schließen des Saugstutzenventils 4 ohne den unerwünschten Luftschluck. Nachdem das Saugstutzenventil 4 geschlossen ist und die nachdrängende Luft das zwischen dem Kolben 8 und der Zylinderwandung 9 befindliche öl verdrängt hat, erfolgt hierüber die Belüftung des Pumpenraums. Die Funktion der Saugstutzenventilsteuerung ist unabhängig von der Existenz eines ölfilters 19, d. h., auch bei einem ölkreislauf ohne ölfilter 19 (vgl. gestrichelt eingezeichneten Leitungsabschnitt 20) arbeiten das Saugstutzenventil und seine Steuermittel einwandfrei.
  • Ein besonderer Vorteil der beschriebenen Ausführung des Saugstutzenventile 4 und seiner in Abhängigkeit vom Öldruck arbeitenden Steuermittel liegt noch darin, daß beide Zylinder-Kolben-Einrichtungen 8, 9 bzw. 22, 23 wegen der erwünschten Spalte zwischen Kolben und Zylinder kaum toleranzanfällig sind und deshalb ohne besonderen Kostenaufwand herstellbar sind. Durch geeignete Wahl der strömenden Ölmengen Q1 und Q4 und durch entsprechendes Anpassen der Kraft der Feder 31 können die Steuermittel derart justiert werden, daß bereits bei relativ kleinen Drucksenkungen im ölkreislauf (z. B. ein Absinken des Solldruckes von ca. 1,7 bar auf 1,5 bar) die Eintrittsöffnung 25 der Druckmittelleitung 24 freigegeben wird..Die Ansprechzeit des Saugstutzenventils 4 ist aufgrund der hydro-pneumatischen Betätigung so klein, daß sichergestellt ist, daß bereits vor dem endgültigen Auslaufen der Vakuumpumpe das Saugstutzenventil geschlossen ist. Generell hat die Ansteuerung des Saugstutzenventils durch den öldruck in einem ölkreislauf, der von einer auf der Pumpenwelle angeordneten ölpumpe versorgt wird, den Vorteil einer schnellen und sicheren Betriebsweise, da vom Öldruck, im ölkreislauf eindeutig der Betriebszustand der Pumpe abgeleitet werden kann.
  • Der Austrittsöffnung 14 der Leitung 13 ist eine federnde Abdeckung 41 zugeordnet, die - gemeinsam mit einer besonderen Gestaltung der Wandung 42 im Bereich der Austrittsöffnung 14 - mehrere Funktionen erfüllt. Die Austrittsöffnung 14 ist von einer konzentrischen Nut 43 in der Wandung 42 umgeben, die bis in eine Bohrung 44 reicht, durch die das der Versorgung des Pumpenraumes dienende öl hindurchtritt. Diese Bohrung ist ebenfalls mit einer Drossel 45 ausgerüstet, deren Größe der Saugleistung der jeweiligen Pumpe angepaßt ist. Die federnde Abdeckung 41, die vorzugsweise aus einem elastischen Stahlbandabschnitt besteht, über deckt sowohl die Austrittsöffnung 14 der öldruckleitung 13 als auch die Bohrung 44. Ihre Kraft und der Abstand der Befestigungspunkte 46, 47 von den ölkanälen 13, 44 sind so gewählt, daß sie für das aus der Austrittsöffnung 14 aus-tretende öl eine Druckstufe einer vernachlässigbaren Druckdifferenz darstellt. Praktisch tritt das öl mit dem Druck des ölkastens aus der Austrittsöffnung 14 aus. Außerdem gilt auch an dieser Stelle des Ölkreislaufs, daß er mit überschußöl gefahren wird, d. h., daß selbst bei Enddruckbetrieb der Pumpe durch die Austrittsöffnung 14 mehr öl austritt, als von der Pumpe durch die Bohrung 44 bzw. Drossel 45 angesaugt wird.
  • Während des Betriebs der Pumpe wird das Drucköl infolge der Drossel 15 auf den Druck im ölkasten entspannt und strömt zunächst in die die Austrittsöffnung 14 umgebende Nut 43. Aus dieser Nut, die mit der Bohrung 44 in Verbindung steht, strömt ein Teil des öles infolge der Saugwirkung des Pumpenraumes durch die Bohrung 44 bzw. Drossel 45 hindurch. überschüssiges öl gelangt in den ölvorrat 2 zurück. Durch die federnde Abdeckung 41 ist sichergestellt, daß durch die Bohrung 44 und die Drossel 45 nur solches öl strömt, das aus der Austrittsöffnung-14 ausgetreten ist. In den Pumpenraum gelangt deshalb ausschließlich öl, das den ölfilter 19 durchströmt hat. Beeinträchtigungen des Pumpenraumes durch verschmutztes öl treten deshalb nicht mehr auf. Dennoch arbeitet die Pumpe wie eine selbstansaugende Pumpe, d. h., sie bestimmt die von ihr benötigte ölmenge selbst. In hohen Druckbereichen treten z. B. geringe ölmengen durch die Drossel 45 hindurch, so daß unerwünscht hohe öldampfanteile .n den aus der Pumpe austretenden geförderten Medien nicht vorhanden sind. Unabhängig davon ist sichergestellt, daß die Lagerungen mit Drucköl versorgt werden.
  • Weiterhin wird durch die federnde Abdeckung und die spezielle Nutausbildung eine ölabsperrung bei Stillstand der Pumpe erreicht. In diesem Betriebszustand bewirkt der durch die Bohrung 44 hindurch wirkende Unterdruck im Pumpenraum, daß sich die federnde Abdeckung dicht an die Wandung 42 anlegt. Dadurch versperrt die Abdeckung die Bohrung 44 vollständig, so daß die ölzufuhr zur Vakuumpumpe unterbleibt. Durch diese Lösung ergibt sich ein weiterer Vorteil. Es existiert generell das Problem, daß es bei einem versehentlichen Rückwärtslauf der Pumpe (infolge falschen Stromanschlusses) zu einem unerwünschten Ölanstieg im Saugstutzen kommt. Durch diese Anordnung wird dieser Ölanstieg zuverlässig verhindert.
  • Fig. 2 zeigt eine Drehschiebervakuumpumpe. Während des Betriebs der Pumpe gelangen die geförderten Gase durch den Saugstutzen 3, das offene Saugstutzenventil 4, über den in der Zeichnungsebene nicht sichtbaren und deshalb als Pfeil dargestellten Saugkanal 51 in den Pumpenraum 52, in dem sich der Rotor 53 mit den Schiebern 54 befindet. Die komprimierten Gase gelangen durch den Austrittskanal 55 in den Ölkasten 1, der bis zur Linie 56 mit öl gefüllt ist, so daß die federnde Abdeckung 41 unterhalb des ölspiegels liegt. Der eigentliche Auspuffstutzen ist nicht dargestellt.
  • Die Stirnwand 42 des im ölkasten 1 angeordneten Pumpenkörpers 57 ist in ihrem unteren Teil in Ansicht dargestellt. Schnitte durch diese Stirnwand in Höhe der Linien III-III und IV-IV zeigen die Figuren 3 und 4. In der Stirnwand 42 endet die öldruckleitung 13 mit der Drosselstelle 15. Vor der Entspannung des öls auf den Druck im ölkasten infolge der Drossel 15 erfolgt noch die Schmierung des in der Stirnwand 42 angeordneten Lagers der Pumpwelle (nicht dargestellt) über die als Bohrung ausgebildete Abzweigleitung 17. Nach außen hin ist diese Bohrung durch den Stöpsel 58 verschlossen.
  • Mittels der Schrauben 46, 47 ist die federnde Abdeckung 41 (in Fig. 2 gestrichelt dargestellt) auf der Stirnwand 42 befestigt. Sie überdeckt die beiden öffnungen 14 und 44 sowie die die öffnung 14 umgebende Nut 43. Die Düse 15 ist durch beidseitiges Bohren der Stirnwand 42 hergestellt. Die Düse 45 ist mittels eines Gewindes 59 in die Stirnwand 42 eingeschraubt, so daß je nach Saugleistung der Pumpe unterschiedliche Düsen verwendet werden können.

Claims (9)

1. Ölgedichtete Vakuumpumpe mit einem ölkreislauf zur Versorgung der Lagerungen und des Pumpenraumes mit öl und einem im ölkreislauf angeordneten Ventil für die Absperrung der ölzufuhr zum Pumpenraum bei stillstehender Pumpe, dadurch gekennzeichnet , daß der ölkreislauf eine Druckstufe (15) zum Abbau des von der ölpumpe (12) erzeugten Überdruckes auf den Umgebungsdruck aufweist, daß die zu den Lagerungen führenden Abzweigungen (16, 17, 18) - bezogen auf die Richtung des strömenden Öls - vor der Druckstufe und die zum Pumpenraum führende Abzweigleitung (44) sowie das Absperrventil (14, 41) hinter der Druckstufe angeordnet sind.
2. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet , daß als Druckstufe eine Drossel oder Düse (15) dient.
3. Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet , daß sich die Druckstufe in einer Stirnwand (22) des im äußeren Pumpengehäuse (1) angeordneten Pumpenkörpers (57) befindet.
4. Vakuumpumpe nach Anspruch 3, dadurch gekennzeichnet , daß die Außenseite der Stirnwand (42) eine Austrittsöffnung (14) für das druckentlastete Öl aufweist, daß neben dieser Austrittsöffnung eine Eintrittsöffnung für die zum Pumpenraum führende Leitung (44) angeordnet ist und daß die Oberfläche der Stirnwand so gestaltet ist, daß in die Leitung (44) nur im Überschuß aus der Austrittsöffnung (14) austretendes öl gelangt.
5. Vakuumpumpe nach Anspruch 4, dadurch gekennzeichnet , daß die Austrittsöffnung (14) von einer vorzugsweise konzentrisch angeordneten Nut (43) umgeben ist, die bis in die zum Pumpenraum führende Leitung (44) reicht, und daß eine beide öffnungen (14, 44) und die Nut (43) überdeckende federnde Abdeckung vorgesehen ist.
6. Vakuumpumpe nach Anspruch 5, dadurch gekennzeichnet , daß die federnde Abdeckung aus einem elastischen Stahlbandabschnitt besteht.
7. Vakuumpumpe nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, daß in dem innerhalb der Wandung (42) liegenden Abschnitt der in den Pumpenraum führenden Leitung (44) eine weitere Drossel oder Düse (45) angeordnet ist.
8. Vakuumpumpe nach Anspruch 7, dadurch gekennzeichnet, daß die Düse (45) mittels eines Gewindes (59) in der Stirnwand (42) gehaltert ist.
9. Vakuumpumpe nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß in der Stirnwand (42) eine zur Pumpenwellen-Lagerung in dieser Stirnwand führende, von einer Bohrung gebildete Leitung (17) derart vorgesehen ist, daß sie die den ölkreislauf bildende Druckleitung (13) vor der Druckstufe (15) kreuzt, und daß diese Bohrung nach außen hin verschlossen ist.
EP82109588A 1981-12-17 1982-10-16 Ölgedichtete Vakuumpumpe Expired EP0084084B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3150000 1981-12-17
DE19813150000 DE3150000A1 (de) 1981-12-17 1981-12-17 Oelgedichtete vakuumpumpe

Publications (2)

Publication Number Publication Date
EP0084084A1 true EP0084084A1 (de) 1983-07-27
EP0084084B1 EP0084084B1 (de) 1985-02-06

Family

ID=6148983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82109588A Expired EP0084084B1 (de) 1981-12-17 1982-10-16 Ölgedichtete Vakuumpumpe

Country Status (3)

Country Link
US (1) US4525129A (de)
EP (1) EP0084084B1 (de)
DE (2) DE3150000A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1207829B (it) * 1987-02-04 1989-06-01 Galileo Spa Off Perfezionamento nel circuito di lubrificazione delle pompe rotative per vuoto.
US4903505A (en) * 1989-01-30 1990-02-27 Hoshizaki Electric Co., Ltd. Automatic ice manufacturing apparatus
JPH02275089A (ja) * 1989-04-13 1990-11-09 Kobe Steel Ltd スクリュ式真空ポンプ
KR950007519B1 (ko) * 1992-09-09 1995-07-11 김영수 로터리 형식의 진공펌프장치
US6190149B1 (en) 1999-04-19 2001-02-20 Stokes Vacuum Inc. Vacuum pump oil distribution system with integral oil pump
US20020170979A1 (en) * 2001-05-21 2002-11-21 Victor Martinez Drainage system
KR100408153B1 (ko) 2001-08-14 2003-12-01 주식회사 우성진공 드라이 진공펌프
US8096781B2 (en) * 2008-09-24 2012-01-17 Caterpillar Inc. Hydraulic pump system with reduced cold start parasitic loss
US9080569B2 (en) * 2009-01-22 2015-07-14 Gregory S. Sundheim Portable, rotary vane vacuum pump with automatic vacuum breaking arrangement
EP2530325B1 (de) * 2010-01-29 2018-10-17 Ulvac Kiko, Inc. Pumpe
DE102018109866A1 (de) * 2018-04-24 2019-10-24 Nidec Gpm Gmbh Regelbares Schmierölfördersystem für Verbrennungsmaschinen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB875444A (en) * 1957-02-07 1961-08-23 Edwards High Vacuum Ltd Improvements in or relating to rotary vacuum pumps
US3406897A (en) * 1966-07-18 1968-10-22 Leybold Holding Ag Mechanical vacuum pump
DE1628285A1 (de) * 1966-10-29 1970-03-19 Leybold Heraeus Gmbh & Co Kg Rotationskolbenvakuumpumpe
US3838950A (en) * 1970-06-18 1974-10-01 Cenco Inc Vacuum pump with lubricant metering groove
US4120621A (en) * 1976-07-19 1978-10-17 Puritan Bennett Corporation Oil sealed single stage vacuum pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB783770A (en) * 1955-09-19 1957-09-25 Gen Motors Corp Improved rotary constant displacement pump
DE1011115B (de) * 1956-05-26 1957-06-27 Leybolds Nachfolger E Rotierende OElluftpumpe nach dem Gasballastprinzip
DE1190134B (de) * 1957-02-07 1965-04-01 Edwards High Vacuum Ltd Drehkolben-Vakuumpumpe mit oelueberlagertem Auspuffventil
GB899202A (en) * 1959-02-05 1962-06-20 Gunnar Axel Wahlmark Improvements in or relating to fluid delivery systems which deliver at a substantially constant pressure
GB1126886A (en) * 1966-10-18 1968-09-11 Genevac Ltd Improvements in or relating to rotary vacuum pumps
GB1303430A (de) * 1969-06-12 1973-01-17
GB1334225A (en) * 1969-12-16 1973-10-17 Edwards High Vacuum Int Ltd Vacuum pumps
DE2035938C3 (de) * 1970-07-20 1975-10-16 Danfoss A/S, Nordborg (Daenemark) Ölpumpe für Feuerungsanlagen
US3811468A (en) * 1972-03-10 1974-05-21 Fedders Corp Compressor valve assembly
FI761780A (de) * 1976-06-18 1977-12-19 Rauma Repola Oy
US4342547A (en) * 1979-04-04 1982-08-03 Matsushita Electric Industrial Co., Ltd. Rotary vane compressor with valve control of oil to bias the vanes
DE2948992A1 (de) * 1979-12-05 1981-06-11 Karl Prof.Dr.-Ing. 3000 Hannover Bammert Rotorverdichter, insbesondere schraubenrotorverdichter, mit schmiermittelzufuhr zu und schmiermitteldrainage von den lagern
US4366834A (en) * 1980-10-10 1983-01-04 Sargent-Welch Scientific Company Back-flow prevention valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB875444A (en) * 1957-02-07 1961-08-23 Edwards High Vacuum Ltd Improvements in or relating to rotary vacuum pumps
US3406897A (en) * 1966-07-18 1968-10-22 Leybold Holding Ag Mechanical vacuum pump
DE1628285A1 (de) * 1966-10-29 1970-03-19 Leybold Heraeus Gmbh & Co Kg Rotationskolbenvakuumpumpe
US3838950A (en) * 1970-06-18 1974-10-01 Cenco Inc Vacuum pump with lubricant metering groove
US4120621A (en) * 1976-07-19 1978-10-17 Puritan Bennett Corporation Oil sealed single stage vacuum pump

Also Published As

Publication number Publication date
EP0084084B1 (de) 1985-02-06
DE3262232D1 (en) 1985-03-21
DE3150000A1 (de) 1983-07-14
US4525129A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
DE1628144C3 (de) Saugdrosselsteuereinrichtung
DE2708900A1 (de) Regelsystem fuer schraubenverdichter
AT402542B (de) Ansaugregelventil
DE10259808B4 (de) Strahlpumpe
DE2748457A1 (de) Kreiselpumpe mit einem laufrad von veraenderlicher breite
EP0084084B1 (de) Ölgedichtete Vakuumpumpe
EP0084085B1 (de) Vakuumpumpe mit einem Saugstutzen-Ventil und Betriebsverfahren dafür
DE2308265A1 (de) Rotations- bzw. drehkolbenverdichter anlage mit oelkreislauf und ventilanordnungen
EP0902223A1 (de) Überströmventil
DE3248622A1 (de) Hochdruckreinigungsgeraet
EP0684385A1 (de) Vorrichtung zur Druckabsenkung eines Verdichters
DE4301907A1 (de) Flüssigkeitsringmaschine
DE3400545C2 (de)
DE2944053A1 (de) Ansaugsteuervorrichtung fuer einen verdichter
DE4038445C2 (de) Gasarmatur
DE8136790U1 (de) Ölgedichtete Vakuumpumpe
DE3922417C2 (de)
DE19752005A1 (de) Vorrichtung und Verfahren zur Vermischung eines ersten Fluids mit einem zweiten Fluid
DE2255986C3 (de) Pumpeinrichtung für eine Hydraulikanlage in einem Kraftfahrzeug
DE9300831U1 (de) Druck-Saugverteiler eines Hochdruckreinigungsgerätes mit zusätzlichem Steuerventil
DE2542118A1 (de) Fluessigkeitsstrahler mit verdraengerpumpe, zweistufenventil und absperrbarer spruehlanze
DE1551651A1 (de) OElfoerderanlage fuer wahlweisen Ein-Strang- oder Zwei-Strang-Betrieb
DE2659067C3 (de) Kreiskolben-Brennkraftmaschine
DE2846005A1 (de) Rotations- bzw. drehkolbenverdichteranlage mit oelkreislauf und absperrorganen
DD207560A5 (de) Steuerungsvorrichtung fuer einen verdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19821016

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3262232

Country of ref document: DE

Date of ref document: 19850321

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: LEYBOLD AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960911

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960919

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960920

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960923

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971016

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST