EP0036613B1 - Durch einen Temperaturfühler steuerbare Regeleinrichtung für einen gasbefeuerten Wasser- oder Lufterhitzer - Google Patents

Durch einen Temperaturfühler steuerbare Regeleinrichtung für einen gasbefeuerten Wasser- oder Lufterhitzer Download PDF

Info

Publication number
EP0036613B1
EP0036613B1 EP81101973A EP81101973A EP0036613B1 EP 0036613 B1 EP0036613 B1 EP 0036613B1 EP 81101973 A EP81101973 A EP 81101973A EP 81101973 A EP81101973 A EP 81101973A EP 0036613 B1 EP0036613 B1 EP 0036613B1
Authority
EP
European Patent Office
Prior art keywords
air
gas
control valve
pressure regulator
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81101973A
Other languages
English (en)
French (fr)
Other versions
EP0036613A1 (de
Inventor
Hendrikus Berkhof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell BV
Original Assignee
Honeywell BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3010737A external-priority patent/DE3010737A1/de
Priority claimed from DE19803044678 external-priority patent/DE3044678A1/de
Application filed by Honeywell BV filed Critical Honeywell BV
Publication of EP0036613A1 publication Critical patent/EP0036613A1/de
Application granted granted Critical
Publication of EP0036613B1 publication Critical patent/EP0036613B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/025Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/027Regulating fuel supply conjointly with air supply using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/20Membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/16Controlling secondary air

Definitions

  • the invention relates to a control device according to the preamble of claim 1, as is known for example from GB-PS 1 235 891.
  • a control device for optimal use of the fuel supplied to a burner, not only must the fuel supply be regulated as a function of the required heat, but also the combustion air supply must be adapted to the respective fuel quantity in order to achieve optimal combustion.
  • a spring-loaded diaphragm drive is connected to the outlet line leading to the burner of a gas control valve controlled by the temperature sensor and controls an air flap in the combustion air supply duct. The more gas that is fed to the burner, the more the flap opens, thereby increasing the amount of combustion air supplied by a fan.
  • said membrane drive controls the speed of the blower motor via a brake and in this way the combustion air supply.
  • a device for controlling the supply of gas and air to an infrared burner in which an air flap is installed in the combustion air duct.
  • This is, on the one hand, under the influence of a pressure regulator that keeps the pressure in the duct constant and, on the other hand, is acted upon by a servo motor controlled by the temperature sensors.
  • the air flows through an orifice into a mixing chamber, to which the fuel gas is also fed via a nozzle.
  • the aim is that the air pressure upstream of the orifice and the gas pressure upstream of the nozzle are the same.
  • the air duct is connected via a branch line to the control chamber of a constant pressure regulator, which influences a valve which is switched into the gas line.
  • a device for mixing gas and air for generating a heating gas in which the gas reaches a jet pump under driving pressure, which is equipped with an air intake and a Venturi tube for mixing the air with the gas.
  • the venturi tube opens into a mixing chamber.
  • a second jet pump is also provided, the input of which is connected to a compressed air generator and which also conveys an additional air quantity into the mixing chamber.
  • the mixing chamber is provided with heating gas outlet connections which lead into a gas supply network.
  • the amount of air sucked in can be adjusted manually by means of an air flap arranged in the intake port. Since a city gas network is supplied with a heating gas / air mixture from the common mixing chamber, of which only a uniform composition is required, without requiring adaptation to different quantities, a common regulation of both jet pumps is neither provided nor necessary here.
  • US-A 2193240 shows a mixing device for fuel gas and air, with the aid of which a gas mixture of constant calorific value is to be generated and maintained.
  • the throttle bodies of an air valve and a gas valve are rigidly coupled to one another and are controlled together by the output signal of a differential pressure regulator that measures the differential pressure at the gas valve.
  • the differential pressure at the gas valve and the differential pressure at the air valve are fed to a differential pressure comparator, the transmission ratio of which can be changed by the output signal of a calorific value measuring device connected to the mixture line and whose output signal controls a second air valve upstream of the air valve in such a way that a predetermined ratio of the two differential pressures is maintained .
  • a consumption-dependent, e.g. B. temperature-dependent, regulation of the amount of gas mixture is also not provided here.
  • the invention is concerned with the task to achieve a simultaneous control of gas supply and combustion air supply with water supply or air heaters with gas supply via an injector air which simultaneously sucks in combustion air, in such a way that even with changing heat requirements and thus changing fuel supply always that optimal fuel / air mixture is fed to the burner.
  • This object is solved by the features of claim 1.
  • a servo pressure regulator is used, the advantage being achieved that only relatively small gas or suction air flows can be processed by both the gas control valve and the air quantity control element, while the primary air and most of the Se secondary air is fed to the burner by suction of the injector nozzles (Venturi nozzles).
  • FIG. 1 shows the gas valve together with the servo pressure regulator and the air control valve with an upstream fan
  • FIG. 2 shows as a consumer a gas-fired boiler, for example for a central heating system
  • the drive chamber 31 of a servo pressure-controlled air control valve 32 is connected to the chamber 19 of the servo pressure regulator via a line 20.
  • the closing body 33 is supported by the membrane 35 via a pin 34 and is biased in the closing direction by a spring 36.
  • the inlet 37 of the air control valve is connected to a compressed air generator in the form of a fan 38, while the sensor 40 of a flow switch 41 is arranged in the outlet 30. Its normally open contact, which is closed by the air flow, lies in the excitation circuit of the closing solenoid valve 4.
  • Fig. 2 shows as a consumer a heat exchanger 52 surrounded by a closed housing 51, the heated water of which passes via the outlet 53 to one or more radiators.
  • a main burner 54 heats the heat exchanger 52, a pilot burner 55 being connected to the pilot burner connection 65 of the gas control device and a thermocouple 56 monitoring the pilot flame to the magnet insert 14 of the ignition safety device.
  • the combustion gases leave the housing 51 through a vent 57.
  • the inlet 58 of the main burner 54 is opposed by an injector nozzle 59, via which gas flows into the main burner from the outlet 5 of the gas control valve. Due to the jet effect of the nozzle 59, the gas stream simultaneously draws in primary air, which is fed to the main burner 54 as combustion air.
  • the housing 51 also has an inlet 60 for secondary air, which is opposed by a further injector nozzle 61. It is fed with compressed air by the air control valve 32 and, due to its jet effect, also draws in additional combustion air and presses it into the interior of the housing 51, where it is available to the main burner 54 in order to achieve as complete a combustion as possible. Otherwise the housing 51 is closed.
  • the arrangement is such that as the amount of gas at the outlet 5 of the gas control device increases, the amount of compressed air let through by the air control valve 32 also increases and, because of the jet effect of the two nozzles 59 and 61, as much primary or secondary air is fed to the main burner 54 as to one complete and optimal combustion of the amount of gas supplied is required.
  • the amount of gas let through from the gas control valve to the nozzle 59 is controlled with the aid of the servo pressure regulator 10 as a function of the temperature monitored with the aid of the temperature sensor 11.
  • the solenoid valve 7, 8 switches over and thus blocks the connection between the chambers 9 and 19, so it turns out that the connection of the air control valve 32 to the chamber 19 is advantageous in that, by separating it from the chamber 9 when Closing the valve 8, the closing time of the main valve is not delayed by the additional volume of the drive chamber 31. The latter is rather separated from the volume of the chamber 3, so that the pressure therein can be quickly reduced via the channel 6, the valve 8 and the channel 26 to the outlet side and the main gas valve 1 closes.
  • the inlet opening 60 is significantly smaller than the secondary air slots of conventional boilers because the majority of the secondary air is sucked in by the jet effect of the air nozzle 61. If this jet effect ceases, only an insignificant amount of air flows through the inlet 60.
  • a modified embodiment is shown in broken lines, in which the air control valve 32 is omitted and instead a pneumatic-electrical converter 42 is connected to the control air line 20. It is fed, for example, with alternating mains voltage and supplies at its output a direct current for the drive motor 43 of the blower 38 that is proportional to the pneumatic input signal in terms of its current intensity.
  • the blower speed and thus the speed of the blower 38 also increase Air volume to, which results in a synchronous gas and air volume control.
  • the conversion of the pneumatic input signal from the converter 42 into the motor speed-controlling signal can take place in a known manner with the aid of a phase control or a pulse length control.
  • a further embodiment of the invention results if the boiler 51 according to FIG. 2 is connected to the control device according to FIG. 3.
  • the servo pressure controller 10 does not act on the gas control device 67, but rather on the air control valve 72.
  • the amount of gas is then tracked to the amount of air supplied.
  • the embodiment according to FIG. 3 also has the advantage that the servo pressure regulator does not work with gas but with air and consequently no gas can escape in the event of any leaks. This makes it possible to manufacture the servo pressure regulator from less demanding materials, for example from plastic. The same applies to the air control valve in both cases.
  • Another advantage of the arrangement according to FIG. 3 is that the flow switch 40, 41 can be dispensed with. In this embodiment, the gas valve 67 can only open when the fan 38 is in operation and thus an air flow is present.
  • An adjustable throttle 73 which is arranged between the air control valve 32 or 72 on the one hand and the further injector nozzle 61 on the other hand, enables the setting of a desired gas / air ratio and thus an air excess sufficient for good combustion.
  • the compressed air source 38 only has to deliver a relatively small amount of air.
  • the fan 38 would have to convey about 10 m 3 of air.
  • the blower 38 itself only has to deliver about 0.5 m 3 . It is also advantageous that fluctuations in the supply pressure are not only corrected for the gas supply, but this also applies equally to the air supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

  • Die Erfindung betrifft eine Regeleinrichtung gemäß Gattungsbegriff des Anspruchs 1, wie sie beispielsweise aus GB-PS 1 235 891 bekannt ist. Zur optimalen Ausnutzung des einem Brenner zugeführten Brennstoffs muß nicht nur die Brennstoffzufuhr in Abhängigkeit vom benötigten Wärmebedarf geregelt, sondern zwecks Erzielung einer optimalen Verbrennung auch die Verbrennungsluftzufuhr der jeweiligen Brennstoffmenge angepaßt werden. In der genannten GB-PS ist deshalb an die zum Brenner führende Ausgangsleitung eines vom Temperaturfühler gesteuerten Gasregelventils ein federbelasteter Membranantrieb angeschlossen, der eine Luftklappe im Verbrennungsluftzufuhrkanal steuert. Je mehr Gas dem Brenner zugeleitet wird, um so weiter öffnet die Klappe und erhöht damit die über ein Gebläse zugeführte Verbrennungsluftmenge. Nach einer weiteren Ausführungsform dieser bekannten Regeleinrichtung steuert der genannte Membranantrieb über eine Bremse die Drehzahl des Gebläsemotors und auf diese Weise die Verbrennungsluftzufuhr.
  • Weiterhin ist aus DE-OS 1 529184 eine Vorrichtung zur Steuerung der Zufuhr von Gas und Luft zu einem Infrarotbrenner bekannt, bei der in den Verbrennungsluftkanal eine Luftklappe eingebaut ist. Diese steht einerseits unter dem Einfluß eines den Druck im Kanal konstanthaltenden Druckreglers und wird andererseits von einem durch die Temperaturfühler gesteuerten Servomotor beaufschlagt. Die Luft strömt über eine Blende in eine Mischkammer, der über eine Düse zugleich das Brenngas zugeführt wird. Angestrebt wird, daß der Luftdruck stromaufwärts der Blende und der Gasdruck stromaufwärts der Düse gleich groß sind. Zu diesem Zweck ist der Luftkanal über eine Stichleitung mit der Steuerkammer eines Gleichdruckreglers verbunden, welcher ein in die Gasleitung eingeschaltetes Ventil beeinflußt.
  • Es ist bekannt, daß zur optimalen Verbrennung von 1 m3 Erdgas etwa 10 m3 Verbrennungsluft erforderlich sind. Bei herkömmlichen Wassererhitzern verwendet man für die Zufuhr von Gas und Verbrennungsluft eine an die Gaszufuhrleitung angeschlossene in den Brenner mündende Injektordüse, deren Gasstrom gleichzeitig einen entsprechenden Luftstrom ansaugt und dem Brenner zuführt. Dabei bleibt das Gas/ Luftverhältnis auch bei sich ändernder Gaszufuhr etwa gleich und zwar bei 1 : 6. Damit werden durch diese Primärluftansaugung nur etwa 60% der erforderlichen Verbrennungsluft zugeführt. Somit muß eine zusätzliche sekundäre Luftzufuhr die restlichen 40% Verbrennungsluft bereitstellen. Zu diesem Zweck sieht man bisher im Gehäuse des Brenners zusätzliche Luftansauglöcher vor, deren Größe dem maximalen Brennstoffdurchsatz angepaßt ist. Dies bedeutet aber, daß bei geringer Gaszufuhr ein beträchtlicher Luftüberschuß vorhanden ist und folglich der Wirkungsgrad der Verbrennung stark absinkt.
  • Aus DE-OS 2 251 994 ist eine Vorrichtung zum Mischen von Gas und Luft zur Erzeugung eines Heizgases bekannt, bei der das Gas unter Treibdruck zu einer Strahlpumpe gelangt, welche mit einem Luftansaugstutzen sowie einem Venturirohr zum Mischen der Luft mit dem Gas ausgestattet ist. Das Venturirohr mündet in eine Mischkammer. Dabei ist noch eine zweite Strahlpumpe vorgesehen, deren Eingang an einen Drucklufterzeuger angeschlossen ist und welche eine Zusatzluftmenge ebenfalls in die Mischkammer befördert. Die Mischkammer ihrerseits ist mit Heizgasaustrittsstutzen versehen, welche in ein Gasversorgungsnetz führen. Bei beiden Strahlpumpen läßt sich die angesaugte Luftmenge mittels einer im Ansaugstutzen angeordneten Luftklappe von Hand verstellen. Da aus der gemeinsamen Mischkammer ein Stadtgasnetz mit einem Heizgas/Luftgemisch versorgt wird, von dem lediglich eine gleichmäßige Zusammensetzung verlangt wird, ohne eine Anpassung an unterschiedliche Mengen zu benötigen, ist hier eine gemeinsame Regelung beider Strahlpumpen weder vorgesehen noch erforderlich.
  • Schließlich zeigt die US-A 2193240 eine Mischvorrichtung für Brenngas und Luft, mit deren Hilfe ein Gasgemisch von konstantem Heizwert erzeugt und aufrechterhalten werden soll. Hierzu sind die Drosselkörper eines Luftventils und eines Gasventils starr miteinander gekuppelt und werden gemeinsam durch das Ausgangssignal eines den Differenzdruck am Gasventil messenden Differenzdruckreglers gesteuert. Zusätzlich werden der Differenzdruck am Gasventil und der Differenzdruck am Luftventil einem Differenzdruckvergleicher zugeführt, dessen Übersetzungsverhältnis durch das Ausgangssignal einer an die Gemischleitung angeschlossenen Heizwertmeßeinrichtung veränderbar ist und dessen Ausgangssignal ein dem genannten Luftventil vorgeschaltetes zweites Luftventil derart steuert, daß ein vorgegebenes Verhältnis der beiden Differenzdrücke aufrechterhalten wird. Eine verbrauchsabhängige, z. B. temperaturabhängige, Regelung der Gasgemischmenge ist auch hier nicht vorgesehen.
  • Die Erfindung befaßt sich mit der Aufgabe auch bei Wasser- oder Lufterhitzern mit Gasversorgung über eine zugleich Verbrennungsluft ansaugende Injektordüse mit möglichst wirtschaftlichen Mitteln eine gleichzeitige Regelung von Gaszufuhr und Verbrennungsluftzufuhr zu erzielen, derart, daß auch bei sich änderndem Wärmebedarf und damit sich ändernder Brennstoffzufuhr stets das optimale Brennstoff/Luftgemisch dem Brenner zugeleitet wird. Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Es findet ein Servodruckregler Verwendung, wobei der Vorteil erreicht wird, daß sowohl vom Gasregelventil als vom Luftmengenstelleglied nur verhältnismäßig geringe Gas- bzw. Saugluftströme zu verarbeiten sind, während die Primärluft sowie der größte Teil der Sekundärluft durch Saugwirkung der Injektordüsen (Venturidüsen) dem Brenner zugeleitet wird. Von besonderem Vorteil ist darüber hinaus, daß bei abgeschaltetem Brenner infolge des geschlossenen Gehäuses fast kein Zug vorhanden ist, und somit die im Brenner vorhandene Wärme nicht durch den Schornstein entweicht. Dies führt zusammen mit der optimalen Verbrennung zu einer weiteren Energieersparnis. Die Verwendung eines Servodruckreglers bewirkt, daß bei Ausfall des Versorgungsgasdrucks das Hauptgasventil selbsttätig unter dem Einfluß seiner Schließfeder schließt und somit den Gasweg sperrt und gesperrt hält.
  • Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Sie sind nachfolgend anhand einiger Ausführungsbeispiele erläutert. Dabei zeigen die
    • Fig. 1 und 2 zusammen eine Ausführungsform, bei der der Servodruckregler auf ein Gasregelgerät aufgesetzt und das zusätzliche Sekundärluftventil über eine Leitung an den Servodruckregler angeschlossen ist; die
    • Fig. 3 und 2 zusammen ein Ausführungsbeispiel, bei dem der Servodruckregler auf das Luftventil aufgesetzt und das Gasregelgerät über eine Leitung an den Druckregler angeschlossen ist.
  • Fig. 1 zeigt das Gasventil samt Servodruckregler, sowie das Luftregelventil mit vorgeschaltetem Gebläse, während Fig. 2 als Verbraucher einen gasbefeuerten Heizkessel beispielsweise für eine Zentralheizungsanlage wiedergibt,
  • Über eine Leitung 20 ist an die Kammer 19 des Servodruckreglers die Antriebskammer 31 eines servodruckgesteuerten Luftregelventils 32 angeschlossen. Der Schließkörper 33 wird über einen Stift 34 von der Membran 35 getragen und ist durch eine Feder 36 in Schließrichtung vorgespannt. Der Einlaß 37 des Luftregelventils ist an einen Drucklufterzeuger in Form eines Gebläses 38 angeschlossen, während im Austaß 30 der Fühler 40 eines Strömungsschalters 41 angeordnet ist. Sein durch den Luftstrom schließender Arbeitskontakt liegt im Erregerstromkreis des Einschaltmagnetventils 4.
  • Fig. 2 zeigt als Verbraucher einen von einem geschlossenen Gehäuse 51 umgebenen Wärmetauscher 52, dessen erhitztes Wasser über den Auslaß 53 zu einem oder mehreren Heizkörpern gelangt. Ein Hauptbrenner 54 beheizt den Wärmetauscher 52, wobei ein Zündbrenner 55 an den Zündbrenneranschluß 65 des Gasregelgeräts und ein die Zündflamme überwachendes Thermoelement 56 an den Magneteinsatz 14 der Zündsicherungseinrichtung angeschlossen ist. Die Verbrennungsgase verlassen das Gehäuse 51 durch einen Abzug 57. Dem Einlaß 58 des Hauptbrenners 54 steht eine Injektordüse 59 gegenüber, über die vom Auslaß 5 des Gasregelventils Gas in den Hauptbrenner strömt. Auf Grund der Strahlwirkung der Düse 59 saugt der Gasstrom zugleich Primärluft an, welche dem Hauptbrenner 54 als Verbrennungsluft zugeführt wird. Ferner weist das Gehäuse 51 einen Einlaß 60 für Sekundärluft auf, dem eine weitereInjektordüse 61 gegenübersteht. Sie wird vom Luftregelventil 32 her mit Druckluft gespeist und saugt ebenfalls auf Grund ihrer Strahlwirkung zusätzliche Verbrennungsluft an und drückt sie in das Innere des Gehäuses 51, wo sie dem Hauptbrenner 54 zur Erzielung einer möglichst vollständigen Verbrennung zur Verfügung steht. Ansonsten ist das Gehäuse 51 geschlossen.
  • Die Anordnung ist so getroffen, daß mit zunehmender Gasmenge am Auslaß 5 des Gasregelgerätes auch die vom Luftregelventil 32 durchgelassene Druckluftmenge zunimmt und auf Grund der Strahlwirkung der beiden Düsen 59 und 61 jeweils soviel Primär- bzw. Sekundärluft dem Hauptbrenner 54 zugeführt wird, wie zu einer vollständigen und optimalen Verbrennung der zugeführten Gasmenge erforderlich ist. Die vom Gasregelventil zur Düse 59 hindurchgelassene Gasmenge wird mit Hilfe des Servodruckreglers 10 in Abhängigkeit von der mit Hilfe des Temperaturfühlers 11 überwachten Temperatur geregelt. Schaltet bei fehlendem Wärmebedarf das Magnetventil 7, 8 um und sperrt damit die Verbindung zwischen den Kammern 9 und 19, so zeigt sich, daß der Anschluß des Luftregelventils 32 an die Kammer 19 insofern von Vorteil ist, als durch deren Trennung von der Kammer 9 beim Schließen des Ventils 8 die Schließzeit des Hauptventils nicht durch das zusätzliche Volumen der Antriebskammer 31 verzögert wird. Letztere ist vielmehr vom Volumen der Kammer 3 getrennt, so daß der darin herrschende Druck schnell über den Kanal 6, das Ventil 8 und den Kanal 26 zur Auslaßseite hin abgebaut werden kann und das Hauptgasventil 1 schließt. Da das Gehäuse 51 bis auf den Sekundärlufteinlaß 60 und den Rauchgasabzug 57 allseitig geschlossen ist, besteht bei abgeschalteter Gas- und Sekundärluftzufuhr praktisch kein Zug im Gehäuse 51, so daß die darin vorhandene Wärme nicht durch den Abzug 57 entweicht. Die Einlaßöffnung 60 ist wesentlich kleiner als die Sekundärluftschlitze herkömmlicher Heizkessel, weil der Hauptteil der Sekundärluft durch die Strahlwirkung der Luftdüse 61 angesaugt wird. Fällt diese Strahlwirkung weg, so strömt nur eine unbedeutende Luftmenge durch den Einlaß 60.
  • In Fig. 1 ist gestrichelt eine abgewandelte Ausführungsform eingezeichnet, bei der das Luftregelventil 32 wegfällt und statt dessen an die Steuerluftleitung 20 ein pneumatisch-elektrischer Umformer 42 angeschlossen ist. Er wird beispielsweise mit Netzwechselspannung gespeist und liefert an seinem Ausgang einen hinsichtlich seiner Stromstärke dem pneumatischen Eingangssignal proportionalen Speise-Gleichstrom für den Antriebsmotor 43 des Gebläses 38. Damit nimmt mit wachsendem Gasstrom am Auslaß 5 des Gasregelventils gleichzeitig die Gebläsedrehzahl und damit die vom Gebläse 38 geförderte Luftmenge zu, wodurch sich eine gleichlaufende Gas- und Luftmengenregelung ergibt. Die Umwandlung des pneumatischen Eingangssignals des Umformers 42 in ein die Motordrehzahl steuerndes Signal kann in bekannter Weise mit Hilfe einer Phasenanschnittssteuerung oder einer Impulslängensteuerung erfolgen.
  • Eine weitere Ausführungsform der Erfindung ergibt sich, wenn man den Heizkessel 51 gemäß Fig. 2 an die Regeleinrichtung gemäß Fig. 3 anschließt. Hier wirkt der Servodruckregler 10 nicht auf das Gasregelgerät 67, sondern auf das Luftregelventil 72 ein. Damit wird die Gasmenge der zugeführten Luftmenge nachgeführt. Für beide Ausführungsformen nach den Fig. 1 und 3 gilt, daß ein etwaiges Leck in der Leitung 20 ein Schließen des Gasventils und des Luftventils zur Folge hat, so daß die Anordnung insofern eigensicher ist. Die Ausführungsform nach Fig. 3 hat darüber hinaus noch den Vorteil, daß der Servodruckregler nicht mit Gas, sondern mit Luft arbeitet und folglich bei etwaigen Undichtheiten kein Gas entweichen kann. Damit ist es möglich, den Servodruckregler aus weniger anspruchsvollen Materialien, beispielsweise aus Kunststoff herzustellen. Gleiches gilt in beiden Fällen für das Luftregelventil. Ein weiterer Vorteil der Anordnung nach Fig. 3 besteht darin, daß man auf den Strömungsschalter 40, 41 verzichten kann. Bei dieser Ausführungsform kann nämlich das Gasventil 67 überhaupt nur öffnen, wenn das Gebläse 38 in Betrieb und somit ein Luftstrom vorhanden ist.
  • Zur Ausführungsform nach Fig. 1 sei noch bemerkt, daß beim Verschwinden des Wärmebedarfs das Gasventil sofort schließt, während das Luftregelventil 32 zunächst in die voll geöffnete Position geht und somit ein vorübergehendes Nachspülen der Brennkammer erfolgt. Erst, wenn das Gebläse 38 stillgesetzt wird, hört die Luftzufuhr auf. Zur Abschaltung des Gebläses 38 wird ein beim Einschalten des Magnetventils 7, 8 schließender Kontakt verwendet, der bei Abschaltung des Magnetventils 7, 8 zugleich den Gebläsemotor vom Netz trennt.
  • Eine zwischen dem Luftregelventil 32 bzw. 72 einerseits und der weiteren Injektordüse 61 andererseits angeordnete einstellbare Drossel 73 ermöglicht die Einstellung eines gewünschten Gas/Luftverhältnisses und damit eines für eine gute Verbrennung ausreichenden Luftüberschusses. Infolge der Verwendung der beiden Injektordüsen 59 und 61 braucht die Druckluftquelle 38 nur eine verhältnismäßig geringe Luftmenge zu liefern. Beispielsweise müßten ohne die Injektordüsen für die Verbrennung von 1 m3 Erdgas bei 20% Luftüberschuß vom Gebläse 38 etwa 10 m3 Luft gefördert werden. Mit den Injektordüsen hingegen braucht das Gebläse 38 selbst nur etwa 0,5 m3 zu liefern. Von Vorteil ist ferner, daß nicht nur bei der Gaszufuhr Schwankungen des Versorgungsdruckes ausgeregelt werden, sondern dies gleichermaßen auch hinsichtlich der Luftzufuhr gilt.

Claims (6)

1. Durch einen Temperaturfühler (11) steuerbare Regeleinrichtung für einen gasbefeuerten Wasser- oder Lufterhitzer (51) mit einem Regelventil (1-5) für die Heizgaszufuhr sowie einen gleichsinnig gesteuerten Stellglied (31-39; 42, 43) für die Zufuhr der Verbrennungsluft, gekennzeichnet durch folgende Merkmale:
a) ein Servodruckregler (10) vergleicht den Druck am Ausgang (5 oder 39) des Gasregelventils (1-5) oder des Luftmengengestellgliedes (31-39) mit einem durch den Temperaturfühler (11) bestimmten Sollwert und steuert mit seinem Ausgangsdruck sowohl den Antrieb (2-4) des Gasregelventils (1-5) als auch den Antrieb (31,34,35,36; 43) des Luftmengenstellgliedes (31-36; 42, 43);
b) der Auslaß (5) des Gasregelventils (27) ist an eine dem Einlaß (58) des Brenners (54) gegenüberstehende Injektordüse (59) angeschlossen, welche zugleich Primärluft für den Brenner ansaugt;
c) der Brenner (54) und eine von ihm beheizte Wärmetauscherfläche (52) sind von einem geschlossenen Gehäuse (51) umgeben, welches einen Sekundärlufteinlaß (6) sowie einen Rauchgasabzug (57) aufweist;
d) an eine dem Sekundärlufteinlaß (60) gegenüberstehende, im Betrieb Sekundärluft ansaugende zweite Injektordüse (61) ist als Stellglied eine regelbare Druckluftquelle (38, 43, 32) angeschlossen, deren Steuereingang (44; 45) mit dem Servodruckregler (10) in Verbindung steht.
2. Regeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zwischen Servodruckregler (10) und Gebläsemotorspeiseschaltung (43) ein pneumatisch-elektrischer Umformer (42) eingeschaltet ist.
3. Regeleinrichtung nach Anspruch 1, wobei die regelbare Druckluftquelle aus einem Gebläse (38) und einem nachgeschalteten Luftregelventil (32) besteht, dadurch gekennzeichnet, daß der Servodruckregler (10) auf das Gehäuse des Gasregelventils (27) aufgesetzt und die Membrankammer (31) des Luftregelventils (32) über eine Steuerdruckleitung (20) an den Servodruckregler (10) angeschlossen ist (Fig. 1).
4. Regeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Servodruckregler (10) auf das Gehäuse des Luftregelventils (32) aufgesetzt ist und die Membrankammer (3) des Gasregelventils (27) über eine Steuerdruckleitung (20) an den Servodruckregler (10) angeschlossen ist (Fig. 3).
5. Regeleinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zwischen der Druckluftquelle (38, 32; 72) und der weiteren Injektordüse (61) eine einstellbare Drossel (73) angeordnet ist.
6. Regeleinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Gasregelventil (1-14) und Luftmengenstellglied (32) in einem gemeinsamen Gehäuse untergebracht sind.
EP81101973A 1980-03-20 1981-03-17 Durch einen Temperaturfühler steuerbare Regeleinrichtung für einen gasbefeuerten Wasser- oder Lufterhitzer Expired EP0036613B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3010737 1980-03-20
DE3010737A DE3010737A1 (de) 1980-03-20 1980-03-20 Gasregelgeraet fuer brenner
DE3044678 1980-11-27
DE19803044678 DE3044678A1 (de) 1980-11-27 1980-11-27 Regeleinrichtung fuer brenner

Publications (2)

Publication Number Publication Date
EP0036613A1 EP0036613A1 (de) 1981-09-30
EP0036613B1 true EP0036613B1 (de) 1984-06-06

Family

ID=25784424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81101973A Expired EP0036613B1 (de) 1980-03-20 1981-03-17 Durch einen Temperaturfühler steuerbare Regeleinrichtung für einen gasbefeuerten Wasser- oder Lufterhitzer

Country Status (3)

Country Link
EP (1) EP0036613B1 (de)
DE (1) DE3163945D1 (de)
DK (1) DK148726C (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3114954A1 (de) * 1981-04-13 1982-11-04 Honeywell B.V., Amsterdam Regeleinrichtung fuer einen gasbefeuerten wasser- oder lufterhitzer
DE3114866A1 (de) * 1981-04-13 1982-11-04 Honeywell B.V., Amsterdam Gasbefeuerter wasser- oder lufterhitzer
DE3114942A1 (de) * 1981-04-13 1982-10-28 Honeywell B.V., Amsterdam Regeleinrichtung fuer den gasbefeuerten heizkessel einer warmwasser-heizungsanlage
IT1274622B (it) * 1994-08-17 1997-07-18 Integra Srl Gruppo valvolare per caldaie a gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2193240A (en) * 1937-10-25 1940-03-12 Cutler Hammer Inc Method of and apparatus for controlling mixing of combustible gases
DE1031924B (de) * 1953-10-30 1958-06-12 Georg Hegwein Sicherheitsvorrichtung fuer Gasfeuerungsanlagen
FR1118768A (fr) * 1953-12-01 1956-06-11 Combustion Eng Perfectionnements apportés aux dispositifs de contrôle et de réglage de l'alimentation des foyers de chaudières en charbon pulvérisé et en air comburant
FR1430281A (fr) * 1965-01-19 1966-03-04 Cem Comp Electro Mec Perfectionnements aux dispositifs de commande et de sécurité pour installations de brûleurs à gaz
NL7811831A (nl) * 1978-12-04 1980-06-06 Itho B V Regelinrichting voor een brander.

Also Published As

Publication number Publication date
EP0036613A1 (de) 1981-09-30
DK148726C (da) 1986-09-22
DE3163945D1 (en) 1984-07-12
DK148726B (da) 1985-09-09
DK124681A (da) 1981-09-21

Similar Documents

Publication Publication Date Title
EP0062854B1 (de) Gasbefeuerter Wasser- oder Lufterhitzer
EP0275439B1 (de) Einrichtung zur Leistungsregelung von brennstoffbefeuerten Wärmeerzeugern
EP0644377A1 (de) Regeleinrichtung für Gasbrenner
EP0957314B1 (de) Regeleinrichtung für Gasbrenner
WO2002077528A1 (de) Verfahren und vorrichtung zur einstellung der luftzahl
EP0390964A2 (de) Regeleinrichtung für Gasbrenner
DE2545135C2 (de)
EP0505714B1 (de) Regelvorrichtung für Gasbrenner mit einem Gebläse zum Zuführen von Verbrennungsluft
DE19635974A1 (de) Gas/Luft-Mischsystem für Gasheizgeräte
EP0036613B1 (de) Durch einen Temperaturfühler steuerbare Regeleinrichtung für einen gasbefeuerten Wasser- oder Lufterhitzer
CH676497A5 (en) Forced-draught gas-burner control - uses conduit pressure to regulate gas quantity
DE19639992B4 (de) Verfahren zum Steuern des Gasdurchsatzes
DE69808646T2 (de) Ölbrenneranlage
EP0062856B1 (de) Regeleinrichtung für den gasbefeuerten Heizkessel einer Warmwasser-Heizungsanlage
DE3707883C1 (de) Einrichtung zur Leistungsregelung von brennstoffbefeuerten Waermeerzeugern
DE2909876C2 (de) Gasdruckregler für ein gasbeheiztes Gerät
DE3006683C2 (de)
EP0103303A2 (de) Brennstoffbeheizte Wärmequelle
DE3044678A1 (de) Regeleinrichtung fuer brenner
EP0158842B1 (de) Regeleinrichtung für das Brennstoff-Luftverhältnis einer brennstoffbeheizten Wärmequelle
AT397851B (de) Heizgerät
DE2834242A1 (de) Gemisch-regeleinrichtung fuer gasgeblaesebrenner
DE3333606A1 (de) Brennstoffbeheizte waermequelle
DE3818049A1 (de) Einrichtung zur steuerung der brennstoffzufuhr zu einem brennstoffbeheizten geraet
DE3147857A1 (de) Regeleinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19811028

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3163945

Country of ref document: DE

Date of ref document: 19840712

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850331

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19860331

BERE Be: lapsed

Owner name: HONEYWELL B.V.

Effective date: 19860331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19861001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19861128

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901221

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920226