EP0053848B1 - Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad - Google Patents

Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad Download PDF

Info

Publication number
EP0053848B1
EP0053848B1 EP81201257A EP81201257A EP0053848B1 EP 0053848 B1 EP0053848 B1 EP 0053848B1 EP 81201257 A EP81201257 A EP 81201257A EP 81201257 A EP81201257 A EP 81201257A EP 0053848 B1 EP0053848 B1 EP 0053848B1
Authority
EP
European Patent Office
Prior art keywords
slag
nozzles
temperature
process according
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81201257A
Other languages
English (en)
French (fr)
Other versions
EP0053848A1 (de
EP0053848B2 (de
Inventor
Werner Dr.-Ing. Schwartz
Peter Dr.-Ing. Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6118459&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0053848(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0053848A1 publication Critical patent/EP0053848A1/de
Publication of EP0053848B1 publication Critical patent/EP0053848B1/de
Application granted granted Critical
Publication of EP0053848B2 publication Critical patent/EP0053848B2/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • C22B15/0041Bath smelting or converting in converters
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Definitions

  • the invention relates to a method for blowing in highly oxygen-containing gases into a molten bath containing non-ferrous metals by means of double tube nozzles immersed in the melt through the reactor wall, a protective fluid being blown in as a coolant through the annular space between the inner and outer tube of each double tube nozzle.
  • gases containing high oxygen - technically pure oxygen or gases enriched with oxygen - are blown into a melt.
  • Such processes e.g. Non-ferrous metals or stone phases enriched with non-ferrous metals produced from sulphide ores or refined melts containing non-ferrous metals.
  • the high-oxygen gases are blown into the melt from the bottom or from the side through the masonry of a reactor using nozzles.
  • a protective fluid is blown in to protect the nozzles and the surrounding masonry against the high temperatures occurring at the nozzles. This is done using double tube nozzles.
  • the inner tube is generally used to inject the highly oxygen-containing gas and the protective fluid that cools through the annular space between the inner and outer tubes.
  • Such methods are e.g. B. from DE-OS 2 417 979 and DE-OS 2 807 964 known.
  • the invention is based, to reduce or avoid the wear of the double tube nozzles and the surrounding masonry when blowing in highly oxygen-containing gases with protective fluids in melting baths containing non-ferrous metals.
  • the amount of protective fluid is adjusted depending on the composition of the slag and the temperature difference of the slag from the solidification point in such a way that approaches are formed on the nozzles on the one hand, and on the other hand the approaches do not exceed a desired thickness.
  • the thickness of the lugs on the nozzles and the surrounding masonry is chosen so that the desired protection is achieved on the one hand, but on the other hand the lugs are gas-permeable and gas distribution is achieved. The thickness depends on the operating conditions of the process and is determined empirically. In the case of continuous processes, the required amount of protective fluid remains largely constant, whereas in batch-operated processes it has to be regulated in larger areas.
  • Flammable and non-flammable gases or liquids such as nitrogen, SO 2 , CO 2 , water vapor, hydrocarbons, can be used as protective fluids. Your selection depends on the procedural conditions.
  • the amount of protective fluid required to generate the batches depends on the solidification temperature of the slag or high-melting components of the slag and the temperature difference of the slag from this solidification temperature before it comes into contact with the protective fluid.
  • the outlet cross section for the protective fluid should be as small as possible and the protective fluid should be blown in under high pressure, for example above 6 bar, so that the required amount of protective fluid can be kept as small as possible.
  • a preferred embodiment consists in that the composition and temperature of the slag is adjusted so that even with a slight local cooling of the slag at the nozzles, the crystallization temperature of high-melting constituents - originally dissolved in the slag - is not reached.
  • the composition of the slag is adjusted so that it is almost saturated with high-melting compounds, such as magnetite, calcium silicates or similar compounds. This is achieved by a corresponding chemical composition of the slag, a corresponding oxidation potential, which depends on the desired metal-sulfide-oxide balance of the non-ferrous metal to be obtained, and by a corresponding temperature of the slag, which is just above the saturation temperature for the high-melting point Connections. This creates a good build-up with small amounts of protective fluids.
  • a preferred embodiment consists in that the stirring effect of the gases blown in through the nozzles is adjusted such that an emulsion of slag and metal reaches the nozzles regardless of the layer height of a metal bath on the bottom of the reactor.
  • the stirring effect of the injected gases can be regulated by adjusting their pressure or quantity accordingly and / or by adjusting the thickness of the metal layer above the nozzles. This also creates a good approach.
  • a preferred embodiment consists in that the thickness of the lugs is adjusted to a desired value by regulating the pressure rise of the flowing protective fluid compared to the original pressure. Due to the build-up, there is an increase in pressure compared to that exists before the formation of the batch. The value of the pressure increase depends on the thickness and the shape of the approaches. The value of the pressure rise, which corresponds to the desired thickness of the approaches, is determined empirically and adhered to. In most cases, a pressure increase of around 0.1 to 0.5 bar is sufficient. This allows the thickness of the approaches to be regulated in a simple manner, although direct observation is not possible.
  • a preferred embodiment of the invention consists in that the desired value of the pressure is regulated by keeping the pressure constant. Only the pressure is kept constant and the volume adjusts to the corresponding value. This enables a particularly simple and effective regulation of the thickness of the approaches.
  • a preferred embodiment is that the reactor is bricked up depending on the composition of the slag and temperature in such a way that a constant film of high-melting constituents forms on the masonry.
  • the lining is chosen so that the heat radiation cools the slag on the inside in such a way that a thin starting film is formed. This also protects the masonry in the vicinity of the nozzles, on which no deposits form due to the direct action of the protective fluid.
  • the examples relate to the continuous oxidation of sulfidic concentrates in a refractory-lined reactor in the form of a horizontal cylinder with a length of 4.50 m and a diameter of 1.80 m.
  • Additives were added to the sulfidic concentrates in order to produce slags of a certain chemical composition suitable for carrying out the process according to the invention.
  • the reactor was equipped with 3 double tube nozzles with an inner tube diameter of 10 mm and a propane-oxygen auxiliary burner in order to be able to influence the temperature of the melt independently of the chemical-metallurgical reactions taking place.
  • the examples are limited to the oxidation of sulfidic lead concentrates, the slags formed here behave particularly aggressively because of their lead oxide content in relation to all metallic and ceramic materials known in the art.
  • the measures described in the examples for protecting the nozzles and masonry of the reactor can therefore be appropriately applied to the melting of a number of other non-ferrous metal-containing precursors and intermediates, including concentrates, stones, food, slags, dusts and sludges with contents Transfer copper, nickel, cobalt, zinc, lead, tin, antimony or bismuth.
  • the mouthpiece of the third nozzle had been covered with a porous, cone-shaped attachment of approximately 30 mm in height and 50 mm in base diameter, which consisted of 70% magnetite and 30% different silicates.
  • the masonry in the vicinity of the other two nozzle mouthpieces had funnel-shaped traces of corrosion about 50 or 100 mm in diameter, the depth of which corresponded to the nozzle burn-off. In contrast, the masonry around the third nozzle was completely preserved.
  • Example 1 To test the influence of overheating of the slag, three tests were carried out at different temperatures of the slag. The flow rates of the protective fluid (6.9 bar nitrogen pressure) used in Example 1 for the second nozzle were set here. At the end of the tests, the nozzles were again drawn and measured:
  • the reactor was successively filled with a pure lead oxide slag (PbO) and a lead silicate slag with the approximate composition 2Pb0 - Si0 2 .
  • PbO lead oxide slag
  • a slag temperature of 930 ° C was set, while the nozzles were operated with oxygen and a nitrogen pressure of 6.9 bar.
  • no mixture of concentrate and additives was added in order not to change the composition of the slag.
  • neither of the two experiments could a firm approach be created in front of the nozzle mouthpieces.
  • the nozzles and the surrounding masonry were almost destroyed:
  • the thickness of the metallic soil phase must be taken into account, provided that it consists of a low-melting metal.
  • the advantages of the invention are that the nozzles and the surrounding masonry are protected from chemical attack and erosion by the molten phase with simple means, the amount of protective fluid is kept to a minimum and nevertheless a good gas distribution in the melt is achieved.

Description

  • Die Erfindung betrifft ein Verfahren zum Einblasen von hochsauerstoffhaitigen Gasen in ein NE-Metalle enthaltendes Schmelzbad mittels durch die Reaktorwand in die Schmelze eingetauchter Doppelrohrdüsen, wobei durch den ringförmigen Raum zwischen innerem und äusserem Rohr jeder Doppelrohrdüse ein Schutzfluid als Kühlmittel eingeblasen wird.
  • Bei manchen pyrometallischen Verfahren zur Erzeugung von NE-Metallen werden hochsauerstoffhaltige Gase - technisch reiner Sauerstoff oder mit Sauerstoff angereicherte Gase - in eine Schmelze eingeblasen. Durch solche Verfahren werden z.B. NE-Metalle oder mit NE-Metallen angereicherte Steinphasen aus sulfidischen Erzen erzeugt oder NE-Metalle enthaltende Schmelzen raffiniert. Die hochsauerstoffhaltigen Gase werden mittels Düsen vom Boden oder von der Seite durch das Mauerwerk eines Reaktors in die Schmelze eingeblasen. Zum Schutze der Düsen und des umgebenden Mauerwerks gegen die an den Düsen auftretenden hohen Temperaturen wird ein Schutzfluid eingeblasen. Dies geschieht mittels Doppelrohrdüsen. Durch das innere Rohr wird dabei im allgemeinen das hochsauerstoffhaltige Gas und durch den ringförmigen Raum zwischen innerem und äusserem Rohr das Schutzfluid eingeblasen, das eine Kühlung bewirkt. Solche Verfahren sind z. B. aus der DE-OS 2 417 979 und DE-OS 2 807 964 bekannt.
  • Diese Doppelrohrdüsen und das Einblasen von hochsauerstoffhaltigen Gasen mit einem Schutzfluid wurden zuerst in der Stahlindustrie angewendet (DE-AS 1 583 968, DE-AS 1783 149, DE-AS 1 758 816, DE-OS 2 052 988, DE-AS 2 259 276, GB-PS 1 253 581, DEAS 1 433 398, AT-PS 265 341), wobei immer dahin gearbeitet wurde, eine Ansatzbildung an den Düsen zu vermeiden, da diese negative Einflüsse auf die Badbewegung, die Erosion des Mauerwerks und der Betriebssicherheit ausüben. Lediglich bei wassergekühlten Einfachdüsen soll die Düsenspitze auf dem gekühlten Teil durch eine Schicht erstarrten Eisens oder Metalls vor einer Zerstörung geschützt werden.
  • Bei der Verwendung von Doppelrohrdüsen und dem Einblasen von hochsauerstoffhaltigen Gasen mit einem Schutzfluid in der NE-Metallurgie (DE-OS 2 417 979, DE-OS 2 807 964, GB-PS 1 414 769) ging man bisher offensichtlich von den gleichen Voraussetzungen aus. Dabei tritt jedoch ein erheblicher Verschleiss der Düsen und des umgebenden Mauerwerks auf.
  • Der Erfindung liegt die Aufgabe zugrunde, beim Einblasen von hochsauerstoffhaltigen Gasen mit Schutzfluiden in NE-Metalle enthaltende Schmelzbäder den Verschleiss der Doppelrohrdüsen und des umgebenden Mauerwerks zu verringern oder zu vermeiden.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäss dadurch, dass die Menge des Schutzfluids in Abhängigkeit von der Zusammensetzung der Schlacke und der Temperaturdifferenz der Schlacke vom Erstarrungspunkt so eingestellt wird, dass einerseits auf den Düsen Ansätze gebildet werden, andererseits die Ansätze eine gewünschte Dicke nicht überschreiten. Die Dicke der Ansätze auf den Düsen und dem umgebenden Mauerwerk wird so gewählt, dass einerseits der gewünschte Schutz erzielt wird, andererseits aber auch eine gute Gasdurchlässigkeit der Ansätze und Gasverteilung durch die Ansätze erzielt wird. Die Dicke ist abhängig von den Betriebsbedingungen des Verfahrens und wird empirisch ermittelt. Bei kontinuierlichen Verfahren bleibt die erforderliche Menge des Schutzfluids weitgehend konstant, während sie bei chargenweise betriebenen Verfahren in grösseren Bereichen geregelt werden muss. Als Schutzfluide können brennbare und nichtbrennbare Gase oder Flüssigkeiten, wie z.B. Stickstoff, S02, C02, Wasserdampf, Kohlenwasserstoffe, verwendet werden. Ihre Auswahl richtet sich nach den verfahrenstechnischen Bedingungen. Die Menge des zur Erzeugung der Ansätze erforderlichen Schutzfluids ist abhängig von der Erstarrungstemperatur der Schlacke oder hochschmelzender Bestandteile der Schlacke und der Temperaturdifferenz der Schlacke von dieser Erstarrungstemperatur vor ihrem Kontakt mit dem Schutzfluid. Der Austrittsquerschnitt für das Schutzfluid soll möglichst klein sein und das Schutzfluid soll unter hohem Druck, etwa über 6 bar, eingeblasen werden, damit die erforderliche Menge des Schutzfluids möglichst gering gehalten werden kann.
  • Eine vorzugsweise Ausgestaltung besteht darin, dass die Zusammensetzung und Temperatur der Schlacke so eingestellt wird, dass bereits bei einer geringfügigen örtlichen Abkühlung der Schlacke an den Düsen die Kristallisationstemperatur hochschmelzender - ursprünglich in der Schlacke gelöster - Bestandteile unterschritten wird. Die Zusammensetzung der Schlacke wird so eingestellt, dass sie an hochschmelzenden Verbindungen, wie Magnetit, Kalziumsilikaten oder ähnlichen Verbindungen, 'nahezu gesättigt ist. Dies wird erreicht durch eine entsprechende chemische Zusammensetzung der Schlacke, ein entsprechendes Oxidationspotential, welches sich nach dem gewünschten Gleichgewicht Metall-Sulfid-Oxid des zu gewinnenden NE-Metalls richtet, und durch eine entsprechende Temperatur der Schlacke, die dicht oberhalb der Sättigungstemperatur für die hochschmelzenden Verbindungen liegt. Dadurch wird eine gute Ansatzbildung mit geringen Mengen an Schutzfluiden erzielt.
  • Eine vorzugsweise Ausgestaltung besteht darin, dass die Rührwirkung der durch die Düsen eingeblasenen Gase so eingestellt wird, dass unabhängig von der Schichthöhe eines Metallbades auf dem Boden des Reaktors eine Emulsion aus Schlacke und Metall die Düsen erreicht. Die Rührwirkung der eingeblasenen Gase kann durch entsprechende Einstellung ihres Druckes oder ihrer Menge geregelt werden und/oder durch die Einstellung der Dicke der Metallschicht über den Düsen. Dadurch wird ebenfalls eine gute Ansatzbildung erzielt.
  • Eine vorzugsweise Ausgestaltung besteht darin, dass die Einstellung der Dicke der Ansätze durch Regelung des Druckanstiegs des strömenden Schutzfluids gegenüber dem ursprünglichen Druck auf einen gewünschten Wert erfolgt. Durch die Ansatzbildung erfolgt ein Druckanstieg gegenüber dem Druck, der vor der Ansatzbildung vorliegt. Der Wert des Druckanstiegs ist abhängig von der Dicke und der Form der Ansätze. Der Wert des Druckanstiegs, der der gewünschten Dicke der Ansätze entspricht, wird empirisch ermittelt und eingehalten. In den meisten Fällen ist ein Druckanstieg von etwa 0,1 bis 0,5 bar ausreichend. Dadurch kann die Dicke der Ansätze in einfacher Weise geregelt werden, obwohl eine direkte Beobachtung nicht möglich ist.
  • Eine vorzugsweise Ausgestaltung der Erfindung besteht darin, dass der gewünschte Wert des Druckes durch Konstanthaltung des Druckes geregelt wird. Es wird lediglich der Druck konstant gehalten und das Volumen stellt sich auf den entsprechenden Wert ein. Dadurch wird eine besonders einfache und wirksame Regelung der Dicke der Ansätze erzielt.
  • Eine vorzugsweise Ausgestaltung besteht darin, dass der Reaktor in Abhängigkeit von der Zusammensetzung der Schlacke und Temperatur so ausgemauert wird, dass sich ein konstanter Film von hochschmelzenden Bestandteilen auf dem Mauerwerk bildet. Die Ausmauerung wird so gewählt, dass durch die Wärmeabstrahlung eine Abkühlung der Schlacke an der Innenseite so erfolgt, dass sich ein dünner Ansatzfilm bildet. Dadurch wird auch das Mauerwerk in der Umgebung der Düsen geschützt, auf dem sich keine Ansätze durch die direkte Einwirkung des Schutzfluids bilden.
  • Die Erfindung wird anhand von Beispielen näher erläutert.
  • Ausführungsbeispiele
  • Die Beispiele beziehen sich auf die kontinuierliche Oxidation sulfidischer Konzentrate in einem feuerfest ausgekleideten Reaktor von der Form eines liegenden Zylinders mit 4,50 m Länge und 1,80 m Durchmesser. Den sulfidischen Konzentraten waren Zuschlagstoffe beigemischt, um Schlacken von bestimmter, zur Durchführung des erfindungsgemässen Verfahrens geeigneter chemischer Zusammensetzung zu erzeugen. Der Reaktor war mit 3 Doppelrohrdüsen mit Innenrohrdurchmesser von 10 mm und einem Propan-Sauerstoff-Hilfsbrenner ausgerüstet, um die Temperatur der Schmelze unabhängig von den ablaufenden chemisch-metallurgischen Reaktionen beeinflussen zu können.
  • Die Beispiele sind zwar auf die Oxidation sulfidischer Bleikonzentrate beschränkt, doch verhalten sich die hierbei entstehenden Schlacken wegen ihres Bleioxidgehaltes gegenüber allen in der Technik bekannten metallischen und keramischen Werkstoffen besonders aggressiv. Die in den Beispielen beschriebenen Massnahmen zum Schutz von Düsen und Mauerwerk des Reaktors lassen sich daher sinngemäss ohne weiteres auf das Verschmelzen einer Reihe anderer NE-Metall-haltiger Vorstoffe und Zwischenprodukte, darunter Konzentrate, Steine, Speisen, Schlacken, Stäube und Schlämme mit Gehalten an Kupfer, Nickel, Kobalt, Zink, Blei, Zinn, Antimon oder Wismut übertragen.
  • Zum Einsatz gelangten i.a. Mischungen folgender Zusammensetzung: 56,1% Pb: 3,2% Zn, 7,2% FeO, 3,9% CaO, 0,6% MgO, 0,7% A1203, 10,3% Si02 und 11,2% S. Die Mischungen wurden in der Regel bei einem solchen Oxidationspotential verschmolzen, dass neben schwefelarmem, metallischem Blei « 1 % S) eine magnetithaltige Schlacke mit Bleigehalten zwischen 63 und 66% entstand. Das gebildete metallische Blei sammelte sich am Boden des Reaktors in einer 200 mm starken Schicht und wurde periodisch abgestochen, während die Schlacke kontinuierlich ablief.
  • Beispiel 1
  • Bei einer Schlackentemperatur von 1000°C wurden die vorhandenen Doppelrohrdüsen bei gleicher Sauerstoffbeaufschlagung mit unterschiedlichen Mengen Stickstoff als Schutzfluid betrieben. Am Ende des Versuches (Nr. 1) wurden die Düsen gezogen und vermessen:
    Figure imgb0001
  • Es zeigte sich, dass das Mundstück der dritten Düse mit einem porösen, kegelförmigen Ansatz von ca. 30 mm Höhe und 50 mm Basisdurchmesser bedeckt gewesen war, der zu 70% aus Magnetit und zu 30% aus verschiedenen Silikaten bestand. Das Mauerwerk in der Umgebung der beiden anderen Düsenmundstücke wies trichterförmige Kocrosionsspuren von ca. 50 bzw. 100 mm Durchmesser auf, deren Tiefe dem Düsenabbrand entsprach. Dagegen war das Mauerwerk in der Umgebung der dritten Düse vollständig erhalten.
  • Beispiel 2
  • . Zur Untersuchung des Einflusses einer Überhitzung der Schlacke wurden drei Versuche bei unterschiedlichen Temperaturen der Schlacke durchgeführt. Hierbei wurden die in Beispiel 1 für die zweite Düse verwendeten Strömungsgeschwindigkeiten des Schutzfluides (6,9 bar Stickstoffdruck) eingestellt. Am Ende der Versuche wurden die Düsen wiederum gezogen und vermessen:
    Figure imgb0002
  • Es zeigte sich, dass nach Versuch 2 weder eine der drei Düsen noch das umgebende Mauerwerk korrodiert waren. Vor den Düsenmundstücken hatten sich wiederum poröse, kegelförmige Ansätze aus Magnetit und Silikaten gebildet, deren Höhen zwischen 30 und 35 mm und deren Basisdurchmesser zwischen 50 und 60 mm lagen. Das Mauerwerk in der Umgebung der Düsen der Versuche 3 und 4 wies die bereits in Beispiel 1 beschriebenen Korrosionsspuren auf.
  • Beispiel 3
  • In zwei weiteren Versuchen wurde demonstriert, dass der zuvor erläuterte Schutzmechanismus für Düsen und umgebendes Mauerwerk nur gegeben ist, wenn die verwendete Schlacke eine geeignete Zusammensetzung aufweist.
  • Dazu wurde der Reaktor nacheinander mit einer reinen Bleioxidschlacke (PbO) und einer Bleisilikatschlacke der ungefähren Zusammensetzung 2Pb0 - Si02 gefüllt. In beiden Versuchen wurde eine Schlackentemperatur von 930°C eingestellt, während die Düsen mit Sauerstoff und einem Stickstoffdruck von 6,9 bar betrieben wurden. Bei diesen Versuchen wurde jedoch keine Mischung aus Konzentrat und Zuschlagstoffen aufgegeben, um die Schlackenzusammensetzung nicht zu verändern. Es war daher auch kein metallisches Blei als Bodenphase zugegen. In keinem der beiden Versuche konnte ein fester Ansatz vor den Düsenmundstücken erzeugt werden. Dagegen waren nach Versuchsende die Düsen und das umgebende Mauerwerk nahezu zerstört:
    Figure imgb0003
  • Beispiel 4
  • In einem weiteren Versuch (Nr. 7) wurde gezeigt, dass die Grösse der auf den Düsenmundstücken gebildeten Ansätze leicht mit Hilfe einer Druckregelung des Schutzfluids beeinflusst werden kann. Dazu wurde im wesentlichen unter den Bedingungen des Versuches 2 (Temperatur 930°C) gearbeitet, jedoch wurden die drei Düsen mit geringfügig verschiedenen Schutzgasdrucken betrieben: Während der Stickstoffdruck an Düse 1 auf 6,7 bar und an Düse 2 auf 7,1 bar konstant gehalten wurde, wurde Düse 3 mit in Zehnminutenabständen innerhalb der Grenzen 6,7 bis 7,1 bar periodisch wechselndem Stickstoffdruck betrieben. Nach dem Versuch waren weder Düsen noch umgebendes Mauerwerk korrodiert, doch hatten sich auf den Düsenmündungen poröse Ansatze sehr unterschiedlicher Grösse gebildet:
    Figure imgb0004
  • Offensichtlich besteht also bei geeigneten und konstanten Bedingungen hinsichtlich Temperatur, Druck des Schutzfluids, Zusammensetzung der Schlacke und Geometrie an der Düsenmüdung ein thermisches Gleichgewicht, so dass sich poröse Ansätze von definierter Form und Grösse bilden.
  • Beispiel 5
  • In einer letzten Versuchsreihe wurde gezeigt, dass die Stärke der metallischen Bodenphase von Einfluss auf die Ansatzbildung auf den Mündungen der Düsen ist. Dazu wurde in einem Versuch (Nr. 8) der Reaktor ausschliesslich mit der magnetithaltigen Schlacke gefüllt, in die bei einer Temperatur von 930°C Sauerstoff und Stickstoff (6,9 bar Druck) geblasen wurden. Eine Chargierung von Konzentrat und Zuschlagstoffen fand nicht statt, um die Bildung einer Bodenphase von metallischem Blei zu unterdrücken.
  • In einem weiteren Versuch (Nr. 9) wurde eine Stärke der Bleischicht von 400 mm durch Vorgabe von metallischem Blei aufgebaut und durch Chargierung von Konzentrat und Zuschlägen bei periodischem Metallabstich konstant gehalten. Bei diesem Versuch wurden ansonsten die Bedingungen des Versuches 2 (Temperatur 930°C, Stickstoffdruck 6,9 bar) eingestellt.
  • Nach den Versuchen waren die Düsen und das umgebende Mauerwerk zwar vollständig erhalten, doch hatten sich wiederum Ansätze unterschiedlicher Grösse gebildet:
    Figure imgb0005
  • Sollen also Ansätze einer bestimmten Form und Grösse erzeugt werden, ist die Stärke der metallischen Bodenphase zu berücksichtigen, sofern diese aus einem niedrigschmelzenden Metall besteht.
  • In Analogie zu Beispiel 4, in dem eine Bleischicht von 200 mm aufrecht erhalten wurde, kann der an sich für die Ausbildung von Ansätzen auf den Mündungen der Düsen negative Einfluss der metallischen Bodenphase jedoch durch eine Steigerung des Schutzfluiddruckes kompensiert werden.
  • Die Vorteile der Erfindung bestehen darin, dass die Düsen und das umgebende Mauerwerk mit einfachen Mitteln vor dem chemischen Angriff sowie der Erosion durch die schmelzflüssige Phase geschützt werden, die Menge an Schutzfluid minimal gehalten und trotzdem eine gute Gasverteilung in der Schmelze erzielt werden.

Claims (6)

1. Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metalle enthaltendes Schmelzbad mittels durch die Reaktorwand in die Schmelze eingetauchter Doppelrohrdüsen, wobei durch den ringförmigen Raum zwischen innerem und äusserem Rohr jeder Doppelrohrdüse ein Schutzfluid als Kühlmittel eingeblasen wird, dadurch gekennzeichnet, dass die Menge des Schutzfluids in Abhängigkeit von der Zusammensetzung der Schlacke und der Temperaturdifferenz der Schlacke vom Erstarrungspunkt so eingestellt wird, dass einerseits auf den Düsen Ansätze gebildet werden, andererseits die Ansätze eine gewünschte Dicke nicht überschreiten.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zusammensetzung und Temperatur der Schlacke so eingestellt wird, dass bereits bei einer geringfügigen örtlichen Abkühlung der Schlacke an den Düsen die Kristallisationstemperatur hochschmelzender - ursprünglich in der Schlacke gelöster - Bestandteile unterschritten wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rührwirkung der durch die Düsen eingeblasenen Gase so eingestellt wird, dass unabhängig von der Schichthöhe eines Metallbades auf dem Boden des Reaktors eine Emulsion aus Schlacke und Metall die Düsen erreicht.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Einstellung der Dicke der Ansätze durch Regelung des Druckanstiegs des strömenden Schutzfluids gegenüber dem ursprünglichen Druck auf einen gewünschten Wert erfolgt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der gewünschte Wert des Druckes durch Konstanthaltung des Druckes geregelt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Reaktor in Abhängigkeit von der Zusammensetzung der Schlacke und Temperatur so ausgemauert wird, dass sich ein konstanter Film von hochschmelzenden Bestandteilen auf dem Mauerwerk bildet.
EP81201257A 1980-12-05 1981-11-11 Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad Expired EP0053848B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803045992 DE3045992A1 (de) 1980-12-05 1980-12-05 Verfahren zum einblasen von hochsauerstoffhaltigen gasen in ein ne-metalle enthaltendes schmelzbad
DE3045992 1980-12-05

Publications (3)

Publication Number Publication Date
EP0053848A1 EP0053848A1 (de) 1982-06-16
EP0053848B1 true EP0053848B1 (de) 1984-10-24
EP0053848B2 EP0053848B2 (de) 1987-10-14

Family

ID=6118459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81201257A Expired EP0053848B2 (de) 1980-12-05 1981-11-11 Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad

Country Status (17)

Country Link
US (1) US4435211A (de)
EP (1) EP0053848B2 (de)
JP (1) JPS57120626A (de)
KR (1) KR890002800B1 (de)
AU (1) AU542613B2 (de)
BR (1) BR8107861A (de)
CA (1) CA1180194A (de)
DE (2) DE3045992A1 (de)
ES (1) ES507717A0 (de)
FI (1) FI68659C (de)
IN (1) IN152960B (de)
MA (1) MA19349A1 (de)
MX (1) MX156287A (de)
PH (1) PH19449A (de)
PL (1) PL234079A1 (de)
YU (1) YU42003B (de)
ZA (1) ZA817664B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014835A1 (de) * 1989-05-12 1990-11-15 Air Liquide Verfahren zur oxidationsbehandlung eines fluessigen bades

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661153A (en) * 1983-07-01 1987-04-28 Southwire Company Refractory porous plug
DE3814310A1 (de) * 1988-04-28 1989-11-09 Messer Griesheim Gmbh Verfahren zur raffination von si-metall und si-eisenlegierungen
CA2041297C (en) * 1991-04-26 2001-07-10 Samuel Walton Marcuson Converter and method for top blowing nonferrous metal
US5435833A (en) * 1993-09-30 1995-07-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process to convert non-ferrous metal such as copper or nickel by oxygen enrichment
US5814126A (en) * 1994-01-12 1998-09-29 Cook; Thomas H. Method and apparatus for producing bright and smooth galvanized coatings
DE4429937A1 (de) * 1994-08-24 1996-02-29 Metallgesellschaft Ag Verfahren zum Verblasen von NE-Metall-Schrott und Hütten-Zwischenprodukten
DE19638148A1 (de) * 1996-09-18 1998-03-19 Linde Ag Sauerstofflanze und Verfahren zum Verblasen von flüssigem Metall
DE10253535A1 (de) * 2002-11-16 2004-05-27 Sms Demag Ag Gaszuleitungssystem für einen metallurgischen Ofen sowie Betriebsverfahren hierzu
FR2856631B1 (fr) * 2003-06-26 2005-09-23 Jean Noel Claveau Procede de decoration d'un article et equipement pour la mise en oeuvre de ce procede
FR2856630B1 (fr) * 2003-06-26 2006-09-29 Jean Noel Claveau Procede de decoration d'un article et equipement pour la mise en oeuvre de ce procede
FR2881988B1 (fr) * 2005-02-15 2007-06-29 Jean Noel Claveau Procede de decoration d'un article et equipement pour la mise en oeuvre de ce procede
DE102010020179A1 (de) * 2009-06-09 2010-12-16 Sms Siemag Ag Verfahren zum Betreiben eines Bodenspülsystems eines BOF-Konverters
EP2302082B1 (de) * 2009-09-03 2013-04-17 Linde AG Verfahren zum Betreiben eines Konverters und Vorrichtung zur Durchführung des Verfahrens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US443758A (en) 1890-12-30 Process of converting copper matte to copper
US3892559A (en) 1969-09-18 1975-07-01 Bechtel Int Corp Submerged smelting
BE748041A (fr) * 1970-03-26 1970-09-28 Centre Rech Metallurgique Perfectionnements aux procedes d'affinage,
LU62933A1 (de) * 1971-04-06 1973-05-16
FR2219235B2 (de) * 1973-02-26 1976-05-14 Creusot Loire
BE795117A (fr) * 1973-02-07 1973-05-29 Centre Rech Metallurgique Procede et dispositif pour le convertissage de matieres cuivreuses
US3941587A (en) * 1973-05-03 1976-03-02 Q-S Oxygen Processes, Inc. Metallurgical process using oxygen
DE2504946C2 (de) 1975-02-06 1980-04-30 Kloeckner-Werke Ag, 4100 Duisburg Verfahren und Vorrichtung zum Einschmelzen von Schrott, Eisenschwamm, Pellets oder dgl

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014835A1 (de) * 1989-05-12 1990-11-15 Air Liquide Verfahren zur oxidationsbehandlung eines fluessigen bades
DE4014835C2 (de) * 1989-05-12 1999-11-04 Air Liquide Verfahren zur Oxidationsbehandlung eines flüssigen Bades

Also Published As

Publication number Publication date
MA19349A1 (fr) 1982-07-01
US4435211A (en) 1984-03-06
PL234079A1 (de) 1982-07-19
JPS57120626A (en) 1982-07-27
ES8300871A1 (es) 1982-11-01
BR8107861A (pt) 1982-09-08
EP0053848A1 (de) 1982-06-16
KR830007855A (ko) 1983-11-07
JPH0147532B2 (de) 1989-10-16
AU7827981A (en) 1982-06-10
DE3166865D1 (en) 1984-11-29
FI68659C (fi) 1985-10-10
MX156287A (es) 1988-08-08
YU283681A (en) 1984-04-30
IN152960B (de) 1984-05-12
FI813743L (fi) 1982-06-06
FI68659B (fi) 1985-06-28
ES507717A0 (es) 1982-11-01
KR890002800B1 (ko) 1989-07-31
EP0053848B2 (de) 1987-10-14
CA1180194A (en) 1985-01-02
AU542613B2 (en) 1985-02-28
DE3045992A1 (de) 1982-07-22
ZA817664B (en) 1982-10-27
PH19449A (en) 1986-04-18
YU42003B (en) 1988-04-30

Similar Documents

Publication Publication Date Title
EP0053848B1 (de) Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad
DE69914612T2 (de) Direktschmelzverfahren
DE3042222A1 (de) Verfahren zur rueckgewinnung von fluechtigen metallen aus metaloxid-haltigem material
DE1941282A1 (de) Verfahren zur Veredelung von Stahl durch Umschmelzen in einem Plasma-Lichtbogen
DE1941760A1 (de) Verfahren und Vorrichtung zum Zusetzen von Additiven zu einer Schmelze
DE2521830A1 (de) Verfahren und vorrichtung zur thermischen raffination von stark verunreinigtem kupfer in schmelzfluessiger phase
DE2900676C2 (de)
DE3212100C2 (de) Verfahren und Vorrichtung zur Durchführung pyrometallurgischer Prozesse
DE2255977C3 (de) Verfahren zum Raffinieren von metallischem Kupfer
DE2523519A1 (de) Verfahren und apparat zur behandlung bleihaltigen flugstaubes
DE1026079B (de) Duese zur Einfuehrung von Fluessigkeiten in eine Reaktionskammer
DE1907543B2 (de) Verfahren und vorrichtung zum kontinuierlichen raffinieren von metallen
DE3022790C2 (de) Verfahren zum Oxidieren von schmelzflüssigem eisenarmen Metallstein zu Rohmetall
DE2645585C3 (de) Verfahren zur kontinuierlichen oder diskontinuierlichen Behandlung von geschmolzenen schwermetalloxidhaltigen Schlacken zur Freisetzung von Wertmetallen und/oder deren Verbindungen
EP0045532B1 (de) Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien
EP0012226A1 (de) Verfahren zur Behandlung von borhaltigem Stahl
EP0659170B1 (de) Reaktor sowie verfahren zum schmelzen von verbrennungsrückständen
DE3920522A1 (de) Aggregat zur gewinnung von metallischem blei aus sulfidischen bleikonzentraten
DE3143563C2 (de) Tauchrohr für das Blockgießen und ein Verfahren zum Betrieb dieses Tauchrohres
DE1282867B (de) Verfahren zur Herstellung von Ferrophosphorpulver
DE3701846A1 (de) Direktes schmelzverfahren fuer sulfidische erze
DE2715077C3 (de) Exothermes Gemisch zum Frischen von Stahlschmelzen
DE4429937A1 (de) Verfahren zum Verblasen von NE-Metall-Schrott und Hütten-Zwischenprodukten
DE1758455C3 (de) Verfahren zum Frischen von legierten kohlenstoffhaltigen Eisenschmelzen
DE674550C (de) Verfahren zur ununterbrochenen Entzinkung von fluessigem zinkhaltigem Blei

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

17P Request for examination filed

Effective date: 19820525

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 3166865

Country of ref document: DE

Date of ref document: 19841129

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: UNION CARBIDE CORPORATION

Effective date: 19850724

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19871014

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE FR GB IT SE

ET3 Fr: translation filed ** decision concerning opposition
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930914

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930917

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931025

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931202

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931209

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19941130

EAL Se: european patent in force in sweden

Ref document number: 81201257.3

BERE Be: lapsed

Owner name: METALLGESELLSCHAFT A.G.

Effective date: 19941130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801

EUG Se: european patent has lapsed

Ref document number: 81201257.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST