EP0080124B1 - Verfahren zum Einsatzhärten metallischer Werkstücke - Google Patents

Verfahren zum Einsatzhärten metallischer Werkstücke Download PDF

Info

Publication number
EP0080124B1
EP0080124B1 EP82110429A EP82110429A EP0080124B1 EP 0080124 B1 EP0080124 B1 EP 0080124B1 EP 82110429 A EP82110429 A EP 82110429A EP 82110429 A EP82110429 A EP 82110429A EP 0080124 B1 EP0080124 B1 EP 0080124B1
Authority
EP
European Patent Office
Prior art keywords
carbon
gas
workpieces
addition
duration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82110429A
Other languages
English (en)
French (fr)
Other versions
EP0080124A2 (de
EP0080124A3 (en
Inventor
Thomas Dipl.-Ing. Mahlo
Karl Dipl.-Chem Dörhöfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0080124A2 publication Critical patent/EP0080124A2/de
Publication of EP0080124A3 publication Critical patent/EP0080124A3/de
Application granted granted Critical
Publication of EP0080124B1 publication Critical patent/EP0080124B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the invention relates to a method for case hardening metallic workpieces, the workpieces being exposed to the action of a carbon-containing gas mixture, to which one or more carbon-containing gas component (s) is (are) added in a pulsating manner during its action on the workpieces.
  • Pulsating addition of a carbon-containing gas component means adding it to the gas mixture during numerous cycles consisting of two different phases. In the first phase of a cycle, the carbon-containing gas is added to the gas mixture in a pulsed manner and the carbon potential of the gas atmosphere is raised to a certain level. In the second phase, the supply of carbon-containing gas is interrupted, that is, a carbon-containing gas is supplied to the gas mixture. This reduces the carbon potential of the gas atmosphere.
  • DE-A-2 851 982 relates to a method for controlling carburizing processes in the vacuum region.
  • a carbon-containing gas is pumped out and renewed when a certain degree of decay of the gas has been reached.
  • DE-C-726 134 discloses a method for carburizing metallic workpieces.
  • a certain gas atmosphere is supplied to the interior of the furnace. Pressure fluctuations are caused in the gas atmosphere in the furnace interior. For this purpose, a larger amount of gas is introduced into the interior of the furnace, so that the pressure increases abruptly. Gas escapes through openings in the furnace so that the pressure in the interior drops to the outlet pressure within a few minutes.
  • EP-A-49 531 describes a process for case hardening metallic workpieces, in which workpieces in a furnace are exposed to the action of a carbon-containing gas mixture at high temperatures and pressure fluctuations are generated in the gas mixture with a period that is considerably shorter compared to the duration of the heat treatment .
  • the invention is based on the object of specifying a method of the type mentioned at the outset with which workpieces can be carburized or carbonitrided uniformly, carbides formed being largely removed.
  • the carburizing or carbonitriding process is no longer divided exclusively into cycles consisting of two phases. Rather, the inventive method for case hardening is composed of several intervals, each of which consists of several cycles followed by a pause.
  • Cycle - as in the known method - is to be understood as the brief addition of a hydrocarbon to the gas mixture with subsequent interruption of the hydrocarbon supply.
  • the carbon concentration in the edge area of the workpieces drops in every interval.
  • the gradient of the carbon content and therefore the carbon transition in the workpiece is very high.
  • the amount of carbon-containing gas supplied in a cycle or the number of cycles is selected so that the supply of the carbon-containing gas is cut off as soon as carbon saturation is reached in the edge layer of the workpieces.
  • the total carburizing time is made up of the periods in which carbon is introduced into the workpiece and the periods in which the carbon diffuses in the workpiece. According to the invention, the duration of the carbon introduction is considerably shorter than that of the diffusion.
  • the process according to the invention causes the very stable carbides to dissolve during an interval, so that an excellent, surface oxidation-free surface quality of the workpieces is achieved. Because of this feature, the proposed method can also be used in push-through furnaces.
  • the amount of nitrogen supplied per unit of time is increased for the duration of the pulsating addition of the carbon-containing gas component (s).
  • the furnace in which the workpieces are treated is constantly gassed with nitrogen to ensure an inert basic gas atmosphere in the furnace chamber.
  • the amount of nitrogen is increased for the duration of the pulsating hydrocarbon addition in order not to let the concentration of the hydrocarbon radicals become too high. Otherwise they would react with each other and form soot and would no longer contribute to carburization.
  • the pause lasts a factor of 10 to 100 longer than the previous cycles.
  • a particularly simple regulation is possible in the method according to the invention if, according to an advantageous variant, the duration of the cycles is kept constant during case hardening.
  • the carbon-containing gas is consequently pulsed into the furnace chamber at constant time intervals.
  • the gas atmosphere is formed exclusively from an inert gas, in particular nitrogen, and a carbon-containing gas, in particular propane.
  • An annealing furnace 1 is connected via a line 2 to a soot sensor 3 and a control unit 4.
  • the gas components nitrogen and a hydrocarbon in the exemplary embodiment propane, are now introduced into the annealing furnace 1.
  • Supply lines 5 (nitrogen) and 6 (propane) are used for this.
  • Valves 7, 8, 9, 10 and 11 control the addition of nitrogen and propane from the appropriate tanks in which these components are stored in liquid form. Nitrogen and propane are mixed before entering the annealing furnace 1 and passed into the furnace via a line 12.
  • valve 9 in a line 13 is open, while valves 7 and 10 are closed. At this point, the furnace atmosphere consists essentially of nitrogen.
  • the carburizing or carbonitriding process begins as soon as a suitable temperature of approx. 800 to 1000 ° C has been reached in the furnace.
  • solenoid valve 10 is opened according to the invention.
  • Valve 10 is opened and closed by the control unit 4 at constant time intervals.
  • a certain amount of nitrogen is always passed into the furnace per unit time during case hardening.
  • the amount of nitrogen supplied is increased in order not to make the concentration of the hydrocarbon radicals too great. Otherwise the radicals would react with one another and form soot.
  • solenoid valve 7 in one Bypass line 14 opened by the control unit 4.
  • the propane is unstable at the high temperatures prevailing in the interior of the annealing furnace and disintegrates spontaneously.
  • the fission products are very reactive and enable the workpiece surface layer to be saturated quickly with carbon. Because of the resulting significant carbon potential difference between the workpiece surface and the core, the carbon quickly diffuses into the edge layer of the workpieces.
  • Soot can now be formed in the gas mixture.
  • the amount of propane is reduced before a minimum soot value is reached.
  • the value determined by the sensor 3 is sent to the control unit 4, in which the measured value is compared with a predetermined setpoint signal. A difference between the measured value and setpoint signal is converted into a signal by which a control valve 11 in the supply line 6 for propane is controlled.
  • valve 10 - triggered by control unit 4 - is closed for a pause which lasts longer than the previous cycles and only nitrogen is fed via line 13 with valve 9 into the furnace.
  • the carbon concentration in the edge region of the workpiece drops again, so that at the beginning of the interval consisting of several cycles with a subsequent pause, the gradient and thus the carbon transition into the workpiece is high.
  • the carbon not only diffuses into the workpiece, but also the unwanted carbides on the workpiece surface are redissolved and removed.
  • valves 7 and 10 are closed and the workpieces are lowered to the hardening temperature.
  • the carbon content in the gas mixture (e.g. in% by volume) is shown schematically against time (in seconds).
  • an interval of the method according to the invention is shown which lasts from the time zero to the time T '.
  • the carbon content of the gas mixture is briefly increased in several cycles, each of which takes time t.
  • a cycle consists of phase I (duration e ) and phase 11 (duration t 2 ).
  • phase I propane is added to the gas mixture in pulses, while in phase 11 no propane is added to the gas mixture.
  • phase 11 the carbon content therefore decreases.
  • the carbon content does not drop to 0. It is only in the pause (duration T) after several cycles (only the first four cycles in the first interval are shown in the diagram) that no propane is fed into the furnace the carbon content to 0.
  • a typical interval contains up to 15 cycles.
  • the addition periods depend on the furnace volume and the tightness of the furnace.
  • phase I lasts 5 to 15 seconds
  • phase 11, on the other hand 15 to 60 seconds.
  • Several cycles e.g. 10 with a total duration of 5 minutes
  • a break of e.g. T - 30 minutes on so that an interval lasts about 35 minutes.
  • the number of cycles of the method according to the invention is reduced by a factor of 3 compared to the known method.
  • the method according to the invention enables rapid case hardening of workpieces with low consumption of carbon carriers. Since carbides formed are redissolved by the process according to the invention, push-through furnaces can also be used in this process.

Description

  • Die Erfindung betrifft ein Verfahren zum Einsatzhärten metallischer Werkstücke, wobei die Werkstücke der Einwirkung eines kohlenstoffhaltigen Gasgemisches ausgesetzt werden, dem eine oder mehrere kohlenstoffhaltige Gaskomponente(n) während dessen Einwirkung auf die Werkstücke pulsierend zugegeben wird (werden).
  • Ein derartiges Verfahren ist in der EP-A-49 530 beschrieben. Durch das pulsierende Zugeben der kohlenstoffhaltigen Gaskomponente wird bei einem Verfahren der vorstehend genannten Art ein großes Kohlenstoffpotentialgefälle erreicht. Pulsierendes Zugeben einer kohlenstoffhaltigen Gaskomponente bedeutet, diese während zahlreicher, sich aus zwei verschiedenen Phasen zusammensetzenden Zyklen dem Gasgemisch zuzugeben. In der ersten Phase eines Zyklus wird das kohlenstoffhaltige Gas pulsartig dem Gasgemisch zugemischt und das Kohlenstoffpotential der Gasatmosphäre auf ein bestimmtes Niveau gehoben. In der zweiten Phase wird die Zufuhr von kohlenstoffhaltigem Gas unterbrochen, das heißt, dem Gasgemisch wird ein kohlenstoffhaltiges Gas zugeführt. Dadurch sinkt das Kohlenstoffpotential der Gasatmosphäre.
  • Bei dieser Verfahrensweise wird das Werkstück in einer sehr dünnen Schicht stark überkohlt. Die in der zweiten Phase sich anschließende Diffusion verläuft nun sehr rasch und schafft in der Randschicht des Werkstückes neue Aufnahmekapazität für Kohlenstoff.
  • Durch pulsierende Zugabe von kohlenstoffhaltigen Gaskomponenten wird ein hoher, gleichmäßiger Kohlenstoffeintrag bis über die Sättigung hinaus möglich. Bei dieser Art des Einsatzhärtens bilden sich Karbide, die sich zu einem gewissen Teil während der zweiten Phase eines Zyklus auflösen. Eine vollständige Auflösung der sehr stabilen Karbidverbindungen war bisher innerhalb eines Zyklus jedoch nicht möglich.
  • Insbesondere diese Tatsache verhinderte die Anwendung des bekannten Verfahrens in einem Durchstoßofen, den die Werkstücke (Chargen) in mehreren, zeitlich konstanten Takten durchlaufen.
  • Durch die DE-C-618 026 ist ein Verfahren zum Zementieren von Eisen und Stahl bekannt, bei dem die Zufuhr des Zementationsmittels von Zeit zu Zeit unterbrochen wird. Die Unterbrechung erfolgt, wenn sich das Eindringen des Zementationsmittels in das Werkstück verlangsamt.
  • Gegenstand der DE-A-2 851 982 ist ein Verfahren zum Steuern von Aufkohlungsprozessen im Unterdruckbereich. Das Abpumpen und Erneuern eines kohlenstoffhaltigen Gases erfolgt dabei, wenn ein bestimmter Zerfall.5grad des Gases erreicht ist.
  • Durch die DE-C-726 134 ist ein Verfahren zum Aufkohlen von metallischen Werkstücken bekannt. Dabei wird dem Ofeninnenraum eine bestimmte Gasatmosphäre zugeführt. In der Gasatmosphäre im Ofeninnenraum werden Druckschwankungen hervorgerufen. Zu diesem Zweck wird eine größere Menge an Gas in den Ofeninnenraum eingeleitet, so daß der Druck abrupt ansteigt. Ober Öffnungen im Ofen entweicht Gas, so daß der Druck im Innenraum innerhalb einiger Minuten auf den Ausgangsdruck sinkt.
  • Schließlich ist in der EP-A-49 531 ein Verfahren zum Einsatzhärten metallischer Werkstücke beschrieben, bei dem Werkstücke in einem Ofen bei hohen Temperaturen der Einwirkung eines kohlenstoffhaltigen Gasgemisches ausgesetzt und im Gasgemisch Druckschwankungen mit einer im Vergleich zur Dauer der Wärmebehandlung wesentlich kürzeren Periode erzeugt werden.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs erwähnten Art anzugeben, mit dem Werkstücke gleichmäßig aufgekohlt bzw. karbonitriert werden können, wobei gebildete Karbide weitgehend entfernt werden.
  • Diese Aufgabe wird erfindunsgemäß dadurch gelöst, daß die Zugabe der kohlenstoffhaltigen Gaskomponente(n) nach mehreren der sich jeweils aus einer Phase der pulsartigen Zugabe von kohlenstoffhaltigem Gas und einer darauf folgenden Phase ohne Zugabe von kohlenstoffhaltigem Gas zusammensetzenden Zyklen unterbrochen und erst nach Ablauf einer Pause, die um einen Faktor 10 bis 100 länger als ein Zyklus dauert, wieder aufgenommen wird.
  • Erfindungsgemäß wird der Aufkohlungs- bzw. Karbonitrierungsprozeß nicht mehr ausschließlich in aus zwei Phasen bestehenden Zyklen unterteilt. Vielmehr setzt sich das erfindungsgemäße Verfahren zum Einsatzhärten aus mehreren Intervallen zusammen, die jeweils aus mehreren Zyklen mit anschließender Pause bestehen. Unter Zyklus ist - wie beim bekannten Verfahren - die kurzzeitige Zugabe eines Kohlenwasserstoffs zum Gasgemisch mit anschließender Unterbrechung der Kohlenwasserstoffzufuhr zu verstehen.
  • Beim herkömmlichen Verfahren sinkt das Kohlenstoffpotential während des Einsatzhärte-Prozesses nie auf Null ab. Dabei wird durch die pulsierende Zugabe der Kohlenwasserstoffe ein Überschreiten der Rußgrenze vermieden. Dem erfindungsgemäßen Verfahren liegt nun die Erkenntnis zugrunde, daß die Dauer der Phase, in der während eines Zyklus kein Kohlenwasserstoff dem Gasgemisch zugegeben wird, für eine optimale Diffusion und eine Auflösung der sehr stabilen Karbidverbindungen nicht ausreicht.
  • Durch die sehr große Reaktivität der aufgespaltenen Kohlenwasserstoffe ist der eigentliche Aufkohlungsprozeß äußerst kurz gegenüber den Diffusionsphasen. Ihre Länge hängt ab von der aktuellen Aufkohlungstiefe. Je größer diese wird, desto langsamer diffundiert der neueingebrachte Kohlenstoff nach innen. Erfindungsgemäß wird nun - wie beim bekannten Verfahren - zu Beginn eines Intervalls ein sehr hohes Kohlenstoffpotential erreicht. Nach mehreren Zyklen wird jedoch eine Pause eingelegt, die im Vergleich zur Dauer eines Zyklus lang ist.
  • Während dieser Pause sinkt die Kohlenstoffkonzentration im Randbereich der Werkstücke in jedem Intervall ab. Zu Beginn des nächsten Intervalls ist daher der Gradient des Kohlenstoffgehaltes und damit der Kohlenstoffübergang im Werkstück sehr hoch. Die in einem Zyklus zugeführte Menge kohlenstoffhaltigen Gases bzw. die Zahl der Zyklen wird so gewählt, daß die Zufuhr des kohlenstoffhaltigen Gases abgestellt wird, sobald in der Randschicht der Werkstücke eine Sättigung mit Kohlenstoff erreicht ist. Die gesamte Aufkohlungszeit setzt sich zusammen aus den Zeitabschnitten, in denen Kohlenstoff in das Werkstück eingetragen wird und den Zeitabschnitten, in denen der Kohlenstoff im Werkstück diffundiert. Erfindungsgemäß ist die Dauer des Kohlenstoffeintrags wesentlich geringer als die der Diffusion.
  • Es wurde festgestellt, daß das erfindungsgemäße Verfahren während eines Intervalls eine Auflösung der sehr stabilen karbide bewirkt, so daß eine hervorragende, randoxidationsfreie Oberflächenqualität der Werkstücke erzielt wird. Aufgrund dieses Merkmals kann das vorgeschlagene Verfahren auch bei Durchstoßöfen Anwendung finden.
  • Weiterhin wurde gefunden, daß im Vergleich zum bekannten Verfahren eine wesentlich geringere Zahl an Zyklen ausreicht, um die gleiche Einhärtetiefe zu erzielen. Außerdem liegt der durchschnittliche Verbrauch an kohlenstoffhaltigem Gas, beispielsweise Propan, niedriger, als beim bekannten Verfahren.
  • In einer vorteilhaften Ausgestaltung des Erfindungsgedankens, bei dem dem Gasgemisch Stickstoff zugeführt wird, wird die pro Zeiteinheit zugeführte Stickstoffmenge für die Dauer der pulsierenden Zugabe der kohlenstoffhaltigen Gaskomponente(n) erhöht.
  • In dieser Variante wird der Ofen, in dem die Werkstücke behandelt werden, ständig mit Stickstoff begast, um im Ofenraum eine inerte Grundgasatmosphäre zu gewährleisten.
  • Bei Erreichen der gewählten Aufkohlungstemperatur wird für die Dauer der pulsierenden Kohlenwasserstoffzugabe die Stickstoffmenge erhöht, um die Konzentration der Kohlenwasserstoffradikale nicht zu groß werden zu lassen. Andernfalls würden sie untereinander reagieren und Ruß bilden und nicht mehr zur Aufkohlung beitragen.
  • Nach einem Merkmal des erfindungsgemäßen Verfahrens ist es besonders wirtschaftlich, wenn die Pause um einen Faktor 10 bis 100 länger als die Vorangegangenen Zyklen dauert.
  • In dieser Variante werden Karbidverbindungen nach wie vor weitgehend beseitigt, die Dauer des Einsatzhärte-Prozesses ist jedoch minimal.
  • Der Diffusionsvorgang erfolgt wegen des geringer werdenden Kohlenstoffpotentialgefälles mit zunehmender Aufkohlungstiefe langsamer. Mit Vorteil werden daher die Pausen mit zunehmender Dauer des Aufkohlungsvorganges verlängert.
  • Eine besonders einfache Regelung ist beim erfindungsgemäßen Verfahren möglich, wenn nach einer vorteilhaften Variante die Dauer der Zyklen während des Einsatzhärtens konstant gehalten wird. Das kohlenstoffhaltige Gas wird folglich in konstanten Zeitabständen pulsartig in den Ofenraum gegeben.
  • In einer weiteren Ausgestaltung der Erfindung wird die Gasatmosphäre ausschließlich aus einem inerten Gas, insbesondere Stickstoff, und einem kohlenstoffhaltigen Gas, insbesondere Propan, gebildet.
  • Im folgenden soll anhand schematischer Skizzen ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens erläutert werden.
  • Es zeigen:
    • Figur 1 eine schematische Darstellung einer Anlage, in der das erfindungsgemäße Verfahren durchgeführt werden kann,
    • Figur 2 den zeitlichen Verlauf des Kohlenstoffgehaltes im Aufkohlungsgas.
  • Ein Glühofen 1 ist über eine Leitung 2 mit einem Rußsensor 3 und einer Regeleinheit 4 verbunden. Erfindungsgemäß werden nun die Gaskomponenten Stickstoff und ein Kohlenwasserstoff, im Ausführungsbeispiel Propan, in den Glühofen 1 eingeleitet. Hierzu dienen Zuführleitungen 5 (Stickstoff) und 6 (Propan). Durch Ventile 7,8,9, 10 und 11 wird die Zugabe von Stickstoff und Propan, die geeigneten Tanks, in denen diese Komponenten flüssig gespeichert werden, entnommen wurden, gesteuert. Stickstoff und Propan werden vor dem Eintritt in den Glühofen 1 vermischt und über eine Leitung 12 in den Ofen geleitet. Beim Einfahren der Charge in den Ofenraum ist Ventil 9 in einer Leitung 13 geöffnet, während Ventile 7 und 10 geschlossen sind. Die Ofenatmosphäre besteht zu diesem Zeitpunkt im wesentlichen aus Stickstoff. Der Aufkohlungs- bzw. Karbonitrierungsvorgang beginnt, sobald eine geeignete Temperatur von ca. 800 bis 1000°C im Ofen erreicht worden ist. Um die Werkstücke im Ofenraum einem Gasgemisch mit einem hohen Kohlenstoffpotential auszusetzen, wird erfindungsgemäß Magnetventil 10 geöffnet. Ventil 10 wird von der Regeleinheit 4 in zeitlich konstanten Abständen geöffnet und geschlossen. Erfindungsgemäß wird während des Einsatzhärtens stets eine bestimmte Menge Stickstoff pro Zeiteinheit in den Ofen geleitet. Während der Phasen, in denen Propan kurzzeitig in den Ofen eingespeist wird, wird die zugeführte Stickstoffmenge erhöht um die Konzentration der Kohlenwasserstoffradikale nicht zu groß werden zu lassen. Andernfalls würden die Radikale untereinander reagieren und Ruß bilden. Zu diesem Zweck wird Magnetventil 7 in einer Bypaßleitung 14 von der Regeleinheit 4 geöffnet. Das Propan ist bei den hohen im Glühofeninnenraum herrschenden Temperaturen instabil und zerfällt spontan. Die Spaltprodukte sind sehr reaktionsfreudig und ermgölichen eine rasch ablaufende Sättigung der Werkstückrandschicht mit Kohlenstoff. Wegen des daraus resultierenden erheblichen Kohlenstoffpotentialgefälles zwischen Werkstückoberfläche und Kern diffundiert der Kohlenstoff rasch in die Randschicht der Werkstücke.
  • Im Gasgemisch kann nun Ruß gebildet werden. Vor Erreichen eines minimalen Rußwertes wird die Propanmenge reduziert. Der vom Sensor 3 ermittelte Werte wird an die Regeleinheit 4 geleitet, in der der Meßwert mit einem vorgegebenen Sollwertsignal verglichen wird. Eine Differenz zwischen Meßwert- und Sollwertsignal wird in ein Signal umgesetzt, durch das ein Regelventil 11 in der Zufuhrleitung 6 für Propan gesteuert wird.
  • Beim Überschreiten des dem Sollwert entsprechenden Rußwertes wird die Propanmenge durch Regelventil 11 soweit vermindert, bis Ist- und Sollwert wieder übereinstimmen.
  • Nach mehreren Zyklen, in denen in einer ersten Phase kurzzeitig Propan in den Ofen geleitet bzw. in einer zweiten Phase die Propanzufuhr unterbrochen worden ist, wird Ventil 10 - ausgelöst durch Regeleinheit 4 - für eine Pause, die länger dauert als die vorangegangenen Zyklen, geschlossen und nur Stickstoff über Leitung 13 mit Ventil 9 in den Ofen geleitet. In dieser Pause sinkt die Kohlenstoffkonzentration im Randbereich des Werkstückes wieder ab, so daß bei Beginn des sich aus mehreren Zyklen mit anschließender Pause zusammensetzenden Intervalls der Gradient und damit der Kohlenstoffübergang ins Werkstück hoch ist. In den Pausen diffundiert der Kohlenstoff nicht nur in das Werkstück, sondern es werden auch die unerwünschten Karbide auf der Werkstückoberfläche rückgelöst und entfernt.
  • Nach mehreren Intervallen werden die Ventile 7 und 10 geschlossen und die Werkstücke auf Härtetemperatur abgesenkt.
  • In Figur 2 ist nun der Kohlenstoffgehalt im Gasgemisch (z.B. in Vol.%) gegen die Zeit (in Sekunden) schematisch dargestellt.
  • Im wesentlichen ist ein Intervall des erfindungsgemäßen Verfahrens dargestellt, das vom Zeitnullpunkt bis zum Zeitpunkt T' dauert. Zu Beginn des Intervalls wird der Kohlenstoffgehalt des Gasgemisches in mehreren Zyklen, die jeweils die Zeitspanne t dauern, kurzzeitig angehoben. Ein Zyklus setzt sich aus der Phase I (Dauerte) und der Phase 11 (Dauer t2) zusammen. Wie bereits geschildert, wird in Phase I Propan impulsartig dem Gasgemisch zugegeben, während in Phase 11 kein Propan dem Gasgemisch zugegeben wird. In Phase I steigt, in Phase 11 sinkt daher der Kohlenstoffgehalt. Während der Zyklen sinkt der Kohlenstoffgehalt jedoch nicht auf 0. Erst in der sich an mehrere Zyklen (in der Skizze sind lediglich die ersten Vier Zyklen im ersten Intervall dargestellt) anschließenden Pause (Dauer T), in der kein Propan dem Ofen zugeleitet wird, sinkt der Kohlenstoffgehalt auf 0.
  • Ein typisches Intervall enthält beispielsweise bis zu 15 Zyklen. Die Zugabeperioden hängen vom Ofenvolumen und der Ofendichtigkeit ab. Phase I dauert beispielsweise 5 bis 15 sec., Phase 11 dagegen 15 bis 60 sec. An mehrere Zyklen (beispielsweise 10 mit Gesamtdauer 5 Minuten) schließt sich eine pause von z.B. T - 30 Minuten an, so daß ein Intervall etwa 35 Minuten dauert. Bei gleicher Einhärtetiefe reduziert sich die Zahl der Zyklen des erfindungsgemäßen Verfahrens im Vergleich zum bekannten Verfahren ca. um einen Faktor 3.
  • Zusammenfassend ist festzustellen, daß das erfindungsgemäße Verfahren ein rasches Einsatzhärten von Werkstücken bei geringem Verbrauch an Kohlenstoffträger ermöglicht. Da gebildete Karbide durch die erfindungsgemäße Verfahrensweise rückgelöst werden, können auch Durchstoßöfen bei diesem Verfahren eingesetzt werden.

Claims (5)

1. Verfahren zum Einsatzhärten metallischer Werkstücke, wobei die Werkstücke der Einwirkung eines kohlenstoffhaltigen Gasgemisches ausgesetzt werden, dem eine oder mehrere kohlenstoffhaltige Gaskomponente(n) während dessen Einwirkung auf die Werkstücke pulsierend zugegeben wird (werden), dadurch gekennzeichnet, daß die Zugabe der kohlenstoffhaltigen Gaskomponente(n) nach mehreren der sich jeweils aus einer Phase der pulsartigen Zugabe von kohlenstoffhaltigem Gas und einer darauf folgenden Phase ohne Zugabe von kohlenstoffhaltigem Gas zusammensetzenden Zyklen unterbrochen und erst nach Ablauf einer Pause, die um einen Faktor 10 bis 100 länger als ein Zyklus dauert, wieder aufgenommen wird.
2. Verfahren nach Anspruch 1, mit einem N-haltigen Gasgemisch, dadurch gekennzeichnet, daß die pro Zeiteinheit zugeführte Stickstoffmenge für die Dauer der pulsierenden Zugabe der kohlenstoffhaltigen Gaskomponente(n) erhöht wird.
3. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Pausen mit zunehmender Dauer des Aufkohlungsvorganges verlängert werden.
4. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Dauer der Zyklen während des Einsatzhärtens konstant gehalten wird.
5. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Gasatmosphäre ausschließlich aus einem inerten Gas, insbesondere Stickstoff und einem kohlenstoffhaltigen Gas oder mehreren kohlenstoffhaltigen Gasen, insbesondere Propan, gebildet wird.
EP82110429A 1981-11-20 1982-11-11 Verfahren zum Einsatzhärten metallischer Werkstücke Expired EP0080124B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813146042 DE3146042A1 (de) 1981-11-20 1981-11-20 Verfahren zum einsatzhaerten metallischer werkstuecke
DE3146042 1981-11-20

Publications (3)

Publication Number Publication Date
EP0080124A2 EP0080124A2 (de) 1983-06-01
EP0080124A3 EP0080124A3 (en) 1984-08-22
EP0080124B1 true EP0080124B1 (de) 1986-09-24

Family

ID=6146826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82110429A Expired EP0080124B1 (de) 1981-11-20 1982-11-11 Verfahren zum Einsatzhärten metallischer Werkstücke

Country Status (9)

Country Link
EP (1) EP0080124B1 (de)
AT (1) AT373294B (de)
AU (1) AU548340B2 (de)
BR (1) BR8206714A (de)
DE (2) DE3146042A1 (de)
ES (1) ES8307921A1 (de)
GR (1) GR77758B (de)
NO (1) NO823887L (de)
ZA (1) ZA828553B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047074A1 (de) * 2007-10-01 2009-04-02 Robert Bosch Gmbh Verfahren zur Aufkohlung von Werkstücken sowie Verwendung
CN103556106A (zh) * 2013-10-30 2014-02-05 西安航空动力股份有限公司 一种1Cr17Ni2合金材料高温真空渗碳层的制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656003B1 (fr) * 1989-12-14 1994-02-11 Michel Gantois Procede et installation de traitement thermique ou thermochimique d'un acier, permettant le controle de l'enrichissement en carbone de la zone superficielle.
US5139584A (en) * 1989-07-13 1992-08-18 Solo Fours Industriels Sa Carburization process
FR2681332B1 (fr) * 1991-09-13 1994-06-10 Innovatique Sa Procede et dispositif de cementation d'un acier dans une atmosphere a basse pression.
US6547888B1 (en) 2000-01-28 2003-04-15 Swagelok Company Modified low temperature case hardening processes
ATE274073T1 (de) * 2000-05-24 2004-09-15 Ipsen Int Gmbh Verfahren und vorrichtung zur wärmebehandlung metallischer werkstücke
FR2821362B1 (fr) * 2001-02-23 2003-06-13 Etudes Const Mecaniques Procede de cementation basse pression
DE10221605A1 (de) * 2002-05-15 2003-12-04 Linde Ag Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke
EP2541179A3 (de) * 2005-11-23 2014-09-24 Surface Combustion, Inc. Gasgenerator für einen Atmosphärenofen zur Oberflächenbehandlung von Metallgegenständen
DE102007038983A1 (de) * 2007-08-17 2009-02-19 Robert Bosch Gmbh Verfahren zur Herstellung einer Verschleißschutzschicht an einem weichmagnetischen Bauteil
DE112010005929A5 (de) 2010-10-11 2014-01-02 Ipsen International Gmbh Verfahren und Einrichtung zum Aufkohlen und Carbonitrieren von metallischen Werkstoffen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0049531A1 (de) * 1980-10-08 1982-04-14 Linde Aktiengesellschaft Verfahren zum Einsatzhärten metallischer Werkstücke

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE618026C (de) * 1932-08-28 1935-08-30 Ewald Hanus Verfahren zum Zementieren von Eisen und Stahl
FR835931A (fr) * 1938-03-30 1939-01-05 Procédé pour la cémentation gazeuse de pièces en acier
FR1164640A (fr) * 1955-12-06 1958-10-13 Elino Ind Ofenbau Carl Hanf & Procédé pour la cémentation, la nitruration et la carbonitruration de pièces en acier
DE2851982A1 (de) * 1978-12-01 1980-06-12 Degussa Verfahren zum steuern von aufkohlungsprozessen im unterdruckbereich
DE3038078A1 (de) * 1980-10-08 1982-05-06 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zum aufkohlen metallischer werkstuecke

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0049531A1 (de) * 1980-10-08 1982-04-14 Linde Aktiengesellschaft Verfahren zum Einsatzhärten metallischer Werkstücke

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lueger, Lexikon der Hüttentechnik, p. 150-152 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047074A1 (de) * 2007-10-01 2009-04-02 Robert Bosch Gmbh Verfahren zur Aufkohlung von Werkstücken sowie Verwendung
CN103556106A (zh) * 2013-10-30 2014-02-05 西安航空动力股份有限公司 一种1Cr17Ni2合金材料高温真空渗碳层的制备方法
CN103556106B (zh) * 2013-10-30 2015-10-28 西安航空动力股份有限公司 一种1Cr17Ni2合金材料高温真空渗碳层的制备方法

Also Published As

Publication number Publication date
ZA828553B (en) 1983-09-28
AT373294B (de) 1984-01-10
BR8206714A (pt) 1983-10-04
ES517532A0 (es) 1983-08-01
GR77758B (de) 1984-09-25
EP0080124A2 (de) 1983-06-01
ES8307921A1 (es) 1983-08-01
EP0080124A3 (en) 1984-08-22
AU548340B2 (en) 1985-12-05
AU9040182A (en) 1983-05-26
DE3273483D1 (en) 1986-10-30
ATA84282A (de) 1983-05-15
DE3146042A1 (de) 1983-05-26
NO823887L (no) 1983-05-24

Similar Documents

Publication Publication Date Title
EP0080124B1 (de) Verfahren zum Einsatzhärten metallischer Werkstücke
EP0049530B1 (de) Verfahren und Vorrichtung zum Aufkohlen metallischer Werkstücke
DE2216688C3 (de) Verfahren zum Aufkohlen von Werkstücken aus Stahl, Wolfram und Molybdän mittels Kohlenstoff abgebender Gase in einer beheizbaren Vakuumkammer
EP0156378B1 (de) Verfahren und Einrichtung zur Gasaufkohlung von Stahl
DE2657644A1 (de) Gasmischung zum einfuehren in einen eisenmetallbehandlungsofen
DE2324918A1 (de) Verfahren zur herstellung von epsilonlarbonitridschichten auf teilen aus eisenlegierungen
DE2905728A1 (de) Verfahren zum aufbringen von ueberzuegen
EP1247875A2 (de) Verfahren und Vorrichtung zur Niederdruck-Carbonitrierung von Stahlteilen
DE102005015450B3 (de) Verfahren sowie Vorrichtung zur Gasabschreckung
EP1019561B1 (de) Verfahren und vorrichtung zum gemeinsamen oxidieren und wärmebehandeln von teilen
DE2837272A1 (de) Verfahren zur gasaufkohlung von werkstuecken aus stahl
DE3139622C2 (de) Verfahren zur Gasaufkohlung von Stahl und Vorrichtung zu seiner Durchführung
DE19729624A1 (de) Verfahren und Vorrichtung zur thermischen Behandlung eines Rohmaterials
DE3819803C1 (de)
EP1160349B1 (de) Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke
DE3507527C2 (de)
DE69608652T3 (de) Verfahren zum Aufkohlen von Metallen
WO2011098306A1 (de) Verfahren zur carbonitrierung mindestens eines bauteils in einer behandlungskammer
DE3714283C1 (de) Verfahren zur Gasaufkohlung von Stahl
DE3707003C2 (de)
DE886001C (de) Verfahren und Anlage zum Zementieren von Metallteilen
DE10209382A1 (de) Verfahren zur Aufkohlung von Bauteilen
DE102022106661A1 (de) Verfahren und Vorrichtung zum Plasmanitrieren und anschließendem Oxidieren einer Oberfläche eines Bauteils
DE921569C (de) Verfahren zur Oberflaechennitrierung von Stahlgegenstaenden
AT247396B (de) Verfahren und Vorrichtung zum Nitrieren von Eisenmetallen in cyanathaltigen Salzbädern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19840914

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3273483

Country of ref document: DE

Date of ref document: 19861030

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890419

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891107

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19891117

Year of fee payment: 8

Ref country code: BE

Payment date: 19891117

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891130

Year of fee payment: 8

Ref country code: GB

Payment date: 19891130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19901130

Ref country code: CH

Effective date: 19901130

Ref country code: BE

Effective date: 19901130

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19901130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST