EP0062856B1 - Regeleinrichtung für den gasbefeuerten Heizkessel einer Warmwasser-Heizungsanlage - Google Patents

Regeleinrichtung für den gasbefeuerten Heizkessel einer Warmwasser-Heizungsanlage Download PDF

Info

Publication number
EP0062856B1
EP0062856B1 EP82102804A EP82102804A EP0062856B1 EP 0062856 B1 EP0062856 B1 EP 0062856B1 EP 82102804 A EP82102804 A EP 82102804A EP 82102804 A EP82102804 A EP 82102804A EP 0062856 B1 EP0062856 B1 EP 0062856B1
Authority
EP
European Patent Office
Prior art keywords
gas
control
regulator
air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82102804A
Other languages
English (en)
French (fr)
Other versions
EP0062856A1 (de
Inventor
Hendrikus Berkhof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell BV
Original Assignee
Honeywell BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell BV filed Critical Honeywell BV
Publication of EP0062856A1 publication Critical patent/EP0062856A1/de
Application granted granted Critical
Publication of EP0062856B1 publication Critical patent/EP0062856B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/025Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/18Groups of two or more valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/20Membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/24Valve details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Definitions

  • the invention relates to a control device according to the preamble of claim 1, as is known for example from FR-A-2 337 316. It is an atmospheric gas burner that takes the air required for combustion from the surroundings of the burner without a fan.
  • a control device for gas-fired water or air heaters in which a servo pressure controller controlled by a temperature sensor is provided for the simultaneous control of gas supply and combustion air supply to the burner on the one hand acts on the diaphragm drive of a gas control valve and on the other hand acts on an actuator influencing the combustion air supply.
  • Gas is fed to the burner via an injector nozzle, which also draws in primary air.
  • a second injector nozzle is arranged in front of a secondary air inlet of the burner housing and is fed by a controllable compressed air source in the form of a fan with a downstream air control valve.
  • Hot water collective heating systems are often operated with a flow temperature that is controlled depending on the outside temperature, while the heat supply to the individual rooms is regulated by radiator valves provided there, which can be adjusted manually or by means of a thermostat, depending on the heat demand in the room concerned.
  • a temperature controller for collective heating systems which controls a control valve located in the supply or return line and is connected on the input side to two temperature sensors, one of which is the temperature in the supply line and the other the temperature in the return line measures.
  • the controller is designed so that a specified temperature difference is maintained between the flow and return.
  • DE-A-2 747 969 shows a control device of this type for a heating system with mixing control, in which the control device acts on a mixing valve in order to maintain a predetermined temperature difference between flow and return.
  • a thermostatic radiator valve provided there opens a larger flow cross-section and thus increases the amount of water flowing through. As a result, the heating water flows through the radiator faster, cooling less and the return temperature therefore increases. In order to maintain a predetermined temperature difference, more hot water is consequently supplied by the mixing valve and the flow temperature is increased.
  • the demand-based control takes place on the water side with the aid of a flow or admixing valve, while the burner and thus the temperature of the hot water are controlled at most depending on the outside temperature, but not on the actual heat demand in the rooms.
  • the object of the invention is to ensure optimal control of the burner in a control device of the type mentioned at the outset, that is to say with heat-dependent control of the burner, with combustion that is as low-pollutant as possible, even with fluctuating heat requirements.
  • This object is achieved by the invention characterized in claim 1. While the temperature difference between the flow and return of the heating water to the consumer and thus the heat demand of the consumer is decisive for the fuel supply, the control of the combustion air supply, depending on the carbon dioxide or oxygen content of the exhaust gases, ensures that the amount of air supplied to the burner is just at an optimal level Combustion with a small excess of air is sufficient.
  • the fuel is therefore used in the best possible way
  • the exhaust gases contain the least possible amount of unburned fuel
  • the adaptation of the combustion air supply also takes into account any pressure fluctuations in the combustion air supply line. This can be caused by fluctuations in the speed of the fan or contamination in the supply channels.
  • the fluctuations in the pressure difference between the inlet pressure and the ambient pressure which are decisive for the draft in the chimney, are also compensated for by changing the atmospheric pressure at the chimney.
  • the invention is explained below with reference to an embodiment shown in the drawing. It shows a hot water heating system in which the temperature difference controls the gas supply, while the amount of combustion air required for complete combustion is determined as a function of the oxygen or carbon dioxide concentration of the flue gas and continuously adjusted to the amount of gas via an air volume actuator.
  • the gas control device controlling the gas supply has the structure known from the company publication D3H-29 HO-NEYWELL COMPACT VALVES V4600 / 8600, the provided, manually adjustable servo pressure regulator by means of a servo pressure regulator according to the older EP-A, which can be adjusted in terms of its setpoint by means of an electromagnetic drive -39,000 is replaced.
  • a safety valve 4 and a main gas valve 5 are connected in series between inlet 2 and outlet 3.
  • the safety valve 4 with switch-on pushbutton 6 and restart lock 7 is irrelevant to the mode of operation of the invention and is therefore not discussed in detail.
  • the closing body 5 of the main gas valve is biased in the closing direction by a closing spring 8 and can be actuated by a diaphragm 9 by the servo control pressure in the chamber 10 against the force of this closing spring 8 from the valve seat 11 can be lifted off.
  • the control pressure for the chamber 10 is supplied via the channel 12 by a first servo pressure regulator 13, the setpoint of which can be adjusted with the aid of an electromagnetic drive 14.
  • a room to be heated by the hot water heating system there is the room thermostat 15, the contact of which closes as soon as the room temperature measured by its temperature sensor falls below the set value set on the room thermostat 15.
  • the switch-on solenoid valve 16 of the gas control device 1 When this contact closes, the switch-on solenoid valve 16 of the gas control device 1 is energized, so that on the one hand it allows the inlet gas pressure to enter the chamber 19 via the line 17 and a throttle point 18 and on the other hand with its closing body 20 the connection of this chamber to the channel 21 and locks it with outlet 3. Consequently, a control pressure builds up in the chamber 19 which is dependent on the position of the throttle body 22 of the pressure regulator and which reaches the control chamber 10 of the diaphragm drive for the main gas valve 5, 11 via the channel 12 and lifts the closing body 5 from the seat 11. Gas thus flows via line 23 to injector nozzle 24, which faces gas inlet 25 of burner 26. At the same time, the gas stream sucks in primary air and also feeds it to the burner 26.
  • the pilot burner 28 is connected to the gas control valve 1 via an ignition line 27. Its flame heats the thermocouple 29, which holds the safety valve 4 open via the magnet insert 30.
  • a second injector nozzle 31 which faces a secondary air inlet 32 of the boiler 33.
  • the secondary air inlet 32 opens into an air distributor pipe 35 provided with air outlet holes 34.
  • the second injector nozzle 31 is connected via a line 36 to the outlet 37 of an air control valve 38, the inlet 39 of which is connected to a compressed air source in the form of a fan 40.
  • the closing body 41 of the air control valve 38 is prestressed in the closing direction by a spring 42 and can be lifted off the seat 44 by a membrane 43 as soon as the pressure in the drive chamber 45 exerts forces on the membrane 43 by the closing spring 42 and the pressure in the outlet 37 exceeds.
  • the burner 26 heats a heat exchanger 51, which is connected to the radiators 53 via a circulation pump 52.
  • the exhaust gases leave the boiler 33 through the flue gas exhaust 54, which passes into the chimney 56 via a draft interrupter 55.
  • gas inlet 25 secondary air inlet 32 and flue gas outlet 54
  • the housing 57 of the boiler 33 is closed on all sides.
  • An air outlet nozzle 58 projects into the chimney 56 and is connected via a line 59 to the outlet 37 of the air control valve. With the help of this air outlet nozzle 58, an artificial draft is generated in the chimney 56.
  • the auxiliary air flow from the nozzle 58 can be adapted to the secondary air flow by means of a throttle 60.
  • a temperature sensor 63 is provided in the heating water supply line 62 from the heat exchanger 51 to the radiators 53 and a second temperature sensor 65 is provided in the return line 64.
  • the outputs of both temperature sensors are connected to a first guide controller 66, which is connected on the output side to the magnetic drive 14 of the servo pressure controller 13.
  • the solenoid 16 switches on and with it the servo pressure regulator 13. This opens the main gas valve 5, 11, so that the main burner 26 ignites and that Heat exchanger 51 flowing through heating water is heated. If the room to be heated is relatively cold, the water cools down considerably and the temperature sensors 63 and 65 report a large temperature difference to the controller 66. If this temperature difference is greater than a predetermined target value, the magnetic drive 14 adjusts the servo pressure regulator 13 in the direction of a higher control pressure, so that the main gas valve 5, 11 is opened even further. However, if the temperature difference drops, the gas supply is reduced in the same way.
  • the amount of gas supplied to the burner 26 is modulated as a function of the heat requirement. If the room temperature reaches the setpoint specified on the room thermostat 15, this interrupts the circuit of the closing solenoid valve. As a result, the servo pressure regulator 13 no longer delivers control pressure into the diaphragm chamber 10 of the diaphragm drive for the main gas valve 5, 11, so that it closes under the influence of its closing spring 8. While the room thermostat 15 indicates by actuating its contact whether heat should be supplied to the room, the heating water consumer 53 itself serves as a measuring section for determining the amount of heat required. The greater the heat requirement, the more the temperature difference between flow 62 and return 64 increases. Accordingly, the setpoint of the servo pressure controller 13 is adjusted via the guide controller 66 and the magnetic drive 14 and thus the gas throughput to the burner is controlled.
  • the servo pressure regulator 13 acts directly only on the gas control valve and thus on the gas supply to the burner 26. At the same time, however, the amount of primary air drawn in via the injector nozzle 24 is changed in the same direction.
  • an oxygen or carbon dioxide sensor 70 is provided, the output signal of which is fed to a second guide controller 71.
  • the controller 71 supplies an output signal to the magnetic drive 72 of a second servo pressure controller 73 placed on the air control valve 38, whereby the target value of this pressure controller increases and, at the same time, the air control valve 41, 44 opens further becomes. As a result, more secondary air flows to the air distributor pipe 35, so that the excess air which is appropriate for the sensor 70 increases. If the excess air is too high, conversely, the amount of secondary air supplied via the air control valve 38 is throttled.
  • thermomechanical controller can also be used, as described for example in DE-C 1 961 806 or DE-A 2 747 969.
  • the two temperature sensors 63 and 65 are shown as expansion sensors, which act hydraulically on an actuator via capillary tubes. This then directly mechanically adjusts the setpoint of the servo pressure regulator 13.
  • the controllers 66 and 71 can be combined to form a common controller, possibly a digital controller using a microprocessor. Instead of the excess of oxygen, a measurement of the CO 2 content of the flue gases can also be used to control the amount of secondary air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Description

  • Die Erfindung betrifft eine Regeleinrichtung gemäss Gattungsbegriff des Anspruchs 1, wie sie beispielsweise aus FR-A-2 337 316 bekannt ist. Es handelt sich dort um einen atmosphärischen Gasbrenner, welcher die zur Verbrennung erforderliche Luft der Umgebung des Brenners ohne Gebläse entnimmt.
  • In der prioritätsälteren EP-A-0 036 613 (veröffentlicht am 30.9.81) ist eine Regeleinrichtung für gasbefeuerte Wasser- oder Lufterhitzer beschrieben, in welcher für die gleichzeitige Regelung von Gaszufuhr und Verbrennungsluftzufuhr zum Brenner ein von einem Temperaturfühler gesteuerter Servodruckregler vorgesehen ist, der einerseits den Membranantrieb eines Gasregelventils und andererseits ein die Verbrennungsluftzufuhr beeinflussendes Stellglied beaufschlagt. Gas wird dem Brenner über eine Injektordüse zugeführt, welche zugleich Primärluft ansaugt. Um die zur Erzielung einer optimalen Verbrennung erforderliche Sekundärluft dem Brenner zuzuführen, ist eine zweite Injektordüse vor einem Sekundärlufteinlass des Brennergehäuses angeordnet und wird von einer regelbaren Druckluftquelle in Form eines Gebläses mit nachgeschaltetem Luftregelventil gespeist.
  • Warmwasser-Sammelheizungsanlagen werden vielfach mit einer von der Aussentemperatur abhängig gesteuerten Vorlauftemperatur betrieben, während die Wärmezufuhr zu den einzelnen Räumen durch dort vorgesehene, von Hand oder mittels eines Thermostaten verstellbare Radiatorventile in Abhängigkeit vom Wärmebedarf im betreffenden Raum geregelt wird. So ist aus DE-C-1 961 806 ein Temperaturregler für Sammelheizungsanlagen bekannt, der ein in der Vor- oder Rücklaufleitung liegendes Stellventil steuert und eingangsseitig an zwei Temperaturfühler angeschlossen ist, von denen der eine die Temperatur in der Vorlaufleitung und der andere die Temperatur in der Rücklaufleitung misst. Der Regler ist so ausgebildet, dass zwischen Vor- und Rücklauf eine vorgegebene Temperaturdifferenz eingehalten wird. Weiterhin zeigt die DE-A-2 747 969 eine Regelvorrichtung dieser Art für eine Heizungsanlage mit Beimischregelung, in welcher die Regelvorrichtung zwecks Aufrechterhaltung einer vorgegebenen Temperaturdifferenz zwischen Vorlauf und Rücklauf auf ein Mischventil einwirkt. Wird im zu beheizenden Raum mehr Wärme benötigt, so öffnet ein dort vorgesehenes thermostatisches Heizkörperventil einen grösseren Durchflussquerschnitt und erhöht damit die durchfliessende Wassermenge. Dies hat zur Folge, dass das Heizwasser schneller durch den Heizkörper fliesst, dabei sich weniger abkühlt und somit die Rücklauftemperatur ansteigt. Um eine vorgegebene Temperaturdifferenz einzuhalten, wird folglich vom Mischventil mehr Heisswasser zugeführt und damit die Vorlauftemperatur erhöht. Bei diesen beiden bekannten Warmwasserheizungsanlagen erfolgt somit die bedarfsabhängige Regelung wasserseitig mit Hilfe eines Vorlauf- oder Beimischventils, während der Brenner und damit die Temperatur des Heisswassers allenfalls in Abhängigkeit von der Aussentemperatur, nicht aber vom eigentlichen Wärmebedarf in den Räumen gesteuert wird.
  • Aufgabe der Erfindung ist es, bei einer Regeleinrichtung der eingangs genannten Art, also mit wärmebedarfsabhängiger Steuerung des Brenners, eine optimale und mit möglichst schadstoffarmen Abgasen arbeitende Verbrennung auch bei schwankendem Wärmebedarf zu gewährleisten. Diese Aufgabe wird gelöst durch die im Anspruch 1 gekennzeichnete Erfindung. Während für die Brennstoffzufuhr die Temperaturdifferenz zwischen Vorlauf und Rücklauf des Heizwassers zum Verbraucher und damit der Wärmebedarf des Verbrauchers massgebend ist, sorgt die Steuerung der Verbrennungsluftzufuhr in Abhängigkeit vom Kohlendioxyd- oder Sauerstoffgehalt der Abgase dafür, dass die dem Brenner zugeführte Luftmenge jeweils gerade zu einer optimalen Verbrennung mit geringem Luftüberschuss ausreicht. Der Brennstoff wird also bestmöglich ausgenutzt, die Abgase enthalten eine geringstmögliche Menge unverbrannter Brennstoffanteile, und die Anpassung der Verbrennungsluftzufuhr berücksichtigt zugleich etwaige Druckschwankungen in der Verbrennungsluftzufuhrleitung. Diese können durch Drehzahlschwankungen des Gebläses oder Verschmutzungen in den Zufuhrkanälen bedingt sein. Ausgeregelt werden auch durch Änderung des atmosphärischen Drucks am Schornstein bedingte Schwankungen der für den Zug im Schornstein massgebenden Druckdifferenz zwischen Eingangsdruck und Umgebungsdruck. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Die Erfindung wird nachfolgend anhand eines in der Zeichnung wiedergegebenen Ausführungsbeispiels erläutert. Es zeigt eine Warmwasserheizungsanlage, bei der die Temperaturdifferenz die Gaszufuhr steuert, während die zur vollständigen Verbrennung erforderliche Verbrennungsluftmenge in Abhängigkeit von der Sauerstoff- oder Kohlendioxydkonzentration des Rauchgases ermittelt und über ein Luftmengenstellglied der Gasmenge fortlaufend angepasst wird.
  • Das die Gaszufuhr steuerende Gasregelgerät hat den aus der Firmendruckschrift D3H-29 HO-NEYWELL KOMPAKT-VENTILE V4600/8600 bekannten Aufbau, wobei der dort vorgesehene, von Hand einstellbare Servodruckregler durch einen mittels einen Elektromagnetantrieb hinsichtlich seines Sollwerts einstellbaren Servodruckregler gemäss der älteren EP-A-39 000 ersetzt ist. Im Gasregelgerät 1 sind zwischen Einlass 2 und Auslass 3 ein Sicherheitsventil 4 und ein Hauptgasventil 5 in Reihe geschaltet. Das Sicherheitsventil 4 mit Einschaltdrucktaste 6 und Wiedereinschaltsperre 7 ist für die Wirkungsweise der Erfindung ohne Belang und wird folglich nicht im einzelnen erörtert. Der Schliesskörper 5 des Hauptgasventils ist durch eine Schliessfeder 8 in Schliessrichtung vorgespannt und kann über eine Membran 9 durch den Servosteuerdruck in der Kammer 10 gegen die Kraft dieser Schliessfeder 8 vom Ventilsitz 11 abgehoben werden. Den Steuerdruck für die Kammer 10 liefert über den Kanal 12 ein erster Servodruckregler 13, dessen Sollwert mit Hilfe eines Elektromagnetantriebs 14 verstellbar ist. In einem durch die Warmwasserheizungsanlage zu beheizenden Raum befindet sich der Raumthermostat 15, dessen Kontakt schliesst, sobald die von seinem Temperaturfühler gemessene Raumtemperatur den am Raumthermostaten 15 eingestellten Sollwert unterschreitet. Mit dem Schliessen dieses Kontakts wird das Einschaltmagnetventil 16 des Gasregelgeräts 1 an Spannung gelegt, so dass es einerseits den Eingangsgasdruck über die Leitung 17 und eine Drosselstelle 18 in die Kammer 19 gelangen lässt und andererseits mit seinem Schliesskörper 20 die Verbindung dieser Kammer mit dem Kanal 21 und über diesen mit dem Auslass 3 sperrt. Folglich baut sich in der Kammer 19 ein von der Stellung des Drosselkörpers 22 des Druckreglers abhängiger Steuerdruck auf, der über den Kanal 12 in die Steuerkammer 10 des Membranantriebs für das Hauptgasventil 5, 11 gelangt und den Schliesskörper 5 vom Sitz 11 abhebt. Damit strömt Gas über die Leitung 23 zur Injektordüse 24, welche dem Gaseinlass 25 des Brenners 26 gegenübersteht. Der Gasstrom saugt zugleich Primärluft an und führt sie ebenfalls dem Brenner 26 zu. Über eine Zündleitung 27 ist der Zündbrenner 28 an das Gasregelventil 1 angeschlossen. Seine Flamme erwärmt das Thermoelement 29, welches über den Magneteinsatz 30 das Sicherheitsventil 4 offenhält.
  • Da die vom Gasstrom durch die Injektordüse 24 angesaugte Primärluft für eine vollständige Verbrennung des Gases nicht ausreicht, ist eine zweite Injektordüse 31 vorgesehen, welche einem Sekundärlufteinlass 32 des Boilers 33 gegenübersteht. Der Sekundärlufteinlass 32 mündet in ein mit Luftaustrittslöchern 34 versehenes Luftverteilerrohr 35. Die zweite Injektordüse 31 steht über eine Leitung 36 mit dem Ausgang 37 eines Luftregelventils 38 in Verbindung, dessen Eingang 39 an eine Druckluftquelle in Form eines Gebläses 40 angeschlossen ist. Der Schliesskörper 41 des Luftregelventils 38 ist durch eine Feder 42 in Schliessrichtung vorgespannt und kann von einer Membran 43 vom Sitz 44 abgehoben werden, sobald der Druck in der Antriebskammer 45 die von der Schliessfeder 42 und vom Druck im Ausgang 37 ausgeübten Kräfte auf die Membran 43 übersteigt.
  • Der Brenner 26 beheizt einen Wärmetauscher 51, der über eine Umwälzpumpe 52 an die Heizkörper 53 angeschlossen ist. Die Abgase verlassen den Boiler 33 durch den Rauchgasabzug 54, der über einen Zugunterbrecher 55 in den Schornstein 56 übergeht. Mit Ausnahme von Gaseinlass 25, Sekundärlufteinlass 32 und Rauchgasabzug 54 ist das Gehäuse 57 des Boilers 33 allseitig geschlossen. In den Schornstein 56 ragt eine Luftaustrittsdüse 58 hinein, welche über eine Leitung 59 an den Auslass 37 des Luftregelventils angeschlossen ist. Mit Hilfe dieser Luftaustrittsdüse 58 wird ein künstlicher Zug im Schornstein 56 erzeugt. Mittels einer Drossel 60 kann der Hilfsluftstrom aus der Düse 58 dem Sekundärluftstrom angepasst werden. Bei hohen Schornsteinen empfiehlt es sich vielfach, die Leitung 59 nicht an den Auslass 37, sondern über die Leitung 59' an den Einlass 39 des Luftregelventils 38, d.h. unmittelbar an das Gebläse 40 anzuschliessen. Um eine Kondensation der Abgase im Schornstein 56 infolge Rauchgasabkühlung zu vermeiden, kann es ratsam sein, die den künstlichen Zug erzeugende Luft vorzuwärmen. Dies ist in der Zeichnung dadurch gestrichelt angedeutet, dass die Zuleitung zur Düse 58 im Bereich 59" teilweise im Inneren des Boilers 33 entlanggeführt ist.
  • In der Heizwasservorlaufleitung 62 vom Wärmetauscher 51 zu den Heizkörpern 53 ist ein Temperaturfühler 63 und in der Rücklaufleitung 64 ein zweiter Temperaturfühler 65 vorgesehen. Die Ausgänge beider Temperaturfühler sind an einen ersten Führungsregler 66 angeschlossen, der ausgangsseitig mit dem Magnetantrieb 14 des Servodruckreglers 13 in Verbindung steht.
  • Sobald die Temperatur in dem zu beheizenden Raum unter den Sollwert des Raumthermostaten 15 absinkt, schliesst dieser seinen Kontakt, schaltet das Einschaltmagnetventil 16 ein unt mit ihm den Servodruckregler 13. Dieser öffnet das Hauptgasventil 5, 11, so dass der Hauptbrenner 26 zündet und das den Wärmetauscher 51 durchfliessende Heizwasser erwärmt. Ist der zu beheizende Raum relativ kalt, so kühlt sich das Wasser stark ab und die Temperaturfühler 63 und 65 melden eine starke Temperaturdifferenz an den Regfer66. Ist diese Temperaturdifferenz grösser als ein vorgegebener Sollwert, so verstellt der Magnetantrieb 14 den Servodruckregler 13 in Richtung auf einen höheren Steuerdruck, so dass das Hauptgasventil 5, 11 noch weiter geöffnet wird. Sinkt hingegen die Temperaturdifferenz, so wird die Gaszufuhr auf dem gleichen Wege gedrosselt. Auf diese Weise wird die dem Brenner 26 zugeführte Gasmenge in Abhängigkeit vom Wärmebedarf moduliert. Erreicht die Raumtemperatur den am Raumthermostaten 15 vorgegebenen Sollwert, so unterbricht dieser den Stromkreis des Einschaltmagnetventils. Dadurch liefert der Servodruckregler 13 keinen Steuerdruck mehr in die Membrankammer 10 des Membranantriebs für das Hauptgasventil 5, 11, so dass dieses unter dem Einfluss seiner Schliessfeder 8 schliesst. Während der Raumthermostat 15 durch Betätigen seines Kontakts anzeigt, ob dem Raum Wärme zugeführt werden soll, dient der Heizwasserverbraucher 53 selbst als Messstrecke zur Ermittlung des Betrages der erforderlichen Wärmezufuhr. Je grösser der Wärmebedarf ist, umso mehr wächst die Temperaturdifferenz zwischen Vorlauf 62 und Rücklauf 64 an. Dementsprechend wird über den Führungsregler 66 und den Magnetantrieb 14 der Sollwert des Servodruckreglers 13 verstellt und damit der Gasdurchsatz zum Brenner gesteuert.
  • Der Servodruckregler 13 wirkt unmittelbar nur auf das Gasregelventil und damit auf die Gaszufuhr zum Brenner 26 ein. Zugleich wird allerdings auch die über die Injektordüse 24 angesaugte Primärluftmenge gleichsinnig verändert. Zur Steuerung der über die zweite Injektordüse 31 zugeführten und angesaugten Sekundärluftmenge ist im Rauchgasabzug 54 ein Sauerstoff- oder Kohlendioxydfühler 70 vorgesehen, dessen Ausgangssignal einem zweiten Führungsregler 71 zugeführt ist. Unterschreitet der Sauerstoffüberschuss (Luftüberschuss) im Rauchgasabzug 54 einen vorgegebenen Sollwert, so liefert der Regler 71 ein Ausgangssignal an den Magnetantrieb 72 eines auf das Luftregelventil 38 aufgesetzten zweiten Servodruckreglers 73, wodurch der Sollwert dieses Druckreglers erhöht und damit zugleich das Luftregelventil 41, 44 weiter geöffnet wird. Damit fliesst mehr Sekundärluft zum Luftverteilerrohr 35, so dass der vom Fühler 70 angemessene Luftüberschuss zunimmt. Ein zu hoher Luftüberschuss führt umgekehrt zu einer Drosselung der über das Luftregelventil 38 zugeführten Sekundärluftmenge.
  • Da das Gehäuse 57 des Boilers 33 bis auf die beiden Einlassöffnungen 25 und 32 eingangsseitig geschlossen ist, herrscht beim Schliessen von Hauptgasventil 5, 11 und Luftregelventil 41, 44 innerhalb des Boilers nahezu kein Zug mehr, so dass die darin enthaltene Wärme nicht über den Rauchgasabzug 54 entweicht. Auch dies trägt zur Verbesserung des Wirkungsgrades der Heizungsanlage bei.
  • Anstelle des im Ausführungsbeispiel dargestellten elektrischen oder elektronischen Reglers 66 kann auch ein thermomechanischer Regler Verwendung finden, wie er beispielsweise in der DE-C 1 961 806 bzw. DE-A 2 747 969 beschrieben ist. Dort sind die beiden Temperaturfühler 63 und 65 als Ausdehnungsfühler dargestellt, die über Kapillarrohre hydraulisch auf ein Stellglied einwirken. Dieses verstellt dann mechanisch unmittelbar den Sollwert des Servodruckreglers 13.
  • Die Regler 66 und 71 können zu einem gemeinsamen Regler, gegebenenfalls zu einem Digitalregler unter Verwendung eines Mikroprozessors zusammengefasst werden. Anstelle des Sauerstoffüberschusses kann auch eine Messung des CO2-Gehalts der Rauchgase zur Steuerung der Sekundärluftmenge herangezogen werden.

Claims (5)

1. Regeleinrichtung für den gasbefeuerten Heizkessel (33) einer Warmwasser-Heizungsanlage, mit einem im Zuge der Gasleitung zum Brenner (26) angeordneten Gasregelventil (1), dessen Drosselkörper (5) durch das Stellsignal eines Reglers (66) gesteuert ist, dem als Eingangsgrössen den Temperaturen im Heizwasservorlauf (62) und im Heizwasserrücklauf (64) entsprechende Signalgrössen zugeführt werden und der bei Abweichung der Temperaturdifferenz von einem vorgegebenen Sollwert das Stellsignal abgibt, gekennzeichnet durch folgende Merkmale:
a) der Drosselkörper (5) des Gasregelventils (1) wird über einen Membranantrieb (8, 9, 10) durch den Ausgangssteuerdruck eines dem Gasregelventil zugeordneten Servodruckreglers (13) verstellt;
b) zur Sollwertverstellung des Servodruckreglers (13) ist ein erster Führungsregler (66) vorgesehen;
c) der Drosselkörper (41) eines einem Gebläse (40) nachgeschaltetem Luftregelventils (38) wird über einen Membranantrieb (42, 43) durch den Ausgangssteuerdruck eines zweiten Servodruckreglers (73) verstellt;
d) der Sollwert des zweiten Servodruckreglers (73) ist durch einen ihm zugeordneten von einem zweiten Führungsregler (71) gesteuerten ' Elektromagnetantrieb (72) beeinflussbar;
e) der Regelgrösseneingang des zweiten Führungsreglers (71) ist an einen die Sauerstoffkonzentration oder Kohlendioxydkonzentration im Rauchgasabzug (54) des Heizkessels (33) messenden Fühler (70) angeschlossen.
2. Regeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der erste Führungsregler ein thermomechanischer Regler ist, der über Kapillarrohre an zwei Ausdehnungstemperaturfühler (63, 65) angeschlossen ist und mit seinem Ausgangsstellglied mechanisch oder hydraulisch auf den dem Gasregelventil (1) zugeordneten Servodruckregler (13) einwirkt.
3. Regeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der erste Führungsregler (66) ein elektrischer Regler ist, an dessen Messgrösseneingang zwei elektrische Temperaturfühler (63, 65) angeschlossen sind und dessen Ausgangssteuersignal einem den Sollwert des dem Gasregelgerät (1) zugeordneten Servodruckreglers (13) verstellenden Elektromagnetantrieb (14) zugeführt ist.
4. Regeleinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Gasregelventil (1) ausgangsseitig an eine erste Injektordüse (24) angeschlossen ist, welche dem Gas- und Primärlufteinlass (25) des Brenners (26) gegenübersteht, während das Luftmengenstellglied (38, 40) ausgangsseitig mit einer zweiten Injektordüse (31) verbunden ist, welcher ein Sekundärlufteinlass (32) des Heizkessels (33) gegenübersteht.
5. Regeleinrichtung nach Anspruch 4, dadurch gekennzeichnet, dass an eine die zweite Injektordüse (31) speisende Druckluftquelle (38, 40) eine im Rauchgasabzug (54, 56) angeordnete Luftaustrittsdüse (58) angeschlossen ist.
EP82102804A 1981-04-13 1982-04-02 Regeleinrichtung für den gasbefeuerten Heizkessel einer Warmwasser-Heizungsanlage Expired EP0062856B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813114942 DE3114942A1 (de) 1981-04-13 1981-04-13 Regeleinrichtung fuer den gasbefeuerten heizkessel einer warmwasser-heizungsanlage
DE3114942 1981-04-13

Publications (2)

Publication Number Publication Date
EP0062856A1 EP0062856A1 (de) 1982-10-20
EP0062856B1 true EP0062856B1 (de) 1986-07-16

Family

ID=6130069

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82102804A Expired EP0062856B1 (de) 1981-04-13 1982-04-02 Regeleinrichtung für den gasbefeuerten Heizkessel einer Warmwasser-Heizungsanlage

Country Status (2)

Country Link
EP (1) EP0062856B1 (de)
DE (2) DE3114942A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3544411A1 (de) * 1985-12-16 1987-06-19 Honeywell Bv Warmwasser-heizungsanlage mit waermeverbrauchsmesser
EP0272348B1 (de) * 1986-12-24 1989-10-11 Honeywell B.V. Gasregelgerät mit Servodruckregler
DE3742807A1 (de) * 1987-12-17 1989-07-13 Peter Huber Temperiereinrichtung
CN1049972C (zh) * 1991-06-29 2000-03-01 崔镇玟 热水锅炉系统
DE69612184T2 (de) * 1996-04-02 2001-09-06 Sit La Precisa S.P.A., Padua/Padova Eine Ventileinheit zur Regelung des Abgabedruckes eines Gases
US10100938B2 (en) 2008-12-08 2018-10-16 Robertshaw Controls Company Variable flow gas valve and method for controlling same
CN113587140A (zh) * 2021-08-09 2021-11-02 吉林同鑫热力集团股份有限公司 一种锅炉燃烧优化系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1604271A (en) * 1924-12-17 1926-10-26 Ferdinand J Friedman Furnace equipment
GB918844A (en) * 1958-11-13 1963-02-20 Radiation Ltd Improvements in or relating to temperature-controlled, gas-fired water heaters
US3960320A (en) * 1975-04-30 1976-06-01 Forney Engineering Company Combustion optimizer
DE2540406C2 (de) * 1975-09-11 1982-04-01 Robert Bosch Gmbh, 7000 Stuttgart Regeleinrichtung für eine Warmwasserheizungsanlage
US4034911A (en) * 1975-12-04 1977-07-12 Emerson Electric Co. Burner control system
FR2337316A1 (fr) * 1975-12-29 1977-07-29 Cidelcem Generateur d'eau chaude a chauffage instantane
ES460107A1 (es) * 1976-06-28 1978-08-16 Claeys Flandria Nv Perfeccionamientos en los procedimientos y dispositivos paramantener practicamente constante a diversos regimenes de funcionamiento el rendimiento de aparatos a evacuacion for- zada comportando un dispositivo de combustion.
US4330260A (en) * 1979-01-31 1982-05-18 Jorgensen Lars L S Method and apparatus for regulating the combustion in a furnace
EP0036613B1 (de) * 1980-03-20 1984-06-06 Honeywell B.V. Durch einen Temperaturfühler steuerbare Regeleinrichtung für einen gasbefeuerten Wasser- oder Lufterhitzer
JPS56151813A (en) * 1980-04-28 1981-11-25 Hitachi Ltd Proportional burning method and apparatus therefor

Also Published As

Publication number Publication date
DE3271988D1 (en) 1986-08-21
DE3114942A1 (de) 1982-10-28
EP0062856A1 (de) 1982-10-20

Similar Documents

Publication Publication Date Title
EP0062854B1 (de) Gasbefeuerter Wasser- oder Lufterhitzer
EP0957314B1 (de) Regeleinrichtung für Gasbrenner
EP0062855B1 (de) Regeleinrichtung für einen gasbefeuerten Wasser- oder Lufterhitzer
DE3026190A1 (de) Heizeinrichtung
EP0644377A1 (de) Regeleinrichtung für Gasbrenner
EP0390964B1 (de) Regeleinrichtung für Gasbrenner
DE2822770A1 (de) Regelsystem fuer einen brenner
EP0062856B1 (de) Regeleinrichtung für den gasbefeuerten Heizkessel einer Warmwasser-Heizungsanlage
EP0505714B1 (de) Regelvorrichtung für Gasbrenner mit einem Gebläse zum Zuführen von Verbrennungsluft
AT406903B (de) Verfahren zum steuern des gasdurchsatzes
EP0103303A2 (de) Brennstoffbeheizte Wärmequelle
DE3689309T2 (de) Steuerung der Fluidtemperatur bei einer Warmwasserzentralheizungsanlage und für eine Zentralheizungsanlage geeignete Komponenten.
EP0229319B1 (de) Warmwasser-Heizungsanlage mit Wärmeverbrauchsmesser
EP0279771A1 (de) Verfahren zum Regeln des Verbrennungsluftdurchsatzes für eine brennstoffbeheizte Wärmequelle
EP0036613B1 (de) Durch einen Temperaturfühler steuerbare Regeleinrichtung für einen gasbefeuerten Wasser- oder Lufterhitzer
DE3333606A1 (de) Brennstoffbeheizte waermequelle
DE3006683C2 (de)
EP0643264A1 (de) Verfahren zur Regulierung der Flammengüte eines atmosphärischen Gasbrenners und Gasbrenner zur Durchführung des Verfahrens
AT393890B (de) Vorrichtung zur steuerung des durchsatzes der verbrennungsluft zu einem geblaesebrenner
EP0158842B1 (de) Regeleinrichtung für das Brennstoff-Luftverhältnis einer brennstoffbeheizten Wärmequelle
DE68905932T2 (de) Automatische regeleinrichtung des verbrennungsluft- und gasdurchflusses fuer ein gasheizgeraet.
DE68911880T2 (de) Vorrichtungen zur Regelung und Steuerung der Gaszufuhr des Brenners eines Kessels.
DE628621C (de) Einrichtung zur selbsttaetigen Regelung der Gaszufuhr zu einem Erhitzer
EP0108349A2 (de) Gasbeheizte Wärmequelle
DE29808799U1 (de) Regeleinrichtung für Gasbrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

RHK1 Main classification (correction)

Ipc: F23N 5/02

17P Request for examination filed

Effective date: 19830122

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3271988

Country of ref document: DE

Date of ref document: 19860821

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890307

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890313

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890331

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890421

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890430

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900430

BERE Be: lapsed

Owner name: HONEYWELL B.V.

Effective date: 19900430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901101

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST